201
|
Mitra S, Dash R, Munni YA, Selsi NJ, Akter N, Uddin MN, Mazumder K, Moon IS. Natural Products Targeting Hsp90 for a Concurrent Strategy in Glioblastoma and Neurodegeneration. Metabolites 2022; 12:1153. [PMID: 36422293 PMCID: PMC9697676 DOI: 10.3390/metabo12111153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 09/16/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common aggressive, resistant, and invasive primary brain tumors that share neurodegenerative actions, resembling many neurodegenerative diseases. Although multiple conventional approaches, including chemoradiation, are more frequent in GBM therapy, these approaches are ineffective in extending the mean survival rate and are associated with various side effects, including neurodegeneration. This review proposes an alternative strategy for managing GBM and neurodegeneration by targeting heat shock protein 90 (Hsp90). Hsp90 is a well-known molecular chaperone that plays essential roles in maintaining and stabilizing protein folding to degradation in protein homeostasis and modulates signaling in cancer and neurodegeneration by regulating many client protein substrates. The therapeutic benefits of Hsp90 inhibition are well-known for several malignancies, and recent evidence highlights that Hsp90 inhibitors potentially inhibit the aggressiveness of GBM, increasing the sensitivity of conventional treatment and providing neuroprotection in various neurodegenerative diseases. Herein, the overview of Hsp90 modulation in GBM and neurodegeneration progress has been discussed with a summary of recent outcomes on Hsp90 inhibition in various GBM models and neurodegeneration. Particular emphasis is also given to natural Hsp90 inhibitors that have been evidenced to show dual protection in both GBM and neurodegeneration.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Nusrat Jahan Selsi
- Product Development Department, Popular Pharmaceuticals Ltd., Dhaka 1207, Bangladesh
| | - Nasrin Akter
- Department of Clinical Pharmacy and Molecular Pharmacology, East West University Bangladesh, Dhaka 1212, Bangladesh
| | - Md Nazim Uddin
- Department of Pharmacy, Southern University Bangladesh, Chittagong 4000, Bangladesh
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
202
|
Gao Z, Xu J, Fan Y, Zhang Z, Wang H, Qian M, Zhang P, Deng L, Shen J, Xue H, Zhao R, Zhou T, Guo X, Li G. ARPC1B promotes mesenchymal phenotype maintenance and radiotherapy resistance by blocking TRIM21-mediated degradation of IFI16 and HuR in glioma stem cells. J Exp Clin Cancer Res 2022; 41:323. [PMID: 36380368 PMCID: PMC9667586 DOI: 10.1186/s13046-022-02526-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Intratumoral heterogeneity is the primary challenge in the treatment of glioblastoma (GBM). The presence of glioma stem cells (GSCs) and their conversion between different molecular phenotypes contribute to the complexity of heterogeneity, culminating in preferential resistance to radiotherapy. ARP2/3 (actin-related protein-2/3) complexes (ARPs) are associated with cancer migration, invasion and differentiation, while the implications of ARPs in the phenotype and resistance to radiotherapy of GSCs remain unclear. Methods We screened the expression of ARPs in TCGA-GBM and CGGA-GBM databases. Tumor sphere formation assays and limiting dilution assays were applied to assess the implications of ARPC1B in tumorigenesis. Apoptosis, comet, γ-H2AX immunofluorescence (IF), and cell cycle distribution assays were used to evaluate the effect of ARPC1B on radiotherapy resistance. Immunoprecipitation (IP) and mass spectrometry analysis were used to detect ARPC1B-interacting proteins. Immune blot assays were performed to evaluate protein ubiquitination, and deletion mutant constructs were designed to determine the binding sites of protein interactions. The Spearman correlation algorithm was performed to screen for drugs that indicated cell sensitivity by the expression of ARPC1B. An intracranial xenograft GSC mouse model was used to investigate the role of ARPC1B in vivo. Results We concluded that ARPC1B was significantly upregulated in MES-GBM/GSCs and was correlated with a poor prognosis. Both in vitro and in vivo assays indicated that knockdown of ARPC1B in MES-GSCs reduced tumorigenicity and resistance to IR treatment, whereas overexpression of ARPC1B in PN-GSCs exhibited the opposite effects. Mechanistically, ARPC1B interacted with IFI16 and HuR to maintain protein stability. In detail, the Pyrin of IFI16 and RRM2 of HuR were implicated in binding to ARPC1B, which counteracted TRIM21-mediated degradation of ubiquitination to IFI16 and HuR. Additionally, the function of ARPC1B was dependent on IFI16-induced activation of NF-κB pathway and HuR-induced activation of STAT3 pathway. Finally, we screened AZD6738, an ataxia telangiectasia mutated and rad3-related (ATR) inhibitor, based on the expression of ARPC1B. In addition to ARPC1B expression reflecting cellular sensitivity to AZD6738, the combination of AZD6738 and radiotherapy exhibited potent antitumor effects both in vitro and in vivo. Conclusion ARPC1B promoted MES phenotype maintenance and radiotherapy resistance by inhibiting TRIM21-mediated degradation of IFI16 and HuR, thereby activating the NF-κB and STAT3 signaling pathways, respectively. AZD6738, identified based on ARPC1B expression, exhibited excellent anti-GSC activity in combination with radiotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02526-8.
Collapse
|
203
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
204
|
Erbani J, Boon M, Akkari L. Therapy-induced shaping of the glioblastoma microenvironment: Macrophages at play. Semin Cancer Biol 2022; 86:41-56. [PMID: 35569742 DOI: 10.1016/j.semcancer.2022.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023]
Abstract
The intricate cross-talks between tumor cells and their microenvironment play a key role in cancer progression and resistance to treatment. In recent years, targeting pro-tumorigenic components of the tumor microenvironment (TME) has emerged as a tantalizing strategy to improve the efficacy of standard-of-care (SOC) treatments, particularly for hard-to-treat cancers such as glioblastoma. In this review, we explore how the distinct microenvironmental niches characteristic of the glioblastoma TME shape response to therapy. In particular, we delve into the interplay between tumor-associated macrophages (TAM) and glioblastoma cells within angiogenic and hypoxic niches, and interrogate their dynamic co-evolution upon SOC therapies that fuels malignancy. Resolving the complexity of therapy-induced alterations in the glioblastoma TME and their impact on disease relapse is a stepping stone to identify targetable pro-tumorigenic pathways and TAM subsets, and may open the way to efficient combination therapies that will improve clinical outcomes.
Collapse
Affiliation(s)
- Johanna Erbani
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Menno Boon
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
205
|
Brooks LJ, Simpson Ragdale H, Hill CS, Clements M, Parrinello S. Injury programs shape glioblastoma. Trends Neurosci 2022; 45:865-876. [PMID: 36089406 DOI: 10.1016/j.tins.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022]
Abstract
Glioblastoma is the most common and aggressive primary brain cancer in adults and is almost universally fatal due to its stark therapeutic resistance. During the past decade, although survival has not substantially improved, major advances have been made in our understanding of the underlying biology. It has become clear that these devastating tumors recapitulate features of neurodevelopmental hierarchies which are influenced by the microenvironment. Emerging evidence also highlights a prominent role for injury responses in steering cellular phenotypes and contributing to tumor heterogeneity. This review highlights how the interplay between injury and neurodevelopmental programs impacts on tumor growth, invasion, and treatment resistance, and discusses potential therapeutic considerations in view of these findings.
Collapse
Affiliation(s)
- Lucy J Brooks
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK.
| | - Holly Simpson Ragdale
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK
| | - Ciaran Scott Hill
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK; Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust (UCLH), London, UK
| | - Melanie Clements
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, Department of Cancer Biology, University College London Cancer Institute, London, UK.
| |
Collapse
|
206
|
Picca A, Finocchiaro G. Deciphering diffuse glioma immune microenvironment as a key to improving immunotherapy results. Curr Opin Oncol 2022; 34:653-660. [PMID: 36000367 DOI: 10.1097/cco.0000000000000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Immunotherapeutic approaches have yet to demonstrate their clinical efficacy in diffuse gliomas. Evidence is mounting that the central nervous system is subject to immune surveillance, but brain tumours manage to escape due to factors intrinsic to their tumoral immune microenvironment (TME). This review aims to discuss the recently characterized molecular bases of the glioma TME and the potentially actionable targets to improve immunotherapeutic results in these hard-to-treat cancers. RECENT FINDINGS Single-cell studies defined the composition of the glioma immune TME and its peculiarities compared with other solid cancers. In isocitrate dehydrogenase (IDH) wildtype gliomas, the TME is enriched in myeloid cells (monocyte-derived macrophages and resident microglia) with mainly immunosuppressive functions. Lymphocytes can infiltrate the glioma TME, but are exposed to multiple immunomodulating signals that render them in a state of deep exhaustion. IDH mutant gliomas produce the oncometabolite D-2-hydroxyglutarate with negative effects on leukocyte recruitment and function, resulting in the induction of an 'immune-desert' TME. SUMMARY Several molecular pathways have been recently identified in the induction of an 'immune-hostile' microenvironment in diffuse gliomas, unravelling potential vulnerabilities to targeted immunotherapies.
Collapse
Affiliation(s)
- Alberto Picca
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France. Equipe labellisée LNCC
| | - Gaetano Finocchiaro
- Department of Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
207
|
Kim HJ, Suh SS, Park J, Shin MJ, Koo MH, Lee SJ, Jeon YJ, Lee S, Youn UJ, Kim SH. 7β-22 Dihydroxyhopane, Isolated from the Sub-Antarctic Lichen, Inhibits the Viability and Stemness in Glioma Stem Like Cells. Onco Targets Ther 2022; 15:1375-1383. [DOI: 10.2147/ott.s371042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
|
208
|
The oncogenic JAG1 intracellular domain is a transcriptional cofactor that acts in concert with DDX17/SMAD3/TGIF2. Cell Rep 2022; 41:111626. [DOI: 10.1016/j.celrep.2022.111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
|
209
|
Yang J, Wu X, Wang J, Guo X, Chen J, Yang X, Zhong J, Li X, Deng Z. Feedforward loop between IMP1 and YAP/TAZ promotes tumorigenesis and malignant progression in glioblastoma. Cancer Sci 2022; 114:2053-2062. [PMID: 36308276 PMCID: PMC10154852 DOI: 10.1111/cas.15636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
YAP/TAZ have been identified as master regulators in malignant phenotypes of glioblastoma (GBM); however, YAP/TAZ transcriptional disruptor in GBM treatment remains ineffective. Whether post-transcriptional dysregulation of YAP/TAZ improves GBM outcome is currently unknown. Here, we report that insulin-like growth factor 2 (IGF2) mRNA-binding protein 1 (IGF2BP1 or IMP1) is upregulated in mesenchymal GBM compared with proneural GBM and correlates with worse patient outcome. Overexpression of IMP1 in proneural glioma stem-like cells (GSCs) promotes while IMP1 knockdown in mesenchymal GSCs attenuates tumorigenesis and mesenchymal signatures. IMP1 binds to and stabilizes m6A-YAP mRNA, leading to activation of YAP/TAZ signaling, depending on its m6A recognition and binding domain. On the other hand, TAZ functions as enhancer for IMP1 expression. Collectively, our data reveal a feedforward loop between IMP1 and YAP/TAZ maintaining GBM/GSC tumorigenesis and malignant progression and a promising molecular target in GBM.
