201
|
Kazdin AE. Evidence-based psychotherapies II: changes in models of treatment and treatment delivery. SOUTH AFRICAN JOURNAL OF PSYCHOLOGY 2014. [DOI: 10.1177/0081246314538733] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Decades of psychotherapy research have yielded a few hundred interventions with strong evidence on their behalf. In the prior companion article, methodological and substantive concerns were raised in relation to what we can say about evidence-based psychotherapies and their impact. Among the methodological concerns are the control conditions to which evidence-based psychotherapies are compared, selective reporting of measures, and the paucity of evidence that evidence-based psychotherapies have clinically significant impact. Among the substantive concerns are limited findings to help direct patients to treatments from which they are likely to profit and to understand the mechanisms responsible for therapeutic change. In this article, two shifts in evidence-based psychotherapy research are highlighted to convey novel and needed directions to augment the impact of treatment and the scale on which it can be delivered. First, transdiagnosis and transtreatment are discussed as a departure from traditional evidence-based psychotherapy research by emphasizing interventions that can be applied across multiple domains. Common biological, psychological, and environmental underpinnings of many disorders and select treatments showing reliable changes across multiple problems are altering evidence-based psychotherapy research. Second, novel models of treatment delivery have emerged from global health care, business, economics, and the media, and are well outside of mainstream mental health professions. Two models (task shifting and best-buy interventions) illustrate how different ways of delivering treatment are essential to reach large and diverse swaths of unserved individuals and have impact on the burden of mental illness.
Collapse
|
202
|
Hendriksen H, Olivier B, Oosting RS. From non-pharmacological treatments for post-traumatic stress disorder to novel therapeutic targets. Eur J Pharmacol 2014; 732:139-58. [DOI: 10.1016/j.ejphar.2014.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
203
|
Kazdin AE. Evidence-based psychotherapies I: qualifiers and limitations in what we know. SOUTH AFRICAN JOURNAL OF PSYCHOLOGY 2014. [DOI: 10.1177/0081246314533750] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Psychosocial interventions have advanced remarkably for the treatment of a broad range of psychiatric disorders and related sources of impairment among children, adolescents, and adults. By one count, over 320 interventions have been identified as evidence-based in light of rigorously controlled studies and replication of treatment effects. Yet, how evidence-based psychotherapies have been evaluated and reported raises questions about their impact. This article evaluates both methodological and substantive issues that limit what can be stated about evidence-based psychotherapies and their effects. Among the methodological topics are the control conditions to which evidence-based psychotherapies are compared, selective reporting of measures, and the limited evidence that evidence-based psychotherapies have clinically significant impact. Among the substantive issues are the paucity of research on moderators that would help us better direct patients to treatments from which they are likely to profit and our limited understanding of the mechanisms responsible for therapeutic change. The issues discussed are fundamental to what can be stated about the impact of evidence-based psychotherapies and impact and the bases for their effects. It is not clear at present whether concerted efforts are in place to alter research in ways that would redress the issues. There are, however, novel new directions for research that build on the evidence-based psychotherapies, and these are addressed in a companion article.
Collapse
|
204
|
Caldwell Hooper AE, Bryan AD, Hagger MS. What keeps a body moving? The brain-derived neurotrophic factor val66met polymorphism and intrinsic motivation to exercise in humans. J Behav Med 2014; 37:1180-92. [PMID: 24805993 DOI: 10.1007/s10865-014-9567-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 04/16/2014] [Indexed: 02/07/2023]
Abstract
Individuals who are intrinsically motivated to exercise are more likely to do so consistently. In previous research, those with at least one copy of the methionine (met) allele in the brain-derived neurotrophic factor gene (BDNF; rs6265) had greater increases in positive mood and lower perceived exertion during exercise. This study examined whether genotype for BDNF is also related to intrinsic motivation, measured by self-report during a treadmill exercise session and a free-choice behavioral measure (continuing to exercise given the option to stop) among 89 regular exercisers (age M = 23.58, SD = 3.95). Those with at least one copy of the met allele reported greater increases in intrinsic motivation during exercise and were more likely to continue exercising when given the option to stop (55 vs. 33%). Results suggest that underlying genetic factors may partially influence perceptions of inherent rewards associated with exercise and might inform the development of individually targeted interventions.
Collapse
|
205
|
Keleshian VL, Kellom M, Kim HW, Taha AY, Cheon Y, Igarashi M, Rapoport SI, Rao JS. Neuropathological responses to chronic NMDA in rats are worsened by dietary n-3 PUFA deprivation but are not ameliorated by fish oil supplementation. PLoS One 2014; 9:e95318. [PMID: 24798187 PMCID: PMC4010416 DOI: 10.1371/journal.pone.0095318] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/25/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Dietary long-chain n-3 polyunsaturated fatty acid (PUFA) supplementation may be beneficial for chronic brain illnesses, but the issue is not agreed on. We examined effects of dietary n-3 PUFA deprivation or supplementation, compared with an n-3 PUFA adequate diet (containing alpha-linolenic acid [18:3 n-3] but not docosahexaenoic acid [DHA, 22:6n-3]), on brain markers of lipid metabolism and excitotoxicity, in rats treated chronically with NMDA or saline. METHODS Male rats after weaning were maintained on one of three diets for 15 weeks. After 12 weeks, each diet group was injected i.p. daily with saline (1 ml/kg) or a subconvulsive dose of NMDA (25 mg/kg) for 3 additional weeks. Then, brain fatty acid concentrations and various markers of excitotoxicity and fatty acid metabolism were measured. RESULTS Compared to the diet-adequate group, brain DHA concentration was reduced, while n-6 docosapentaenoic acid (DPA, 22:5n-6) concentration was increased in the n-3 deficient group; arachidonic acid (AA, 20:4n-6) concentration was unchanged. These concentrations were unaffected by fish oil supplementation. Chronic NMDA increased brain cPLA2 activity in each of the three groups, but n-3 PUFA deprivation or fish oil did not change cPLA2 activity or protein compared with the adequate group. sPLA2 expression was unchanged in the three conditions, whereas iPLA2 expression was reduced by deprivation but not changed by supplementation. BDNF protein was reduced by NMDA in N-3 PUFA deficient rats, but protein levels of IL-1β, NGF, and GFAP did not differ between groups. CONCLUSIONS N-3 PUFA deprivation significantly worsened several pathological NMDA-induced changes produced in diet adequate rats, whereas n-3 PUFA supplementation did not affect NMDA induced changes. Supplementation may not be critical for this measured neuropathology once the diet has an adequate n-3 PUFA content.
Collapse
Affiliation(s)
- Vasken L. Keleshian
- Virginia Commonwealth University, School of Medicine, Richmond, Virginia, United States of America
| | - Matthew Kellom
- School of Earth and Space Exploration, Arizona State University, Phoenix, Arizona, United States of America
| | - Hyung-Wook Kim
- College of Life Sciences, Sejong University, Gunja-dong, Gwangjin-Gu, Seoul, Korea
| | - Ameer Y. Taha
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
| | - Yewon Cheon
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
| | - Miki Igarashi
- Department of Anatomy & Neurobiology, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Stanley I. Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
| | - Jagadeesh S. Rao
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
206
|
Lindholm JSO, Castrén E. Mice with altered BDNF signaling as models for mood disorders and antidepressant effects. Front Behav Neurosci 2014; 8:143. [PMID: 24817844 PMCID: PMC4012208 DOI: 10.3389/fnbeh.2014.00143] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/10/2014] [Indexed: 12/20/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase TrkB support neuronal survival during development and promote connectivity and plasticity in the adult brain. Decreased BDNF signaling is associated with the pathophysiology of depression and the mechanisms underlying the actions of antidepressant drugs (AD). Several transgenic mouse models with decreases or increases in the amount of BDNF or the activity of TrkB signaling have been created. This review summarizes the studies where various mouse models with increased or decreased BDNF levels or TrkB signaling were used to evaluate the role of BDNF signaling in depression-like behavior. Although a large number of models have been employed and several studies have been published, no clear-cut connections between BDNF levels or signaling and depression-like behavior in mice have emerged. However, it is clear that BDNF plays a critical role in the mechanisms underlying the actions of AD.
Collapse
Affiliation(s)
| | - Eero Castrén
- Neuroscience Center, University of Helsinki Helsinki, Finland
| |
Collapse
|
207
|
Affiliation(s)
- Glenn C Rowe
- Cardiovascular Institute and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
208
|
Aoki C, Wable G, Chowdhury TG, Sabaliauskas NA, Laurino K, Barbarich-Marsteller NC. α4βδ-GABAARs in the hippocampal CA1 as a biomarker for resilience to activity-based anorexia. Neuroscience 2014; 265:108-23. [PMID: 24444828 PMCID: PMC3996507 DOI: 10.1016/j.neuroscience.2014.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/09/2013] [Accepted: 01/07/2014] [Indexed: 12/01/2022]
Abstract
Anorexia nervosa (AN) is a psychiatric illness characterized by restricted eating and an intense fear of gaining weight. Most individuals with AN are females, diagnosed first during adolescence, 40-80% of whom exhibit excessive exercise, and an equally high number with a history of anxiety disorder. We sought to determine the cellular basis for individual differences in AN vulnerability by using an animal model, activity-based anorexia (ABA), that is induced by combining food restriction (FR) with access to a running wheel that allows voluntary exercise. Previously, we showed that by the fourth day of FR, the ABA group of adolescent female rats exhibit >500% greater levels of non-synaptic α4βδ-GABAARs at the plasma membrane of hippocampal CA1 pyramidal cell spines, relative to the levels found in age-matched controls that are not FR and without wheel access. Here, we show that the ABA group exhibits individual differences in body weight loss, with some losing nearly 30%, while others lose only 15%. The individual differences in weight loss are ascribable to individual differences in wheel activity that both precedes and concurs with days of FR. Moreover, the increase in activity during FR correlates strongly and negatively with α4βδ-GABAAR levels (R=-0.9, p<0.01). This negative correlation is evident within 2days of FR, before body weight loss approaches life-threatening levels for any individual. These findings suggest that increased shunting inhibition by α4βδ-GABAARs in spines of CA1 pyramidal neurons may participate in the protection against the ABA-inducing environmental factors of severe weight loss by suppressing excitability of the CA1 pyramidal neurons which, in turn, is related indirectly to suppression of excessive exercise. The data also indicate that, although exercise has many health benefits, it can be maladaptive to individuals with low levels of α4βδ-GABAARs in the CA1, particularly when combined with FR.
