201
|
Niraula S, Doderer JJ, Indulkar S, Berry KP, Hauser WL, L'Esperance OJ, Deng JZ, Keeter G, Rouse AG, Subramanian J. Excitation-inhibition imbalance disrupts visual familiarity in amyloid and non-pathology conditions. Cell Rep 2023; 42:111946. [PMID: 36640331 PMCID: PMC9939293 DOI: 10.1016/j.celrep.2022.111946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/14/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Neuronal hyperactivity induces memory deficits in Alzheimer's disease. However, how hyperactivity disrupts memory is unclear. Using in vivo synaptic imaging in the mouse visual cortex, we show that structural excitatory-inhibitory synapse imbalance in the apical dendrites favors hyperactivity in early amyloidosis. Consistent with this, natural images elicit neuronal hyperactivity in these mice. Compensatory changes that maintain activity homeostasis disrupt functional connectivity and increase population sparseness such that a small fraction of neurons dominates population activity. These properties reduce the selectivity of neural response to natural images and render visual recognition memory vulnerable to interference. Deprivation of non-specific visual experiences improves the neural representation and behavioral expression of visual familiarity. In contrast, in non-pathological conditions, deprivation of non-specific visual experiences induces disinhibition, increases excitability, and disrupts visual familiarity. We show that disrupted familiarity occurs when the fraction of high-responsive neurons and the persistence of neural representation of a memory-associated stimulus are not constrained.
Collapse
Affiliation(s)
- Suraj Niraula
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Julia J Doderer
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Shreya Indulkar
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Kalen P Berry
- Division of Experimental Hematology and Cancer Biology, Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - William L Hauser
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Oliver J L'Esperance
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Jasmine Z Deng
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Griffin Keeter
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA
| | - Adam G Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Jaichandar Subramanian
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
202
|
Wang YL, Wang JG, Guo S, Guo FL, Liu EJ, Yang X, Feng B, Wang JZ, Vreugdenhil M, Lu CB. Oligomeric β-Amyloid Suppresses Hippocampal γ-Oscillations through Activation of the mTOR/S6K1 Pathway. Aging Dis 2023:AD.2023.0123. [PMID: 37163441 PMCID: PMC10389838 DOI: 10.14336/ad.2023.0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/23/2023] [Indexed: 05/12/2023] Open
Abstract
Neuronal synchronization at gamma frequency (30-100 Hz: γ) is impaired in early-stage Alzheimer's disease (AD) patients and AD models. Oligomeric Aβ1-42 caused a concentration-dependent reduction of γ-oscillation strength and regularity while increasing its frequency. The mTOR1 inhibitor rapamycin prevented the Aβ1-42-induced suppression of γ-oscillations, whereas the mTOR activator leucine mimicked the Aβ1-42-induced suppression. Activation of the downstream kinase S6K1, but not inhibition of eIF4E, was required for the Aβ1-42-induced suppression. The involvement of the mTOR/S6K1 signaling in the Aβ1-42-induced suppression was confirmed in Aβ-overexpressing APP/PS1 mice, where inhibiting mTOR or S6K1 restored degraded γ-oscillations. To assess the network changes that may underlie the mTOR/S6K1 mediated γ-oscillation impairment in AD, we tested the effect of Aβ1-42 on IPSCs and EPSCs recorded in pyramidal neurons. Aβ1-42 reduced EPSC amplitude and frequency and IPSC frequency, which could be prevented by inhibiting mTOR or S6K1. These experiments indicate that in early AD, oligomer Aβ1-42 impairs γ-oscillations by reducing inhibitory interneuron activity by activating the mTOR/S6K1 signaling pathway, which may contribute to early cognitive decline and provides new therapeutic targets.
Collapse
Affiliation(s)
- Ya-Li Wang
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| | - Jian-Gang Wang
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| | - Shuling Guo
- Department of Cardiovascular Medicine, Luminghu District, Xuchang Central Hospital, Xuchang, China
| | - Fang-Li Guo
- Department of Neurology, Anyang District Hospital of Puyang City, Anyang, China
| | - En-Jie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Yang
- Key Laboratory of Translational Research for Brain Diseases, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bingyan Feng
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Martin Vreugdenhil
- Department of Life Sciences, Birmingham City University, Birmingham, UK
- Department of Psychology, Xinxiang Medical University, Xinxiang, China
| | - Cheng-Biao Lu
- Department of Physiology and Pathophysiology, Henan International Joint Laboratory of Non-Invasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
203
|
Pattisapu S, Ray S. Stimulus-induced narrow-band gamma oscillations in humans can be recorded using open-hardware low-cost EEG amplifier. PLoS One 2023; 18:e0279881. [PMID: 36689427 PMCID: PMC9870151 DOI: 10.1371/journal.pone.0279881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/17/2022] [Indexed: 01/24/2023] Open
Abstract
Stimulus-induced narrow-band gamma oscillations (30-70 Hz) in human electro-encephalograph (EEG) have been linked to attentional and memory mechanisms and are abnormal in mental health conditions such as autism, schizophrenia and Alzheimer's Disease. However, since the absolute power in EEG decreases rapidly with increasing frequency following a "1/f" power law, and the gamma band includes line noise frequency, these oscillations are highly susceptible to instrument noise. Previous studies that recorded stimulus-induced gamma oscillations used expensive research-grade EEG amplifiers to address this issue. While low-cost EEG amplifiers have become popular in Brain Computer Interface applications that mainly rely on low-frequency oscillations (< 30 Hz) or steady-state-visually-evoked-potentials, whether they can also be used to measure stimulus-induced gamma oscillations is unknown. We recorded EEG signals using a low-cost, open-source amplifier (OpenBCI) and a traditional, research-grade amplifier (Brain Products GmbH), both connected to the OpenBCI cap, in male (N = 6) and female (N = 5) subjects (22-29 years) while they viewed full-screen static gratings that are known to induce two distinct gamma oscillations: slow and fast gamma, in a subset of subjects. While the EEG signals from OpenBCI were considerably noisier, we found that out of the seven subjects who showed a gamma response in Brain Products recordings, six showed a gamma response in OpenBCI as well. In spite of the noise in the OpenBCI setup, the spectral and temporal profiles of these responses in alpha (8-13 Hz) and gamma bands were highly correlated between OpenBCI and Brain Products recordings. These results suggest that low-cost amplifiers can potentially be used in stimulus-induced gamma response detection.
Collapse
Affiliation(s)
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
204
|
Amyloid-β in Alzheimer's disease - front and centre after all? Neuronal Signal 2023; 7:NS20220086. [PMID: 36687366 PMCID: PMC9829960 DOI: 10.1042/ns20220086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022] Open
Abstract
The amyloid hypothesis, which proposes that accumulation of the peptide amyloid-β at synapses is the key driver of Alzheimer's disease (AD) pathogenesis, has been the dominant idea in the field of Alzheimer's research for nearly 30 years. Recently, however, serious doubts about its validity have emerged, largely motivated by disappointing results from anti-amyloid therapeutics in clinical trials. As a result, much of the AD research effort has shifted to understanding the roles of a variety of other entities implicated in pathogenesis, such as microglia, astrocytes, apolipoprotein E and several others. All undoubtedly play an important role, but the nature of this has in many cases remained unclear, partly due to their pleiotropic functions. Here, we propose that all of these AD-related entities share at least one overlapping function, which is the local regulation of amyloid-β levels, and that this may be critical to their role in AD pathogenesis. We also review what is currently known of the actions of amyloid-β at the synapse in health and disease, and consider in particular how it might interact with the key AD-associated protein tau in the disease setting. There is much compelling evidence in support of the amyloid hypothesis; rather than detract from this, the implication of many disparate AD-associated cell types, molecules and processes in the regulation of amyloid-β levels may lend further support.
