201
|
Du B, Wang Q, Yang Y, Du Q, Liu Y, Zhu W, Xu T, Shen G, Yao H, Wang L. Two-Way Cruise Nanosatellite Promotes Metastasis Inhibition by Immunochemotherapy. Biomacromolecules 2019; 20:2873-2887. [PMID: 31185162 DOI: 10.1021/acs.biomac.9b00788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Currently, immunochemotherapy based on tumor-associated macrophages (TAMs) is mainly used for elimination of M2 macrophages. However, these methods cannot make full use of the positive immune-modulatory effects of macrophages. This study explores a two-way cruise strategy for combining immunotherapy based on TAM phenotype reversal with classical chemotherapy, the nanosatellites (DOX@HFn-PGZL@Res) are proposed to accurately deliver the chemotherapeutic agents and immune activators to their respective target cells. When the delivery system is recruited to tumor microenvironment, the nanosatellites are separated into DOX@HFn and Res@GZL nanoparticles, which can enter cancer cells and M2-TAMs, respectively. The data show that DOX@HFn-PGZL@Res successfully re-educate M2 to M1 macrophages, resulting in an activated immune response and inhibition of tumor invasion and metastasis. In general, this work describes a two-way homing nanoplatform for the integration of immunotherapy and chemotherapy, which provides a new idea for the "attack-defense" integrated treatment of tumor.
Collapse
Affiliation(s)
- Bin Du
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province, Zhengzhou 450001 , China
| | - Qinghui Wang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Ying Yang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Qian Du
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Ying Liu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Wanying Zhu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Tianguo Xu
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China
| | - Guopeng Shen
- School of Chemical Engineering and Energy , Zhengzhou University , Zhengzhou 450001 , China
| | - Hanchun Yao
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province, Zhengzhou 450001 , China
| | - Lei Wang
- School of Pharmaceutical Sciences , Zhengzhou University , Zhengzhou 450001 , China.,Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases , Henan Province, Zhengzhou 450001 , China
| |
Collapse
|
202
|
Abstract
PURPOSE OF REVIEW We discuss recent discoveries in hypoxic cellular pathophysiology and explore the interplay between hypoxic malignant cells and other stromal elements. This review will provide an update on the effects of hypoxia on cancer outcomes and therapeutic resistance. RECENT FINDINGS Hypoxia has been discovered to be a key driver for tumor progression, both because of impacts on tumor cells and separately on the wider tumor microenvironment. The latter effects occur via epithelial mesenchymal transition, autophagy and metabolic switching. Through epithelial mesenchymal transition, hypoxia both drives metastasis and renders key target tissues receptive to metastasis. Autophagy is a double-edged sword which requires greater understanding to ascertain when it is a threat. Metabolic switching allows tumor cells to access hypoxic survival mechanisms even under normoxic conditions.Every element of the malignant stroma contributes to hypoxia-driven progression. Exosomal transfer of molecules from hypoxic tumor cells to target stromal cell types and the importance of microRNAs in intercellular communication have emerged as key themes.Antiangiogenic resistance can be caused by hypoxia-driven vasculogenic mimicry. Beyond this, hypoxia contributes to resistance to virtually all oncological treatment modalities. SUMMARY Recent advances have moved us closer to being able to exploit hypoxic mechanisms to overcome hypoxia-driven progression and therapy failure.
