201
|
Oxaliplatin facilitates tumor-infiltration of T cells and natural-killer cells for enhanced tumor immunotherapy in lung cancer model. Anticancer Drugs 2021; 33:117-123. [PMID: 34561996 PMCID: PMC8734624 DOI: 10.1097/cad.0000000000001248] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Platinum is reported to have adjuvant immune properties, whether oxaliplatin (OXA) could be utilized to synergize with anti-programmed cell death-1 (PD-1) antibody or anti-NKG2D (natural-killer group 2, member D) antibody is investigated. Subcutaneous A549 lung cancer and murine Lewis lung carcinoma (LLC) models were constructed, which were further intravenously injected with platinum-based drugs or concomitant administrated with anti-PD-1 antibody and or anti-NKG2D antibody. The tumor volume and the proportion of myeloid cells (CD45+CD11b+), CD3+T cells and NK (NK1.1+) cells were detected. The relative expression of chemokine (C-X-C motif) ligand 9 (CXCL9), CXCL10 and CXCL11 and C-X-C motif chemokine receptor 3 (CXCR3) was detected with the ELISA, western blot and flow cytometry. The three platinum drugs (cisplatin, DDP; carboplatin, CBP; OXA) showed similar effects to inhibit A549 tumor growth in immune-deficient mice. While OXA exhibited better antitumor efficacy in wild-type mice bearing LLC with downregulated myeloid cells proportion, upregulated concentration of CXCL9, CXCL10 and CXCL11, and upregulated proportion and CXCR3 expression on T cells and NK cells. OXA combined with anti-PD1 or anti-NKG2D synergistically improved tumor growth inhibition and survival. The combination of OXA to anti-PD1 and anti-NKG2D antibodies will provide the most appropriate treatment benefit. Oxaliplatin promotes T cells and NK cells infiltration through the CXCL9/10/11-CXCR3 axis to enhance anti-PD1 or anti-NKG2D immunotherapy in lung cancer.
Collapse
|
202
|
Terry RL, Meyran D, Fleuren EDG, Mayoh C, Zhu J, Omer N, Ziegler DS, Haber M, Darcy PK, Trapani JA, Neeson PJ, Ekert PG. Chimeric Antigen Receptor T cell Therapy and the Immunosuppressive Tumor Microenvironment in Pediatric Sarcoma. Cancers (Basel) 2021; 13:cancers13184704. [PMID: 34572932 PMCID: PMC8465026 DOI: 10.3390/cancers13184704] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary This review explores the current trials using cellular immunotherapies in pediatric sarcoma and describes examples of promising new CAR T targets in sarcoma that are in preclinical development. We provide insights into the ways in which the immunosuppressive tumor immune microenvironment can impact on CAR T cell therapy, highlighting specific mechanisms by which the tumor microenvironment may limit CAR T efficacy. Appreciation of these mechanisms may lead to rational combinations of immunotherapies, for example, the combination of CAR T cells with checkpoint inhibitor drugs. We also describe innovations in CAR T cell generation and combination therapies that may pave the way to better clinical outcomes for these patients. Abstract Sarcomas are a diverse group of bone and soft tissue tumors that account for over 10% of childhood cancers. Outcomes are particularly poor for children with refractory, relapsed, or metastatic disease. Chimeric antigen receptor T (CAR T) cells are an exciting form of adoptive cell therapy that potentially offers new hope for these children. In early trials, promising outcomes have been achieved in some pediatric patients with sarcoma. However, many children do not derive benefit despite significant expression of the targeted tumor antigen. The success of CAR T cell therapy in sarcomas and other solid tumors is limited by the immunosuppressive tumor microenvironment (TME). In this review, we provide an update of the CAR T cell therapies that are currently being tested in pediatric sarcoma clinical trials, including those targeting tumors that express HER2, NY-ESO, GD2, EGFR, GPC3, B7-H3, and MAGE-A4. We also outline promising new CAR T cells that are in pre-clinical development. Finally, we discuss strategies that are being used to overcome tumor-mediated immunosuppression in solid tumors; these strategies have the potential to improve clinical outcomes of CAR T cell therapy for children with sarcoma.