Collapse
|
205
|
Lisgaras CP, Scharfman HE. High-frequency oscillations (250-500 Hz) in animal models of Alzheimer's disease and two animal models of epilepsy. Epilepsia 2023; 64:231-246. [PMID: 36346209 PMCID: PMC10501735 DOI: 10.1111/epi.17462] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To test the hypothesis that high-frequency oscillations (HFOs) between 250 and 500 Hz occur in mouse models of Alzheimer's disease (AD) and thus are not unique to epilepsy. METHODS Experiments were conducted in three mouse models of AD: Tg2576 mice that simulate a form of familial AD, presenilin 2 knock-out (PS2KO) mice, and the Ts65Dn model of Down's syndrome. We recorded HFOs using wideband (0.1-500 Hz, 2 kHz) intra-hippocampal and cortical surface electroencephalography (EEG) at 1 month until 24 months of age during wakefulness, slow wave sleep (SWS), and rapid eye movement (REM) sleep. In addition, interictal spikes (IISs) and seizures were analyzed for the possible presence of HFOs. Comparisons were made to the intra-hippocampal kainic acid and pilocarpine models of epilepsy. RESULTS We describe for the first time that hippocampal and cortical HFOs are a new EEG abnormality in AD mouse models. HFOs occurred in all transgenic mice but no controls. They were also detectable as early as 1 month of age and prior to amyloid beta plaque neuropathology. HFOs were most frequent during SWS (vs REM sleep or wakefulness). Notably, HFOs in the AD and epilepsy models were indistinguishable in both spectral frequency and duration. HFOs also occurred during IISs and seizures in the AD models, although with altered spectral properties compared to isolated HFOs. SIGNIFICANCE Our data demonstrate that HFOs, an epilepsy biomarker with high translational value, are not unique to epilepsy and thus not disease specific. Our findings also strengthen the idea of hyperexcitability in AD and its significant overlap with epilepsy. HFOs in AD mouse models may serve as an EEG biomarker, which is detectable from the scalp and thus amenable to noninvasive detection in people at risk for AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 550 First Ave., New York, NY 10016
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962
| | - Helen E. Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute, New York University Langone Health, 550 First Ave., New York, NY 10016
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962
| |
Collapse
|
206
|
Černotová D, Hrůzová K, Levčík D, Svoboda J, Stuchlík A. Linking Social Cognition, Parvalbumin Interneurons, and Oxytocin in Alzheimer's Disease: An Update. J Alzheimers Dis 2023; 96:861-875. [PMID: 37980658 PMCID: PMC10741376 DOI: 10.3233/jad-230333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 11/21/2023]
Abstract
Finding a cure for Alzheimer's disease (AD) has been notoriously challenging for many decades. Therefore, the current focus is mainly on prevention, timely intervention, and slowing the progression in the earliest stages. A better understanding of underlying mechanisms at the beginning of the disease could aid in early diagnosis and intervention, including alleviating symptoms or slowing down the disease progression. Changes in social cognition and progressive parvalbumin (PV) interneuron dysfunction are among the earliest observable effects of AD. Various AD rodent models mimic these early alterations, but only a narrow field of study has considered their mutual relationship. In this review, we discuss current knowledge about PV interneuron dysfunction in AD and emphasize their importance in social cognition and memory. Next, we propose oxytocin (OT) as a potent modulator of PV interneurons and as a promising treatment for managing some of the early symptoms. We further discuss the supporting evidence on its beneficial effects on AD-related pathology. Clinical trials have employed the use of OT in various neuropsychiatric diseases with promising results, but little is known about its prospective impacts on AD. On the other hand, the modulatory effects of OT in specific structures and local circuits need to be clarified in future studies. This review highlights the connection between PV interneurons and social cognition impairment in the early stages of AD and considers OT as a promising therapeutic agent for addressing these early deficits.
Collapse
Affiliation(s)
- Daniela Černotová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karolína Hrůzová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Levčík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
207
|
Modifiable risk factors of dementia linked to excitation-inhibition imbalance. Ageing Res Rev 2023; 83:101804. [PMID: 36410620 DOI: 10.1016/j.arr.2022.101804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Recent evidence identifies 12 potentially modifiable risk factors for dementia to which 40% of dementia cases are attributed. While the recognition of these risk factors has paved the way for the development of new prevention measures, the link between these risk factors and the underlying pathophysiology of dementia is yet not well understood. A growing number of recent clinical and preclinical studies support a role of Excitation-Inhibition (E-I) imbalance in the pathophysiology of dementia. In this review, we aim to propose a conceptual model on the links between the modifiable risk factors and the E-I imbalance in dementia. This model, which aims to address the current gap in the literature, is based on 12 mediating common mechanisms: the hypothalamic-pituitary-adrenal (HPA) axis dysfunction, neuroinflammation, oxidative stress, mitochondrial dysfunction, cerebral hypo-perfusion, blood-brain barrier (BBB) dysfunction, beta-amyloid deposition, elevated homocysteine level, impaired neurogenesis, tau tangles, GABAergic dysfunction, and glutamatergic dysfunction. We believe this model serves as a framework for future studies in this field and facilitates future research on dementia prevention, discovery of new biomarkers, and developing new interventions.
Collapse
|
208
|
Mori H, Yoshino Y, Iga JI, Ochi S, Funahashi Y, Yamazaki K, Kumon H, Ozaki Y, Ueno SI. Aberrant Expression of GABA-Related Genes in the Hippocampus of 3xTg-AD Model Mice from the Early to End Stages of Alzheimer's Disease. J Alzheimers Dis 2023; 94:177-188. [PMID: 37212113 PMCID: PMC10357162 DOI: 10.3233/jad-230078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND We explored the gene expression levels in the brain of 3xTg-AD model mice to elucidate the molecular pathological changes from the early to end stages of Alzheimer's disease (AD). OBJECTIVE We re-analyzed our previously published microarray data obtained from the hippocampus of 3xTg-AD model mice at 12 and 52 weeks of age. METHODS Functional annotation and network analyses of the up- and downregulated differentially expressed genes (DEGs) in mice aged 12 to 52 weeks were performed. Validation tests for gamma-aminobutyric acid (GABA)-related genes were also performed by quantitative polymerase chain reaction (qPCR). RESULTS In total, 644 DEGs were upregulated and 624 DEGs were downregulated in the hippocampus of both the 12- and 52-week-old 3xTg-AD mice. In the functional analysis of the upregulated DEGs, 330 gene ontology biological process terms, including immune response, were found, and they interacted with each other in the network analysis. In the functional analysis of the downregulated DEGs, 90 biological process terms, including several terms related to membrane potential and synapse function, were found, and they also interacted with each other in the network analysis. In the qPCR validation test, significant downregulation was seen for Gabrg3 at the ages of 12 (p = 0.02) and 36 (p = 0.005) weeks, Gabbr1 at the age of 52 weeks (p = 0.001), and Gabrr2 at the age of 36 weeks (p = 0.02). CONCLUSION Changes in immune response and GABAergic neurotransmission may occur in the brain of 3xTg mice from the early to end stages of AD.