Collapse
Affiliation(s)
- Andrew Redfern
- School of Medicine, The University of Western Australia, Perth
| | - Veenoo Agarwal
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane
- Translational Research Institute, Woolloongabba, Australia
| |
Collapse
|
203
|
Yang C, Kim HS, Song G, Lim W. The potential role of exosomes derived from ovarian cancer cells for diagnostic and therapeutic approaches. J Cell Physiol 2019; 234:21493-21503. [DOI: 10.1002/jcp.28905] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Changwon Yang
- Department of Biotechnology, College of Life Sciences and Biotechnology Institute of Animal Molecular Biotechnology, Korea University Seoul Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology Seoul National University College of Medicine Seoul Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology Institute of Animal Molecular Biotechnology, Korea University Seoul Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition Kookmin University Seoul Republic of Korea
| |
Collapse
|
204
|
Zhang L, Liu H, Xu K, Ling Z, Huang Y, Hu Q, Lu K, Liu C, Wang Y, Liu N, Zhang X, Xu B, Wu J, Chen S, Zhang G, Chen M. Hypoxia preconditioned renal tubular epithelial cell-derived extracellular vesicles alleviate renal ischaemia-reperfusion injury mediated by the HIF-1α/Rab22 pathway and potentially affected by microRNAs. Int J Biol Sci 2019; 15:1161-1176. [PMID: 31223277 PMCID: PMC6567810 DOI: 10.7150/ijbs.32004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
We previously found that hypoxia induced renal tubular epithelial cells (RTECs) release functional extracellular vesicles (EVs), which mediate the protection of remote ischaemic preconditioning (RIPC) for kidney ischaemia-reperfusion (I/R) injury. We intend to investigate whether the EVs were regulated by hypoxia-inducible factor 1α (HIF-1α) and Rab22 during RIPC. We also attempted to determine the potentially protective cargo of the EVs and reveal their underlying mechanism. Hypoxia preconditioning (HPC) of human kidney 2 (HK2) cells was conducted at 1% oxygen (O2) for different amounts of time to simulate IPC in vitro. EVs were isolated and then quantified. HIF-1α- and Rab22-inhibited HK2 cells were used to investigate the role of the HIF-1α/Rab22 pathway in HPC-induced EV production. Both normoxic and HPC EVs were treated in vivo to assess the protective effect of I/R injury. Moreover, microRNA (miRNA) sequencing analysis and bioinformatics analysis was performed. We revealed that the optimal conditions for simulating IPC in vitro was no more than 12 h under the 1% O2 culture circumstance. HPC enhanced the production of EVs, and the production of EVs was regulated by the HIF-1α/Rab22 pathway during HPC. Moreover, HPC EVs were found to be more effective at attenuating mice renal I/R injury. Furthermore, 16 miRNAs were upregulated in HPC EVs. Functional and pathway analysis indicated that the miRNAs may participate in multiple processes and pathways by binding their targets to influence the biochemical results during RIPC. We demonstrated that HIF-1α/Rab22 pathway mediated RTEC-derived EVs during RIPC. The HPC EVs protected renal I/R injury potentially through differentially expressed miRNAs. Further study is needed to verify the effective EV-miRNAs and their underlying mechanism.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Han Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Kai Xu
- Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Zhixin Ling
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yeqing Huang
- Department of Urology, The Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qiang Hu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Kai Lu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chunhui Liu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yiduo Wang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ning Liu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaowen Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Bin Xu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jianping Wu
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, Jiangsu 210009, P.R. China.,Institute of Urology, Surgical Research Center, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
205
|
Cai J, Qiao B, Gao N, Lin N, He W. Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p. Am J Physiol Cell Physiol 2019; 316:C731-C740. [PMID: 30811223 DOI: 10.1152/ajpcell.00366.2018] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims to explore the mechanism of the signal transmission between oral squamous cell carcinoma (OSCC) and unpolarized stromal immune macrophages mediated by OSCC-derived exosomes (OSCC-Exo). Polarization of macrophages was found by detection of the level of protein markers or specific components for M1 subtype or M2 subtype macrophages, respectively. Exosomes extracted from two OSCC cell lines, which might have been transfected with micro-RNA (miR)-29a-3p inhibitor or mimic, were cocultured with macrophages to ensure the effect of exosome-enclosed miR-29a-3p on the polarization of macrophages. miR-29a-3p is highly expressed, suppressor of cytokine signaling 1 (SOCS1) is low expressed and phosphorylated signal transduction and transcriptional activator 6 (p-STAT6) is highly expressed in OSCC tissues. Upregulation of miR-29a-3p is observed in OSCC-derived exosomes. When cocultured, OSCC-derived exosomes promote M2 subtype macrophage polarization and the medium of the coculture promotes the proliferation and invasion of SCC-9 and CAL-27 cells. After interfered silencing miR-29a-3p of OSCCs, SCC-9- and CAL-27 cell-derived exosomes inhibit M2 subtype macrophage polarization. On the other hand, cellular highly expressed miR-29a-3p of macrophages enhances M2 subtype macrophage polarization. Moreover, such macrophages promote the proliferation and invasion of SCC-9 and CAL-27. SOCS1 is a direct target for miR-29a-3p and could be negatively regulated by miR-29a-3p. Moreover, SOCS1 overexpression reverses the activity of SOCS1/STAT6 signals of macrophages and cell proliferation and invasion of OSCCs induced by miR-29a-3p overexpression. Also, overexpressed SOCS1 in macrophages counteracts the impact of OSCC-derived exosomes in M2 subtype macrophage polarization. Exosome-enclosed miR-29a-3p promotes tumor growth in nude mice with xenograft. OSCC-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p, and the mechanism by miR-29a-3p is the activity of SOCS1/STAT6 signals in macrophages.