Collapse
Affiliation(s)
- C Aoki
- Center for Neural Science, New York University, New York, NY 10003, United States.
| | - G Wable
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - T G Chowdhury
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - N A Sabaliauskas
- Center for Neural Science, New York University, New York, NY 10003, United States
| | - K Laurino
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032, United States; Department of Psychiatry, New York State Psychiatric Institute, New York, NY 10032, United States
| | - N C Barbarich-Marsteller
- Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York, NY 10032, United States; Department of Psychiatry, New York State Psychiatric Institute, New York, NY 10032, United States
| |
Collapse
|
209
|
Singhal G, Jaehne EJ, Corrigan F, Baune BT. Cellular and molecular mechanisms of immunomodulation in the brain through environmental enrichment. Front Cell Neurosci 2014; 8:97. [PMID: 24772064 PMCID: PMC3982075 DOI: 10.3389/fncel.2014.00097] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/14/2014] [Indexed: 11/17/2022] Open
Abstract
Recent studies on environmental enrichment (EE) have shown cytokines, cellular immune components [e.g., T lymphocytes, natural killer (NK) cells], and glial cells in causal relationship to EE in bringing out changes to neurobiology and behavior. The purpose of this review is to evaluate these neuroimmune mechanisms associated with neurobiological and behavioral changes in response to different EE methods. We systematically reviewed common research databases. After applying all inclusion and exclusion criteria, 328 articles remained for this review. Physical exercise (PE), a form of EE, elicits anti-inflammatory and neuromodulatory effects through interaction with several immune pathways including interleukin (IL)-6 secretion from muscle fibers, reduced expression of Toll-like receptors on monocytes and macrophages, reduced secretion of adipokines, modulation of hippocampal T cells, priming of microglia, and upregulation of mitogen-activated protein kinase phosphatase-1 in central nervous system. In contrast, immunomodulatory roles of other enrichment methods are not studied extensively. Nonetheless, studies showing reduction in the expression of IL-1β and tumor necrosis factor-α in response to enrichment with novel objects and accessories suggest anti-inflammatory effects of novel environment. Likewise, social enrichment, though considered a necessity for healthy behavior, results in immunosuppression in socially defeated animals. This has been attributed to reduction in T lymphocytes, NK cells and IL-10 in subordinate animals. EE through sensory stimuli has been investigated to a lesser extent and the effect on immune factors has not been evaluated yet. Discovery of this multidimensional relationship between immune system, brain functioning, and EE has paved a way toward formulating environ-immuno therapies for treating psychiatric illnesses with minimal use of pharmacotherapy. While the immunomodulatory role of PE has been evaluated extensively, more research is required to investigate neuroimmune changes associated with other enrichment methods.
Collapse
Affiliation(s)
- Gaurav Singhal
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| | - Emily J. Jaehne
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| | - Frances Corrigan
- Discipline of Anatomy and Physiology, School of Medical Sciences, University of AdelaideAdelaide, SA, Australia
| | - Bernhard T. Baune
- Psychiatric Neuroscience Lab, Discipline of Psychiatry, School of Medicine, University of AdelaideAdelaide, SA, Australia
| |
Collapse
|
210
|
R K, D M A, C N, S N W, C D. Oxidative imbalance and anxiety disorders. Curr Neuropharmacol 2014; 12:193-204. [PMID: 24669212 PMCID: PMC3964749 DOI: 10.2174/1570159x11666131120223530] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 05/15/2013] [Accepted: 11/02/2013] [Indexed: 01/22/2023] Open
Abstract
The oxidative imbalance appears to have an important role in anxiety development. Studies in both humans and animals have shown a strong correlation between anxiety and oxidative stress. In humans, for example, the increased malondialdehyde levels and discrepancies in antioxidant enzymes in erythrocytes have been observed. In animals, several studies also show that anxiety-like behavior is related to the oxidative imbalance. Moreover, anxiety-like behavior can be caused by pharmacological-induced oxidative stress. Studies using knockout or overexpression of antioxidant enzymes have shown a relationship between anxiety-like behavior and oxidative stress. Related factors of oxidative stress that could influence anxious behavior are revised, including impaired function of different mitochondrial proteins, inflammatory cytokines, and neurotrophic factors. It has been suggested that a therapy specifically focus in reducing reactive species production may have a beneficial effect in reducing anxiety. However, the neurobiological pathways underlying the effect of oxidative stress on anxiety symptoms are not fully comprehended. The challenge now is to identify the oxidative stress mechanisms likely to be involved in the induction of anxiety symptoms. Understanding these pathways could help to clarify the neurobiology of the anxiety disorder and provide tools for new discovery in therapies and preventive strategies.
Collapse
Affiliation(s)
- Krolow R
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Arcego D M
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Noschang C
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Weis S N
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Dalmaz C
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
211
|
Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab 2014; 25:89-98. [PMID: 24361004 PMCID: PMC3915771 DOI: 10.1016/j.tem.2013.10.006] [Citation(s) in RCA: 399] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/14/2013] [Accepted: 10/24/2013] [Indexed: 01/05/2023]
Abstract
Emerging findings suggest that brain-derived neurotrophic factor (BDNF) serves widespread roles in regulating energy homeostasis by controlling patterns of feeding and physical activity, and by modulating glucose metabolism in peripheral tissues. BDNF mediates the beneficial effects of energetic challenges such as vigorous exercise and fasting on cognition, mood, cardiovascular function, and on peripheral metabolism. By stimulating glucose transport and mitochondrial biogenesis BDNF bolsters cellular bioenergetics and protects neurons against injury and disease. By acting in the brain and periphery, BDNF increases insulin sensitivity and parasympathetic tone. Genetic factors, a 'couch potato' lifestyle, and chronic stress impair BDNF signaling, and this may contribute to the pathogenesis of metabolic syndrome. Novel BDNF-focused interventions are being developed for obesity, diabetes, and neurological disorders.
Collapse
Affiliation(s)
- Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
212
|
Fiuza-Luces C, Garatachea N, Berger NA, Lucia A. Exercise is the real polypill. Physiology (Bethesda) 2014; 28:330-58. [PMID: 23997192 DOI: 10.1152/physiol.00019.2013] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The concept of a "polypill" is receiving growing attention to prevent cardiovascular disease. Yet similar if not overall higher benefits are achievable with regular exercise, a drug-free intervention for which our genome has been haped over evolution. Compared with drugs, exercise is available at low cost and relatively free of adverse effects. We summarize epidemiological evidence on the preventive/therapeutic benefits of exercise and on the main biological mediators involved.
Collapse
|
213
|
Siette J, Reichelt AC, Westbrook RF. A bout of voluntary running enhances context conditioned fear, its extinction, and its reconsolidation. Learn Mem 2014; 21:73-81. [PMID: 24429425 PMCID: PMC3895230 DOI: 10.1101/lm.032557.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three experiments used rats to examine the effect of a single bout of voluntary activity (wheel running) on the acquisition, extinction, and reconsolidation of context conditioned fear. In Experiment 1, rats provided with access to a wheel for 3 h immediately before or after a shocked exposure to a context froze more when tested in that context than rats provided with access to the wheels 6 h after the shocked exposure or rats not provided with access to the wheels. In Experiment 2, rats provided with access to the wheels immediately before or after a nonshocked exposure to the conditioned context froze less when tested in that context than rats provided with access to the wheels 6 h after the nonshocked exposure or rats not provided with access to the wheels. In Experiment 3, rats provided with access to wheels immediately after an extended nonshocked exposure to the conditioned context again froze less, whereas rats provided with access to the wheels after a brief nonshocked exposure froze more on the subsequent test than sedentary controls. These results show that a single bout of running can enhance acquisition, extinction, and reconsolidation of context conditioned fear.