Collapse
Affiliation(s)
- Hiroaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Jun-ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Yuki Ozaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Shu-ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate, School of Medicine, Shitsukawa, Toon, Ehime, Japan
| |
Collapse
|
209
|
Shu S, Xu SY, Ye L, Liu Y, Cao X, Jia JQ, Bian HJ, Liu Y, Zhu XL, Xu Y. Prefrontal parvalbumin interneurons deficits mediate early emotional dysfunction in Alzheimer's disease. Neuropsychopharmacology 2023; 48:391-401. [PMID: 36229597 PMCID: PMC9750960 DOI: 10.1038/s41386-022-01435-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and has an insidious onset. Exploring the characteristics and mechanism of the early symptoms of AD plays a critical role in the early diagnosis and intervention of AD. Here we found that depressive-like behavior and short-term spatial memory dysfunction appeared in APPswe/PS1dE9 mice (AD mice) as early as 9-11 weeks of age. Electrophysiological analysis revealed excitatory/inhibitory (E/I) imbalance in the prefrontal cortex (PFC). This E/I imbalance was induced by significant reduction in the number and activity of parvalbumin interneurons (PV+ INs) in this region. Furthermore, optogenetic and chemogenetic activation of residual PV+ INs effectively ameliorated depressive-like behavior and rescued short-term spatial memory in AD mice. These results suggest the PFC is selectively vulnerable in the early stage of AD and prefrontal PV+ INs deficits play a key role in the occurrence and development of early symptoms of AD.
Collapse
Affiliation(s)
- Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Institute of Brain Sciences, Nanjing University, Nanjing, 210093, Jiangsu, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, Jiangsu, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, 210008, Jiangsu, PR China
| | - Si-Yi Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Zhenjiang, 212013, Jiangsu, PR China
| | - Lei Ye
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
| | - Yi Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Institute of Brain Sciences, Nanjing University, Nanjing, 210093, Jiangsu, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, Jiangsu, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, 210008, Jiangsu, PR China
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Institute of Brain Sciences, Nanjing University, Nanjing, 210093, Jiangsu, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, Jiangsu, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, 210008, Jiangsu, PR China
| | - Jun-Qiu Jia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
| | - Hui-Jie Bian
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, PR China
| | - Ying Liu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
| | - Xiao-Lei Zhu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Institute of Brain Sciences, Nanjing University, Nanjing, 210093, Jiangsu, PR China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, PR China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, Jiangsu, PR China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, 210008, Jiangsu, PR China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210008, Jiangsu, PR China.
- Institute of Brain Sciences, Nanjing University, Nanjing, 210093, Jiangsu, PR China.
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, 210008, Jiangsu, PR China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, 210008, Jiangsu, PR China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, 210008, Jiangsu, PR China.
| |
Collapse
|
210
|
Huang W, Xia Q, Zheng F, Zhao X, Ge F, Xiao J, Liu Z, Shen Y, Ye K, Wang D, Li Y. Microglia-Mediated Neurovascular Unit Dysfunction in Alzheimer's Disease. J Alzheimers Dis 2023; 94:S335-S354. [PMID: 36683511 PMCID: PMC10473143 DOI: 10.3233/jad-221064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 01/21/2023]
Abstract
The neurovascular unit (NVU) is involved in the pathological changes in Alzheimer's disease (AD). The NVU is a structural and functional complex that maintains microenvironmental homeostasis and metabolic balance in the central nervous system. As one of the most important components of the NVU, microglia not only induce blood-brain barrier breakdown by promoting neuroinflammation, the infiltration of peripheral white blood cells and oxidative stress but also mediate neurovascular uncoupling by inducing mitochondrial dysfunction in neurons, abnormal contraction of cerebral vessels, and pericyte loss in AD. In addition, microglia-mediated dysfunction of cellular components in the NVU, such as astrocytes and pericytes, can destroy the integrity of the NVU and lead to NVU impairment. Therefore, we review the mechanisms of microglia-mediated NVU dysfunction in AD. Furthermore, existing therapeutic advancements aimed at restoring the function of microglia and the NVU in AD are discussed. Finally, we predict the role of pericytes in microglia-mediated NVU dysfunction in AD is the hotspot in the future.
Collapse
Affiliation(s)
- Wenhao Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiaying Xiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zijie Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingying Shen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, Heilongjiang Province, China
- Translational Medicine Center of Northern China, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, Heilongjiang Province, China
- Translational Medicine Center of Northern China, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
211
|
Samudra N, Ranasinghe K, Kirsch H, Rankin K, Miller B. Etiology and Clinical Significance of Network Hyperexcitability in Alzheimer's Disease: Unanswered Questions and Next Steps. J Alzheimers Dis 2023; 92:13-27. [PMID: 36710680 DOI: 10.3233/jad-220983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cortical network hyperexcitability related to synaptic dysfunction in Alzheimer's disease (AD) is a potential target for therapeutic intervention. In recent years, there has been increased interest in the prevalence of silent seizures and interictal epileptiform discharges (IEDs, or seizure tendency), with both entities collectively termed "subclinical epileptiform activity" (SEA), on neurophysiologic studies in AD patients. SEA has been demonstrated to be common in AD, with prevalence estimates ranging between 22-54%. Converging lines of basic and clinical evidence imply that modifying a hyperexcitable state results in an improvement in cognition. In particular, though these results require further confirmation, post-hoc findings from a recent phase II clinical trial suggest a therapeutic effect with levetiracetam administration in patients with AD and IEDs. Here, we review key unanswered questions as well as potential clinical trial avenues. Specifically, we discuss postulated mechanisms and treatment of hyperexcitability in patients with AD, which are of interest in designing future disease-modifying therapies. Criteria to prompt screening and optimal screening methodology for hyperexcitability have yet to be defined, as does timing and personalization of therapeutic intervention.
Collapse
Affiliation(s)
- Niyatee Samudra
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kamalini Ranasinghe
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Heidi Kirsch
- University of California, San Francisco Comprehensive Epilepsy Center, San Francisco, CA, USA
| | - Katherine Rankin
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
212
|
Manippa V, Palmisano A, Filardi M, Vilella D, Nitsche MA, Rivolta D, Logroscino G. An update on the use of gamma (multi)sensory stimulation for Alzheimer's disease treatment. Front Aging Neurosci 2022; 14:1095081. [PMID: 36589536 PMCID: PMC9797689 DOI: 10.3389/fnagi.2022.1095081] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by reduced fast brain oscillations in the gamma band (γ, > 30 Hz). Several animal studies show that inducing gamma oscillations through (multi)sensory stimulation at 40 Hz has the potential to impact AD-related cognitive decline and neuropathological processes, including amyloid plaques deposition, neurofibrillary tangles formation, and neuronal and synaptic loss. Therefore Gamma Entrainment Using Sensory stimulation (GENUS) is among the most promising approaches for AD patients' treatment. This review summarizes the evidence on GENUS effectiveness, from animal models to AD patients. Despite the application on human is in its infancy, the available findings suggest its feasibility for the treatment of AD. We discuss such results in light of parameter improvement and possible underlying mechanisms. We finally emphasize the need for further research for its development as a disease-modifying non-pharmacological intervention.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Annalisa Palmisano
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Marco Filardi
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”, Tricase, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”, Tricase, Italy
| | - Michael A. Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Department of Basic Medicine, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione “Card. G. Panico”, Tricase, Italy
| |
Collapse
|
213
|
Royero P, Quatraccioni A, Früngel R, Silva MH, Bast A, Ulas T, Beyer M, Opitz T, Schultze JL, Graham ME, Oberlaender M, Becker A, Schoch S, Beck H. Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase. Cell Rep 2022; 41:111757. [PMID: 36476865 PMCID: PMC9756112 DOI: 10.1016/j.celrep.2022.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Maintaining an appropriate balance between excitation and inhibition is critical for neuronal information processing. Cortical neurons can cell-autonomously adjust the inhibition they receive to individual levels of excitatory input, but the underlying mechanisms are unclear. We describe that Ste20-like kinase (SLK) mediates cell-autonomous regulation of excitation-inhibition balance in the thalamocortical feedforward circuit, but not in the feedback circuit. This effect is due to regulation of inhibition originating from parvalbumin-expressing interneurons, while inhibition via somatostatin-expressing interneurons is unaffected. Computational modeling shows that this mechanism promotes stable excitatory-inhibitory ratios across pyramidal cells and ensures robust and sparse coding. Patch-clamp RNA sequencing yields genes differentially regulated by SLK knockdown, as well as genes associated with excitation-inhibition balance participating in transsynaptic communication and cytoskeletal dynamics. These data identify a mechanism for cell-autonomous regulation of a specific inhibitory circuit that is critical to ensure that a majority of cortical pyramidal cells participate in information coding.