Collapse
Affiliation(s)
- Jinghua Cai
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Qiao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ning Gao
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Nan Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei He
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
206
|
Meng W, Hao Y, He C, Li L, Zhu G. Exosome-orchestrated hypoxic tumor microenvironment. Mol Cancer 2019; 18:57. [PMID: 30925935 PMCID: PMC6441221 DOI: 10.1186/s12943-019-0982-6] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/25/2019] [Indexed: 12/19/2022] Open
Abstract
Hypoxic tumor microenvironment is a common feature of solid tumors and is associated with aggressiveness and poor patient outcomes. A continuous interference between cancer cells and stromal cells within the hypoxic microenvironment has been uncovered for its importance in cancer development and treatment responsiveness. Exosomes, initially considered as “garbage bins” for unwanted material from cells, are now elucidated to perform a variety of functions that involve interactions within the cellular microenvironment due to their ability to carry numerous cargoes, including lipids, proteins, nucleic acids, and metabolites. Exosome-mediated continuous interference between cancer cells and stroma are believed to regulate hypoxia-adaptation and to rebuild the microenvironment in return. In this review, we will discuss the knowledge in literature with respect to the exosome-mediated multi-directional and mutual signal transmission among the variety of cell types within hypoxic cancer microenvironment.
Collapse
Affiliation(s)
- Wanrong Meng
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Yaying Hao
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Chuanshi He
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Ling Li
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China.
| | - Guiquan Zhu
- Department of Head and Neck Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
207
|
Han L, Lam EWF, Sun Y. Extracellular vesicles in the tumor microenvironment: old stories, but new tales. Mol Cancer 2019; 18:59. [PMID: 30925927 PMCID: PMC6441234 DOI: 10.1186/s12943-019-0980-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/25/2019] [Indexed: 02/07/2023] Open
Abstract
Mammalian cells synthesize and release heterogeneous extracellular vesicles (EVs) which can be generally recognized as subclasses including exosomes, microvesicles (MVs), and apoptotic bodies (ABs), each differing in their biogenesis, composition and biological functions from others. EVs can originate from normal or cancer cells, transfer bioactive cargoes to both adjacent and distant sites, and orchestrate multiple key pathophysiological events such as carcinogenesis and malignant progression. Emerging as key messengers that mediate intercellular communications, EVs are being paid substantial attention in various disciplines including but not limited to cancer biology and immunology. Increasing lines of research advances have revealed the critical role of EVs in the establishment and maintenance of the tumor microenvironment (TME), including sustaining cell proliferation, evading growth suppression, resisting cell death, acquiring genomic instability and reprogramming stromal cell lineages, together contributing to the generation of a functionally remodeled TME. In this article, we present updates on major topics that document how EVs are implicated in proliferative expansion of cancer cells, promotion of drug resistance, reprogramming of metabolic activity, enhancement of metastatic potential, induction of angiogenesis, and escape from immune surveillance. Appropriate and insightful understanding of EVs and their contribution to cancer progression can lead to new avenues in the prevention, diagnosis and treatment of human malignancies in future medicine.
Collapse
Affiliation(s)
- Liu Han
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China. .,Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
208
|
Schwarzenbach H, Gahan PB. MicroRNA Shuttle from Cell-To-Cell by Exosomes and Its Impact in Cancer. Noncoding RNA 2019; 5:E28. [PMID: 30901915 PMCID: PMC6468647 DOI: 10.3390/ncrna5010028] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
The identification of exosomes, their link to multivesicular bodies and their potential role as a messenger vehicle between cancer and healthy cells opens up a new approach to the study of intercellular signaling. Furthermore, the fact that their main cargo is likely to be microRNAs (miRNAs) provides the possibility of the transfer of such molecules to control activities in the recipient cells. This review concerns a brief overview of the biogenesis of both exosomes and miRNAs together with the movement of such structures between cells. The possible roles of miRNAs in the development and progression of breast, ovarian and prostate cancers are discussed.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, 06126 Perugia, Italy.