Collapse
Affiliation(s)
- Joyce Siette
- School of Psychology, University of New South Wales, Sydney NSW 2034, Australia
| | | | | |
Collapse
|
214
|
Lee EB, Mattson MP. The neuropathology of obesity: insights from human disease. Acta Neuropathol 2014; 127:3-28. [PMID: 24096619 DOI: 10.1007/s00401-013-1190-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 02/06/2023]
Abstract
Obesity, a pathologic state defined by excess adipose tissue, is a significant public health problem as it affects a large proportion of individuals and is linked with increased risk for numerous chronic diseases. Obesity is the result of fundamental changes associated with modern society including overnutrition and sedentary lifestyles. Proper energy homeostasis is dependent on normal brain function as the master metabolic regulator, which integrates peripheral signals, modulates autonomic outflow and controls feeding behavior. Therefore, many human brain diseases are associated with obesity. This review explores the neuropathology of obesity by examining brain diseases which either cause or are influenced by obesity. First, several genetic and acquired brain diseases are discussed as a means to understand the central regulation of peripheral metabolism. These diseases range from monogenetic causes of obesity (leptin deficiency, MC4R deficiency, Bardet-Biedl syndrome and others) to complex neurodevelopmental disorders (Prader-Willi syndrome and Sim1 deficiency) and neurodegenerative conditions (frontotemporal dementia and Gourmand's syndrome) and serve to highlight the central regulatory mechanisms which have evolved to maintain energy homeostasis. Next, to examine the effect of obesity on the brain, chronic neuropathologic conditions (epilepsy, multiple sclerosis and Alzheimer's disease) are discussed as examples of obesity leading to maladaptive processes which exacerbate chronic disease. Thus, obesity is associated with multiple pathways including abnormal metabolism, altered hormonal signaling and increased inflammation which act in concert to promote downstream neuropathology. Finally, the effect of anti-obesity interventions is discussed in terms of brain structure and function. Together, understanding human diseases and anti-obesity interventions leads to insights into the bidirectional interaction between peripheral metabolism and central brain function, highlighting the need for continued clinicopathologic and mechanistic studies of the neuropathology of obesity.
Collapse
|
215
|
Martin SA, Dantzer R, Kelley KW, Woods JA. Voluntary wheel running does not affect lipopolysaccharide-induced depressive-like behavior in young adult and aged mice. Neuroimmunomodulation 2014; 21:52-63. [PMID: 24281669 PMCID: PMC3934626 DOI: 10.1159/000356144] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/05/2013] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE(S) Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate-intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running (VWR) would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4- and 22-month-old C57BL/6J mice. METHODS Mice were housed with a running wheel (VWR) or no wheel (standard) for 30 (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). RESULTS Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective standard control groups. VWR had no effect on LPS-induced anorexia, weight loss, increased immobility in the tail suspension test and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and 24 h (aged mice) after injection of LPS, mRNA transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. CONCLUSION Prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences in young adult and aged mice.
Collapse
Affiliation(s)
- Stephen A. Martin
- Departments of Kinesiology and Community Health, University of Illinois @Urbana-Champaign, Urbana IL
- Integrated Immunology and Behavior Program, University of Illinois @Urbana-Champaign, Urbana IL
| | | | - Keith W. Kelley
- Integrated Immunology and Behavior Program, University of Illinois @Urbana-Champaign, Urbana IL
- Department of Animal Sciences, University of Illinois @Urbana-Champaign, Urbana IL
| | - Jeffrey A. Woods
- Departments of Kinesiology and Community Health, University of Illinois @Urbana-Champaign, Urbana IL
- Integrated Immunology and Behavior Program, University of Illinois @Urbana-Champaign, Urbana IL
| |
Collapse
|
216
|
Neuroprotective effects of swimming training in a mouse model of Parkinson’s disease induced by 6-hydroxydopamine. Neuroscience 2014; 256:61-71. [DOI: 10.1016/j.neuroscience.2013.09.042] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/29/2013] [Accepted: 09/20/2013] [Indexed: 01/08/2023]
|
217
|
Holmes PV. Trophic Mechanisms for Exercise-Induced Stress Resilience: Potential Role of Interactions between BDNF and Galanin. Front Psychiatry 2014; 5:90. [PMID: 25120496 PMCID: PMC4112800 DOI: 10.3389/fpsyt.2014.00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022] Open
Abstract
Current concepts of the neurobiology of stress-related disorders, such as anxiety and depression emphasize disruptions in neural plasticity and neurotrophins. The potent trophic actions of exercise, therefore, represent not only an effective means for prevention and treatment of these disorders, they also afford the opportunity to employ exercise paradigms as a basic research tool to uncover the neurobiological mechanisms underlying these disorders. Novel approaches to studying stress-related disorders focus increasingly on trophic factor signaling in corticolimbic circuits that both mediate and regulate cognitive, behavioral, and physiological responses to deleterious stress. Recent evidence demonstrates that the neural plasticity supported by these trophic mechanisms is vital for establishing and maintaining resilience to stress. Therapeutic interventions that promote these mechanisms, be they pharmacological, behavioral, or environmental, may therefore prevent or reverse stress-related mental illness by enhancing resilience. The present paper will provide an overview of trophic mechanisms responsible for the enhancement of resilience by voluntary exercise with an emphasis on brain-derived neurotrophic factor, galanin, and interactions between these two trophic factors.
Collapse
Affiliation(s)
- Philip V Holmes
- Neuroscience Program, Psychology Department, Biomedical and Health Sciences Institute, The University of Georgia , Athens, GA , USA
| |
Collapse
|
218
|
Voluntary running in young adult mice reduces anxiety-like behavior and increases the accumulation of bioactive lipids in the cerebral cortex. PLoS One 2013; 8:e81459. [PMID: 24349072 PMCID: PMC3859495 DOI: 10.1371/journal.pone.0081459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 10/22/2013] [Indexed: 01/27/2023] Open
Abstract
Combinatorial therapies using voluntary exercise and diet supplementation with polyunsaturated fatty acids have synergistic effects benefiting brain function and behavior. Here, we assessed the effects of voluntary exercise on anxiety-like behavior and on total FA accumulation within three brain regions: cortex, hippocampus, and cerebellum of running versus sedentary young adult male C57/BL6J mice. The running group was subjected to one month of voluntary exercise in their home cages, while the sedentary group was kept in their home cages without access to a running wheel. Elevated plus maze (EPM), several behavioral postures and two risk assessment behaviors (RABs) were then measured in both animal groups followed immediately by blood samplings for assessment of corticosterone levels. Brains were then dissected for non-targeted lipidomic analysis of selected brain regions using gas chromatography coupled to mass spectrometry (GC/MS). Results showed that mice in the running group, when examined in the EPM, displayed significantly lower anxiety-like behavior, higher exploratory and risky behaviors, compared to sedentary mice. Notably, we found no differences in blood corticosterone levels between the two groups, suggesting that the different EPM and RAB behaviors were not related to reduced physiological stress in the running mice. Lipidomics analysis revealed a region-specific cortical decrease of the saturated FA: palmitate (C16:0) and a concomitant increase of polyunsaturated FA, arachidonic acid (AA, omega 6-C20: 4) and docosahexaenoic acid (DHA, omega 3-C22: 6), in running mice compared to sedentary controls. Finally, we found that running mice, as opposed to sedentary animals, showed significantly enhanced cortical expression of phospholipase A2 (PLA2) protein, a signaling molecule required in the production of both AA and DHA. In summary, our data support the anxiolytic effects of exercise and provide insights into the molecular processes modulated by exercise that may lead to its beneficial effects on mood.
Collapse
|
219
|
Affiliation(s)
- Shawn Hayley
- Department of Neuroscience, Carleton University, Ottawa, Ont., Canada
| | - Hymie Anisman
- Department of Neuroscience, Carleton University, Ottawa, Ont., Canada
| |
Collapse
|
220
|
Lynch WJ, Peterson AB, Sanchez V, Abel J, Smith MA. Exercise as a novel treatment for drug addiction: a neurobiological and stage-dependent hypothesis. Neurosci Biobehav Rev 2013; 37:1622-44. [PMID: 23806439 PMCID: PMC3788047 DOI: 10.1016/j.neubiorev.2013.06.011] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/29/2013] [Accepted: 06/13/2013] [Indexed: 12/11/2022]
Abstract
Physical activity, and specifically exercise, has been suggested as a potential treatment for drug addiction. In this review, we discuss clinical and preclinical evidence for the efficacy of exercise at different phases of the addiction process. Potential neurobiological mechanisms are also discussed focusing on interactions with dopaminergic and glutamatergic signaling and chromatin remodeling in the reward pathway. While exercise generally produces an efficacious response, certain exercise conditions may be either ineffective or lead to detrimental effects depending on the level/type/timing of exercise exposure, the stage of addiction, the drug involved, and the subject population. During drug use initiation and withdrawal, its efficacy may be related to its ability to facilitate dopaminergic transmission, and once addiction develops, its efficacy may be related to its ability to normalize glutamatergic and dopaminergic signaling and reverse drug-induced changes in chromatin via epigenetic interactions with brain-derived neurotrophic factor (BDNF) in the reward pathway. We conclude with future directions, including the development of exercise-based interventions alone or as an adjunct to other strategies for treating drug addiction.
Collapse
Affiliation(s)
- Wendy J Lynch
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, 1670 Discovery Drive, Charlottesville, VA 22911, USA.
| | | | | | | | | |
Collapse
|
221
|
Ota KT, Duman RS. Environmental and pharmacological modulations of cellular plasticity: role in the pathophysiology and treatment of depression. Neurobiol Dis 2013; 57:28-37. [PMID: 22691453 PMCID: PMC3458126 DOI: 10.1016/j.nbd.2012.05.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/05/2012] [Accepted: 05/31/2012] [Indexed: 01/09/2023] Open
Abstract
Atrophy of neurons and gross structural alterations of limbic brain regions, including the prefrontal cortex (PFC) and hippocampus, have been reported in brain imaging and postmortem studies of depressed patients. Preclinical findings have suggested that prolonged negative stress can induce changes comparable to those seen in major depressive disorder (MDD), through dendritic retraction and decreased spine density in PFC and hippocampal CA3 pyramidal neurons. Interestingly, recent studies have suggested that environmental and pharmacological manipulations, including antidepressant medication, exercise, and diet, can block or even reverse many of the molecular changes induced by stress, providing a clear link between these factors and susceptibility to MDD. In this review, we will discuss the environmental and pharmacological factors, as well as the contribution of genetic polymorphisms, involved in the regulation of neuronal morphology and plasticity in MDD and preclinical stress models. In particular, we will highlight the pro-depressive changes incurred by stress and the reversal of these changes by antidepressants, exercise, and diet.