Collapse
Affiliation(s)
- Pedro Royero
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Anne Quatraccioni
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Rieke Früngel
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Mariella Hurtado Silva
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Arco Bast
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany,PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Marc Beyer
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany
| | - Thoralf Opitz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany,PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Mark E. Graham
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Marcel Oberlaender
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Albert Becker
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany
| | - Susanne Schoch
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany
| | - Heinz Beck
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany,Corresponding author
| |
Collapse
|
214
|
Algamal M, Russ AN, Miller MR, Hou SS, Maci M, Munting LP, Zhao Q, Gerashchenko D, Bacskai BJ, Kastanenka KV. Reduced excitatory neuron activity and interneuron-type-specific deficits in a mouse model of Alzheimer's disease. Commun Biol 2022; 5:1323. [PMID: 36460716 PMCID: PMC9718858 DOI: 10.1038/s42003-022-04268-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive decline. These impairments correlate with early alterations in neuronal network activity in AD patients. Disruptions in the activity of individual neurons have been reported in mouse models of amyloidosis. However, the impact of amyloid pathology on the spontaneous activity of distinct neuronal types remains unexplored in vivo. Here we use in vivo calcium imaging with multiphoton microscopy to monitor and compare the activity of excitatory and two types of inhibitory interneurons in the cortices of APP/PS1 and control mice under isoflurane anesthesia. We also determine the relationship between amyloid accumulation and the deficits in spontaneous activity in APP/PS1 mice. We show that somatostatin-expressing (SOM) interneurons are hyperactive, while parvalbumin-expressing interneurons are hypoactive in APP/PS1 mice. Only SOM interneuron hyperactivity correlated with proximity to amyloid plaque. These inhibitory deficits were accompanied by decreased excitatory neuron activity in APP/PS1 mice. Our study identifies cell-specific neuronal firing deficits in APP/PS1 mice driven by amyloid pathology. These findings highlight the importance of addressing the complexity of neuron-specific deficits to ameliorate circuit dysfunction in Alzheimer's disease.
Collapse
Affiliation(s)
- Moustafa Algamal
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Alyssa N Russ
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Steven S Hou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Megi Maci
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Leon P Munting
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | | | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
215
|
Chan D, Suk HJ, Jackson BL, Milman NP, Stark D, Klerman EB, Kitchener E, Fernandez Avalos VS, de Weck G, Banerjee A, Beach SD, Blanchard J, Stearns C, Boes AD, Uitermarkt B, Gander P, Howard M, Sternberg EJ, Nieto-Castanon A, Anteraper S, Whitfield-Gabrieli S, Brown EN, Boyden ES, Dickerson BC, Tsai LH. Gamma frequency sensory stimulation in mild probable Alzheimer's dementia patients: Results of feasibility and pilot studies. PLoS One 2022; 17:e0278412. [PMID: 36454969 PMCID: PMC9714926 DOI: 10.1371/journal.pone.0278412] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
Non-invasive Gamma ENtrainment Using Sensory stimulation (GENUS) at 40Hz reduces Alzheimer's disease (AD) pathology such as amyloid and tau levels, prevents cerebral atrophy, and improves behavioral testing performance in mouse models of AD. Here, we report data from (1) a Phase 1 feasibility study (NCT04042922, ClinicalTrials.gov) in cognitively normal volunteers (n = 25), patients with mild AD dementia (n = 16), and patients with epilepsy who underwent intracranial electrode monitoring (n = 2) to assess safety and feasibility of a single brief GENUS session to induce entrainment and (2) a single-blinded, randomized, placebo-controlled Phase 2A pilot study (NCT04055376) in patients with mild probable AD dementia (n = 15) to assess safety, compliance, entrainment, and exploratory clinical outcomes after chronic daily 40Hz sensory stimulation for 3 months. Our Phase 1 study showed that 40Hz GENUS was safe and effectively induced entrainment in both cortical regions and other cortical and subcortical structures such as the hippocampus, amygdala, insula, and gyrus rectus. Our Phase 2A study demonstrated that chronic daily 40Hz light and sound GENUS was well-tolerated and that compliance was equally high in both the control and active groups, with participants equally inaccurate in guessing their group assignments prior to unblinding. Electroencephalography recordings show that our 40Hz GENUS device safely and effectively induced 40Hz entrainment in participants with mild AD dementia. After 3 months of daily stimulation, the group receiving 40Hz stimulation showed (i) lesser ventricular dilation and hippocampal atrophy, (ii) increased functional connectivity in the default mode network as well as with the medial visual network, (iii) better performance on the face-name association delayed recall test, and (iv) improved measures of daily activity rhythmicity compared to the control group. These results support further evaluation of GENUS in a pivotal clinical trial to evaluate its potential as a novel disease-modifying therapeutic for patients with AD.
Collapse
Affiliation(s)
- Diane Chan
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ho-Jun Suk
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Brennan L. Jackson
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Noah P. Milman
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, United States of America
| | - Danielle Stark
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Elizabeth B. Klerman
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erin Kitchener
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Vanesa S. Fernandez Avalos
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Gabrielle de Weck
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Arit Banerjee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sara D. Beach
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Joel Blanchard
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Colton Stearns
- Department of Computer Science, Stanford University, Stanford, California, United States of America
| | - Aaron D. Boes
- Department of Pediatrics, Neurology, & Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Brandt Uitermarkt
- Department of Pediatrics, Neurology, & Psychiatry, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Phillip Gander
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
| | - Matthew Howard
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States of America
- Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - Eliezer J. Sternberg
- Department of Neurology, Milford Regional Neurology, Milford, Massachusetts, United States of America
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Alfonso Nieto-Castanon
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, United States of America
| | - Sheeba Anteraper
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, United States of America
| | - Susan Whitfield-Gabrieli
- Department of Behavioral Neuroscience, Northeastern University, Boston, Massachusetts, United States of America
| | - Emery N. Brown
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Institute for Data Systems and Society, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Edward S. Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Koch Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
| | - Bradford C. Dickerson
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
216
|
van Nifterick AM, Gouw AA, van Kesteren RE, Scheltens P, Stam CJ, de Haan W. A multiscale brain network model links Alzheimer’s disease-mediated neuronal hyperactivity to large-scale oscillatory slowing. Alzheimers Res Ther 2022; 14:101. [PMID: 35879779 PMCID: PMC9310500 DOI: 10.1186/s13195-022-01041-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/02/2022] [Indexed: 01/30/2023]
Abstract
Background Neuronal hyperexcitability and inhibitory interneuron dysfunction are frequently observed in preclinical animal models of Alzheimer’s disease (AD). This study investigates whether these microscale abnormalities explain characteristic large-scale magnetoencephalography (MEG) activity in human early-stage AD patients. Methods To simulate spontaneous electrophysiological activity, we used a whole-brain computational network model comprised of 78 neural masses coupled according to human structural brain topology. We modified relevant model parameters to simulate six literature-based cellular scenarios of AD and compare them to one healthy and six contrast (non-AD-like) scenarios. The parameters include excitability, postsynaptic potentials, and coupling strength of excitatory and inhibitory neuronal populations. Whole-brain spike density and spectral power analyses of the simulated data reveal mechanisms of neuronal hyperactivity that lead to oscillatory changes similar to those observed in MEG data of 18 human prodromal AD patients compared to 18 age-matched subjects with subjective cognitive decline. Results All but one of the AD-like scenarios showed higher spike density levels, and all but one of these scenarios had a lower peak frequency, higher spectral power in slower (theta, 4–8Hz) frequencies, and greater total power. Non-AD-like scenarios showed opposite patterns mainly, including reduced spike density and faster oscillatory activity. Human AD patients showed oscillatory slowing (i.e., higher relative power in the theta band mainly), a trend for lower peak frequency and higher total power compared to controls. Combining model and human data, the findings indicate that neuronal hyperactivity can lead to oscillatory slowing, likely due to hyperexcitation (by hyperexcitability of pyramidal neurons or greater long-range excitatory coupling) and/or disinhibition (by reduced excitability of inhibitory interneurons or weaker local inhibitory coupling strength) in early AD. Conclusions Using a computational brain network model, we link findings from different scales and models and support the hypothesis of early-stage neuronal hyperactivity underlying E/I imbalance and whole-brain network dysfunction in prodromal AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01041-4.