Collapse
Affiliation(s)
- Rachael L. Terry
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
| | - Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
- Inserm, Université de Paris, U976 HIPI Unit, Institut de Recherche Saint-Louis, 75475 Paris, France
| | - Emmy D. G. Fleuren
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
| | - Chelsea Mayoh
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
| | - Joe Zhu
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Natacha Omer
- Translational Innate Immunotherapy, University of Queensland Diamantina Institute (UQDI), Brisbane 4102, Australia;
- Oncology Services Group, Queensland Children Hospital, Brisbane 4101, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick 2145, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
| | - Phillip K. Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Joseph A. Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
| | - Paul G. Ekert
- Children’s Cancer Institute, Randwick 2031, Australia; (R.L.T.); (E.D.G.F.); (C.M.); (D.S.Z.); (M.H.)
- School of Women and Children’s Health, University of New South Wales, Randwick 2052, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; (D.M.); (J.Z.); (P.K.D.); (J.A.T.); (P.J.N.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne 3000, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia
- Correspondence:
| |
Collapse
|
203
|
Prognostic Analysis of Lung Adenocarcinoma Based on DNA Methylation Regulatory Factor Clustering. JOURNAL OF ONCOLOGY 2021; 2021:1557968. [PMID: 34484331 PMCID: PMC8413078 DOI: 10.1155/2021/1557968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/16/2021] [Accepted: 08/14/2021] [Indexed: 12/03/2022]
Abstract
There is a known link between DNA methylation and cancer immunity/immunotherapy; however, the effect of DNA methylation on immunotherapy in lung adenocarcinoma (LUAD) remains to be elucidated. In the current study, we aimed to screen key markers for prognostic analysis of LUAD based on DNA methylation regulatory factor clustering. We classified LUAD using the NMF clustering method, and as a result, we obtained 20 DNA methylation regulatory genes. These 20 regulatory genes were used to determine the pattern of DNA methylation regulation, and patients were grouped for further analysis. The risk score model was analyzed in the TCGA dataset and an external validation set, and the correlation between the risk score and DNA methylation regulatory gene expression was explored. We analyzed the correlation between the prognostic model and immune infiltration and checkpoints. Finally, we analyzed the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functions of the prognosis model and established the nomogram model and decision tree model. The survival analyses of ClusterA and ClusterB were significantly different. Survival analysis showed that patients with a high risk score had a poor prognosis. Survival models (tobacco, T, N, M, stage, sex, age, status, and risk score) were abnormally correlated with T cells and macrophages. The higher the risk score associated with smoking was and the higher the stage was, the more severe the LUAD and the more maladjusted the immune system were. Immune infiltration and abnormal expression of immune checkpoint genes in the prognostic model of LUAD were associated with the risk score. The prognostic models were mainly enriched in the cell cycle and DNA replication. Characterization of DNA methylation regulatory patterns is helpful to improve our understanding of the immune microenvironment in LUAD and to guide the development of a more personalized immunotherapy strategy in the future.
Collapse
|
204
|
Wang B, Wang Y, Sun X, Deng G, Huang W, Wu X, Gu Y, Tian Z, Fan Z, Xu Q, Chen H, Sun Y. CXCR6 is required for antitumor efficacy of intratumoral CD8 + T cell. J Immunother Cancer 2021; 9:jitc-2021-003100. [PMID: 34462326 PMCID: PMC8407215 DOI: 10.1136/jitc-2021-003100] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Increasing infiltration of CD8+ T cells within tumor tissue predicts a better prognosis and is essential for response to checkpoint blocking therapy. Furthermore, current clinical protocols use unfractioned T cell populations as the starting point for transduction of chimeric antigen receptors (CARs)-modified T cells, but the optimal T cell subtype of CAR-modified T cells remains unclear. Thus, accurately identifying a group of cytotoxic T lymphocytes with high antitumor efficacy is imperative. Inspired by the theory of yin and yang, we explored a subset of CD8+ T cell in cancer with the same phenotypic characteristics as highly activated inflammatory T cells in autoimmune diseases. METHODS Combination of single-cell RNA sequencing, general transcriptome sequencing data and multiparametric cytometric techniques allowed us to map CXCR6 expression on specific cell type and tissue. We applied Cxcr6-/- mice, immune checkpoint therapies and bone marrow chimeras to identify the function of CXCR6+CD8+ T cells. Transgenic Cxcr6-/- OT-I mice were employed to explore the functional role of CXCR6 in antigen-specific antitumor response. RESULTS We identified that CXCR6 was exclusively expressed on intratumoral CD8+ T cell. CXCR6+CD8+ T cells were more immunocompetent, and chimeras with specific deficiency on CD8+ T cells showed weaker antitumor activity. In addition, Cxcr6-/- mice could not respond to anti-PD-1 treatment effectively. High tumor expression of CXCR6 was not mainly caused by ligand-receptor chemotaxis of CXCL16/CXCR6 but induced by tumor tissue self. Induced CXCR6+CD8+ T cells possessed tumor antigen specificity and could enhance the effect of anti-PD-1 blockade to retard tumor progression. CONCLUSIONS This study may contribute to the rational design of combined immunotherapy. Alternatively, CXCR6 may be used as a biomarker for effective CD8+ T cell state before adoptive cell therapy, providing a basis for tumor immunotherapy.