Collapse
Affiliation(s)
- Kristie T Ota
- Division of Molecular Psychiatry, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT 06508, USA
| | | |
Collapse
|
222
|
Canbeyli R. Sensorimotor modulation of mood and depression: in search of an optimal mode of stimulation. Front Hum Neurosci 2013; 7:428. [PMID: 23908624 PMCID: PMC3727046 DOI: 10.3389/fnhum.2013.00428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Depression involves a dysfunction in an affective fronto-limbic circuitry including the prefrontal cortices, several limbic structures including the cingulate cortex, the amygdala, and the hippocampus as well as the basal ganglia. A major emphasis of research on the etiology and treatment of mood disorders has been to assess the impact of centrally generated (top-down) processes impacting the affective fronto-limbic circuitry. The present review shows that peripheral (bottom-up) unipolar stimulation via the visual and the auditory modalities as well as by physical exercise modulates mood and depressive symptoms in humans and animals and activates the same central affective neurocircuitry involved in depression. It is proposed that the amygdala serves as a gateway by articulating the mood regulatory sensorimotor stimulation with the central affective circuitry by emotionally labeling and mediating the storage of such emotional events in long-term memory. Since both amelioration and aggravation of mood is shown to be possible by unipolar stimulation, the review suggests that a psychophysical assessment of mood modulation by multimodal stimulation may uncover mood ameliorative synergisms and serve as adjunctive treatment for depression. Thus, the integrative review not only emphasizes the relevance of investigating the optimal levels of mood regulatory sensorimotor stimulation, but also provides a conceptual springboard for related future research.
Collapse
Affiliation(s)
- Resit Canbeyli
- Psychobiology Laboratory, Department of Psychology, Bogazici University , Istanbul , Turkey
| |
Collapse
|
223
|
Cacciaglia R, Krause-Utz A, Vogt MA, Schmahl C, Flor H, Gass P. Voluntary exercise does not ameliorate context memory and hyperarousal in a mouse model for post-traumatic stress disorder (PTSD). World J Biol Psychiatry 2013; 14:403-9. [PMID: 21736515 DOI: 10.3109/15622975.2011.583270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES We investigated the effects of voluntary wheel running as model for intervention on the development of contextual fear and hyperarousal in a mouse model of post-traumatic stress disorder (PTSD). Physical exercise in general has been associated with improved hippocampus-dependent memory performance both in animals and humans. However, studies that have tried to link physical exercise and contextual conditioning in an animal model of PTSD, revealed mixed findings. METHODS Here we tested contextual fear conditioning, generalized fear response, acoustic startle response and emotionality in C57BL/6NCrl mice which had free access to a running wheel for 28 days, compared with control animals which did not run and mice which did not receive a shock during the conditioning phase. RESULTS We found no significant effects of voluntary running on the above-mentioned variables, except for enhanced anxiety levels in the Dark-Light-Box and O-Maze tests of running mice. CONCLUSIONS Our results suggest that running as a model for intervention does not ameliorate contextual aversive learning but has the potency to change emotional behaviours.
Collapse
Affiliation(s)
- Raffaele Cacciaglia
- Institute of Neuropsychology and Clinical Psychology, Central Institute of Mental Health, Mannheim, Germany
| | | | | | | | | | | |
Collapse
|
224
|
Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus. J Neurosci 2013; 33:7770-7. [PMID: 23637169 DOI: 10.1523/jneurosci.5352-12.2013] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Physical exercise is known to reduce anxiety. The ventral hippocampus has been linked to anxiety regulation but the effects of running on this subregion of the hippocampus have been incompletely explored. Here, we investigated the effects of cold water stress on the hippocampus of sedentary and runner mice and found that while stress increases expression of the protein products of the immediate early genes c-fos and arc in new and mature granule neurons in sedentary mice, it has no such effect in runners. We further showed that running enhances local inhibitory mechanisms in the hippocampus, including increases in stress-induced activation of hippocampal interneurons, expression of vesicular GABA transporter (vGAT), and extracellular GABA release during cold water swim stress. Finally, blocking GABAA receptors in the ventral hippocampus, but not the dorsal hippocampus, with the antagonist bicuculline, reverses the anxiolytic effect of running. Together, these results suggest that running improves anxiety regulation by engaging local inhibitory mechanisms in the ventral hippocampus.
Collapse
|
225
|
Neural plasticity and proliferation in the generation of antidepressant effects: hippocampal implication. Neural Plast 2013; 2013:537265. [PMID: 23862076 PMCID: PMC3703717 DOI: 10.1155/2013/537265] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 12/15/2022] Open
Abstract
It is widely accepted that changes underlying depression and antidepressant-like effects involve not only alterations in the levels of neurotransmitters as monoamines and their receptors in the brain, but also structural and functional changes far beyond. During the last two decades, emerging theories are providing new explanations about the neurobiology of depression and the mechanism of action of antidepressant strategies based on cellular changes at the CNS level. The neurotrophic/plasticity hypothesis of depression, proposed more than a decade ago, is now supported by multiple basic and clinical studies focused on the role of intracellular-signalling cascades that govern neural proliferation and plasticity. Herein, we review the state-of-the-art of the changes in these signalling pathways which appear to underlie both depressive disorders and antidepressant actions. We will especially focus on the hippocampal cellularity and plasticity modulation by serotonin, trophic factors as brain-derived neurotrophic factor (BDNF), and vascular endothelial growth factor (VEGF) through intracellular signalling pathways—cAMP, Wnt/β-catenin, and mTOR. Connecting the classic monoaminergic hypothesis with proliferation/neuroplasticity-related evidence is an appealing and comprehensive attempt for improving our knowledge about the neurobiological events leading to depression and associated to antidepressant therapies.
Collapse
|
226
|
Manning EE, van den Buuse M. BDNF deficiency and young-adult methamphetamine induce sex-specific effects on prepulse inhibition regulation. Front Cell Neurosci 2013; 7:92. [PMID: 23781174 PMCID: PMC3679473 DOI: 10.3389/fncel.2013.00092] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 05/26/2013] [Indexed: 12/30/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of schizophrenia, yet its role in the development of specific symptoms is unclear. Methamphetamine (METH) users have an increased risk of psychosis and schizophrenia, and METH-treated animals have been used extensively as a model to study the positive symptoms of schizophrenia. We investigated whether METH treatment in BDNF heterozygous (HET) mutant mice has cumulative effects on sensorimotor gating, including the disruptive effects of psychotropic drugs. BDNF HETs and wildtype (WT) littermates were treated during young adulthood with METH and, following a 2-week break, prepulse inhibition (PPI) was examined. At baseline, BDNF HETs showed reduced PPI compared to WT mice irrespective of METH pre-treatment. An acute challenge with amphetamine (AMPH) disrupted PPI but male BDNF HETs were more sensitive to this effect, irrespective of METH pre-treatment. In contrast, female mice treated with METH were less sensitive to the disruptive effects of AMPH, and there were no effects of BDNF genotype. Similar changes were not observed in the response to an acute apomorphine (APO) or MK-801 challenge. These results show that genetically-induced reduction of BDNF caused changes in a behavioral endophenotype relevant to the positive symptoms of schizophrenia. However, major sex differences were observed in the effects of a psychotropic drug challenge on this behavior. These findings suggest sex differences in the effects of BDNF depletion and METH treatment on the monoamine signaling pathways that regulate PPI. Given that these same pathways are thought to contribute to the expression of positive symptoms in schizophrenia, this work suggests that there may be significant sex differences in the pathophysiology underlying these symptoms. Elucidating these sex differences may be important for our understanding of the neurobiology of schizophrenia and developing better treatments strategies for the disorder.
Collapse
Affiliation(s)
- Elizabeth E Manning
- Behavioural Neuroscience Laboratory, The Florey Institute of Neuroscience and Mental Health Melbourne, VIC, Australia
| | | |
Collapse
|
227
|
Vachon P, Millecamps M, Low L, Thompsosn SJ, Pailleux F, Beaudry F, Bushnell CM, Stone LS. Alleviation of chronic neuropathic pain by environmental enrichment in mice well after the establishment of chronic pain. Behav Brain Funct 2013; 9:22. [PMID: 24025218 PMCID: PMC3679946 DOI: 10.1186/1744-9081-9-22] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022] Open
Abstract
Background In animal models, the impact of social and environmental manipulations on chronic pain have been investigated in short term studies where enrichment was implemented prior to or concurrently with the injury. The focus of this study was to evaluate the impact of environmental enrichment or impoverishment in mice three months after induction of chronic neuropathic pain. Methods Thirty-four CD-1 seven to eight week-old male mice were used. Mice underwent surgery on the left leg under isoflurane anesthesia to induce the spared nerve injury model of neuropathic pain or sham condition. Mice were then randomly assigned to one of four groups: nerve injury with enriched environment (n = 9), nerve injury with impoverished environment (n = 8), sham surgery with enriched environment (n = 9), or sham surgery with impoverished environment (n = 8). The effects of environmental manipulations on mechanical (von Frey filaments) heat (hot plate) and cold (acetone test) cutaneous hypersensitivities, motor impairment (Rotarod), spontaneous exploratory behavior (open field test), anxiety-like behavior (elevated plus maze) and depression-like phenotype (tail suspension test) were assessed in neuropathic and control mice 1 and 2 months post-environmental change. Finally, the effect of the environment on spinal expression of the pro-nociceptive neuropeptides substance P and CGRP form the lumbar spinal cord collected at the end of the study was evaluated by tandem liquid chromatography mass spectrometry. Results Environmental enrichment attenuated nerve injury-induced hypersensitivity to mechanical and cold stimuli. In contrast, an impoverished environment exacerbated mechanical hypersensitivity. No antidepressant effects of enrichment were observed in animals with chronic neuropathic pain. Finally, environmental enrichment resulted lower SP and CGRP concentrations in neuropathic animals compared to impoverishment. These effects were all observed in animals that had been neuropathic for several months prior to intervention. Conclusions These results suggest that environmental factors could play an important role in the rehabilitation of chronic pain patients well after the establishment of chronic pain. Enrichment is a potentially inexpensive, safe and easily implemented non-pharmacological intervention for the treatment of chronic pain.