Collapse
|
217
|
Clements-Cortes A, Bartel L. Long-Term Multi-Sensory Gamma Stimulation of Dementia Patients: A Case Series Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15553. [PMID: 36497624 PMCID: PMC9738557 DOI: 10.3390/ijerph192315553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Dementia prevalence is increasing globally, and symptom management and treatment strategies require further investigation. Music-based interventions have demonstrated some efficacy with respect to quality of life and symptom reduction, though limited with respect to cognition. This study reports on three case studies where the use of gamma stimulation over one year contributed to maintenance of cognition and increases in mood for participants with Alzheimer's disease or mild cognitive impairment. Auditory stimulation with isochronous sound at 40 Hz was delivered to participants via a commercially available vibroacoustic chair device five times per week for 30 min with assistance from caregivers. Further research is needed to assess the integration of this therapy in the overall care for persons with dementia.
Collapse
|
218
|
Ali AB, Islam A, Constanti A. The fate of interneurons, GABA A receptor sub-types and perineuronal nets in Alzheimer's disease. Brain Pathol 2022; 33:e13129. [PMID: 36409151 PMCID: PMC9836378 DOI: 10.1111/bpa.13129] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurological disease, which is associated with gradual memory loss and correlated with synaptic hyperactivity and abnormal oscillatory rhythmic brain activity that precedes phenotypic alterations and is partly responsible for the spread of the disease pathology. Synaptic hyperactivity is thought to be because of alteration in the homeostasis of phasic and tonic synaptic inhibition, which is orchestrated by the GABAA inhibitory system, encompassing subclasses of interneurons and GABAA receptors, which play a vital role in cognitive functions, including learning and memory. Furthermore, the extracellular matrix, the perineuronal nets (PNNs) which often go unnoticed in considerations of AD pathology, encapsulate the inhibitory cells and neurites in critical brain regions and have recently come under the light for their crucial role in synaptic stabilisation and excitatory-inhibitory balance and when disrupted, serve as a potential trigger for AD-associated synaptic imbalance. Therefore, in this review, we summarise the current understanding of the selective vulnerability of distinct interneuron subtypes, their synaptic and extrasynaptic GABAA R subtypes as well as the changes in PNNs in AD, detailing their contribution to the mechanisms of disease development. We aim to highlight how seemingly unique malfunction in each component of the interneuronal GABA inhibitory system can be tied together to result in critical circuit dysfunction, leading to the irreversible symptomatic damage observed in AD.
Collapse
|
219
|
Alfaro-Ruiz R, Aguado C, Martín-Belmonte A, Moreno-Martínez AE, Merchán-Rubira J, Hernández F, Ávila J, Fukazawa Y, Luján R. Alteration in the Synaptic and Extrasynaptic Organization of AMPA Receptors in the Hippocampus of P301S Tau Transgenic Mice. Int J Mol Sci 2022; 23:13527. [PMID: 36362317 PMCID: PMC9656470 DOI: 10.3390/ijms232113527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2023] Open
Abstract
Tau pathology is a hallmark of Alzheimer's disease (AD) and other tauopathies, but how pathological tau accumulation alters the glutamate receptor dynamics driving synaptic dysfunction is unclear. Here, we determined the impact of tau pathology on AMPAR expression, density, and subcellular distribution in the hippocampus of P301S mice using immunoblot, histoblot, and quantitative SDS-digested freeze-fracture replica labeling (SDS-FRL). Histoblot and immunoblot showed differential regulation of GluA1 and GluA2 in the hippocampus of P301S mice. The GluA2 subunit was downregulated in the hippocampus at 3 months while both GluA1 and GluA2 subunits were downregulated at 10 months. However, the total amount of GluA1-4 was similar in P301S mice and in age-matched wild-type mice. Using quantitative SDS-FRL, we unraveled the molecular organization of GluA1-4 in various synaptic connections at a high spatial resolution on pyramidal cell spines and interneuron dendrites in the CA1 field of the hippocampus in 10-month-old P301S mice. The labeling density for GluA1-4 in the excitatory synapses established on spines was significantly reduced in P301S mice, compared to age-matched wild-type mice, in the strata radiatum and lacunosum-moleculare but unaltered in the stratum oriens. The density of synaptic GluA1-4 established on interneuron dendrites was significantly reduced in P301S mice in the three strata. The labeling density for GluA1-4 at extrasynaptic sites was significantly reduced in several postsynaptic compartments of CA1 pyramidal cells and interneurons in the three dendritic layers in P301S mice. Our data demonstrate that the progressive accumulation of phospho-tau is associated with alteration of AMPARs on the surface of different neuron types, including synaptic and extrasynaptic membranes, leading to a decline in the trafficking and synaptic transmission, thereby likely contributing to the pathological events taking place in AD.
Collapse
Affiliation(s)
- Rocio Alfaro-Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | - Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Fukui 910-1193, Japan
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| |
Collapse
|
220
|
Spatial Memory Training Counteracts Hippocampal GIRK Channel Decrease in the Transgenic APPSw,Ind J9 Alzheimer’s Disease Mouse Model. Int J Mol Sci 2022; 23:ijms232113444. [PMID: 36362230 PMCID: PMC9659077 DOI: 10.3390/ijms232113444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
G-protein-gated inwardly rectifying potassium (GIRK) channels are critical determinants of neuronal excitability. They have been proposed as potential targets to restore excitatory/inhibitory balance in acute amyloidosis models, where hyperexcitability is a hallmark. However, the role of GIRK signaling in transgenic mice models of Alzheimer’s disease (AD) is largely unknown. Here, we study whether progressive amyloid-β (Aβ) accumulation in the hippocampus during aging alters GIRK channel expression in mutant β-amyloid precursor protein (APPSw,Ind J9) transgenic AD mice. Additionally, we examine the impact of spatial memory training in a hippocampal-dependent task, on protein expression of GIRK subunits and Regulator of G-protein signaling 7 (RGS7) in the hippocampus of APPSw,Ind J9 mice. Firstly, we found a reduction in GIRK2 expression (the main neuronal GIRK channels subunit) in the hippocampus of 6-month-old APPSw,Ind J9 mice. Moreover, we found an aging effect on GIRK2 and GIRK3 subunits in both wild type (WT) and APPSw,Ind J9 mice. Finally, when 6-month-old animals were challenged to a spatial memory training, GIRK2 expression in the APPSw,Ind J9 mice were normalized to WT levels. Together, our results support the evidence that GIRK2 could account for the excitatory/inhibitory neurotransmission imbalance found in AD models, and training in a cognitive hippocampal dependent task may have therapeutic benefits of reversing this effect and lessen early AD deficits.