Collapse
Affiliation(s)
- Binglin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yi Wang
- Department of Proctology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaofan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Wei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xingxin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yanghong Gu
- Department of Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu, China
| | - Zhigang Tian
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhimin Fan
- Department of Proctology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China .,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hongqi Chen
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China .,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
205
|
Globerson Levin A, Rivière I, Eshhar Z, Sadelain M. CAR T cells: Building on the CD19 paradigm. Eur J Immunol 2021; 51:2151-2163. [PMID: 34196410 DOI: 10.1002/eji.202049064] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022]
Abstract
Spearheaded by the therapeutic use of chimeric antigen receptors (CARs) targeting CD19, synthetic immunology has entered the clinical arena. CARs are recombinant receptors for antigen that engage cell surface molecules through the variable region of an antibody and signal through arrayed T-cell activating and costimulatory domains. CARs allow redirection of T-cell cytotoxicity against any antigen of choice, independent of MHC expression. Patient T cells engineered to express CARs specific for CD19 have yielded remarkable outcomes in subjects with relapsed/refractory B- cell malignancies, setting off unprecedented interest in T-cell engineering and cell-based cancer immunotherapy. In this review, we present the challenges to extend the use of CAR T cells to solid tumors and other pathologies. We further highlight progress in CAR design, cell manufacturing, and genome editing, which in aggregate hold the promise of generating safer and more effective genetically instructed immunity. Novel engineered cell types, including innate T-cell types, natural killer (NK) cells, macrophages, and induced pluripotent stem cell-derived immune cells, are on the horizon, as are applications of CAR T cells to treat autoimmunity, severe infections, and senescence-associated pathologies.
Collapse
Affiliation(s)
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zelig Eshhar
- Immunology Lab, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
206
|
Liu H, Pan C, Song W, Liu D, Li Z, Zheng L. Novel strategies for immuno-oncology breakthroughs with cell therapy. Biomark Res 2021; 9:62. [PMID: 34332618 PMCID: PMC8325826 DOI: 10.1186/s40364-021-00316-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/16/2021] [Indexed: 12/19/2022] Open
Abstract
Cell therapy has evolved rapidly in the past several years with more than 250 clinical trials ongoing around the world. While more indications of cellular therapy with chimeric antigen receptor - engineered T cells (CAR-T) are approved for hematologic malignancies, new concepts and strategies of cellular therapy for solid tumors are emerging and are discussed. These developments include better selections of targets by shifting from tumor-associated antigens to personalized tumor-specific neoantigens, an enhancement of T cell trafficking by breaking the stromal barriers, and a rejuvenation of exhausted T cells by targeting immunosuppressive mechanisms in the tumor microenvironment (TME). Despite significant remaining challenges, we believe that cell therapy will once again lead and revolutionize cancer immunotherapy before long because of the maturation of technologies in T cell engineering, target selection and T cell delivery. This review highlighted the recent progresses reported at the 2020 China Immuno-Oncology Workshop co-organized by the Chinese American Hematologist and Oncologist Network (CAHON), the China National Medical Product Administration (NMPA), and Tsinghua University.
Collapse
Affiliation(s)
- Hongtao Liu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.
- University of Chicago, Chicago, IL, USA.
| | - Chongxian Pan
- Chinese American Hematologist and Oncologist Network, New York, NY, USA
- Harvard University, Boston, MA, USA
| | - Wenru Song
- Chinese American Hematologist and Oncologist Network, New York, NY, USA
- Kira Pharmaceuticals, Cambridge, MA, USA
| | - Delong Liu
- Chinese American Hematologist and Oncologist Network, New York, NY, USA
- New York Medical College, Valhalla, NY, USA
| | - Zihai Li
- Chinese American Hematologist and Oncologist Network, New York, NY, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, USA
| | - Lei Zheng
- Chinese American Hematologist and Oncologist Network, New York, NY, USA.
- Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
207
|
Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D Ligands in Immuno-Oncology. Front Immunol 2021; 12:713158. [PMID: 34394116 PMCID: PMC8358801 DOI: 10.3389/fimmu.2021.713158] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) revolutionized the field of immuno-oncology and opened new avenues towards the development of novel assets to achieve durable immune control of cancer. Yet, the presence of tumor immune evasion mechanisms represents a challenge for the development of efficient treatment options. Therefore, combination therapies are taking the center of the stage in immuno-oncology. Such combination therapies should boost anti-tumor immune responses and/or target tumor immune escape mechanisms, especially those created by major players in the tumor microenvironment (TME) such as tumor-associated macrophages (TAM). Natural killer (NK) cells were recently positioned at the forefront of many immunotherapy strategies, and several new approaches are being designed to fully exploit NK cell antitumor potential. One of the most relevant NK cell-activating receptors is NKG2D, a receptor that recognizes 8 different NKG2D ligands (NKG2DL), including MICA and MICB. MICA and MICB are poorly expressed on normal cells but become upregulated on the surface of damaged, transformed or infected cells as a result of post-transcriptional or post-translational mechanisms and intracellular pathways. Their engagement of NKG2D triggers NK cell effector functions. Also, MICA/B are polymorphic and such polymorphism affects functional responses through regulation of their cell-surface expression, intracellular trafficking, shedding of soluble immunosuppressive isoforms, or the affinity of NKG2D interaction. Although immunotherapeutic approaches that target the NKG2D-NKG2DL axis are under investigation, several tumor immune escape mechanisms account for reduced cell surface expression of NKG2DL and contribute to tumor immune escape. Also, NKG2DL polymorphism determines functional NKG2D-dependent responses, thus representing an additional challenge for leveraging NKG2DL in immuno-oncology. In this review, we discuss strategies to boost MICA/B expression and/or inhibit their shedding and propose that combination strategies that target MICA/B with antibodies and strategies aimed at promoting their upregulation on tumor cells or at reprograming TAM into pro-inflammatory macrophages and remodeling of the TME, emerge as frontrunners in immuno-oncology because they may unleash the antitumor effector functions of NK cells and cytotoxic CD8 T cells (CTL). Pursuing several of these pipelines might lead to innovative modalities of immunotherapy for the treatment of a wide range of cancer patients.
Collapse
Affiliation(s)
- Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
208
|
Hildebrand KM, Singla AK, McNeil R, Marritt KL, Hildebrand KN, Zemp F, Rajwani J, Itani D, Bose P, Mahoney DJ, Jirik FR, Monument MJ. The KrasG12D;Trp53fl/fl murine model of undifferentiated pleomorphic sarcoma is macrophage dense, lymphocyte poor, and resistant to immune checkpoint blockade. PLoS One 2021; 16:e0253864. [PMID: 34242269 PMCID: PMC8270133 DOI: 10.1371/journal.pone.0253864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Sarcomas are rare, difficult to treat, mesenchymal lineage tumours that affect children and adults. Immunologically-based therapies have improved outcomes for numerous adult cancers, however, these therapeutic strategies have been minimally effective in sarcoma so far. Clinically relevant, immunologically-competent, and transplantable pre-clinical sarcoma models are essential to advance sarcoma immunology research. Herein we show that Cre-mediated activation of KrasG12D, and deletion of Trp53, in the hindlimb muscles of C57Bl/6 mice results in the highly penetrant, rapid onset undifferentiated pleomorphic sarcomas (UPS), one of the most common human sarcoma subtypes. Cell lines derived from spontaneous UPS tumours can be reproducibly transplanted into the hindlimbs or lungs of naïve, immune competent syngeneic mice. Immunological characterization of both spontaneous and transplanted UPS tumours demonstrates an immunologically-‘quiescent’ microenvironment, characterized by a paucity of lymphocytes, limited spontaneous adaptive immune pathways, and dense macrophage infiltrates. Macrophages are the dominant immune population in both spontaneous and transplanted UPS tumours, although compared to spontaneous tumours, transplanted tumours demonstrate increased spontaneous lymphocytic infiltrates. The growth of transplanted UPS tumours is unaffected by host lymphocyte deficiency, and despite strong expression of PD-1 on tumour infiltrating lymphocytes, tumours are resistant to immunological checkpoint blockade. This spontaneous and transplantable immune competent UPS model will be an important experimental tool in the pre-clinical development and evaluation of novel immunotherapeutic approaches for immunologically cold soft tissue sarcomas.