Collapse
Affiliation(s)
- Pascal Vachon
- Department of Veterinary Biomedicine, University of Montreal, Faculty of Veterinary Medicine, St-Hyacinthe, Quebec, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Rothman SM, Mattson MP. Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience 2013; 239:228-40. [PMID: 23079624 PMCID: PMC3629379 DOI: 10.1016/j.neuroscience.2012.10.014] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 09/24/2012] [Accepted: 10/05/2012] [Indexed: 12/31/2022]
Abstract
During development of the nervous system, the formation of connections (synapses) between neurons is dependent upon electrical activity in those neurons, and neurotrophic factors produced by target cells play a pivotal role in such activity-dependent sculpting of the neural networks. A similar interplay between neurotransmitter and neurotrophic factor signaling pathways mediates adaptive responses of neural networks to environmental demands in adult mammals, with the excitatory neurotransmitter glutamate and brain-derived neurotrophic factor (BDNF) being particularly prominent regulators of synaptic plasticity throughout the central nervous system. Optimal brain health throughout the lifespan is promoted by intermittent challenges such as exercise, cognitive stimulation and dietary energy restriction, that subject neurons to activity-related metabolic stress. At the molecular level, such challenges to neurons result in the production of proteins involved in neurogenesis, learning and memory and neuronal survival; examples include proteins that regulate mitochondrial biogenesis, protein quality control, and resistance of cells to oxidative, metabolic and proteotoxic stress. BDNF signaling mediates up-regulation of several such proteins including the protein chaperone GRP-78, antioxidant enzymes, the cell survival protein Bcl-2, and the DNA repair enzyme APE1. Insufficient exposure to such challenges, genetic factors may conspire to impair BDNF production and/or signaling resulting in the vulnerability of the brain to injury and neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Further, BDNF signaling is negatively regulated by glucocorticoids. Glucocorticoids impair synaptic plasticity in the brain by negatively regulating spine density, neurogenesis and long-term potentiation, effects that are potentially linked to glucocorticoid regulation of BDNF. Findings suggest that BDNF signaling in specific brain regions mediates some of the beneficial effects of exercise and energy restriction on peripheral energy metabolism and the cardiovascular system. Collectively, the findings described in this article suggest the possibility of developing prescriptions for optimal brain health based on activity-dependent BDNF signaling.
Collapse
Affiliation(s)
- S M Rothman
- Laboratory of Neurosciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA.
| | | |
Collapse
|
229
|
CUNHA MAURICIOP, OLIVEIRA ÁGATHA, PAZINI FRANCISL, MACHADO DANIELEG, BETTIO LUISEB, BUDNI JOSIANE, AGUIAR ADERBALS, MARTINS DANIELF, SANTOS ADAIRRS, RODRIGUES ANALÚCIAS. The Antidepressant-like Effect of Physical Activity on a Voluntary Running Wheel. Med Sci Sports Exerc 2013. [DOI: 10.1249/mss.0b013e31827b23e6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
230
|
Nishijima T, Llorens-Martín M, Tejeda GS, Inoue K, Yamamura Y, Soya H, Trejo JL, Torres-Alemán I. Cessation of voluntary wheel running increases anxiety-like behavior and impairs adult hippocampal neurogenesis in mice. Behav Brain Res 2013; 245:34-41. [DOI: 10.1016/j.bbr.2013.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/05/2013] [Accepted: 02/10/2013] [Indexed: 02/01/2023]
|
231
|
Devaud LL, Walls SA, McCulley WD, Rosenwasser AM. Voluntary wheel running attenuates ethanol withdrawal-induced increases in seizure susceptibility in male and female rats. Pharmacol Biochem Behav 2013; 103:18-25. [PMID: 22871538 DOI: 10.1016/j.pbb.2012.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 12/11/2022]
Abstract
We recently found that voluntary wheel running attenuated ethanol withdrawal-induced increased susceptibility to chemoconvulsant-induced seizures in male rats. Since female rats recover from ethanol withdrawal (EW) more quickly than male rats across several behavioral measures, this study was designed to determine whether the effects of exercise on EW seizures also exhibited sex differences. Animals were maintained under no-wheel, locked-wheel or free-wheel conditions and ethanol was administered by liquid diet for 14 days with control animals pair-fed an isocaloric diet, after which seizure thresholds were determined at 1 day or 3 days of EW. Consistent with previous reports, females ran significantly more than males, regardless of diet condition. Introduction of the ethanol-containing liquid diet dramatically increased running for females during the day (rest) phase, with little impact on night phase activity. Consistent with previous reports, EW increased seizure susceptibility at 1 day in non-exercising males and females and at 3 days in males. These effects were attenuated by access to running wheels in both sexes. We also assessed the effects of sex, ethanol diet and exercise on ethanol clearance following an acute ethanol administration at 1 day EW in a separate set of animals. Blood ethanol concentrations at 30 min post-injection were lower in males, ethanol-exposed animals, and runners, but no interactions among these factors were detected. Interestingly, females displayed more rapid ethanol clearance than males and there were no effects of either diet or wheel access on clearance rates. Taken together, these data suggest that voluntary wheel running during ethanol administration provides protective effects against EW seizures in both males and females. This effect may be mediated, in part, in male, but not in female rat, by effects of exercise on early pharmacokinetic contributions. This supports the idea that encouraging alcoholics to exercise may benefit their recovery.
Collapse
Affiliation(s)
- Leslie L Devaud
- Department of Basic Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor ME 04401, USA.
| | | | | | | |
Collapse
|
232
|
Fuss J, Vogt MA, Weber KJ, Burke TF, Gass P, Hensler JG. Hippocampal serotonin-1A receptor function in a mouse model of anxiety induced by long-term voluntary wheel running. Synapse 2013; 67:648-55. [PMID: 23505009 DOI: 10.1002/syn.21666] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 03/09/2013] [Indexed: 01/12/2023]
Abstract
We have recently demonstrated that, in C57/Bl6 mice, long-term voluntary wheel running is anxiogenic, and focal hippocampal irradiation prevents the increase in anxiety-like behaviors and neurobiological changes in the hippocampus induced by wheel running. Evidence supports a role of hippocampal 5-HT1A receptors in anxiety. Therefore, we investigated hippocampal binding and function of 5-HT1A receptors in this mouse model of anxiety. Four weeks of voluntary wheel running resulted in hippocampal subregion-specific changes in 5-HT1A receptor binding sites and function, as measured by autoradiography of [(3) H] 8-hydroxy-2-(di-n-propylamino)tetralin binding and agonist-stimulated binding of [(35) S]GTPγS to G proteins, respectively. In the dorsal CA1 region, 5-HT1A receptor binding and function were not altered by wheel running or irradiation. In the dorsal dentate gyrus and CA2/3 region, 5-HT1A receptor function was decreased by not only running but also irradiation. In the ventral pyramidal layer, wheel running resulted in a decrease of 5-HT1A receptor function, which was prevented by irradiation. Neither irradiation nor wheel running affected 5-HT1A receptors in medial prefrontal cortex or in the dorsal or median raphe nuclei. Our data indicate that downregulation of 5-HT1A receptor function in ventral pyramidal layer may play a role in anxiety-like behavior induced by wheel running.
Collapse
Affiliation(s)
- Johannes Fuss
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, 68159 Mannheim, Germany
| | - Miriam A Vogt
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, 68159 Mannheim, Germany
| | - Klaus-Josef Weber
- Department of Radiooncology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Teresa F Burke
- Department of Pharmacology, University of Texas Health Science Center-San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States
| | - Peter Gass
- RG Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, 68159 Mannheim, Germany
| | - Julie G Hensler
- Department of Pharmacology, University of Texas Health Science Center-San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, United States
| |
Collapse
|
233
|
Abstract
Both social defeat stress and environmental enrichment stimulate adrenal glucocorticoid secretion, but they have opposing effects on hippocampal neurogenesis and mood. Hypothalamic-pituitary-adrenal axis dysregulation and decreased neurogenesis are consequences of social defeat. These outcomes are correlated with depressive states, but a causal role in the etiology of depression remains elusive. The antidepressant actions of environmental enrichment are neurogenesis-dependent, but the contribution of enrichment-elevated glucocorticoids is unexplored. Importantly, for both social defeat and environmental enrichment, how glucocorticoids interact with neurogenesis to alter mood is unknown. Here, we investigate causal roles of glucocorticoids and neurogenesis in induction of depressive-like behavior and its amelioration by environmental enrichment in mice. By blocking neurogenesis and surgically clamping adrenal hormone secretions, we showed that neurogenesis, via hypothalamic-pituitary-adrenal axis interactions, is directly involved in precipitating the depressive phenotype after social defeat. Mice adrenalectomized before social defeat showed enhanced behavioral resiliency and increased survival of adult-born hippocampal neurons compared with sham-operated defeated mice. However, mice lacking hippocampal neurogenesis did not show protective effects of adrenalectomy. Moreover, glucocorticoids secreted during environmental enrichment promoted neurogenesis and were required for restoration of normal behavior after social defeat. The data demonstrate that glucocorticoid-dependent declines in neurogenesis drive changes in mood after social defeat and that glucocorticoids secreted during enrichment promote neurogenesis and restore normal behavior after defeat. These data provide new evidence for direct involvement of neurogenesis in the etiology of depression, suggesting that treatments promoting neurogenesis can enhance stress resilience.