Collapse
Affiliation(s)
- Jia Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Xujia Wu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Jia Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Junju Chen
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Xuesong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Jian Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Xixi Li
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Zhong Deng
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| |
Collapse
|
210
|
Helweg LP, Storm J, Witte KE, Schulten W, Wrachtrup L, Janotte T, Kitke A, Greiner JFW, Knabbe C, Kaltschmidt B, Simon M, Kaltschmidt C. Targeting Key Signaling Pathways in Glioblastoma Stem Cells for the Development of Efficient Chemo- and Immunotherapy. Int J Mol Sci 2022; 23:12919. [PMID: 36361720 PMCID: PMC9659205 DOI: 10.3390/ijms232112919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 01/12/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and most common malignant brain tumor with poor patient survival despite therapeutic intervention. On the cellular level, GBM comprises a rare population of glioblastoma stem cells (GSCs), driving therapeutic resistance, invasion, and recurrence. GSCs have thus come into the focus of therapeutic strategies, although their targeting remains challenging. In the present study, we took advantage of three GSCs-populations recently established in our lab to investigate key signaling pathways and subsequent therapeutic strategies targeting GSCs. We observed that NF-κB, a crucial transcription factor in GBM progression, was expressed in all CD44+/CD133+/Nestin+-GSC-populations. Exposure to TNFα led to activation of NF-κB-RELA and/or NF-κB-c-REL, depending on the GBM type. GSCs further expressed the proto-oncogene MYC family, with MYChigh GSCs being predominantly located in the tumor spheres ("GROW"-state) while NF-κB-RELAhigh GSCs were migrating out of the sphere ("GO"-state). We efficiently targeted GSCs by the pharmacologic inhibition of NF-κB using PTDC/Bortezomib or inhibition of MYC by KJ-Pyr-9, which significantly reduced GSC-viability, even in comparison to the standard chemotherapeutic drug temozolomide. As an additional cell-therapeutic strategy, we showed that NK cells could kill GSCs. Our findings offer new perspectives for developing efficient patient-specific chemo- and immunotherapy against GBM.
Collapse
Affiliation(s)
- Laureen P. Helweg
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Jonathan Storm
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Kaya E. Witte
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Wiebke Schulten
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Lennart Wrachtrup
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Till Janotte
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Angelika Kitke
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Johannes F. W. Greiner
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| | - Cornelius Knabbe
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Barbara Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
- Molecular Neurobiology, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| | - Matthias Simon
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
- Department of Neurosurgery and Epilepsy Surgery, Protestant Hospital of Bethel Foundation, University Medical School OWL at Bielefeld, Bielefeld University, Campus Bielefeld-Bethel, Burgsteig 13, 33617 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, OWL (FBMB e.V.), Maraweg 21, 33617 Bielefeld, Germany
| |
Collapse
|
211
|
Muthukrishnan SD, Kawaguchi R, Nair P, Prasad R, Qin Y, Johnson M, Wang Q, VanderVeer-Harris N, Pham A, Alvarado AG, Condro MC, Gao F, Gau R, Castro MG, Lowenstein PR, Deb A, Hinman JD, Pajonk F, Burns TC, Goldman SA, Geschwind DH, Kornblum HI. P300 promotes tumor recurrence by regulating radiation-induced conversion of glioma stem cells to vascular-like cells. Nat Commun 2022; 13:6202. [PMID: 36261421 PMCID: PMC9582000 DOI: 10.1038/s41467-022-33943-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/07/2022] [Indexed: 12/24/2022] Open
Abstract
Glioma stem cells (GSC) exhibit plasticity in response to environmental and therapeutic stress leading to tumor recurrence, but the underlying mechanisms remain largely unknown. Here, we employ single-cell and whole transcriptomic analyses to uncover that radiation induces a dynamic shift in functional states of glioma cells allowing for acquisition of vascular endothelial-like and pericyte-like cell phenotypes. These vascular-like cells provide trophic support to promote proliferation of tumor cells, and their selective depletion results in reduced tumor growth post-treatment in vivo. Mechanistically, the acquisition of vascular-like phenotype is driven by increased chromatin accessibility and H3K27 acetylation in specific vascular genes allowing for their increased expression post-treatment. Blocking P300 histone acetyltransferase activity reverses the epigenetic changes induced by radiation and inhibits the adaptive conversion of GSC into vascular-like cells and tumor growth. Our findings highlight a role for P300 in radiation-induced stress response, suggesting a therapeutic approach to prevent glioma recurrence.
Collapse
Affiliation(s)
- Sree Deepthi Muthukrishnan
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Riki Kawaguchi
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Pooja Nair
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Rachna Prasad
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Yue Qin
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maverick Johnson
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Qing Wang
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Nathan VanderVeer-Harris
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Amy Pham
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alvaro G Alvarado
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Michael C Condro
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Fuying Gao
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Raymond Gau
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Maria G Castro
- Department of Neurosurgery, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Arjun Deb
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Frank Pajonk
- Department of Radiation Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Terry C Burns
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Center for Translational Neuromedicine, University of Coppenhagen School of Medicine, Coppenhagen, Denmark
| | - Daniel H Geschwind
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Harley I Kornblum
- The UCLA Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
212
|
Silver A, Feier D, Ghosh T, Rahman M, Huang J, Sarkisian MR, Deleyrolle LP. Heterogeneity of glioblastoma stem cells in the context of the immune microenvironment and geospatial organization. Front Oncol 2022; 12:1022716. [PMID: 36338705 PMCID: PMC9628999 DOI: 10.3389/fonc.2022.1022716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 01/16/2023] Open
Abstract
Glioblastoma (GBM) is an extremely aggressive and incurable primary brain tumor with a 10-year survival of just 0.71%. Cancer stem cells (CSCs) are thought to seed GBM's inevitable recurrence by evading standard of care treatment, which combines surgical resection, radiotherapy, and chemotherapy, contributing to this grim prognosis. Effective targeting of CSCs could result in insights into GBM treatment resistance and development of novel treatment paradigms. There is a major ongoing effort to characterize CSCs, understand their interactions with the tumor microenvironment, and identify ways to eliminate them. This review discusses the diversity of CSC lineages present in GBM and how this glioma stem cell (GSC) mosaicism drives global intratumoral heterogeneity constituted by complex and spatially distinct local microenvironments. We review how a tumor's diverse CSC populations orchestrate and interact with the environment, especially the immune landscape. We also discuss how to map this intricate GBM ecosystem through the lens of metabolism and immunology to find vulnerabilities and new ways to disrupt the equilibrium of the system to achieve improved disease outcome.
Collapse
Affiliation(s)
- Aryeh Silver
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Diana Feier
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Tanya Ghosh
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States
| | - Maryam Rahman
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Jianping Huang
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States
| | - Matthew R. Sarkisian
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Loic P. Deleyrolle
- Department of Neurosurgery, Adam Michael Rosen Neuro-Oncology Laboratories, University of Florida, Gainesville, FL, United States,Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL, United States,*Correspondence: Loic P. Deleyrolle,
| |
Collapse
|
213
|
Swati K, Agrawal K, Raj S, Kumar R, Prakash A, Kumar D. Molecular mechanism(s) of regulations of cancer stem cell in brain cancer propagation. Med Res Rev 2022; 43:441-463. [PMID: 36205299 DOI: 10.1002/med.21930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 06/01/2022] [Accepted: 09/11/2022] [Indexed: 11/12/2022]
Abstract
Brain tumors are most often diagnosed with solid neoplasms and are the primary reason for cancer-related deaths in both children and adults worldwide. With recent developments in the progression of novel targeted chemotherapies, the prognosis of malignant glioma remains dismal. However, the high recurrence rate and high mortality rate remain unresolved and are closely linked to the biological features of cancer stem cells (CSCs). Research on tumor biology has reached a new age with more understanding of CSC features. CSCs, a subpopulation of whole tumor cells, are now regarded as candidate therapeutic targets. Therefore, in the diagnosis and treatment of tumors, recognizing the biological properties of CSCs is of considerable significance. Here, we have discussed the concept of CSCs and their significant role in brain cancer growth and propagation. We have also discussed personalized therapeutic development and immunotherapies for brain cancer by specifically targeting CSCs.
Collapse
Affiliation(s)
- Kumari Swati
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Kirti Agrawal
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Sibi Raj
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| | - Rajeev Kumar
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Anand Prakash
- Department of Biotechnology, School of Life Science, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Dhruv Kumar
- School of Health Sciences and Technology (SoHST), UPES University, Dehradun, India.,Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
214
|
Chen D, Liu Z, Wang J, Yang C, Pan C, Tang Y, Zhang P, Liu N, Li G, Li Y, Wu Z, Xia F, Zhang C, Nie H, Tang Z. Integrative genomic analysis facilitates precision strategies for glioblastoma treatment. iScience 2022; 25:105276. [PMID: 36300002 PMCID: PMC9589211 DOI: 10.1016/j.isci.2022.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common form of malignant primary brain tumor with a dismal prognosis. Currently, the standard treatments for GBM rarely achieve satisfactory results, which means that current treatments are not individualized and precise enough. In this study, a multiomics-based GBM classification was established and three subclasses (GPA, GPB, and GPC) were identified, which have different molecular features both in bulk samples and at single-cell resolution. A robust GBM poor prognostic signature (GPS) score model was then developed using machine learning method, manifesting an excellent ability to predict the survival of GBM. NVP−BEZ235, GDC−0980, dasatinib and XL765 were ultimately identified to have subclass-specific efficacy targeting patients with a high risk of poor prognosis. Furthermore, the GBM classification and GPS score model could be considered as potential biomarkers for immunotherapy response. In summary, an integrative genomic analysis was conducted to advance individual-based therapies in GBM. A multiomics-based classification of GBM was established Single-cell transcriptomic profiling of GBM subclasses was revealed using Scissor A robust prognostic risk model was developed for GBM by machine learning method Prediction of potential agents based on molecular and prognostic risk stratification
Collapse
Affiliation(s)
- Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingxuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Liver Surgery and Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Li
- State Key Laboratory of Oncogenes and Related Genes, Department of Liver Surgery and Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China,Department of Immunology, Sun Yat-Sen University, Zhongshan School of Medicine, Guangzhou, Guangdong 510080, China
| | - Zhuojin Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Feng Xia
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Nie
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Corresponding author
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,Corresponding author
| |
Collapse
|
215
|
Zhao T, Zeng J, Xu Y, Su Z, Chong Y, Ling T, Xu H, Shi H, Zhu M, Mo Q, Huang X, Li Y, Zhang X, Ni H, You Q. Chitinase-3 like-protein-1 promotes glioma progression via the NF-κB signaling pathway and tumor microenvironment reprogramming. Am J Cancer Res 2022; 12:6989-7008. [PMID: 36276655 PMCID: PMC9576612 DOI: 10.7150/thno.75069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022] Open
Abstract
Background: Chitinase-3-like protein 1 (CHI3L1) is overexpressed in various types of tumors, especially in glioma, and contributes to tumor progression. However, the definite role of CHI3L1 and involved pathway in glioma progression are not completely understood. Methods: CHI3L1 expression in human gliomas and its association with patient survival was determined using enzyme-linked immunosorbent assay, western blot, immunohistochemistry, and public databases. Single-cell RNA-seq was used to characterize the landscape of tumor and myeloid cells. Human proteome microarray assay was applied to identify the binding partners of CHI3L1. Protein-protein interactions were analyzed by co-immunoprecipitation and cellular co-localization. The roles of CHI3L1 in glioma proliferation and invasion were investigated in tumor cell lines by gain- and loss- of function, as well as in vivo animal experiments. Results: CHI3L1 was up-regulated in all disease stages of glioma, which was closely related with tumor survival, growth, and invasion. CHI3L1 was primarily expressed in glioma cells, followed by neutrophils. Moreover, glioma cells with high expression of CHI3L1 were significantly enriched in NF-κB pathway. Pseudo-time trajectory analysis revealed a gradual transition from CHI3L1low to CHI3L1high glioma cells, along with the NF-κB pathway gradually reversed from inhibition to activation. Intriguingly, CHI3L1 binds to actinin alpha 4 (ACTN4) and NFKB1, and enhances the NF-κB signaling pathway by promoting the NF-κB subunit nuclear translocation in glioma cells. Further, CHI3L1 were released into the tumor microenvironment (TME) and interacted with CD44 expressed on tumor-associated macrophages to activate AKT pathway, thereby contributing to M2 macrophage polarization. In addition, CHI3L1 positively correlated to the expression of immune checkpoints, such as CD274 (PD-L1) and HAVCR2 (LAG3), which then remodeled the TME to an immunosuppressive phenotype. Conclusion: Our research revealed that CHI3L1 facilitated NF-κB pathway activation within glioma cells and reprogramed the TME, thereby serving as a promising therapeutic target for glioma.