Collapse
Affiliation(s)
- Karys M. Hildebrand
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Arvind K. Singla
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Reid McNeil
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kayla L. Marritt
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kurt N. Hildebrand
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Franz Zemp
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jahanara Rajwani
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Doha Itani
- Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, United States of America
| | - Pinaki Bose
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Douglas J. Mahoney
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Frank R. Jirik
- McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael J. Monument
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
209
|
Breitenecker K, Homolya M, Luca AC, Lang V, Trenk C, Petroczi G, Mohrherr J, Horvath J, Moritsch S, Haas L, Kurnaeva M, Eferl R, Stoiber D, Moriggl R, Bilban M, Obenauf AC, Ferran C, Dome B, Laszlo V, Győrffy B, Dezso K, Moldvay J, Casanova E, Moll HP. Down-regulation of A20 promotes immune escape of lung adenocarcinomas. Sci Transl Med 2021; 13:eabc3911. [PMID: 34233950 PMCID: PMC7611502 DOI: 10.1126/scitranslmed.abc3911] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/15/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
Inflammation is a well-known driver of lung tumorigenesis. One strategy by which tumor cells escape tight homeostatic control is by decreasing the expression of the potent anti-inflammatory protein tumor necrosis factor alpha-induced protein 3 (TNFAIP3), also known as A20. We observed that tumor cell intrinsic loss of A20 markedly enhanced lung tumorigenesis and was associated with reduced CD8+ T cell-mediated immune surveillance in patients with lung cancer and in mouse models. In mice, we observed that this effect was completely dependent on increased cellular sensitivity to interferon-γ (IFN-γ) signaling by aberrant activation of TANK-binding kinase 1 (TBK1) and increased downstream expression and activation of signal transducer and activator of transcription 1 (STAT1). Interrupting this autocrine feed forward loop by knocking out IFN-α/β receptor completely restored infiltration of cytotoxic T cells and rescued loss of A20 depending tumorigenesis. Downstream of STAT1, programmed death ligand 1 (PD-L1) was highly expressed in A20 knockout lung tumors. Accordingly, immune checkpoint blockade (ICB) treatment was highly efficient in mice harboring A20-deficient lung tumors. Furthermore, an A20 loss-of-function gene expression signature positively correlated with survival of melanoma patients treated with anti-programmed cell death protein 1. Together, we have identified A20 as a master immune checkpoint regulating the TBK1-STAT1-PD-L1 axis that may be exploited to improve ICB therapy in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Kristina Breitenecker
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
- Institute of Cancer Research, Medical University of Vienna, AT-1090 Vienna, Austria
- Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
| | - Monika Homolya
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Andreea C Luca
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Veronika Lang
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Christoph Trenk
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Georg Petroczi
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Julian Mohrherr
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Jaqueline Horvath
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Stefan Moritsch
- Institute of Cancer Research, Medical University of Vienna, AT-1090 Vienna, Austria
- Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
| | - Lisa Haas
- Research Institute of Molecular Pathology, Vienna Biocenter, AT-1030 Vienna, Austria
| | - Margarita Kurnaeva
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Robert Eferl
- Institute of Cancer Research, Medical University of Vienna, AT-1090 Vienna, Austria
- Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
| | - Dagmar Stoiber
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
- Division Pharmacology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, AT-3500 Krems, Austria
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, AT-1210 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine, Medical University of Vienna, AT-1090 Vienna, Austria
- Core Facilities, Medical University of Vienna, AT-1090 Vienna, Austria
| | - Anna C Obenauf
- Research Institute of Molecular Pathology, Vienna Biocenter, AT-1030 Vienna, Austria
| | - Christiane Ferran
- Division of Vascular and Endovascular Surgery and the Center for Vascular Biology Research, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Transplant Institute and the Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Balazs Dome
- Division of Thoracic Surgery, Department of Surgery, and Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
- 1st Department of Tumor Biology, National Korányi Institute of Pulmonology, Semmelweis University, HU-1121 Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology and Semmelweis University, HU-1122 Budapest, Hungary
| | - Viktoria Laszlo
- Division of Thoracic Surgery, Department of Surgery, and Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
- 1st Department of Tumor Biology, National Korányi Institute of Pulmonology, Semmelweis University, HU-1121 Budapest, Hungary
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, and 2nd Department of Pediatrics, Semmelweis University, HU-1117 Budapest, Hungary
- Department of Bioinformatics, Semmelweis University, HU-1094 Budapest, Hungary
- 2nd Department of Pediatrics, Semmelweis University, HU-1094 Budapest, Hungary
| | - Katalin Dezso
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, HU-1085 Budapest, Hungary
| | - Judit Moldvay
- 1st Department of Pulmonology, National Korányi Institute of Pulmonology, HU-1121 Budapest, Hungary
- SE-NAP Brain Metastasis Research Group, 2nd Department of Pathology, Semmelweis University, HU-1122 Budapest, Hungary
| | - Emilio Casanova
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria
- Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
| | - Herwig P Moll
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, AT-1090 Vienna, Austria.