| |
Collapse
|
209
|
Wang S, Wang J, Wei W, Ma G. Exosomes: The Indispensable Messenger in Tumor Pathogenesis and the Rising Star in Antitumor Applications. ACTA ACUST UNITED AC 2019; 3:e1900008. [PMID: 32627408 DOI: 10.1002/adbi.201900008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/20/2019] [Indexed: 12/27/2022]
Abstract
As natural secreted nanovesicles through the endolysosomal pathway, exosomes have attracted increasing attention over the past decades. An overwhelming number of studies have provided evidence for the intriguing roles that exosomes play in intercellular communication. They are widely involved in the transmission of biomolecule cargos between original cells and neighboring/distant cells in normal physiological processes. In addition, it has also been demonstrated that exosomes play vital roles in multiple biological pathways in the development of numerous diseases including cancer. Moreover, both natural and modified exosomes showed promising potential in serving as a versatile nanoplatform for cancer diagnosis and cancer therapy. This review aims to present a comprehensive and critical overview on the recent advances in exosome nanoscience and nanotechnology, ranging from their biogenesis, secretion, isolation, and biological function in tumor pathogenesis to their extensive antitumor applications.
Collapse
Affiliation(s)
- Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianghua Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
210
|
Zhang W, Ou X, Wu X. Proteomics profiling of plasma exosomes in epithelial ovarian cancer: A potential role in the coagulation cascade, diagnosis and prognosis. Int J Oncol 2019; 54:1719-1733. [PMID: 30864689 PMCID: PMC6438431 DOI: 10.3892/ijo.2019.4742] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer remains the most lethal type of cancer among all gynecological malignancies. The majority of patients are diagnosed with ovarian cancer at the late stages of the disease. Therefore, there exists an imperative need for the development of early ovarian cancer diagnostic techniques. Exosomes, secreted by various cell types, play pivotal roles in intercellular communication, which emerge as promising diagnostic and prognostic biomarkers for ovarian cancer. In this study, we present for the first time, at least to the best of our knowledge, the proteomics profiling of exosomes derived from the plasma of patients with ovarian cancer via liquid chromatography tandem mass spectrometry (LC-MS/MS) with tandem mass tagging (TMT). The exosomes enriched from patient plasma samples were characterized by nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), transmission electron microscopy (TEM) and western blot analysis. The size of the plasma exosomes fell into the range of 30 to 100 nm in diameter. The exosomal marker proteins, CD81 and TSG101, were clearly stained in the exosome samples; however, there was no staining for the endoplasmic reticulum protein, calnexin. A total of 294 proteins were identified with all exosome samples. Among these, 225 proteins were detected in both the cancerous and non-cancerous samples. Apart from universal exosomal proteins, exosomes derived from ovarian cancer patient plasma also contained tumor-specific proteins relevant to tumorigenesis and metastasis, particularly in epithelial ovarian carcinoma (EOC). Patients with EOC often suffer from coagulation dysfunction. The function of exosomes in coagulation was also examined. Several genes relevant to the coagulation cascade were screened out as promising diagnostic and prognostic factors that may play important roles in ovarian cancer progression and metastasis. On the whole, in this study, we successfully isolated and purified exosomes from plasma of patients with EOC, and identified a potential role of these exosomes in the coagulation cascade, as well as in the diagnosis and prognosis of patients. differentially expressed genes, functional enrichment analysis, protein-protein interaction, diagnostic and prognostic biomarkers
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaoxuan Ou
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| |
Collapse
|
211
|
Zonneveld MI, Keulers TGH, Rouschop KMA. Extracellular Vesicles as Transmitters of Hypoxia Tolerance in Solid Cancers. Cancers (Basel) 2019; 11:cancers11020154. [PMID: 30699970 PMCID: PMC6406242 DOI: 10.3390/cancers11020154] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
Tumour hypoxia is a common feature of solid tumours that contributes to poor prognosis after treatment. This is mainly due to increased resistance of hypoxic cells to radio- and chemotherapy and the association of hypoxic cells with increased metastasis development. It is therefore not surprising that an increased hypoxic tumour fraction is associated with poor patient survival. The extent of hypoxia within a tumour is influenced by the tolerance of individual tumor cells to hypoxia, a feature that differs considerably between tumors. High numbers of hypoxic cells may, therefore, be a direct consequence of enhanced cellular capability inactivation of hypoxia tolerance mechanisms. These include HIF-1α signaling, the unfolded protein response (UPR) and autophagy to prevent hypoxia-induced cell death. Recent evidence shows hypoxia tolerance can be modulated by distant cells that have experienced episodes of hypoxia and is mediated by the systemic release of factors, such as extracellular vesicles (EV). In this review, the evidence for transfer of a hypoxia tolerance phenotype between tumour cells via EV is discussed. In particular, proteins, mRNA and microRNA enriched in EV, derived from hypoxic cells, that impact HIF-1α-, UPR-, angiogenesis- and autophagy signalling cascades are listed.