Collapse
Affiliation(s)
- Ting Zhao
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China.,Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jianming Zeng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yujie Xu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Zhongping Su
- Department of Biotherapy, Department of Geriatrics, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Yulong Chong
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Tao Ling
- Department of Biotherapy, Department of Geriatrics, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Haozhe Xu
- Department of Biotherapy, Department of Geriatrics, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China
| | - Hui Shi
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Minggao Zhu
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Qi Mo
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China
| | - Xiaoying Huang
- College of Life Science and Technology, Jinan University, 601 Huangpu Road, Guangzhou 510630, China
| | - Yingchang Li
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China.,Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Xiaoren Zhang
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China.,Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| | - Hongbin Ni
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu, China
| | - Qiang You
- Affiliated Cancer Hospital & Institute, Guangzhou Medical University, Guangzhou 510095, Guangdong, China.,Department of Biotherapy, Department of Geriatrics, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China.,Key Laboratory of Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510182, China.,Center for Cancer and Immunology Research, State Key Laboratory of Respiratory Disease, Guangzhou, China
| |
Collapse
|
216
|
Cong Z, Yuan F, Wang H, Cai X, Zhu J, Tang T, Zhang L, Han Y, Ma C. BTB domain and CNC homolog 1 promotes glioma invasion mainly through regulating extracellular matrix and increases ferroptosis sensitivity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166554. [PMID: 36181980 DOI: 10.1016/j.bbadis.2022.166554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
BTB Domain and CNC Homolog 1 (Bach1) has been implicated in cancer progression, particularly in invasion, but little is unknown about its effect on glioma. Here, we confirmed that highly expressed Bach1 prominently promoted glioma invasion. Similar to the reported mechanisms in other tumors, Bach1 upregulation was also correlated with epithelial mesenchymal transition (EMT) in glioma cells. More importantly, proteomic analysis indicated that the main mechanism of Bach1 promoting invasion in glioma involved extracellular matrix (ECM). We further found thatBach1 upregulation was associated with the multiple mechanisms of ECM remodeling in glioma, including increasing the expression and deposition of ECM components, activating TGFBR2-smad2/3 signaling, promoting invadopodia formation and inducing the expression and secretion of MMP2. Meanwhile, Bach1 overexpression increased ferroptosis sensitivity in glioma cells. The ferroptosis inducer (sulfasalazine) obviously suppressed the gliomas with Bach1 upregulation in vitro and in vivo. Overall, Bach1 has a two-faced role in glioma. Highly expressed Bach1 promotes glioma invasion. Conversely, Bach1 upregulation is also a potential indicator of the sensitivity of ferroptosis inducers.
Collapse
Affiliation(s)
- Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Feng Yuan
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China; Department of Neurosurgery, Benq Medical Center, Nanjing Medical University, Nanjing 210002, China.
| | - Xiangming Cai
- School of Medicine, Southeast University, Dingjiaqiao No. 87, Nanjing, 210000, Jiangsu, China
| | - Junhao Zhu
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Ting Tang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Li Zhang
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Yanling Han
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Chiyuan Ma
- Department of Neurosurgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China.
| |
Collapse
|
217
|
Johnson AL, Laterra J, Lopez-Bertoni H. Exploring glioblastoma stem cell heterogeneity: Immune microenvironment modulation and therapeutic opportunities. Front Oncol 2022; 12:995498. [PMID: 36212415 PMCID: PMC9532940 DOI: 10.3389/fonc.2022.995498] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Despite its growing use in cancer treatment, immunotherapy has been virtually ineffective in clinical trials for gliomas. The inherently cold tumor immune microenvironment (TIME) in gliomas, characterized by a high ratio of pro-tumor to anti-tumor immune cell infiltrates, acts as a seemingly insurmountable barrier to immunotherapy. Glioma stem cells (GSCs) within these tumors are key contributors to this cold TIME, often functioning indirectly through activation and recruitment of pro-tumor immune cell types. Furthermore, drivers of GSC plasticity and heterogeneity (e.g., reprogramming transcription factors, epigenetic modifications) are associated with induction of immunosuppressive cell states. Recent studies have identified GSC-intrinsic mechanisms, including functional mimicry of immune suppressive cell types, as key determinants of anti-tumor immune escape. In this review, we cover recent advancements in our understanding of GSC-intrinsic mechanisms that modulate GSC-TIME interactions and discuss cutting-edge techniques and bioinformatics platforms available to study immune modulation at high cellular resolution with exploration of both malignant (i.e., GSC) and non-malignant (i.e., immune) cell fractions. Finally, we provide insight into the therapeutic opportunities for targeting immunomodulatory GSC-intrinsic mechanisms to potentiate immunotherapy response in gliomas.
Collapse
Affiliation(s)
- Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
218
|
Angiocrine extracellular vesicles impose mesenchymal reprogramming upon proneural glioma stem cells. Nat Commun 2022; 13:5494. [PMID: 36123372 PMCID: PMC9485157 DOI: 10.1038/s41467-022-33235-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/08/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is an incurable form of primary astrocytic brain tumor driven by glioma stem cell (GSC) compartment closely associated with the vascular niche. GSC phenotypes are heterogeneous and range from proneural to mesenchymal-like, the latter characterised by greater invasiveness. Here we document the secretory (angiocrine) role of endothelial cells and their derived extracellular vesicles (EVs) as drivers of proneural-to-mesenchymal reprogramming of GSCs. These changes involve activation of matrix metalloproteinases (MMPs) and NFκB, and inactivation of NOTCH, while altering responsiveness to chemotherapy and driving infiltrative growth in the brain. Our findings suggest that EV-mediated angiocrine interactions impact the nature of cellular stemness in GBM with implications for disease biology and therapy.
Collapse
|
219
|
Fan Y, Gao Z, Xu J, Wang H, Guo Q, Xue H, Zhao R, Guo X, Li G. Identification and validation of SNHG gene signature to predict malignant behaviors and therapeutic responses in glioblastoma. Front Immunol 2022; 13:986615. [PMID: 36159816 PMCID: PMC9493242 DOI: 10.3389/fimmu.2022.986615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) patients exhibit high mortality and recurrence rates despite multimodal therapy. Small nucleolar RNA host genes (SNHGs) are a group of long noncoding RNAs that perform a wide range of biological functions. We aimed to reveal the role of SNHGs in GBM subtypes, cell infiltration into the tumor microenvironment (TME), and stemness characteristics. SNHG interaction patterns were determined based on 25 SNHGs and systematically correlated with GBM subtypes, TME and stemness characteristics. The SNHG interaction score (SNHGscore) model was generated to quantify SNHG interaction patterns. The high SNHGscore group was characterized by a poor prognosis, the mesenchymal (MES) subtype, the infiltration of suppressive immune cells and a differentiated phenotype. Further analysis indicated that high SNHGscore was associated with a weaker response to anti-PD-1/L1 immunotherapy. Tumor cells with high SNHG scores were more sensitive to drugs targeting the EGFR and ERK-MAPK signaling pathways. Finally, we assessed SNHG interaction patterns in multiple cancers to verify their universality. This is a novel and comprehensive study that provides targeted therapeutic strategies based on SNHG interactions. Our work highlights the crosstalk and potential clinical utility of SNHG interactions in cancer therapy.
Collapse
Affiliation(s)
- Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Jianye Xu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Huizhi Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Qindong Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xing Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Xing Guo, ; Gang Li,
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- *Correspondence: Xing Guo, ; Gang Li,
| |
Collapse
|
220
|
Mamun AA, Uddin MS, Perveen A, Jha NK, Alghamdi BS, Jeandet P, Zhang HJ, Ashraf GM. Inflammation-targeted nanomedicine against brain cancer: From design strategies to future developments. Semin Cancer Biol 2022; 86:101-116. [PMID: 36084815 DOI: 10.1016/j.semcancer.2022.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 02/07/2023]
Abstract
Brain cancer is an aggressive type of cancer with poor prognosis. While the immune system protects against cancer in the early stages, the tumor exploits the healing arm of inflammatory reactions to accelerate its growth and spread. Various immune cells penetrate the developing tumor region, establishing a pro-inflammatory tumor milieu. Additionally, tumor cells may release chemokines and cytokines to attract immune cells and promote cancer growth. Inflammation and its associated mechanisms in the progression of cancer have been extensively studied in the majority of solid tumors, especially brain tumors. However, treatment of the malignant brain cancer is hindered by several obstacles, such as the blood-brain barrier, transportation inside the brain interstitium, inflammatory mediators that promote tumor growth and invasiveness, complications in administering therapies to tumor cells specifically, the highly invasive nature of gliomas, and the resistance to drugs. To resolve these obstacles, nanomedicine could be a potential strategy that has facilitated advancements in diagnosing and treating brain cancer. Due to the numerous benefits provided by their small size and other features, nanoparticles have been a prominent focus of research in the drug-delivery field. The purpose of this article is to discuss the role of inflammatory mediators and signaling pathways in brain cancer as well as the recent advances in understanding the nano-carrier approaches for enhancing drug delivery to the brain in the treatment of brain cancer.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences, Uttaranchal University, Dehradun 248007, India
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philippe Jeandet
- University of Reims Champagne-Ardenne, Research Unit, Induced Resistance and Plant Bioprotection, EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, PO Box 1039, 51687 Reims Cedex 2, France
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong Special Administrative Region of China
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
221
|
Microglia-T cell conversations in brain cancer progression. Trends Mol Med 2022; 28:951-963. [PMID: 36075812 DOI: 10.1016/j.molmed.2022.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/26/2022]
Abstract
The highly immunosuppressive and heterogeneous milieu of brain malignancies contributes to their dismal prognosis. Regardless of their cellular origin, brain tumors grow in an environment with various specialized organ-resident cells. Although homeostatic microglia contribute to a healthy brain, conversations between disease-associated microglia and T cells compromise their individual and collective capacity to curb malignant growth. We review the mechanisms of T cell-microglia interactions and discuss how their collaboration fosters heterogeneity and immunosuppression in brain cancers. Because of the importance of microglia and T cells in the brain tumor microenvironment, it is crucial to understand their interactions to derive innovative therapeutics.