Collapse
|
234
|
Pang TY, Renoir T, Du X, Lawrence AJ, Hannan AJ. Depression-related behaviours displayed by female C57BL/6J mice during abstinence from chronic ethanol consumption are rescued by wheel-running. Eur J Neurosci 2013; 37:1803-10. [PMID: 23551162 DOI: 10.1111/ejn.12195] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/31/2013] [Accepted: 02/19/2013] [Indexed: 12/22/2022]
Abstract
Withdrawal from a chronic period of alcohol consumption is commonly associated with the manifestation of depression, potentially exerting a significant influence on treatment prospects and increasing the likelihood of relapse. Better therapeutic strategies need to be developed to assist with rehabilitation. Here, we report the detection of depression-related behaviours in a mouse model of 6-week free-choice ethanol (10%, v/v) consumption followed by 2-week abstinence. Mice abstinent from alcohol showed increased immobility time on the forced-swim test, reduced saccharin consumption and increased latency to feed in the novelty-suppressed feeding test. By comparison, there was no significant effect on anxiety-related behaviours as determined by testing on the light-dark box and elevated plus maze. We found that the provision of running-wheels through the duration of abstinence attenuated depressive behaviour in the forced-swim and novelty-suppressed feeding tests, and increased saccharin consumption. Given the link between withdrawal from addictive substances and depression, this model will be useful for the study of the pathophysiology underlying alcohol-related depression. The findings of this study establish an interaction between physical activity and the development of behavioural changes following cessation of alcohol consumption that could have implications for the development of rehabilitative therapies.
Collapse
Affiliation(s)
- Terence Y Pang
- Behavioural Neurosciences Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic., Australia.
| | | | | | | | | |
Collapse
|
235
|
Bustamante C, Henríquez R, Medina F, Reinoso C, Vargas R, Pascual R. Maternal exercise during pregnancy ameliorates the postnatal neuronal impairments induced by prenatal restraint stress in mice. Int J Dev Neurosci 2013; 31:267-73. [PMID: 23466414 DOI: 10.1016/j.ijdevneu.2013.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 12/16/2022] Open
Abstract
Clinical and preclinical studies have demonstrated that prenatal stress (PS) induces neuronal and behavioral disturbances in the offspring. In the present study, we determined whether maternal voluntary wheel running (VWR) during pregnancy could reverse the putative deleterious effects of PS on the neurodevelopment and behavior of the offspring. Pregnant CF-1 mice were randomly assigned to control, restraint stressed or restraint stressed+VWR groups. Dams of the stressed group were subjected to restraint stress between gestational days 14 and delivery, while control pregnant dams remained undisturbed in their home cages. Dams of the restraint stressed+VWR group were subjected to exercise between gestational days 1 and 17. On postnatal day 23 (P23), male pups were assigned to one of the following experimental groups: mice born from control dams, stressed dams or stressed+VWR dams. Locomotor behavior and pyramidal neuronal morphology were evaluated at P23. Animals were then sacrificed, and Golgi-impregnated pyramidal neurons of the parietal cortex were morphometrically analyzed. Here, we present two major findings: first, PS produced significantly diminished dendritic growth of parietal neurons without altered locomotor behavior of the offspring; and second, maternal VWR significantly offset morphological impairments.
Collapse
Affiliation(s)
- Carlos Bustamante
- Laboratorio de Neurociencias, Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Chile.
| | | | | | | | | | | |
Collapse
|
236
|
Moylan S, Eyre HA, Maes M, Baune BT, Jacka FN, Berk M. Exercising the worry away: how inflammation, oxidative and nitrogen stress mediates the beneficial effect of physical activity on anxiety disorder symptoms and behaviours. Neurosci Biobehav Rev 2013; 37:573-84. [PMID: 23415701 DOI: 10.1016/j.neubiorev.2013.02.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/27/2012] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Regular physical activity exerts positive effects on anxiety disorder symptoms, although the biological mechanisms underpinning this effect are incompletely understood. Numerous lines of evidence support inflammation and oxidative and nitrogen stress (O&NS) as important in the pathogenesis of mood and anxiety disorders, and physical activity is known to influence these same pathways. This paper reviews the inter-relationships between anxiety disorders, physical activity and inflammation and O&NS, to explore whether modulation of inflammation and O&NS may in part underpin the positive effect of physical activity on anxiety disorders. Numerous studies support the notion that physical activity operates as an anti-inflammatory and anti-O&NS agent which potentially exerts positive effects on neuroplasticity, the expression of neurotrophins and normal neuronal functions. These effects may therefore influence the expression and evolution of anxiety disorders. Further exploration of this area may elicit a deeper understanding of the pathogenesis of anxiety disorders, and inform the development of integrated programmes including PA specifically suited to the treatment and prevention of anxiety disorders and symptoms.
Collapse
Affiliation(s)
- S Moylan
- School of Medicine, Deakin University, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
237
|
Fantegrossi WE, Xiao WR, Zimmerman SM. Novel technology for modulating locomotor activity as an operant response in the mouse: implications for neuroscience studies involving "exercise" in rodents. J Neurosci Methods 2013; 212:338-43. [PMID: 23164960 PMCID: PMC3629693 DOI: 10.1016/j.jneumeth.2012.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 01/03/2023]
Abstract
We have developed a novel, low-cost device designed to monitor and modulate locomotor activity in murine subjects. This technology has immediate application to the study of effects of physical exercise on various neurobiological endpoints, and will also likely be useful in the study of psychomotor sensitization and drug addiction. Here we demonstrate the capacity of these devices to establish locomotor activity as an operant response reinforced by food pellet presentations, and show that schedules of reinforcement can reliably control this behavior. Importantly, these data show that varying degrees of increased locomotor activity (in other words, "exercise") can be elicited and maintained in mice by manipulating the schedule of reinforcement. Our findings argue that the present technology might reduce the imposition of stress and motivational bias inherent in more traditional procedures for establishing exercise in laboratory rodents, while allowing for true random assignment to experimental groups. As interest in physical exercise as a modulating factor in numerous clinical conditions continues to grow, technologies like the one proposed here are likely to become critical in conducting future experiments along these lines.
Collapse
Affiliation(s)
- William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | | | | |
Collapse
|
238
|
Payne P, Crane-Godreau MA. Meditative movement for depression and anxiety. Front Psychiatry 2013; 4:71. [PMID: 23898306 PMCID: PMC3721087 DOI: 10.3389/fpsyt.2013.00071] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/05/2013] [Indexed: 01/29/2023] Open
Abstract
This review focuses on Meditative Movement (MM) and its effects on anxiety, depression, and other affective states. MM is a term identifying forms of exercise that use movement in conjunction with meditative attention to body sensations, including proprioception, interoception, and kinesthesis. MM includes the traditional Chinese methods of Qigong (Chi Kung) and Taijiquan (Tai Chi), some forms of Yoga, and other Asian practices, as well as Western Somatic practices; however this review focuses primarily on Qigong and Taijiquan. We clarify the differences between MM and conventional exercise, present descriptions of several of the key methodologies of MM, and suggest how research into these practices may be approached in a systematic way. We also present evidence for possible mechanisms of the effects of MM on affective states, including the roles of posture, rhythm, coherent breathing, and the involvement of specific cortical and subcortical structures. We survey research outcomes summarized in reviews published since 2007. Results suggest that MM may be at least as effective as conventional exercise or other interventions in ameliorating anxiety and depression; however, study quality is generally poor and there are many confounding factors. This makes it difficult to draw definitive conclusions at this time. We suggest, however, that more research is warranted, and we offer specific suggestions for ensuring high-quality and productive future studies.
Collapse
Affiliation(s)
- Peter Payne
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | | |
Collapse
|
239
|
Swain RA, Berggren KL, Kerr AL, Patel A, Peplinski C, Sikorski AM. On aerobic exercise and behavioral and neural plasticity. Brain Sci 2012; 2:709-44. [PMID: 24961267 PMCID: PMC4061809 DOI: 10.3390/brainsci2040709] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/01/2012] [Accepted: 11/13/2012] [Indexed: 12/28/2022] Open
Abstract
Aerobic exercise promotes rapid and profound alterations in the brain. Depending upon the pattern and duration of exercise, these changes in the brain may extend beyond traditional motor areas to regions and structures normally linked to learning, cognition, and emotion. Exercise-induced alterations may include changes in blood flow, hormone and growth factor release, receptor expression, angiogenesis, apoptosis, neurogenesis, and synaptogenesis. Together, we believe that these changes underlie elevations of mood and prompt the heightened behavioral plasticity commonly observed following adoption of a chronic exercise regimen. In the following paper, we will explore both the psychological and psychobiological literatures relating to exercise effects on brain in both human and non-human animals and will attempt to link plastic changes in these neural structures to modifications in learned behavior and emotional expression. In addition, we will explore the therapeutic potential of exercise given recent reports that aerobic exercise may serve as a neuroprotectant and can also slow cognitive decline during normal and pathological aging.