Collapse
|
221
|
Rodrigues FR, Papanikolaou A, Holeniewska J, Phillips KG, Saleem AB, Solomon SG. Altered low-frequency brain rhythms precede changes in gamma power during tauopathy. iScience 2022; 25:105232. [PMID: 36274955 PMCID: PMC9579020 DOI: 10.1016/j.isci.2022.105232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/22/2022] [Accepted: 09/25/2022] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative disorders are associated with widespread disruption to brain activity and brain rhythms. Some disorders are linked to dysfunction of the membrane-associated protein Tau. Here, we ask how brain rhythms are affected in rTg4510 mouse model of tauopathy, at an early stage of tauopathy (5 months), and at a more advanced stage (8 months). We measured brain rhythms in primary visual cortex in presence or absence of visual stimulation, while monitoring pupil diameter and locomotion to establish behavioral state. At 5 months, we found increased low-frequency rhythms during resting state in tauopathic animals, associated with periods of abnormally increased neural synchronization. At 8 months, this increase in low-frequency rhythms was accompanied by a reduction of power in the gamma range. Our results therefore show that slower rhythms are impaired earlier than gamma rhythms in this model of tauopathy, and suggest that electrophysiological measurements can track the progression of tauopathic neurodegeneration.
Collapse
Affiliation(s)
- Fabio R. Rodrigues
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Amalia Papanikolaou
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Joanna Holeniewska
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | | | - Aman B. Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Samuel G. Solomon
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| |
Collapse
|
222
|
Jeong N, Singer AC. Learning from inhibition: Functional roles of hippocampal CA1 inhibition in spatial learning and memory. Curr Opin Neurobiol 2022; 76:102604. [PMID: 35810533 PMCID: PMC11414469 DOI: 10.1016/j.conb.2022.102604] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Hippocampal inhibitory interneurons exert a powerful influence on learning and memory. Inhibitory interneurons are known to play a major role in many diseases that affect memory, and to strongly influence brain functions required for memory-related tasks. While previous studies involving genetic, optogenetic, and pharmacological manipulations have shown that hippocampal interneurons play essential roles in spatial and episodic learning and memory, exactly how interneurons affect local circuit computations during spatial navigation is not well understood. Given the significant anatomical, morphological, and functional heterogeneity in hippocampal interneurons, one may suspect cell-type specific roles in circuit computations. Here, we review emerging evidence of CA1 hippocampal interneurons' role in local circuit computations that support spatial learning and memory and discuss open questions about CA1 interneurons in spatial learning.
Collapse
Affiliation(s)
- Nuri Jeong
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA; Neuroscience Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30322, USA. https://twitter.com/nuriscientist
| | - Annabelle C Singer
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| |
Collapse
|
223
|
Vande Vyver M, Barker‐Haliski M, Aourz N, Nagels G, Bjerke M, Engelborghs S, De Bundel D, Smolders I. Higher susceptibility to 6 Hz corneal kindling and lower responsiveness to antiseizure drugs in mouse models of Alzheimer's disease. Epilepsia 2022; 63:2703-2715. [PMID: 35775150 PMCID: PMC9804582 DOI: 10.1111/epi.17355] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Epileptic spikes and seizures seem present early in the disease process of Alzheimer's disease (AD). However, it is unclear how soluble and insoluble amyloid beta (Aβ) and tau proteins affect seizure development in vivo. We aim to contribute to this field by assessing the vulnerability to 6 Hz corneal kindling of young female mice from two well-characterized transgenic AD models and by testing their responsiveness to selected antiseizure drugs (ASDs). METHODS We used 7-week-old triple transgenic (3xTg) mice that have both amyloid and tau mutations, and amyloid precursor protein Swedish/presenillin 1 dE9 (APP/PS1) mice, bearing only amyloid-related mutations. We assessed the absence of plaques via immunohistochemistry and analyzed the concentrations of both soluble and insoluble forms of Aβ1-42 and total tau (t-tau) in brain hippocampal and prefrontal cortical tissue. Seven-week-old mice of the different genotypes were subjected to the 6 Hz corneal kindling model. After kindling acquisition, we tested the anticonvulsant effects of three marketed ASDs (levetiracetam, brivaracetam, and lamotrigine) in fully kindled mice. RESULTS No Aβ plaques were present in either genotype. Soluble Aβ1-42 levels were increased in both AD genotypes, whereas insoluble Aβ1-42 concentrations were only elevated in APP/PS1 mice compared with their respective controls. Soluble and insoluble forms of t-tau were increased in 3xTg mice only. 3xTg and APP/PS1 mice displayed more severe seizures induced by 6 Hz corneal kindling from the first stimulation onward and were more rapidly kindled compared with control mice. In fully kindled AD mice, ASDs had less-pronounced anticonvulsive effects compared with controls. SIGNIFICANCE Mutations increasing Aβ only or both Aβ and tau in the brain enhance susceptibility for seizures and kindling in mice. The effect of ASDs on seizures measured by the Racine scale is less pronounced in both investigated AD models and suggests that seizures of young AD mice are more difficult to treat.
Collapse
Affiliation(s)
- Maxime Vande Vyver
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium,Department of NeurologyUniversitair Ziekenhuis BrusselJetteBelgium,Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium,Neuroprotection and Neuromodulation (NEUR), Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| | | | - Najat Aourz
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| | - Guy Nagels
- Department of NeurologyUniversitair Ziekenhuis BrusselJetteBelgium,Department of AI Supported Modelling in Clinical Sciences (AIMS)Vrije Universiteit BrusselBrusselsBelgium
| | - Maria Bjerke
- Neuroprotection and Neuromodulation (NEUR), Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium,Department of NeurochemistryUniversitair Ziekenhuis BrusselBrusselsBelgium
| | - Sebastiaan Engelborghs
- Department of NeurologyUniversitair Ziekenhuis BrusselJetteBelgium,Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium,Neuroprotection and Neuromodulation (NEUR), Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| | - Dimitri De Bundel
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for NeurosciencesVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
224
|
Error-prone protein synthesis recapitulates early symptoms of Alzheimer disease in aging mice. Cell Rep 2022; 40:111433. [PMID: 36170830 DOI: 10.1016/j.celrep.2022.111433] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/19/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Age-related neurodegenerative diseases (NDDs) are associated with the aggregation and propagation of specific pathogenic protein species (e.g., Aβ, α-synuclein). However, whether disruption of synaptic homeostasis results from protein misfolding per se rather than accumulation of a specific rogue protein is an unexplored question. Here, we show that error-prone translation, with its frequent outcome of random protein misfolding, is sufficient to recapitulate many early features of NDDs, including perturbed Ca2+ signaling, neuronal hyperexcitability, and mitochondrial dysfunction. Mice expressing the ribosomal ambiguity mutation Rps9 D95N exhibited disrupted synaptic homeostasis resulting in behavioral changes reminiscent of early Alzheimer disease (AD), such as learning and memory deficits, maladaptive emotional responses, epileptiform discharges, suppressed circadian rhythmicity, and sleep fragmentation, accompanied by hippocampal NPY expression and cerebral glucose hypometabolism. Collectively, our findings suggest that random protein misfolding may contribute to the pathogenesis of age-related NDDs, providing an alternative framework for understanding the initiation of AD.