Collapse
|
222
|
Xiong A, Zhang J, Chen Y, Zhang Y, Yang F. Integrated single-cell transcriptomic analyses reveal that GPNMB-high macrophages promote PN-MES transition and impede T cell activation in GBM. EBioMedicine 2022; 83:104239. [PMID: 36054938 PMCID: PMC9437813 DOI: 10.1016/j.ebiom.2022.104239] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/27/2022] Open
|
223
|
Tomita Y, Shimazu Y, Somasundaram A, Tanaka Y, Takata N, Ishi Y, Gadd S, Hashizume R, Angione A, Pinero G, Hambardzumyan D, Brat DJ, Hoeman CM, Becher OJ. A novel mouse model of diffuse midline glioma initiated in neonatal oligodendrocyte progenitor cells highlights cell-of-origin dependent effects of H3K27M. Glia 2022; 70:1681-1698. [PMID: 35524725 PMCID: PMC9546478 DOI: 10.1002/glia.24189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/13/2022]
Abstract
Diffuse midline glioma (DMG) is a type of lethal brain tumor that develops mainly in children. The majority of DMG harbor the K27M mutation in histone H3. Oligodendrocyte progenitor cells (OPCs) in the brainstem are candidate cells-of-origin for DMG, yet there is no genetically engineered mouse model of DMG initiated in OPCs. Here, we used the RCAS/Tv-a avian retroviral system to generate DMG in Olig2-expressing progenitors and Nestin-expressing progenitors in the neonatal mouse brainstem. PDGF-A or PDGF-B overexpression, along with p53 deletion, resulted in gliomas in both models. Exogenous overexpression of H3.3K27M had a significant effect on tumor latency and tumor cell proliferation when compared with H3.3WT in Nestin+ cells but not in Olig2+ cells. Further, the fraction of H3.3K27M-positive cells was significantly lower in DMGs initiated in Olig2+ cells relative to Nestin+ cells, both in PDGF-A and PDGF-B-driven models, suggesting that the requirement for H3.3K27M is reduced when tumorigenesis is initiated in Olig2+ cells. RNA-sequencing analysis revealed that the differentially expressed genes in H3.3K27M tumors were non-overlapping between Olig2;PDGF-B, Olig2;PDGF-A, and Nestin;PDGF-A models. GSEA analysis of PDGFA tumors confirmed that the transcriptomal effects of H3.3K27M are cell-of-origin dependent with H3.3K27M promoting epithelial-to-mesenchymal transition (EMT) and angiogenesis when Olig2 marks the cell-of-origin and inhibiting EMT and angiogenesis when Nestin marks the cell-of-origin. We did observe some overlap with H3.3K27M promoting negative enrichment of TNFA_Signaling_Via_NFKB in both models. Our study suggests that the tumorigenic effects of H3.3K27M are cell-of-origin dependent, with H3.3K27M being more oncogenic in Nestin+ cells than Olig2+ cells.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
- Department of Neurosurgery and Neuroendovascular SurgeryHiroshima City Hiroshima Citizens HospitalHiroshimaJapan
| | - Yosuke Shimazu
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Agila Somasundaram
- Division of Hematology, Oncology and Stem Cell TransplantAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
| | - Yoshihiro Tanaka
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Arrhythmia Research, Department of CardiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Nozomu Takata
- Center for Vascular and Developmental BiologyFeinberg Cardiovascular and Renal Research Institute (FCVRRI), Northwestern UniversityChicagoIllinoisUSA
- Simpson Querrey Institute for BioNanotechnologyNorthwestern UniversityChicagoIllinoisUSA
| | - Yukitomo Ishi
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Samantha Gadd
- Department of PathologyAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
| | - Rintaro Hashizume
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
- Division of Hematology, Oncology and Stem Cell TransplantAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Department of Biochemistry and Molecular GeneticsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Angelo Angione
- Department of Neurosurgery and Oncological SciencesMount Sinai School of MedicineNew YorkUSA
| | - Gonzalo Pinero
- Department of Neurosurgery and Oncological SciencesMount Sinai School of MedicineNew YorkUSA
| | - Dolores Hambardzumyan
- Department of Neurosurgery and Oncological SciencesMount Sinai School of MedicineNew YorkUSA
| | - Daniel J. Brat
- Department of PathologyFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Christine M. Hoeman
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Oren J. Becher
- Department of PediatricsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
- Division of Hematology, Oncology and Stem Cell TransplantAnn & Robert H. Lurie Children's Hospital of ChicagoChicagoIllinoisUSA
- Department of Biochemistry and Molecular GeneticsFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
- Jack Martin Division of Pediatric Hematology‐oncologyMount Sinai Kravis Children's HospitalNew YorkUSA
| |
Collapse
|
224
|
Marx S, Godicelj A, Wucherpfennig KW. A Conceptual Framework for Inducing T Cell-Mediated Immunity Against Glioblastoma. Semin Immunopathol 2022; 44:697-707. [PMID: 35505129 PMCID: PMC9942346 DOI: 10.1007/s00281-022-00945-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/20/2022] [Indexed: 12/12/2022]
Abstract
Glioblastoma is a highly aggressive brain tumor with limited treatment options. Several major challenges have limited the development of novel therapeutics, including the extensive heterogeneity of tumor cell states within each glioblastoma and the ability of glioma cells to diffusely infiltrate into neighboring healthy brain tissue, including the contralateral hemisphere. A T cell-mediated immune response could deal with these challenges based on the ability of polyclonal T cell populations to recognize diverse tumor antigens and perform surveillance throughout tissues. Here we will discuss the major pathways that inhibit T cell-mediated immunity against glioblastoma, with an emphasis on receptor-ligand systems by which glioma cells and recruited myeloid cells inhibit T cell function. A related challenge is that glioblastomas tend to be poorly infiltrated by T cells, which is not only caused by inhibitory molecular pathways but also currently utilized drugs, in particular high-dose corticosteroids that kill activated, proliferating T cells. We will discuss innovative approaches to induce glioblastoma-directed T cell responses, including neoantigen-based vaccines and sophisticated CAR T cell approaches that can target heterogeneous glioblastoma cell populations. Finally, we will propose a conceptual framework for the future development of T cell-based immunotherapies for glioblastoma.
Collapse
Affiliation(s)
- Sascha Marx
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Anze Godicelj
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Kai W. Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Immunology, Harvard Medical School, Boston, MA 02115, USA,Program in Immunology, Harvard Medical School, Boston, MA 02115, USA,Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02215, USA
| |
Collapse
|
225
|
Liu K, Jiang L, Shi Y, Liu B, He Y, Shen Q, Jiang X, Nie Z, Pu J, Yang C, Chen Y. Hypoxia-induced GLT8D1 promotes glioma stem cell maintenance by inhibiting CD133 degradation through N-linked glycosylation. Cell Death Differ 2022; 29:1834-1849. [PMID: 35301431 PMCID: PMC9433395 DOI: 10.1038/s41418-022-00969-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022] Open
Abstract
Gliomas are the most aggressive primary brain tumors. However, no significant improvement in survival has been achieved with the addition of temozolomide (TMZ) or radiation as initial therapy, although many clinical efforts have been carried out to target various signaling pathways or putative driver mutations. Here, we report that glycosyltransferase 8 domain containing 1 (GLT8D1), induced by HIF-1α under a hypoxic niche, significantly correlates with a higher grade of glioma, and a worse clinical outcome. Depletion of GLT8D1 inhibits self-renewal of glioma stem cell (GSC) in vitro and represses tumor growth in glioma mouse models. GLT8D1 knockdown promotes cell cycle arrest at G2/M phase and cellular apoptosis with or without TMZ treatment. We reveal that GLT8D1 impedes CD133 degradation through the endosomal-lysosomal pathway by N-linked glycosylation and protein-protein interaction. Directly blocking the GLT8D1/CD133 complex formation by CD133N1~108 (referred to as FECD133), or inhibiting GLT8D1 expression by lercanidipine, suppresses Wnt/β-catenin signaling dependent tumorigenesis both in vitro and in patient-derived xenografts mouse model. Collectively, these findings offer mechanistic insights into how hypoxia promotes GLT8D1/CD133/Wnt/β-catenin signaling during glioma progression, and identify GLT8D1 as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Kun Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liping Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Yulin Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baiyang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaomei He
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiushuo Shen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Xiulin Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Nie
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
- Kunming Medical University, Kunming, 650500, China
| | - Jun Pu
- Kunming Medical University, Kunming, 650500, China
| | - Cuiping Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
226
|
Sun Z, Zhao Y, Wei Y, Ding X, Tan C, Wang C. Identification and validation of an anoikis-associated gene signature to predict clinical character, stemness, IDH mutation, and immune filtration in glioblastoma. Front Immunol 2022; 13:939523. [PMID: 36091049 PMCID: PMC9452727 DOI: 10.3389/fimmu.2022.939523] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGlioblastoma (GBM) is the most prominent and aggressive primary brain tumor in adults. Anoikis is a specific form of programmed cell death that plays a key role in tumor invasion and metastasis. The presence of anti-anoikis factors is associated with tumor aggressiveness and drug resistance.MethodsThe non-negative matrix factorization algorithm was used for effective dimension reduction for integrated datasets. Differences in the tumor microenvironment (TME), stemness indices, and clinical characteristics between the two clusters were analyzed. Difference analysis, weighted gene coexpression network analysis (WGCNA), univariate Cox regression, and least absolute shrinkage and selection operator regression were leveraged to screen prognosis-related genes and construct a risk score model. Immunohistochemistry was performed to evaluate the expression of representative genes in clinical specimens. The relationship between the risk score and the TME, stemness, clinical traits, and immunotherapy response was assessed in GBM and pancancer.ResultsTwo definite clusters were identified on the basis of anoikis-related gene expression. Patients with GBM assigned to C1 were characterized by shortened overall survival, higher suppressive immune infiltration levels, and lower stemness indices. We further constructed a risk scoring model to quantify the regulatory patterns of anoikis-related genes. The higher risk score group was characterized by a poor prognosis, the infiltration of suppressive immune cells and a differentiated phenotype, whereas the lower risk score group exhibited the opposite effects. In addition, patients in the lower risk score group exhibited a higher frequency of isocitrate dehydrogenase (IDH) mutations and a more sensitive response to immunotherapy. Drug sensitivity analysis was performed, revealing that the higher risk group may benefit more from drugs targeting the PI3K/mTOR signaling pathway.ConclusionWe revealed potential relationships between anoikis-related genes and clinical features, TME, stemness, IDH mutation, and immunotherapy and elucidated their therapeutic value.
Collapse
Affiliation(s)
- Zhongzheng Sun
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Yongquan Zhao
- Department of Neurosurgery, Dongying City District People’s Hospital, Dongying, China
| | - Yan Wei
- Department of Neurology, The Second Hospital of Shandong University, Jinan, China
| | - Xuan Ding
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Chenyang Tan
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan, China
- *Correspondence: Chengwei Wang,
| |
Collapse
|
227
|
Tian Y, Ge Z, Xu M, Ge X, Zhao M, Ding F, Yin J, Wang X, You Y, Shi Z, Qian X. Diallyl trisulfide sensitizes radiation therapy on glioblastoma through directly targeting thioredoxin 1. Free Radic Biol Med 2022; 189:157-168. [PMID: 35921994 DOI: 10.1016/j.freeradbiomed.2022.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Radiotherapy is a standard-of-care treatment approach for glioblastoma (GBM) patients, but therapeutic resistance to radiotherapy remains a major challenge. Here we demonstrate that diallyl trisulfide (DATS) directly conjugates with cysteine (C) 32 and C35 (C32/35) residues of thioredoxin 1 (Trx1) through Michael addition reactions. Due to localizing in activity center of Trx1, the conjugation between DATS and C32/35 results in inhibition of Trx1 activity, therefore disturbing thioredoxin system and leading to accumulated levels of reactive oxygen species (ROS). High levels of Trx1 expression are correlated with poor prognosis of glioma patients. Notably, we reveal that DATS synergistically enhances irradiation (IR)-induced ROS accumulation, apoptosis, DNA damage, as well as inhibition of tumor growth of GBM cells. These findings highlight the potential benefits of DATS in sensitizing radiotherapy of GBM patients.