Collapse
Affiliation(s)
- Rodney A Swain
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Kiersten L Berggren
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Abigail L Kerr
- Department of Psychology, Illinois Wesleyan University, Bloomington, IL 61702, USA.
| | - Ami Patel
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Caitlin Peplinski
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA.
| | - Angela M Sikorski
- Department of Psychology, Texas A & M University-Texarkana, Texarkana, TX 75503, USA.
| |
Collapse
|
240
|
Åberg MAI, Waern M, Nyberg J, Pedersen NL, Bergh Y, Åberg ND, Nilsson M, Kuhn HG, Torén K. Cardiovascular fitness in males at age 18 and risk of serious depression in adulthood: Swedish prospective population-based study. Br J Psychiatry 2012; 201:352-9. [PMID: 22700083 DOI: 10.1192/bjp.bp.111.103416] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Studies suggest a role for cardiovascular fitness in the prevention of affective disorders. AIMS To determine whether cardiovascular fitness at age 18 is associated with future risk of serious affective illness. METHOD Population-based Swedish cohort study of male conscripts (n = 1 117 292) born in 1950-1987 with no history of mental illness who were followed for 3-40 years. Data on cardiovascular fitness at conscription were linked with national hospital registers to calculate future risk of depression (requiring in-patient care) and bipolar disorder. RESULTS In fully adjusted models low cardiovascular fitness was associated with increased risk for serious depression (hazard ratios (HR) = 1.96, 95%, CI 1.71-2.23). No such association could be shown for bipolar disorder (HR = 1.11, 95% CI 0.84-1.47). CONCLUSIONS Lower cardiovascular fitness at age 18 was associated with increased risk of serious depression in adulthood. These results strengthen the theory of a cardiovascular contribution to the aetiology of depression.
Collapse
Affiliation(s)
- Maria A I Åberg
- Center for Brain Repair and Rehabilitation, Institute for Neuroscience and Physiology and Department of Primary Health Care, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Huang YF, Yang CH, Huang CC, Hsu KS. Vascular endothelial growth factor-dependent spinogenesis underlies antidepressant-like effects of enriched environment. J Biol Chem 2012; 287:40938-55. [PMID: 23074224 DOI: 10.1074/jbc.m112.392076] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Current antidepressant treatments remain limited by poor efficacy and a slow onset of action. Increasing evidence demonstrates that enriched environment (EE) treatment can promote structural and behavioral plasticity in the brain and dampen stress-induced alterations of neuroplasticity. Here, we have examined whether short term exposure to EE is able to produce antidepressant-like effects. Our results show that housing adult mice in an EE cage for 7 days led to antidepressant-like behavioral profiles and a significant increase in the number of dendritic spines in hippocampal CA1 pyramidal neurons. These EE-induced antidepressant-like effects are primarily attributed to increased vascular endothelial growth factor (VEGF) expression through a hypoxia-inducible factor-1α (HIF-1α)-mediated transcriptional mechanism. Blockade of HIF-1α synthesis by lentiviral infection with HIF-1α small hairpin RNAs completely blocked the increase in expression of VEGF and the antidepressant-like effects induced by EE. Moreover, no significant antidepressant-like effects were observed with EE treatment in VEGF receptor 2 (Flk-1) knock-out mice. The increase in HIF-1α expression in the hippocampus induced by EE was associated with a decrease in endogenous levels of microRNA-107 (miR-107). Overexpression of miR-107 in the hippocampus completely blocked EE-induced HIF-1α expression and the antidepressant-like effects. These results support a model in which the down-regulation of miR-107, acting through HIF-1α, mediates VEGF-dependent spinogenesis to underlie the EE-induced antidepressant-like effects.
Collapse
Affiliation(s)
- Yu-Fei Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | |
Collapse
|
242
|
Sciolino NR, Holmes PV. Exercise offers anxiolytic potential: a role for stress and brain noradrenergic-galaninergic mechanisms. Neurosci Biobehav Rev 2012; 36:1965-84. [PMID: 22771334 PMCID: PMC4815919 DOI: 10.1016/j.neubiorev.2012.06.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/01/2012] [Accepted: 06/10/2012] [Indexed: 12/15/2022]
Abstract
Although physical activity reduces anxiety in humans, the neural basis for this response is unclear. Rodent models are essential to understand the mechanisms that underlie the benefits of exercise. However, it is controversial whether exercise exerts anxiolytic-like potential in rodents. Evidence is reviewed to evaluate the effects of wheel running, an experimental mode of exercise in rodents, on behavior in tests of anxiety and on norepinephrine and galanin systems in neural circuits that regulate stress. Stress is proposed to account for mixed behavioral findings in this literature. Indeed, running promotes an adaptive response to stress and alters anxiety-like behaviors in a manner dependent on stress. Running amplifies galanin expression in noradrenergic locus coeruleus (LC) and suppresses stress-induced activity of the LC and norepinephrine output in LC-target regions. Thus, enhanced galanin-mediated suppression of brain norepinephrine in runners is supported by current literature as a mechanism that may contribute to the stress-protective effects of exercise. These data support the use of rodents to study the emotional and neurobiological consequences of exercise.
Collapse
Affiliation(s)
- Natale R. Sciolino
- Neuroscience Program, Biomedical and Health Sciences Institute, Department of Psychology, University of Georgia, Athens, GA 30602, United States
| | - Philip V. Holmes
- Neuroscience Program, Biomedical and Health Sciences Institute, Department of Psychology, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
243
|
Greenwood BN, Strong PV, Loughridge AB, Day HEW, Clark PJ, Mika A, Hellwinkel JE, Spence KG, Fleshner M. 5-HT2C receptors in the basolateral amygdala and dorsal striatum are a novel target for the anxiolytic and antidepressant effects of exercise. PLoS One 2012; 7:e46118. [PMID: 23049953 PMCID: PMC3458100 DOI: 10.1371/journal.pone.0046118] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/28/2012] [Indexed: 01/31/2023] Open
Abstract
Physical activity reduces the incidence and severity of psychiatric disorders such as anxiety and depression. Similarly, voluntary wheel running produces anxiolytic- and antidepressant-like effects in rodent models. The specific neurobiological mechanisms underlying the beneficial properties of exercise, however, remain unclear. One relevant pharmacological target in the treatment of psychiatric disorders is the 5-HT(2C) receptor (5-HT(2C)R). Consistent with data demonstrating the anxiogenic consequences of 5-HT(2C)R activation in humans and rodents, we have previously reported that site-specific administration of the selective 5-HT(2C)R agonist CP-809101 in the lateral/basolateral amygdala (BLA) increases shock-elicited fear while administration of CP-809101 in the dorsal striatum (DS) interferes with shuttle box escape learning. These findings suggest that activation of 5-HT(2C)R in discrete brain regions contributes to specific anxiety- and depression-like behaviors and may indicate potential brain sites involved in the anxiolytic and antidepressant effects of exercise. The current studies tested the hypothesis that voluntary wheel running reduces the behavioral consequences of 5-HT(2C)R activation in the BLA and DS, specifically enhanced shock-elicited fear and interference with shuttle box escape learning. After 6 weeks of voluntary wheel running or sedentary conditions, the selective 5-HT(2C)R agonist CP-809101 was microinjected into either the BLA or the DS of adult Fischer 344 rats, and shock-elicited fear and shuttle box escape learning was assessed. Additionally, in-situ hybridization was used to determine if 6 weeks of voluntary exercise changed levels of 5-HT(2C)R mRNA. We found that voluntary wheel running reduced the behavioral effects of CP-809101 and reduced levels of 5-HT(2C)R mRNA in both the BLA and the DS. The current data indicate that expression of 5-HT(2C)R mRNA in discrete brain sites is sensitive to physical activity status of the organism, and implicates the 5-HT(2C)R as a target for the beneficial effects of physical activity on mental health.
Collapse
Affiliation(s)
- Benjamin N Greenwood
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Renoir T, Pang TYC, Zajac MS, Chan G, Du X, Leang L, Chevarin C, Lanfumey L, Hannan AJ. Treatment of depressive-like behaviour in Huntington's disease mice by chronic sertraline and exercise. Br J Pharmacol 2012; 165:1375-89. [PMID: 21718306 DOI: 10.1111/j.1476-5381.2011.01567.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Depression is the most common psychiatric disorder in Huntington's disease (HD) patients. Women are more prone to develop depression and such susceptibility might be related to 5-hydroxytryptaminergic (serotonergic) dysregulation. EXPERIMENTAL APPROACH We performed tests of depression-related behaviours on female R6/1 HD mice that had been chronically treated with sertraline or provided with running-wheels. Functional assessments of 5-HT(1A) and 5-HT(2A) receptors were performed by measuring behavioural and physiological responses following administration of specific agonists, in combination with analysis of hippocampal gene expression. Finally we assessed the effect of exercise on hippocampal cell proliferation. KEY RESULTS Female HD mice recorded increased immobility time in the forced-swimming test, reduced saccharin preference and a hyperthermic response to stress compared with wild-type animals. These alterations were improved by chronic sertraline treatment. Wheel-running also resulted in similar improvements with the exception of saccharin preference but failed to correct the hippocampal cell proliferation deficits displayed by HD mice. The benefits of sertraline treatment and exercise involved altered 5-HT(1A) autoreceptor function, as demonstrated by modulation of the exaggerated 8-OH-DPAT-induced hypothermia exhibited by female HD mice. On the other hand, sertraline treatment was unable to restore the reduced 5-HT(1A) and 5-HT(2) heteroceptor function observed in HD animals. CONCLUSIONS AND IMPLICATIONS We report for the first time a crucial role for 5-HT(1A) autoreceptor function in mediating the sex-specific depressive-like phenotype of female R6/1 HD mice. Our data further support a differential effect of chronic sertraline treatment and exercise on hippocampal cell proliferation despite common behavioural benefits.