Collapse
|
225
|
Liu Y, Tang C, Wei K, Liu D, Tang K, Chen M, Xia X, Mao Z. Transcranial alternating current stimulation combined with sound stimulation improves the cognitive function of patients with Alzheimer's disease: A case report and literature review. Front Neurol 2022; 13:962684. [PMID: 36212652 PMCID: PMC9539040 DOI: 10.3389/fneur.2022.962684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial alternating current stimulation (tACS) is a relatively new non-invasive brain electrical stimulation method for the treatment of patients with Alzheimer's disease (AD), but it has poor offline effects. Therefore, we applied a new combined stimulation method to observe the offline effect on the cognitive function of patients with AD. Here, we describe the clinical results of a case in which tACS combined with sound stimulation was applied to treat moderate AD. The patient was a 73-year-old woman with a 2-year history of persistent cognitive deterioration despite the administration of Aricept and Sodium Oligomannate. Therefore, the patient received tACS combined with sound stimulation. Her cognitive scale scores improved after 15 sessions and continued to improve at 4 months of follow-up. Although the current report may provide a new alternative therapy for patients with AD, more clinical data are needed to support its efficacy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Can Tang
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Kailun Wei
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Di Liu
- Guangzhou Kangzhi Digital Technology Co., Ltd., Guangzhou, China
| | - Keke Tang
- Guangzhou Kangzhi Digital Technology Co., Ltd., Guangzhou, China
| | - Meilian Chen
- Guangzhou Kangzhi Digital Technology Co., Ltd., Guangzhou, China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, Guilin, China
- *Correspondence: Xuewei Xia
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
- Zhiqi Mao
| |
Collapse
|
226
|
Wu L, Cao T, Li S, Yuan Y, Zhang W, Huang L, Cai C, Fan L, Li L, Wang J, Liu T, Wang J. Long-term gamma transcranial alternating current stimulation improves the memory function of mice with Alzheimer’s disease. Front Aging Neurosci 2022; 14:980636. [PMID: 36185476 PMCID: PMC9520626 DOI: 10.3389/fnagi.2022.980636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Background The main manifestation of Alzheimer’s disease (AD) in patients and animal models is impaired memory function, characterized by amyloid-beta (Aβ) deposition and impairment of gamma oscillations that play an important role in perception and cognitive function. The therapeutic effect of gamma band stimulation in AD mouse models has been reported recently. Transcranial alternating current stimulation (tACS) is an emerging non-invasive intervention method, but at present, researchers have not completely understood the intervention effect of tACS. Thus, the intervention mechanism of tACS has not been fully elucidated, and the course of treatment in clinical selection also lacks theoretical support. Based on this issue, we investigated the effect of gamma frequency (40 Hz) tACS at different durations in a mouse model of AD. Materials and methods We placed stimulating electrodes on the skull surface of APP/PS1 and wild-type control mice (n = 30 and n = 5, respectively). Among them, 20 APP/PS1 mice were divided into 4 groups to receive 20 min 40 Hz tACS every day for 1–4 weeks. The other 10 APP/PS1 mice were equally divided into two groups to receive sham treatment and no treatment. No intervention was performed in the wild-type control mice. The short-term memory function of the mice was examined by the Y maze. Aβ levels and microglia in the hippocampus were measured by immunofluorescence. Spontaneous electroencephalogram gamma power was calculated by the average period method, and brain connectivity was examined by cross-frequency coupling. Results We found that the long-term treatment groups (21 and 28 days) had decreased hippocampal Aβ levels, increased electroencephalogram spontaneous gamma power, and ultimately improved short-term memory function. The treatment effect of the short-term treatment group (7 days) was not significant. Moreover, the treatment effect of the 14-day treatment group was weaker than that of the 21-day treatment group. Conclusion These results suggest that long-term gamma-frequency tACS is more effective in treating AD by reducing Aβ load and improving gamma oscillation than short-term gamma-frequency tACS.
Collapse
Affiliation(s)
- Linyan Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China
| | - Tiantian Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China
| | - Sinan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China
| | - Ye Yuan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China
| | - Liang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China
| | - Chujie Cai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China
| | - Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China
| | - Long Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China
| | - Jingyun Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China
- *Correspondence: Tian Liu,
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi’an, China
- Jue Wang,
| |
Collapse
|
227
|
Walsh C, Ridler T, Margetts-Smith G, Garcia Garrido M, Witton J, Randall AD, Brown JT. β Bursting in the Retrosplenial Cortex Is a Neurophysiological Correlate of Environmental Novelty Which Is Disrupted in a Mouse Model of Alzheimer's Disease. J Neurosci 2022; 42:7094-7109. [PMID: 35927034 PMCID: PMC9480878 DOI: 10.1523/jneurosci.0890-21.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
The retrosplenial cortex (RSC) plays a significant role in spatial learning and memory and is functionally disrupted in the early stages of Alzheimer's disease (AD). In order to investigate neurophysiological correlates of spatial learning and memory in this region we employed in vivo electrophysiology in awake and freely moving male mice, comparing neural activity between wild-type and J20 mice, a transgenic model of AD-associated amyloidopathy. To determine the response of the RSC to environmental novelty local field potentials (LFPs) were recorded while mice explored novel and familiar recording arenas. In familiar environments we detected short, phasic bursts of β (20-30 Hz) oscillations (β bursts), which arose at a low but steady rate. Exposure to a novel environment rapidly initiated a dramatic increase in the rate, size and duration of β bursts. Additionally, θ-α/β cross-frequency coupling was significantly higher during novelty, and spiking of neurons in the RSC was significantly enhanced during β bursts. Finally, excessive β bursting was seen in J20 mice, including increased β bursting during novelty and familiarity, yet a loss of coupling between β bursts and spiking activity. These findings support the concept that β bursting may be responsible for the activation and reactivation of neuronal ensembles underpinning the formation and maintenance of cortical representations, and that disruptions to this activity in J20 mice may underlie cognitive impairments seen in these animals.SIGNIFICANCE STATEMENT The retrosplenial cortex (RSC) is thought to be involved in the formation, recall and consolidation of contextual memory. The discovery of bursts of β oscillations in this region, which are associated with increased neuronal spiking and strongly upregulated while mice explore novel environments, provides a potential mechanism for the activation of neuronal ensembles, which may underlie the formation of cortical representations of context. Excessive β bursting in the RSC of J20 mice, a mouse model of Alzheimer's disease (AD), alongside the disassociation of β bursting from neuronal spiking, may underlie spatial memory impairments previously shown in these mice. These findings introduce a novel neurophysiological correlate of spatial learning and memory, and a potentially new form of AD-related cortical dysfunction.
Collapse
Affiliation(s)
- Callum Walsh
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Thomas Ridler
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Gabriella Margetts-Smith
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Maria Garcia Garrido
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Jonathan Witton
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Andrew D Randall
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| | - Jonathan T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Hatherly Laboratories, Exeter EX4 4PS, United Kingdom
| |
Collapse
|
228
|
Ostos S, Aparicio G, Fernaud-Espinosa I, DeFelipe J, Muñoz A. Quantitative analysis of the GABAergic innervation of the soma and axon initial segment of pyramidal cells in the human and mouse neocortex. Cereb Cortex 2022; 33:3882-3909. [PMID: 36058205 DOI: 10.1093/cercor/bhac314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/16/2022] [Accepted: 07/17/2022] [Indexed: 11/13/2022] Open
Abstract
Perisomatic GABAergic innervation in the cerebral cortex is carried out mostly by basket and chandelier cells, which differentially participate in the control of pyramidal cell action potential output and synchronization. These cells establish multiple synapses with the cell body (and proximal dendrites) and the axon initial segment (AIS) of pyramidal neurons, respectively. Using multiple immunofluorescence, confocal microscopy and 3D quantification techniques, we have estimated the number and density of GABAergic boutons on the cell body and AIS of pyramidal neurons located through cortical layers of the human and mouse neocortex. The results revealed, in both species, that there is clear variability across layers regarding the density and number of perisomatic GABAergic boutons. We found a positive linear correlation between the surface area of the soma, or the AIS, and the number of GABAergic terminals in apposition to these 2 neuronal domains. Furthermore, the density of perisomatic GABAergic boutons was higher in the human cortex than in the mouse. These results suggest a selectivity for the GABAergic innervation of the cell body and AIS that might be related to the different functional attributes of the microcircuits in which neurons from different layers are involved in both human and mouse.