Collapse
Affiliation(s)
- Yangyang Tian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Zehe Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Miao Xu
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xin Ge
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Mengjie Zhao
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Fangshu Ding
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianxing Yin
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiuxing Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; National Health Commission Key Laboratory of Antibody Technologies, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yongping You
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhumei Shi
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
228
|
Zhang Q, Chen Z, Tang Q, Wang Z, Lu J, You Y, Wang H. USP21 promotes self-renewal and tumorigenicity of mesenchymal glioblastoma stem cells by deubiquitinating and stabilizing FOXD1. Cell Death Dis 2022; 13:712. [PMID: 35974001 PMCID: PMC9381540 DOI: 10.1038/s41419-022-05163-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/09/2022] [Accepted: 08/04/2022] [Indexed: 01/21/2023]
Abstract
Recent studies suggest that Forkhead box D1 (FOXD1) plays an indispensable role in maintaining the mesenchymal (MES) properties of glioblastoma (GBM) stem cells (GSCs). Thus, understanding the mechanisms that control FOXD1 protein expression is critical for guiding GBM treatment, particularly in patients with therapy-resistant MES subtypes. In this study, we identify the ubiquitin-specific peptidase 21 (USP21) as a critical FOXD1 deubiquitinase in MES GSCs. We find that USP21 directly interacts with and stabilizes FOXD1 by reverting its proteolytic ubiquitination. Silencing of USP21 enhances polyubiquitination of FOXD1, promotes its proteasomal degradation, and ultimately attenuates MES identity in GSCs, while these effects could be largely restored by reintroduction of FOXD1. Remarkably, we show that disulfiram, a repurposed drug that could block the enzymatic activities of USP21, suppresses GSC tumorigenicity in MES GSC-derived GBM xenograft model. Additionally, we demonstrate that USP21 is overexpressed and positively correlated with FOXD1 protein levels in GBM tissues, and its expression is inversely correlated with patient survival. Collectively, our work reveals that USP21 maintains MES identity by antagonizing FOXD1 ubiquitination and degradation, suggesting that USP21 is a potential therapeutic target for the MES subtype of GBM.
Collapse
Affiliation(s)
- Qixiang Zhang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhengxin Chen
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Qikai Tang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Zhangjie Wang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Jiacheng Lu
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Yongping You
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Huibo Wang
- grid.412676.00000 0004 1799 0784Department of Neurosurgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| |
Collapse
|
229
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
230
|
Modrek AS, Eskilsson E, Ezhilarasan R, Wang Q, Goodman LD, Ding Y, Zhang ZY, Bhat KPL, Le TTT, Barthel FP, Tang M, Yang J, Long L, Gumin J, Lang FF, Verhaak RGW, Aldape KD, Sulman EP. PDPN marks a subset of aggressive and radiation-resistant glioblastoma cells. Front Oncol 2022; 12:941657. [PMID: 36059614 PMCID: PMC9434399 DOI: 10.3389/fonc.2022.941657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Treatment-resistant glioma stem cells are thought to propagate and drive growth of malignant gliomas, but their markers and our ability to target them specifically are not well understood. We demonstrate that podoplanin (PDPN) expression is an independent prognostic marker in gliomas across multiple independent patient cohorts comprising both high- and low-grade gliomas. Knockdown of PDPN radiosensitized glioma cell lines and glioma-stem-like cells (GSCs). Clonogenic assays and xenograft experiments revealed that PDPN expression was associated with radiotherapy resistance and tumor aggressiveness. We further demonstrate that knockdown of PDPN in GSCs in vivo is sufficient to improve overall survival in an intracranial xenograft mouse model. PDPN therefore identifies a subset of aggressive, treatment-resistant glioma cells responsible for radiation resistance and may serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Aram S. Modrek
- Department of Radiation Oncology, New York University (NYU) Langone School of Medicine, New York, NY, United States
| | - Eskil Eskilsson
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Ravesanker Ezhilarasan
- Department of Radiation Oncology, New York University (NYU) Langone School of Medicine, New York, NY, United States
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lindsey D. Goodman
- Duncan Neurological Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Yingwen Ding
- Department of Radiation Oncology, New York University (NYU) Langone School of Medicine, New York, NY, United States
| | - Ze-Yan Zhang
- Department of Radiation Oncology, New York University (NYU) Langone School of Medicine, New York, NY, United States
| | - Krishna P. L. Bhat
- Department of Translational Molecular Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Thanh-Thuy T. Le
- Department of Anesthesiology, University of Texas Medical School, Houston, TX, United States
| | | | - Ming Tang
- Department of Genomic Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jie Yang
- Department of Radiation Oncology, New York University (NYU) Langone School of Medicine, New York, NY, United States
| | - Lihong Long
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Joy Gumin
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | | | - Kenneth D. Aldape
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Erik P. Sulman
- Department of Radiation Oncology, New York University (NYU) Langone School of Medicine, New York, NY, United States
- New York University (NYU) Langone Laura and Isaac Perlmutter Cancer Center, New York, NY, United States
| |
Collapse
|
231
|
Benedetti V, Banfi F, Zaghi M, Moll-Diaz R, Massimino L, Argelich L, Bellini E, Bido S, Muggeo S, Ordazzo G, Mastrototaro G, Moneta M, Sessa A, Broccoli V. A SOX2-engineered epigenetic silencer factor represses the glioblastoma genetic program and restrains tumor development. SCIENCE ADVANCES 2022; 8:eabn3986. [PMID: 35921410 PMCID: PMC9348799 DOI: 10.1126/sciadv.abn3986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Current therapies remain unsatisfactory in preventing the recurrence of glioblastoma multiforme (GBM), which leads to poor patient survival. By rational engineering of the transcription factor SOX2, a key promoter of GBM malignancy, together with the Kruppel-associated box and DNA methyltransferase3A/L catalytic domains, we generated a synthetic repressor named SOX2 epigenetic silencer (SES), which induces the transcriptional silencing of its original targets. By doing so, SES kills both glioma cell lines and patient-derived cancer stem cells in vitro and in vivo. SES expression, through local viral delivery in mouse xenografts, induces strong regression of human tumors and survival rescue. Conversely, SES is not harmful to neurons and glia, also thanks to a minimal promoter that restricts its expression in mitotically active cells, rarely present in the brain parenchyma. Collectively, SES produces a significant silencing of a large fraction of the SOX2 transcriptional network, achieving high levels of efficacy in repressing aggressive brain tumors.
Collapse
Affiliation(s)
- Valerio Benedetti
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federica Banfi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| | - Mattia Zaghi
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Raquel Moll-Diaz
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Massimino
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Argelich
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Edoardo Bellini
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simone Bido
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gabriele Ordazzo
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppina Mastrototaro
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Matteo Moneta
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandro Sessa
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20129 Milan, Italy
| |
Collapse
|
232
|
ADAR3 activates NF-κB signaling and promotes glioblastoma cell resistance to temozolomide. Sci Rep 2022; 12:13362. [PMID: 35922651 DOI: 10.1038/s41598-022-17559-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022] Open
Abstract
The RNA binding protein ADAR3 is expressed exclusively in the brain and reported to have elevated expression in tumors of patients suffering from glioblastoma compared to adjacent brain tissue. Yet, other studies have indicated that glioblastoma tumors exhibit hemizygous deletions of the genomic region encompassing ADAR3 (10p15.3). As the molecular and cellular consequences of altered ADAR3 expression are largely unknown, here we directly examined the impacts of elevated ADAR3 in a glioblastoma cell line model. Transcriptome-wide sequencing revealed 641 differentially expressed genes between control and ADAR3-expressing U87-MG glioblastoma cells. A vast majority of these genes belong to pathways involved in glioblastoma progression and are regulated by NF-κB signaling. Biochemical and molecular analysis indicated that ADAR3-expressing U87-MG cells exhibit increased NF-κB activation, and treatment with an NF-κB inhibitor abrogated the impacts of ADAR3 on gene expression. Similarly, we found that increased cell survival of ADAR3-expressing cells to temozolomide, the preferred chemotherapeutic for glioblastoma, was due to increased NF-κB activity. Aberrant constitutive NF-κB activation is a common event in glioblastoma and can impact both tumor progression and resistance to treatment. Our results suggest that elevated ADAR3 promotes NF-κB activation and a gene expression program that provides a growth advantage to glioblastoma cells.
Collapse
|
233
|
Kaltschmidt B, Helweg LP, Greiner JFW, Kaltschmidt C. NF-κB in neurodegenerative diseases: Recent evidence from human genetics. Front Mol Neurosci 2022; 15:954541. [PMID: 35983068 PMCID: PMC9380593 DOI: 10.3389/fnmol.2022.954541] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The transcription factor NF-κB is commonly known to drive inflammation and cancer progression, but is also a crucial regulator of a broad range of cellular processes within the mammalian nervous system. In the present review, we provide an overview on the role of NF-κB in the nervous system particularly including its constitutive activity within cortical and hippocampal regions, neuroprotection as well as learning and memory. Our discussion further emphasizes the increasing role of human genetics in neurodegenerative disorders, namely, germline mutations leading to defects in NF-κB-signaling. In particular, we propose that loss of function mutations upstream of NF-κB such as ADAM17, SHARPIN, HOIL, or OTULIN affect NF-κB-activity in Alzheimer’s disease (AD) patients, in turn driving anatomical defects such as shrinkage of entorhinal cortex and the limbic system in early AD. Similarly, E3 type ubiquitin ligase PARKIN is positively involved in NF-κB signaling. PARKIN loss of function mutations are most frequently observed in Parkinson’s disease patients. In contrast to AD, relying on germline mutations of week alleles and a disease development over decades, somatic mutations affecting NF-κB activation are commonly observed in cells derived from glioblastoma multiforme (GBM), the most common malignant primary brain tumor. Here, our present review particularly sheds light on the mutual exclusion of either the deletion of NFKBIA or amplification of epidermal growth factor receptor (EGFR) in GBM, both resulting in constitutive NF-κB-activity driving tumorigenesis. We also discuss emerging roles of long non-coding RNAs such as HOTAIR in suppressing phosphorylation of IκBα in the context of GBM. In summary, the recent progress in the genetic analysis of patients, particularly those suffering from AD, harbors the potential to open up new vistas for research and therapy based on TNFα/NF-κB pathway and neuroprotection.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Department of Molecular Neurobiology, Bielefeld University, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
- *Correspondence: Barbara Kaltschmidt,
| | - Laureen P. Helweg
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
| | - Johannes F. W. Greiner
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
234
|
Kim S, Lim E, Yoo K, Zhao Y, Kang J, Lim E, Shin I, Kang S, Lim HW, Lee S. Glioblastoma‐educated mesenchymal stem‐like cells promote glioblastoma infiltration via extracellular matrix remodelling in the tumour microenvironment. Clin Transl Med 2022; 12:e997. [PMID: 35908277 PMCID: PMC9339241 DOI: 10.1002/ctm2.997] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Background The biological function of mesenchymal stem‐like cells (MSLCs), a type of stromal cells, in the regulation of the tumour microenvironment is unclear. Here, we investigated the molecular mechanisms underlying extracellular matrix (ECM) remodelling and crosstalk between MSLCs and glioblastomas (GBMs) in tumour progression. Methods In vitro and in vivo co‐culture systems were used to analyze ECM remodelling and GBM infiltration. In addition, clinical databases, samples from patients with GBM and a xenografted mouse model of GBM were used. Results Previous studies have shown that the survival of patients with GBM from whom MSLCs could be isolated is substantially shorter than that of patients from whom MSLCs could not be isolated. Therefore, we determined the correlation between changes in ECM‐related gene expression in MSLC‐isolatable patients with that in MSLC non‐isolatable patients using gene set enrichment analysis (GSEA). We found that lysyl oxidase (LOX) and COL1A1 expressions increased in MSLCs via GBM‐derived clusters of differentiation 40 ligand (CD40L). Mechanistically, MSLCs are reprogrammed by the CD40L/CD40/NFκB2 signalling axis to build a tumour infiltrative microenvironment involving collagen crosslinking. Importantly, blocking of CD40L by a neutralizing antibody‐suppressed LOX expression and ECM remodelling, decreasing GBM infiltration in mouse xenograft models. Clinically, high expression of CD40L, clusters of differentiation 40 (CD40) and LOX correlated with poor survival in patients with glioma. This indicated that GBM‐educated MSLCs promote GBM infiltration via ECM remodelling in the tumour microenvironment. Conclusion Our findings provide mechanistic insights into the pro‐infiltrative tumour microenvironment produced by GBM‐educated MSLCs and highlight a potential therapeutic target that can be used for suppressing GBM infiltration.