- Comprehensive Cancer Center (CCC), Medical University of Vienna, AT-1090 Vienna, Austria
| |
Collapse
|
210
|
Nema R, Patel P, Kumar A. Prognostic Role of Receptor Tyrosine Kinase-Like Orphan Receptors in Intestinal-Type Gastric Cancer. Asian Pac J Cancer Prev 2021; 22:2125-2134. [PMID: 34319035 PMCID: PMC8607102 DOI: 10.31557/apjcp.2021.22.7.2125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is diagnosed at advanced stages and has high mortality rates. Surgical resection and adjuvant chemotherapy are the main therapeutic approaches for GC. Despite curative resection, recurrence and metastasis contribute to a high mortality rate in patients with GC. The receptor-tyrosine-kinase-like orphan receptors 1/2 (ROR1/2) are transmembrane proteins belonging to the receptor tyrosine kinase (RTK) family. ROR1 and ROR2 are known to overexpress in the tumor tissues from several types of cancer patients. However, the role of RORs in the prognosis has not been understood. METHODS This study aimed to determine the association of mRNA expression of ROR1, ROR2, and their signaling components WNT5A, NKX2-1, and FOXF1, with the survival outcome of GC patients. We performed Kaplan-Meir survival analysis on publicly available 'The Cancer Genome Atlas (TCGA)' data sets using 'Kaplan-Meir Plotter.' RESULTS High mRNA expression of ROR1, ROR2, NKX2-1, and FOXF1 was significantly correlated with worse overall survival (OS) of GC patients. Interestingly ROR1 and ROR showed a prognostic role in the intestinal subtype, but not in the diffuse subtype of GC. Furthermore, ROR1 was positively correlated with regulatory T cells and M2-type macrophages and negatively correlated with Th17 and natural killer T cells in the tumor stroma of patients with GC. CONCLUSION We conclude that the expression of ROR1, ROR2, and their associated genes correlate with worst prognosis of GC patients, particularly in the intestinal type. .
Collapse
Affiliation(s)
| | | | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS) Bhopal, Saket Nagar, Bhopal, India.
| |
Collapse
|
211
|
Qualls D, Salles G. Optimizing CAR T cell therapy in lymphoma. Hematol Oncol 2021; 39 Suppl 1:104-112. [PMID: 34105817 DOI: 10.1002/hon.2844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 12/25/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has significantly improved the outlook for patients with certain types of poor-risk lymphoma. Despite these advances, a majority of patients undergoing CAR T therapy will suffer progression or relapse of disease, and toxicity remains a concern. Additionally, the patients and disease subtypes that are most likely to benefit from CAR T have yet to be fully defined. Many ongoing trials are exploring novel CAR T approaches to address these concerns. In this review, we highlight some of the primary strategies and relevant studies aimed at improving the utility of CAR T therapy in lymphoma.
Collapse
Affiliation(s)
- David Qualls
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Gilles Salles
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
212
|
Abstract
Macrophages are multi-functional innate immune cells that occupy normal or pathologic tissues, including cancer tissues. The importance of macrophage ontogeny and the transcriptional networks underlying their functional diversity are underappreciated in immuno-oncology. Here, we discuss the implications of these fundamental characteristics for therapeutically reprogramming macrophages to sustain their tumoricidal activities.