Collapse
Affiliation(s)
- Thibault Renoir
- Howard Florey Institute, Florey Neuroscience Institutes, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
245
|
The investigation of neonatal MK-801 administration and physical environmental enrichment on emotional and cognitive functions in adult Balb/c mice. Pharmacol Biochem Behav 2012; 102:407-14. [DOI: 10.1016/j.pbb.2012.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/23/2012] [Accepted: 06/04/2012] [Indexed: 11/19/2022]
|
246
|
Makena N, Bugarith K, Russell VA. Maternal separation enhances object location memory and prevents exercise-induced MAPK/ERK signalling in adult Sprague-Dawley rats. Metab Brain Dis 2012; 27:377-85. [PMID: 22476924 PMCID: PMC3422626 DOI: 10.1007/s11011-012-9298-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/21/2012] [Indexed: 12/19/2022]
Abstract
Early life stress increases the risk of developing psychopathology accompanied by reduced cognitive function in later life. Maternal separation induces anxiety-like behaviours and is associated with impaired memory. On the other hand, exercise has been shown to diminish anxiety-like behaviours and improve cognitive function. The effects of maternal separation and exercise on anxiety, memory and hippocampal proteins were investigated in male Sprague-Dawley rats. Maternal separation produced anxiety-like behaviours which were reversed by exercise. Maternal separation also enhanced object location memory which was not affected by exercise. Exercise did, however, increase synaptophysin and phospho-extracellular signal-regulated kinase (p-ERK) in the hippocampus of non-separated rats and this effect was not observed in maternally separated rats. These findings show that maternal separation selectively enhanced n memory and prevented activation of the MAPK/ERK signalling pathway in the adult rat hippocampus.
Collapse
|
247
|
Reierson GW, Guo S, Mastronardi C, Licinio J, Wong ML. cGMP Signaling, Phosphodiesterases and Major Depressive Disorder. Curr Neuropharmacol 2012; 9:715-27. [PMID: 22654729 PMCID: PMC3263465 DOI: 10.2174/157015911798376271] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 09/09/2010] [Accepted: 09/24/2010] [Indexed: 12/13/2022] Open
Abstract
Deficits in neuroplasticity are hypothesized to underlie the pathophysiology of major depressive disorder (MDD): the effectiveness of antidepressants is thought to be related to the normalization of disrupted synaptic transmission and neurogenesis. The cyclic adenosine monophosphate (cAMP) signaling cascade has received considerable attention for its role in neuroplasticity and MDD. However components of a closely related pathway, the cyclic guanosine monophosphate (cGMP) have been studied with much lower intensity, even though this signaling transduction cascade is also expressed in the brain and the activity of this pathway has been implicated in learning and memory processes. Cyclic GMP acts as a second messenger; it amplifies signals received at postsynaptic receptors and activates downstream effector molecules resulting in gene expression changes and neuronal responses. Phosphodiesterase (PDE) enzymes degrade cGMP into 5’GMP and therefore they are involved in the regulation of intracellular levels of cGMP. Here we review a growing body of evidence suggesting that the cGMP signaling cascade warrants further investigation for its involvement in MDD and antidepressant action.
Collapse
|
248
|
Gerecke KM, Jiao Y, Pagala V, Smeyne RJ. Exercise does not protect against MPTP-induced neurotoxicity in BDNF haploinsufficient mice. PLoS One 2012; 7:e43250. [PMID: 22912838 PMCID: PMC3422268 DOI: 10.1371/journal.pone.0043250] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
Exercise has been demonstrated to potently protect substantia nigra pars compacta (SN) dopaminergic neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity. One mechanism proposed to account for this neuroprotection is the upregulation of neurotrophic factors. Several neurotrophic factors, including Brain Derived Neurotrophic Factor (BDNF), have been shown to upregulate in response to exercise. In order to determine if exercise-induced neuroprotection is dependent upon BDNF, we compared the neuroprotective effects of voluntary exercise in mice heterozygous for the BDNF gene (BDNF+/-) with strain-matched wild-type (WT) mice. Stereological estimates of SNpc DA neurons from WT mice allowed 90 days exercise via unrestricted running demonstrated complete protection against the MPTP-induced neurotoxicity. However, BDNF+/- mice allowed 90 days of unrestricted exercise were not protected from MPTP-induced SNpc DA neuron loss. Proteomic analysis comparing SN and striatum from 90 day exercised WT and BDNF+/- mice showed differential expression of proteins related to energy regulation, intracellular signaling and trafficking. These results suggest that a full genetic complement of BDNF is critical for the exercise-induced neuroprotection of SNpc DA neurons.
Collapse
Affiliation(s)
- Kim M Gerecke
- Department of Psychology and Neuroscience Program, Rhodes College, Memphis, Tennessee, United States of America.
| | | | | | | |
Collapse
|
249
|
Macrophage migration inhibitory factor mediates the antidepressant actions of voluntary exercise. Proc Natl Acad Sci U S A 2012; 109:13094-9. [PMID: 22826223 DOI: 10.1073/pnas.1205535109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Voluntary exercise is known to have an antidepressant effect. However, the underlying mechanism for this antidepressant action of exercise remains unclear, and little progress has been made in identifying genes that are directly involved. We have identified macrophage migration inhibitory factor (MIF) by analyzing existing mRNA microarray data and confirmed the augmented expression of selected genes under two experimental conditions: voluntary exercise and electroconvulsive seizure. A proinflammatory cytokine, MIF is expressed in the central nervous system and involved in innate and adaptive immune responses. A recent study reported that MIF is involved in antidepressant-induced hippocampal neurogenesis, but the mechanism remains elusive. In our data, tryptophan hydroxylase 2 (Tph2) and brain-derived neurotrophic factor (Bdnf) expression were induced after MIF treatment in vitro, as well as during both exercise and electroconvulsive seizure in vivo. This increment of Tph2 was accompanied by increases in the levels of total serotonin in vitro. Moreover, the MIF receptor CD74 and the ERK1/2 pathway mediate the MIF-induced Tph2 and Bdnf gene expression as well as serotonin content. Experiments in Mif(-/-) mice revealed depression-like behaviors and a blunted antidepressant effect of exercise, as reflected by changes in Tph2 and Bdnf expression in the forced swim test. In addition, administration of recombinant MIF protein produced antidepressant-like behavior in rats in the forced swim test. Taken together, these results suggest a role of MIF in mediating the antidepressant action of exercise, probably by enhancing serotonin neurotransmission and neurotrophic factor-induced neurogenesis in the brain.
Collapse
|
250
|
Sciolino NR, Dishman RK, Holmes PV. Voluntary exercise offers anxiolytic potential and amplifies galanin gene expression in the locus coeruleus of the rat. Behav Brain Res 2012; 233:191-200. [PMID: 22580167 PMCID: PMC3409590 DOI: 10.1016/j.bbr.2012.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/05/2012] [Accepted: 05/01/2012] [Indexed: 01/04/2023]
Abstract
Although exercise improves anxiety in humans, it is controversial whether exercise is anxiolytic in rodents. We tested the hypothesis that stress influences the effect of exercise on anxiety-like and defensive behaviors. To explore the neurobiological mechanisms of exercise, we also examined whether exercise alters gene expression for the stress-related peptide galanin. Rats were housed in the presence or absence of a running wheel for 21 d. A subset of these rats were (1) not injected or received a single high, dose of the β-carboline FG7142 (inverse agonist at the benzodiazepine receptor site) immediately prior to testing or (2) were injected repeatedly with vehicle or FG7142 during the last 10d of exercise. On day 22, anxiety-like and defensive behaviors were measured in the elevated plus maze, shock probe defensive burying, and defensive withdrawal tests. Locus coeruleus prepro-galanin mRNA was measured by in situ hybridization. Exercise and sedentary rats that were not injected exhibited similar behavior in all tests, whereas FG7142 injected immediately prior to the test battery produced intense avoidance and immobility consistent with an anxiety-like response. However, exercise produced anxiolytic-like and active defensive behaviors in the test battery relative to the sedentary condition in rats injected repeatedly with vehicle or FG7142. Exercise also increased prepro-galanin mRNA in the locus coeruleus relative to sedentary controls. These data suggest that the emergence of enhanced adaptive behavior after chronic voluntary exercise is influenced by stress. Our data support a role for galanin in the beneficial consequences of wheel running.
Collapse
Affiliation(s)
- Natale R. Sciolino
- Interdisciplinary Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia
| | | | - Philip V. Holmes
- Interdisciplinary Neuroscience Program, Biomedical and Health Sciences Institute, University of Georgia
- Department of Psychology, University of Georgia
| |
Collapse
|