Collapse
Affiliation(s)
- Seung‐Mo Kim
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Eun‐Jung Lim
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
- Memorial Sloan Kettering, Cancer Center New York New York USA
| | - Ki‐Chun Yoo
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
- Department of Lymphoma and Myeloma Division of Cancer Medicine Center for Cancer Immunology Research The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Yi Zhao
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Jae‐Hyeok Kang
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Eun‐Ji Lim
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Incheol Shin
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
| | - Seok‐Gu Kang
- Department of Neurosurgery Brain Tumor Center, Severance Hospital Yonsei University College of Medicine Seoul Korea
| | - Han Woong Lim
- Department of Ophthalmology Hanyang University Hospital Hanyang University College of Medicine Seoul Korea
| | - Su‐Jae Lee
- Department of Life Science Research Institute for Natural Sciences Hanyang University Seoul Korea
- Fibrosis and Cancer Targeting Biotechnology FNCT Biotech Seoul Korea
| |
Collapse
|
235
|
Mendez Valdez MJ, Lu VM, Kim E, Rivas SR, Govindarajan V, Ivan M, Komotar R, Nath A, Heiss JD, Shah AH. Glioblastoma multiforme in patients with human immunodeficiency virus: an integrated review and analysis. J Neurooncol 2022; 159:571-579. [PMID: 35857248 DOI: 10.1007/s11060-022-04095-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION As lifespans for persons living with HIV (PLWH) have improved over the last decade, there has been a simultaneous increase in non-AIDS-related cancer in that group. However, there is a paucity of data regarding the incidence of glioblastoma multiforme (GBM) in PLWH. Better understanding of the oncogenesis, natural history, and treatment outcomes of GBM in PLWH should lead to improved treatment strategies. METHODS We performed a comprehensive literature search of six electronic databases to identify eligible cases of GBM among PLWH. Kaplan-Meier estimates, Fisher's exact test, and logistic regression were used to interrogate the data. Epidemiologic data on global HIV prevalence was obtained from the 2016 UNAIDS incidence report, and CNS cancer incidence was obtained from the GDB 2016 Brain and Other CNS Cancer Collaborators. RESULTS There is an inverse relationship between the incidence of HIV and CNS cancer globally. Median overall survival (OS) from GBM diagnosis was 8 months. Estimates for survival at 1 and 2 years were 28 and 5%, respectively. There were no statistically significant predictors of OS in this setting. There was a significant difference (p < 0.01) in OS in PLWH and GBM when compared to TCGA age matched cohorts. CONCLUSION The diagnosis of GBM in PLWH is severely underreported in the literature. Despite maximal treatment, OS in this patient population is significantly less than in HIV-negative people. There was a poor prognosis of GBM in PLWH, which is inconsistent with previous reports. Further investigation is required for PLWH and concomitant GBM. Analyses must consider if HAART is maintained in PLWH during GBM treatment.
Collapse
Affiliation(s)
| | - Victor M Lu
- Miller School of Medicine, University of Miami, Miami, USA
| | - Enoch Kim
- College of Osteopathic Medicine, Nova Southeastern University, Davie, USA
| | - Sarah R Rivas
- National Institutes of Health/National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | | | - Michael Ivan
- Miller School of Medicine, University of Miami, Miami, USA
| | | | - Avindra Nath
- National Institutes of Health/National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - John D Heiss
- National Institutes of Health/National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ashish H Shah
- Miller School of Medicine, University of Miami, Miami, USA
| |
Collapse
|
236
|
Lv X, Li Q, Liu H, Gong M, Zhao Y, Hu J, Wu F, Wu X. JUN
activation modulates chromatin accessibility to drive
TNFα
‐induced mesenchymal transition in glioblastoma. J Cell Mol Med 2022; 26:4602-4612. [PMID: 35851726 PMCID: PMC9357637 DOI: 10.1111/jcmm.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022] Open
Abstract
Chromatin dynamics as well as genetic evolution underlies the adaptability of tumour cells to environmental cues. Three subtypes of tumour cells have been identified in glioblastoma, one of the commonest malignant brain tumours in adults. During tumour progression or under therapeutic pressure, the non‐mesenchymal subtypes may progress to the mesenchymal subtype, leading to unfavourable prognosis. However, the molecular mechanisms for this transition remain poorly understood. Here taking a TNFα‐induced cellular model, we profile the chromatin accessibility dynamics during mesenchymal transition. Moreover, we identify the JUN family as one of the key driving transcription factors for the gained chromatin accessibility. Accordingly, inhibition of JUN phosphorylation and therefore its transcription activity successfully impedes TNFα‐induced chromatin remodelling and mesenchymal transition. In line with these findings based on experimental models, JUN activity is positively correlated with mesenchymal features in clinical glioblastoma specimens. Together, this study unveils a deregulated transcription regulatory network in glioblastoma progression and hopefully provides a rationale for anti‐glioblastoma therapy.
Collapse
Affiliation(s)
- Xuejiao Lv
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology Tianjin Medical University Tianjin China
| | - Qian Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology Tianjin Medical University Tianjin China
| | - Hang Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology Tianjin Medical University Tianjin China
| | - Meihan Gong
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology Tianjin Medical University Tianjin China
| | - Yingying Zhao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology Tianjin Medical University Tianjin China
| | - Jinyang Hu
- Department of Neurosurgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Fan Wu
- Department of Molecular Neuropathology Beijing Neurosurgical Institute, Capital Medical University Beijing China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology Tianjin Medical University Tianjin China
- Department of Neurosurgery Tianjin Medical University General Hospital Tianjin China
| |
Collapse
|
237
|
Aubin RG, Troisi EC, Montelongo J, Alghalith AN, Nasrallah MP, Santi M, Camara PG. Pro-inflammatory cytokines mediate the epithelial-to-mesenchymal-like transition of pediatric posterior fossa ependymoma. Nat Commun 2022; 13:3936. [PMID: 35803925 PMCID: PMC9270322 DOI: 10.1038/s41467-022-31683-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Pediatric ependymoma is a devastating brain cancer marked by its relapsing pattern and lack of effective chemotherapies. This shortage of treatments is due to limited knowledge about ependymoma tumorigenic mechanisms. By means of single-nucleus chromatin accessibility and gene expression profiling of posterior fossa primary tumors and distal metastases, we reveal key transcription factors and enhancers associated with the differentiation of ependymoma tumor cells into tumor-derived cell lineages and their transition into a mesenchymal-like state. We identify NFκB, AP-1, and MYC as mediators of this transition, and show that the gene expression profiles of tumor cells and infiltrating microglia are consistent with abundant pro-inflammatory signaling between these populations. In line with these results, both TGF-β1 and TNF-α induce the expression of mesenchymal genes on a patient-derived cell model, and TGF-β1 leads to an invasive phenotype. Altogether, these data suggest that tumor gliosis induced by inflammatory cytokines and oxidative stress underlies the mesenchymal phenotype of posterior fossa ependymoma.
Collapse
Affiliation(s)
- Rachael G Aubin
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Emma C Troisi
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Javier Montelongo
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam N Alghalith
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maclean P Nasrallah
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Pablo G Camara
- Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
238
|
Liang Y, Voshart D, Paridaen JTML, Oosterhof N, Liang D, Thiruvalluvan A, Zuhorn IS, den Dunnen WFA, Zhang G, Lin H, Barazzuol L, Kruyt FAE. CD146 increases stemness and aggressiveness in glioblastoma and activates YAP signaling. Cell Mol Life Sci 2022; 79:398. [PMID: 35790583 PMCID: PMC9256581 DOI: 10.1007/s00018-022-04420-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/21/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
Glioblastoma (GBM), a highly malignant and lethal brain tumor, is characterized by diffuse invasion into the brain and chemo-radiotherapy resistance resulting in poor prognosis. In this study, we examined the involvement of the cell adhesion molecule CD146/MCAM in regulating GBM aggressiveness. Analyses of GBM transcript expression databases revealed correlations of elevated CD146 levels with higher glioma grades, IDH-wildtype and unmethylated MGMT phenotypes, poor response to chemo-radiotherapy and worse overall survival. In a panel of GBM stem cells (GSCs) variable expression levels of CD146 were detected, which strongly increased upon adherent growth. CD146 was linked with mesenchymal transition since expression increased in TGF-ß-treated U-87MG cells. Ectopic overexpression of CD146/GFP in GG16 cells enhanced the mesenchymal phenotype and resulted in increased cell invasion. Conversely, GSC23-CD146 knockouts had decreased mesenchymal marker expression and reduced cell invasion in transwell and GBM-cortical assembloid assays. Moreover, using GSC23 xenografted zebrafish, we found that CD146 depletion resulted in more compact delineated tumor formation and reduced tumor cell dissemination. Stem cell marker expression and neurosphere formation assays showed that CD146 increased the stem cell potential of GSCs. Furthermore, CD146 mediated radioresistance by stimulating cell survival signaling through suppression of p53 expression and activation of NF-κB. Interestingly, CD146 was also identified as an inducer of the oncogenic Yes-associated protein (YAP). In conclusion, CD146 carries out various pro-tumorigenic roles in GBM involving its cell surface receptor function, which include the stimulation of mesenchymal and invasive properties, stemness, and radiotherapy resistance, thus providing an interesting target for therapy.