Collapse
Affiliation(s)
- Marijke I Zonneveld
- Maastricht Radiation Oncology (MaastRO) lab, GROW⁻School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Tom G H Keulers
- Maastricht Radiation Oncology (MaastRO) lab, GROW⁻School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| | - Kasper M A Rouschop
- Maastricht Radiation Oncology (MaastRO) lab, GROW⁻School for Oncology and Developmental Biology, Maastricht University, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
212
|
Yamamoto T, Kosaka N, Ochiya T. Latest advances in extracellular vesicles: from bench to bedside. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:746-757. [PMID: 31447954 PMCID: PMC6691912 DOI: 10.1080/14686996.2019.1629835] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 05/20/2023]
Abstract
Extracellular vesicles (EVs) are small membraned vesicles and approximately 50-150 nm in diameter. Almost all of the type of cells releases the EVs and circulates in the body fluids. EVs contain multiple functional components, such as mRNAs, microRNAs (miRNAs), DNAs, and proteins, which can be transferred to the recipient cells, resulting in phenotypic changes. Recently, EV research has focused on their potential as a drug delivery vehicle and in targeted therapy against specific molecules. Moreover, some surface proteins are specific to particular diseases, and therefore, EVs also have promise as biomarkers. In this concise review, we summarize the latest research focused on EVs, which have the potential to become a promising drug delivery method, biomarker, and new therapeutic target for improving the outcomes of cancer patients.
Collapse
Affiliation(s)
- Tomofumi Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Clinical Physiology and Therapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
- Department of Translational Research for Extracellular Vesicles, Tokyo Medical University, Tokyo, Japan
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Department of Translational Research for Extracellular Vesicles, Tokyo Medical University, Tokyo, Japan
- CONTACT Nobuyoshi Kosaka Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjyuku-ku, Tokyo 160-0023, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Takahiro Ochiya Chief, Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjyuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
213
|
Sheng N, Wang Y, Xie Y, Chen S, Lu J, Zhang Z, Li M, Shan Q, Wu D, Zheng G, Zheng Y, Fan S. High expression of LASS2 is associated with unfavorable prognosis in patients with ovarian cancer. J Cell Physiol 2018; 234:13001-13013. [PMID: 30537159 DOI: 10.1002/jcp.27970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Homo sapiens longevity assurance homolog 2 of yeast LAG1 (LASS2), is a gene isolated from a human liver complementary DNA library. In this study, we found that LASS2 protein level was positively related to International Federation of Gynecology and Obstetrics (FIGO) stage and LASS2-negative tumors showed significant association with longer disease-free survival (DFS) and overall survival (OS) in ovarian cancer patients. The heterogeneous expression of LASS2 had been exhibited in diverse ovarian cancer cells. A significantly lower messenger RNA (mRNA) and protein level of LASS2 was seen in 3AO cell compared with those in other types of ovarian cancer cells. Meanwhile, the mRNA and protein levels of LASS2 in ES-2 and NIH:OVCAR-3 cells were obviously higher. LASS2 overexpression in 3AO cell could promote migration, invasion, and metastasis abilities in vitro and in vivo, while LASS2 knockdown in ES-2 and NIH:OVCAR-3 cells had the opposite effects. The oncogenic capacity of LASS2 in ovarian cancer may be mediated by increased expression of YAP/TAZ. It is indicated that lowering the expression of LASS2 is likely to serve as an unprecedented approach for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ning Sheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Xie
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Sihan Chen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zifeng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Mengqiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Dongmei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Guihong Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yuanlin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Shaohua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China.,College of Health Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|