Collapse
Affiliation(s)
- Stephanie L Tzetzo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.
| |
Collapse
|
213
|
Louvet C, Nadeem O, Smith EL. Finding the optimal partner to pair with bispecific antibody therapy for multiple myeloma. Blood Cancer Discov 2021; 2:297-299. [PMID: 34258583 DOI: 10.1158/2643-3230.bcd-21-0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BCMA/CD3ε-targeted bispecific antibody (BsAb) therapy represents a promising T-cell redirecting immunotherapy to treat relapsed and refractory multiple myeloma (MM). However, rational combination strategies will most likely be key to achieve a long-lasting immune response. In this issue, Meermeier and colleagues investigate BsAb therapy in a syngeneic MM model and elucidate that partnering with cyclophosphamide is associated with tempered activation, mitigated exhaustion of T-cells, and is superior to pomalidomide or bortezomib in enhancing durable anti-MM efficacy.
Collapse
Affiliation(s)
- Cedric Louvet
- Department of Medical Oncology, Dana-Farber Cancer Center, Boston, MA
| | - Omar Nadeem
- Department of Medical Oncology, Dana-Farber Cancer Center, Boston, MA
| | - Eric L Smith
- Department of Medical Oncology, Dana-Farber Cancer Center, Boston, MA
| |
Collapse
|
214
|
Goydel RS, Rader C. Antibody-based cancer therapy. Oncogene 2021; 40:3655-3664. [PMID: 33947958 PMCID: PMC8357052 DOI: 10.1038/s41388-021-01811-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023]
Abstract
Over the past 25 years, antibody therapeutics have emerged as clinically and commercially successful pharmaceuticals, rapidly approaching 100 Food and Drug Administration approvals with combined annual global sales exceeding $100 billion. Nearly half of the marketed antibody therapeutics are used in oncology. These antibody-based cancer therapies can be broken down into three categories based on their different mechanisms of action, i.e., (i) natural properties, (ii) engagement of cytotoxic T cells, and (iii) delivery of cytotoxic payloads. Both natural and engineered properties of the antibody molecule are founded on its highly stable and modular architecture. In this review we provide an overview and outlook of the rapidly evolving landscape of antibody-based cancer therapy.
Collapse
Affiliation(s)
- Rebecca S. Goydel
- Department of Immunology and Microbiology, The Scripps
Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps
Research Institute, Jupiter, FL 33458, USA,Corresponding author:
| |
Collapse
|
215
|
Hojjat-Farsangi M, Moshfegh A, Schultz J, Norin M, Olin T, Österborg A, Mellstedt H. Targeting the Receptor Tyrosine Kinase ROR1 by Small Molecules. Handb Exp Pharmacol 2021; 269:75-99. [PMID: 34490515 DOI: 10.1007/164_2021_535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Receptor tyrosine kinases (RTKs) are frequently dysregulated in malignancies and important for the malignant characteristics of tumor cells. RTKs are attractive structures for drug targeting of cancer. The RTK ROR1 is of significance during embryogenesis but downregulated in post-partum tissues. However, ROR1 is overexpressed in several hematological and solid tumors and important for tumor cell proliferation, survival, migration, and metastasis. WNT5a is a main ligand for ROR1. Several clinical trials are ongoing using anti-ROR1 antibody based drugs directed against the external domain (monoclonal antibodies, BiTE, CAR-T). We have produced small molecules (KAN834/1571c) fitting to the ATP pocket of the intracellular tyrosine kinase (TK) domain of ROR1 (TK inhibitor, TKI). These inhibitors of ROR1 prevented ROR1 phosphorylation and inactivated the WNT/β-catenin independent as well as WNT/β-catenin dependent pathways. ROR1-TKI induced apoptosis of ROR1 positive fresh patient derived tumor cells and appropriate cell lines and a dose and time dependent tumor reduction in animal models. In combination with other clinically relevant targeting drugs as venetoclax a synergistic apoptotic effect was seen. Two other small molecules (ARI-1 and strictinin) bound also to ROR1 and inhibited tumor growth. Development of small molecule ROR1 inhibitors is warranted to include this novel therapeutic approach for cancer therapy.
Collapse
Affiliation(s)
| | - Ali Moshfegh
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Schultz
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Martin Norin
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Thomas Olin
- Kancera AB, Karolinska Institutet Science Park, Stockholm, Sweden
| | - Anders Österborg
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Håkan Mellstedt
- BioClinicum, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|