Collapse
Affiliation(s)
- Yuanke Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, China
| | - Daniëlle Voshart
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Judith T M L Paridaen
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Nynke Oosterhof
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Dong Liang
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Arun Thiruvalluvan
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
| | - Inge S Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Guojun Zhang
- The Cancer Center and the Department of Breast Thyroid Surgery, Xiang'an Hospital of Xiamen University, 2000 East Xiang'an Rd, Xiamen, Fujian, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, China
| | - Lara Barazzuol
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Frank A E Kruyt
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
239
|
Poot E, Maguregui A, Brunton VG, Sieger D, Hulme AN. Targeting Glioblastoma through Nano- and Micro-particle-Mediated Immune Modulation. Bioorg Med Chem 2022; 72:116913. [DOI: 10.1016/j.bmc.2022.116913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
|
240
|
Lv D, Gimple RC, Zhong C, Wu Q, Yang K, Prager BC, Godugu B, Qiu Z, Zhao L, Zhang G, Dixit D, Lee D, Shen JZ, Li X, Xie Q, Wang X, Agnihotri S, Rich JN. PDGF signaling inhibits mitophagy in glioblastoma stem cells through N 6-methyladenosine. Dev Cell 2022; 57:1466-1481.e6. [PMID: 35659339 PMCID: PMC9239307 DOI: 10.1016/j.devcel.2022.05.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 01/14/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022]
Abstract
Dysregulated growth factor receptor pathways, RNA modifications, and metabolism each promote tumor heterogeneity. Here, we demonstrate that platelet-derived growth factor (PDGF) signaling induces N6-methyladenosine (m6A) accumulation in glioblastoma (GBM) stem cells (GSCs) to regulate mitophagy. PDGF ligands stimulate early growth response 1 (EGR1) transcription to induce methyltransferase-like 3 (METTL3) to promote GSC proliferation and self-renewal. Targeting the PDGF-METTL3 axis inhibits mitophagy by regulating m6A modification of optineurin (OPTN). Forced OPTN expression phenocopies PDGF inhibition, and OPTN levels portend longer survival of GBM patients; these results suggest a tumor-suppressive role for OPTN. Pharmacologic targeting of METTL3 augments anti-tumor efficacy of PDGF receptor (PDGFR) and mitophagy inhibitors in vitro and in vivo. Collectively, we define PDGF signaling as an upstream regulator of oncogenic m6A regulation, driving tumor metabolism to promote cancer stem cell maintenance, highlighting PDGF-METTL3-OPTN signaling as a GBM therapeutic target.
Collapse
Affiliation(s)
- Deguan Lv
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA
| | - Ryan C Gimple
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA; Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Cuiqing Zhong
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, San Diego, CA 92037, USA
| | - Qiulian Wu
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Briana C Prager
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Bhaskar Godugu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhixin Qiu
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA
| | - Linjie Zhao
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA
| | - Deobrat Dixit
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA
| | - Derrick Lee
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA
| | - Jia Z Shen
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA 92037, USA
| | - Xiqing Li
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA; Department of Oncology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, China
| | - Qi Xie
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Xiuxing Wang
- Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA; School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Sameer Agnihotri
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jeremy N Rich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA 15232, USA; Division of Regenerative Medicine, School of Medicine, University of California San Diego, CA 92037, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15232, USA.
| |
Collapse
|
241
|
Vo VTA, Kim S, Hua TNM, Oh J, Jeong Y. Iron commensalism of mesenchymal glioblastoma promotes ferroptosis susceptibility upon dopamine treatment. Commun Biol 2022; 5:593. [PMID: 35710828 PMCID: PMC9203457 DOI: 10.1038/s42003-022-03538-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The heterogeneity of glioblastoma multiforme (GBM) leads to poor patient prognosis. Here, we aim to investigate the mechanism through which GBM heterogeneity is coordinated to promote tumor progression. We find that proneural (PN)-GBM stem cells (GSCs) secreted dopamine (DA) and transferrin (TF), inducing the proliferation of mesenchymal (MES)-GSCs and enhancing their susceptibility toward ferroptosis. PN-GSC-derived TF stimulates MES-GSC proliferation in an iron-dependent manner. DA acts in an autocrine on PN-GSC growth in a DA receptor D1-dependent manner, while in a paracrine it induces TF receptor 1 expression in MES-GSCs to assist iron uptake and thus enhance ferroptotic vulnerability. Analysis of public datasets reveals worse prognosis of patients with heterogeneous GBM with high iron uptake than those with other GBM subtypes. Collectively, the findings here provide evidence of commensalism symbiosis that causes MES-GSCs to become iron-addicted, which in turn provides a rationale for targeting ferroptosis to treat resistant MES GBM. Glioblastoma stem-cell derived mesenchymal cells become reliant on iron but vulnerable to ferroptosis and within patients of heterogeneous glioblastoma multiforme prognosis for those with high iron uptake is poorer than other subtypes.
Collapse
Affiliation(s)
- Vu T A Vo
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.,Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.,Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Sohyun Kim
- Department of Physiology, Yonsei University College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Tuyen N M Hua
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.,Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Jiwoong Oh
- Department of Neurosurgery, Severance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Yangsik Jeong
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea. .,Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea. .,Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea. .,Institute of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea. .,Institute of Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.
| |
Collapse
|
242
|
Koh L, Novera W, Lim SW, Chong YK, Pang QY, Low D, Ang BT, Tang C. Integrative multi-omics approach to targeted therapy for glioblastoma. Pharmacol Res 2022; 182:106308. [PMID: 35714825 DOI: 10.1016/j.phrs.2022.106308] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
This review describes recent technological advances applied to glioblastoma (GBM), a brain tumor with dismal prognosis. International consortial efforts suggest the presence of molecular subtypes within histologically identical GBM tumors. This emphasizes that future treatment decisions should no longer be made based solely on morphological analyses, but must now take into consideration such molecular and cellular heterogeneity. The use of single-cell technologies has advanced our understanding and assignation of functional subtypes revealing therapeutic vulnerabilities. Our team has developed stratification approaches in the past few years, and we have been able to identify patient cohorts enriched for various signaling pathways. Importantly, our Glioportal brain tumor resource has been established under the National Neuroscience Institute Tissue Bank in 2021. This resource offers preclinical capability to validate working hypotheses established from patient clinical datasets. This review highlights recent developments with the ultimate goal of assigning functional meaning to molecular subtypes, revealing therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Lynnette Koh
- Department of Research, National Neuroscience Institute, Singapore.
| | - Wisna Novera
- Department of Research, National Neuroscience Institute, Singapore
| | - See Wee Lim
- Department of Research, National Neuroscience Institute, Singapore
| | - Yuk Kien Chong
- Department of Research, National Neuroscience Institute, Singapore
| | - Qing You Pang
- Department of Research, National Neuroscience Institute, Singapore
| | - David Low
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore
| | - Beng Ti Ang
- Department of Neurosurgery, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore
| | - Carol Tang
- Department of Research, National Neuroscience Institute, Singapore; Duke-National University of Singapore, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore.
| |
Collapse
|
243
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
244
|
Translational landscape of glioblastoma immunotherapy for physicians: guiding clinical practice with basic scientific evidence. J Hematol Oncol 2022; 15:80. [PMID: 35690784 PMCID: PMC9188021 DOI: 10.1186/s13045-022-01298-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in cancer therapeutics, glioblastoma (GBM) remains one of the most difficult cancers to treat in both the primary and recurrent settings. GBM presents a unique therapeutic challenge given the immune-privileged environment of the brain and the aggressive nature of the disease. Furthermore, it can change phenotypes throughout the course of disease—switching between mesenchymal, neural, and classic gene signatures, each with specific markers and mechanisms of resistance. Recent advancements in the field of immunotherapy—which utilizes strategies to reenergize or alter the immune system to target cancer—have shown striking results in patients with many types of malignancy. Immune checkpoint inhibitors, adoptive cellular therapy, cellular and peptide vaccines, and other technologies provide clinicians with a vast array of tools to design highly individualized treatment and potential for combination strategies. There are currently over 80 active clinical trials evaluating immunotherapies for GBM, often in combination with standard secondary treatment options including re-resection and anti-angiogenic agents, such as bevacizumab. This review will provide a clinically focused overview of the immune environment present in GBM, which is frequently immunosuppressive and characterized by M2 macrophages, T cell exhaustion, enhanced transforming growth factor-β signaling, and others. We will also outline existing immunotherapeutic strategies, with a special focus on immune checkpoint inhibitors, chimeric antigen receptor therapy, and dendritic cell vaccines. Finally, we will summarize key discoveries in the field and discuss currently active clinical trials, including combination strategies, burgeoning technology like nucleic acid and nanoparticle therapy, and novel anticancer vaccines. This review aims to provide the most updated summary of the field of immunotherapy for GBM and offer both historical perspective and future directions to help inform clinical practice.
Collapse
|
245
|
Varn FS, Johnson KC, Martinek J, Huse JT, Nasrallah MP, Wesseling P, Cooper LAD, Malta TM, Wade TE, Sabedot TS, Brat D, Gould PV, Wöehrer A, Aldape K, Ismail A, Sivajothi SK, Barthel FP, Kim H, Kocakavuk E, Ahmed N, White K, Datta I, Moon HE, Pollock S, Goldfarb C, Lee GH, Garofano L, Anderson KJ, Nehar-Belaid D, Barnholtz-Sloan JS, Bakas S, Byrne AT, D'Angelo F, Gan HK, Khasraw M, Migliozzi S, Ormond DR, Paek SH, Van Meir EG, Walenkamp AME, Watts C, Weiss T, Weller M, Palucka K, Stead LF, Poisson LM, Noushmehr H, Iavarone A, Verhaak RGW. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell 2022; 185:2184-2199.e16. [PMID: 35649412 PMCID: PMC9189056 DOI: 10.1016/j.cell.2022.04.038] [Citation(s) in RCA: 232] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 01/22/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022]
Abstract
The factors driving therapy resistance in diffuse glioma remain poorly understood. To identify treatment-associated cellular and genetic changes, we analyzed RNA and/or DNA sequencing data from the temporally separated tumor pairs of 304 adult patients with isocitrate dehydrogenase (IDH)-wild-type and IDH-mutant glioma. Tumors recurred in distinct manners that were dependent on IDH mutation status and attributable to changes in histological feature composition, somatic alterations, and microenvironment interactions. Hypermutation and acquired CDKN2A deletions were associated with an increase in proliferating neoplastic cells at recurrence in both glioma subtypes, reflecting active tumor growth. IDH-wild-type tumors were more invasive at recurrence, and their neoplastic cells exhibited increased expression of neuronal signaling programs that reflected a possible role for neuronal interactions in promoting glioma progression. Mesenchymal transition was associated with the presence of a myeloid cell state defined by specific ligand-receptor interactions with neoplastic cells. Collectively, these recurrence-associated phenotypes represent potential targets to alter disease progression.
Collapse
Affiliation(s)
- Frederick S Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Kevin C Johnson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jan Martinek
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jason T Huse
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - MacLean P Nasrallah
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pieter Wesseling
- Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Lee A D Cooper
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tathiane M Malta
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Brazil, Ribeirao Preto, São Paulo, Brazil
| | - Taylor E Wade
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Thais S Sabedot
- Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Daniel Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peter V Gould
- service d'anatomopathologie, Hôpital de l'Enfant-Jésus du Centre hospitalier universitaire de Québec, Université Laval, Quebec City, QC, Canada
| | - Adelheid Wöehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Azzam Ismail
- Department of Cellular and Molecular Pathology, Leeds Teaching Hospital NHS Trust, St James's University Hospital, Leeds, UK
| | | | - Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Cancer and Cell Biology Division, the Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Hoon Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Biopharmaceutical Convergence, Department of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeong gi-do, South Korea
| | - Emre Kocakavuk
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Hematology and Stem Cell Transplantation, West German Cancer Center, University Hospital Essen, Essen, Germany
| | | | - Kieron White
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Indrani Datta
- Department of Public Health Sciences, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Hyo-Eun Moon
- Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | | | | | - Ga-Hyun Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Luciano Garofano
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Kevin J Anderson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Jill S Barnholtz-Sloan
- Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH, USA; Center for Biomedical Informatics and Information Technology & Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Spyridon Bakas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Annette T Byrne
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - Hui K Gan
- Olivia Newton-John Cancer Research Institute, Austin Health, Melbourne, Australia
| | - Mustafa Khasraw
- Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Simona Migliozzi
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA
| | - D Ryan Ormond
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sun Ha Paek
- Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - Erwin G Van Meir
- Department of Neurosurgery, School of Medicine and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Annemiek M E Walenkamp
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Colin Watts
- Academic Department of Neurosurgery, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zürich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zürich, Switzerland
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Laila M Poisson
- Department of Public Health Sciences, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Houtan Noushmehr
- Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY, USA; Department of Neurology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Neurosurgery, Amsterdam University Medical Centers/VUmc, Amsterdam, the Netherlands.
| |
Collapse
|
246
|
Mazzolini J, Le Clerc S, Morisse G, Coulonges C, Zagury J, Sieger D. Wasl is crucial to maintain microglial core activities during glioblastoma initiation stages. Glia 2022; 70:1027-1051. [PMID: 35194846 PMCID: PMC9306864 DOI: 10.1002/glia.24154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/28/2022]
Abstract
Microglia actively promotes the growth of high-grade gliomas. Within the glioma microenvironment an amoeboid microglial morphology has been observed, however the underlying causes and the related impact on microglia functions and their tumor promoting activities is unclear. Using the advantages of the larval zebrafish model, we identified the underlying mechanism and show that microglial morphology and functions are already impaired during glioma initiation stages. The presence of pre-neoplastic HRasV12 expressing cells induces an amoeboid morphology of microglia, increases microglial numbers and decreases their motility and phagocytic activity. RNA sequencing analysis revealed lower expression levels of the actin nucleation promoting factor wasla in microglia. Importantly, a microglia specific rescue of wasla expression restores microglial morphology and functions. This results in increased phagocytosis of pre-neoplastic cells and slows down tumor progression. In conclusion, we identified a mechanism that de-activates core microglial functions within the emerging glioma microenvironment. Restoration of this mechanism might provide a way to impair glioma growth.
Collapse
Affiliation(s)
- Julie Mazzolini
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Sigrid Le Clerc
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Gregoire Morisse
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Cédric Coulonges
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Jean‐François Zagury
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et MétiersHESAM UniversitéParisFrance
| | - Dirk Sieger
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
247
|
Chen Z, Zhong Y, Chen J, Sun S, Liu W, Han Y, Liu X, Guo C, Li D, Hu W, Zhang P, Chen Z, Chen Z, Mou Y, Yan G, Zhu W, Yin W, Sai K. Disruption of β-catenin-mediated negative feedback reinforces cAMP-induced neuronal differentiation in glioma stem cells. Cell Death Dis 2022; 13:493. [PMID: 35610201 PMCID: PMC9130142 DOI: 10.1038/s41419-022-04957-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
Accumulating evidence supports the existence of glioma stem cells (GSCs) and their critical role in the resistance to conventional treatments for glioblastoma multiforme (GBM). Differentiation therapy represents a promising alternative strategy against GBM by forcing GSCs to exit the cell cycle and reach terminal differentiation. In this study, we demonstrated that cAMP triggered neuronal differentiation and compromised the self-renewal capacity in GSCs. In addition, cAMP induced negative feedback to antagonize the differentiation process by activating β-catenin pathway. Suppression of β-catenin signaling synergized with cAMP activators to eliminate GSCs in vitro and extended the survival of animals in vivo. The cAMP/PKA pathway stabilized β-catenin through direct phosphorylation of the molecule and inhibition of GSK-3β. The activated β-catenin translocated into the nucleus and promoted the transcription of APELA and CARD16, which were found to be responsible for the repression of cAMP-induced differentiation in GSCs. Overall, our findings identified a negative feedback mechanism for cAMP-induced differentiation in GSCs and provided potential targets for the reinforcement of differentiation therapy for GBM.
Collapse
Affiliation(s)
- Zhijie Chen
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.412558.f0000 0004 1762 1794Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University Lingnan Hospital, Guangzhou, 510530 China
| | - Yingqian Zhong
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Jiehong Chen
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Shuxin Sun
- grid.410643.4Department of Pancreas Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Wenfeng Liu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yu Han
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Xincheng Liu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Cui Guo
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Depei Li
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Wanming Hu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Peiyu Zhang
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Zhuopeng Chen
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Zhongping Chen
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Yonggao Mou
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Guangmei Yan
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wenbo Zhu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Yin
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Ke Sai
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| |
Collapse
|
248
|
Kannappan V, Liu Y, Wang Z, Azar K, Kurusamy S, Kilari RS, Armesilla AL, Morris MR, Najlah M, Liu P, Bian XW, Wang W. PLGA-nano-encapsulated Disulfiram inhibits hypoxia-induced NFκB, cancer stem cells and targets glioblastoma in vitro and in vivo. Mol Cancer Ther 2022; 21:1273-1284. [PMID: 35579893 DOI: 10.1158/1535-7163.mct-22-0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Glioblastoma stem cell (GSC) is the major cause of glioblastoma multiforme (GBM) chemotherapy failure. Hypoxia is one of the determinants of GSC. NFκB plays a pivotal link between hypoxia and cancer stem cells (CSCs). Disulfiram (DS), an antialcoholism drug, has very strong NFκB-inhibiting and anti-CSC activity. In this study, the in vitro anti-GSC activity of DS and in vivo anti-GBM efficacy of poly lactic-co-glycolic acid nanoparticle-encapsulated DS (DS-PLGA) were examined. We attempt to elucidate the molecular network between hypoxia and GSCs, and also examined the anti-GSC activity of DS in vitro and in vivo. The influence of GSCs and hypoxia on GBM chemoresistance and invasiveness was studied in hypoxic and spheroid cultures. The molecular regulatory roles of NFκB, HIF1α and HIF2α were investigated using stably transfected U373MG cell lines. The hypoxia in neurospheres determines the cancer stem cell characters of the sphere-cultured GBM cell lines (U87MG, U251MG, U373MG). NFκB is located at a higher hierarchical position than HIF1α/HIF2α in hypoxic regulatory network and plays a key role in hypoxia-induced GSC characters. DS inhibits NFκB activity and targets hypoxia-induced GSCs. It showed selective toxicity to GBM cells, eradicates GSC and blocks migration and invasion at very low concentrations. DS-PLGA efficaciously inhibits orthotopic and subcutaneous U87MG xenograft in mouse models with no toxicity to vital organs.
Collapse
Affiliation(s)
| | - Ying Liu
- Queen Mary University of London, London, United Kingdom
| | | | - Karim Azar
- University of Wolverhampton, Wolverhampton, United Kingdom
| | | | | | | | - Mark R Morris
- University of Wolverhampton, Wolverhampoton, United Kingdom
| | | | - Peng Liu
- Queen Mary University of London, LONDON, United Kingdom
| | - Xiu-Wu Bian
- Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weiguang Wang
- University of Wolverhampton, Wolverhampton, United Kingdom
| |
Collapse
|
249
|
A Novel Risk Score Model Based on Eleven Extracellular Matrix-Related Genes for Predicting Overall Survival of Glioma Patients. JOURNAL OF ONCOLOGY 2022; 2022:4966820. [PMID: 35528238 PMCID: PMC9076298 DOI: 10.1155/2022/4966820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Gliomas are the most common lethal primary brain tumors with variable survival outcomes for patients. The extracellular matrix (ECM) is linked with clinical prognosis of glioma patients, but it is not commonly used as a clinical indicator. Herein, we investigated changes in ECM-related genes (ECMRGs) via analyzing the transcriptional data of 938 gliomas from TCGA and CGGA datasets. Based on least absolute shrinkage and selection operator (LASSO) Cox regression analysis, a 11-ECMRG signature that is strongly linked with overall survival (OS) in glioma patients was identified. This signature was characterized by high-risk and low-risk score patterns. We found that the patients in the high-risk group are significantly linked with malignant molecular features and worse outcomes. Univariate and multivariate Cox regression analyses suggested that the signature is an independent indicator for glioma prognosis. The prediction accuracy of the signature was verified through time-dependent receiver operating characteristic (ROC) curves and calibration plots. Further bioinformatics analyses implied that the ECMRG signature is strongly associated with the activation of multiple oncogenic and metabolic pathways and immunosuppressive tumor microenvironment in gliomas. In addition, we confirmed that the high-risk score is an indicator for a therapy-resistant phenotype. In addition to bioinformatics analyses, we functionally verified the oncogenic role of bone morphogenetic protein 1 (BMP1) in gliomas in vitro.
Collapse
|
250
|
Lu X, Maturi NP, Jarvius M, Yildirim I, Dang Y, Zhao L, Xie Y, Tan EJ, Xing P, Larsson R, Fryknäs M, Uhrbom L, Chen X. Cell-lineage controlled epigenetic regulation in glioblastoma stem cells determines functionally distinct subgroups and predicts patient survival. Nat Commun 2022; 13:2236. [PMID: 35469026 PMCID: PMC9038925 DOI: 10.1038/s41467-022-29912-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
There is ample support for developmental regulation of glioblastoma stem cells. To examine how cell lineage controls glioblastoma stem cell function, we present a cross-species epigenome analysis of mouse and human glioblastoma stem cells. We analyze and compare the chromatin-accessibility landscape of nine mouse glioblastoma stem cell cultures of three defined origins and 60 patient-derived glioblastoma stem cell cultures by assay for transposase-accessible chromatin using sequencing. This separates the mouse cultures according to cell of origin and identifies three human glioblastoma stem cell clusters that show overlapping characteristics with each of the mouse groups, and a distribution along an axis of proneural to mesenchymal phenotypes. The epigenetic-based human glioblastoma stem cell clusters display distinct functional properties and can separate patient survival. Cross-species analyses reveals conserved epigenetic regulation of mouse and human glioblastoma stem cells. We conclude that epigenetic control of glioblastoma stem cells primarily is dictated by developmental origin which impacts clinically relevant glioblastoma stem cell properties and patient survival. The epigenetic regulation of glioblastoma stem cell (GSC) function remains poorly understood. Here, the authors compare the chromatin accessibility landscape of GSC cultures from mice and patients and suggest that the epigenome of GSCs is cell lineage-regulated and could predict patient survival.
Collapse
Affiliation(s)
- Xi Lu
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75108, Uppsala, Sweden
| | - Naga Prathyusha Maturi
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Rudbeck Laboratory, SE-75185, Uppsala, Sweden
| | - Malin Jarvius
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University and Science for Life Laboratory, SE-75185, Uppsala, Sweden.,Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Box 591, SE-751 24, Uppsala, Sweden
| | - Irem Yildirim
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Rudbeck Laboratory, SE-75185, Uppsala, Sweden
| | - Yonglong Dang
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75108, Uppsala, Sweden.,Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Linxuan Zhao
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75108, Uppsala, Sweden
| | - Yuan Xie
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Rudbeck Laboratory, SE-75185, Uppsala, Sweden.,Shaanxi Normal University, College of Life Sciences, Xi'an, 710119, China
| | - E-Jean Tan
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Rudbeck Laboratory, SE-75185, Uppsala, Sweden.,Department of Organismal Biology, Uppsala University, Norbyvägen 18A, SE-75236, Uppsala, Sweden
| | - Pengwei Xing
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75108, Uppsala, Sweden
| | - Rolf Larsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University and Science for Life Laboratory, SE-75185, Uppsala, Sweden
| | - Mårten Fryknäs
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University and Science for Life Laboratory, SE-75185, Uppsala, Sweden
| | - Lene Uhrbom
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, Rudbeck Laboratory, SE-75185, Uppsala, Sweden.
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75108, Uppsala, Sweden.
| |
Collapse
|