Collapse
Affiliation(s)
- Sandra Ostos
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Guillermo Aparicio
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Isabel Fernaud-Espinosa
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Javier DeFelipe
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain.,CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Alberto Muñoz
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal (CSIC), Avenida Doctor Arce 37, 28002, Madrid, Spain.,Laboratorio Cajal de Circuitos Corticales (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo, 28223, Pozuelo de Alarcón, Madrid, Spain.,Departamento de Biología Celular, Universidad Complutense, José Antonio Novais 12, 28040 Madrid, Spain
| |
Collapse
|
229
|
Alfaro‐Ruiz R, Aguado C, Martín‐Belmonte A, Moreno‐Martínez AE, Merchán‐Rubira J, Hernández F, Ávila J, Fukazawa Y, Luján R. Different modes of synaptic and extrasynaptic NMDA receptor alteration in the hippocampus of P301S tau transgenic mice. Brain Pathol 2022; 33:e13115. [PMID: 36058615 PMCID: PMC9836375 DOI: 10.1111/bpa.13115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/12/2022] [Indexed: 01/21/2023] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are pivotal players in the synaptic transmission and synaptic plasticity underlying learning and memory. Accordingly, dysfunction of NMDARs has been implicated in the pathophysiology of Alzheimer disease (AD). Here, we used histoblot and sodium dodecylsulphate-digested freeze-fracture replica labelling (SDS-FRL) techniques to investigate the expression and subcellular localisation of GluN1, the obligatory subunit of NMDARs, in the hippocampus of P301S mice. Histoblots showed that GluN1 expression was significantly reduced in the hippocampus of P301S mice in a laminar-specific manner at 10 months of age but was unaltered at 3 months. Using the SDS-FRL technique, excitatory synapses and extrasynaptic sites on spines of pyramidal cells and interneuron dendrites were analysed throughout all dendritic layers in the CA1 field. Our ultrastructural approach revealed a high density of GluN1 in synaptic sites and a substantially lower density at extrasynaptic sites. Labelling density for GluN1 in excitatory synapses established on spines was significantly reduced in P301S mice, compared with age-matched wild-type mice, in the stratum oriens (so), stratum radiatum (sr) and stratum lacunosum-moleculare (slm). Density for synaptic GluN1 on interneuron dendrites was significantly reduced in P301S mice in the so and sr but unaltered in the slm. Labelling density for GluN1 at extrasynaptic sites showed no significant differences in pyramidal cells, and only increased density in the interneuron dendrites of the sr. This differential alteration of synaptic versus extrasynaptic NMDARs supports the notion that the progressive accumulation of phospho-tau is associated with changes in NMDARs, in the absence of amyloid-β pathology, and may be involved in the mechanisms causing abnormal network activity of the hippocampal circuit.
Collapse
Affiliation(s)
- Rocío Alfaro‐Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Alejandro Martín‐Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain,Present address:
Pharmacology Unit, Department of Pathology and Experimental TherapeuticsFaculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona08907 L'Hospitalet de LlobregatSpain
| | - Ana Esther Moreno‐Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | | | - Félix Hernández
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasISCIIIMadridSpain
| | - Jesús Ávila
- Centro de Biología Molecular Severo OchoaCSIC‐UAMMadridSpain,Centro de Investigación Biomédica en Red sobre Enfermedades NeurodegenerativasISCIIIMadridSpain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical ScienceUniversity of FukuiFukuiJapan,Life Science Innovation CenterUniversity of FukuiFukuiJapan
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| |
Collapse
|
230
|
The Effect of 40-Hz White LED Therapy on Structure-Function of Brain Mitochondrial ATP-Sensitive Ca-Activated Large-Conductance Potassium Channel in Amyloid Beta Toxicity. Neurotox Res 2022; 40:1380-1392. [PMID: 36057039 DOI: 10.1007/s12640-022-00565-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/07/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022]
Abstract
Photobiomodulation therapy has become the focus of medical research in many areas such as Alzheimer's disease (AD), because of its modulatory effect on cellular processes through light energy absorption via photoreceptors/chromophores located in the mitochondria. However, there are still many questions around the underlying mechanisms. This study was carried out to unravel whether the function-structure of ATP-sensitive mitoBKCa channels, as crucial components for maintenance of mitochondrial homeostasis, can be altered subsequent to light therapy in AD. Induction of Aβ neurotoxicity in male Wistar rats was done by intracerebroventricular injection of Aβ1-42. After a week, light-treated rats were exposed to 40-Hz white light LEDs, 15 min for 7 days. Electrophysiological properties of mitoBKCa channel were investigated using a channel incorporated into the bilayer lipid membrane, and mitoBKCa-β2 subunit expression was determined using western blot analysis in Aβ-induced toxicity and light-treated rats. Our results describe that conductance and open probability (Po) of mitoBKCa channel decreased significantly and was accompanied by a Po curve rightward shift in mitochondrial preparation in Aβ-induced toxicity rats. We also showed a significant reduction in expression of mitoBKCa-β2 subunit, which is partly responsible for a leftward shift in BKCa Po curve in low calcium status. Interestingly, we provided evidence of a significant improvement in channel conductance and Po after light therapy. We also found that light therapy improved mitoBKCa-β2 subunit expression, increasing it close to saline group. The current study explains a light therapy improvement in brain mitoBKCa channel function in the Aβ-induced neurotoxicity rat model, an effect that can be linked to increased expression of β2 subunit.
Collapse
|
231
|
Anti-Inflammatory Activity of 4-(4-(Heptyloxy)phenyl)-2,4-dihydro-3 H-1,2,4-triazol-3-one via Repression of MAPK/NF-κB Signaling Pathways in β-Amyloid-Induced Alzheimer's Disease Models. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155035. [PMID: 35956985 PMCID: PMC9370156 DOI: 10.3390/molecules27155035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 01/03/2023]
Abstract
Alzheimer’s disease (AD) is a major neurodegenerative disease, but so far, it can only be treated symptomatically rather than changing the process of the disease. Recently, triazoles and their derivatives have been shown to have potential for the treatment of AD. In this study, the neuroprotective effects of 4-(4-(heptyloxy)phenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (W112) against β-amyloid (Aβ)-induced AD pathology and its possible mechanism were explored both in vitro and in vivo. The results showed that W112 exhibits a neuroprotective role against Aβ-induced cytotoxicity in PC12 cells and improves the learning and memory abilities of Aβ-induced AD-like rats. In addition, the assays of the protein expression revealed that W112 reversed tau hyperphosphorylation and reduced the production of proinflammatory cytokines, tumor necrosis factor-α and interleukin-6, both in vitro and in vivo studies. Further study indicated that the regulation of mitogen-activated protein kinase/nuclear factor-κB pathways played a key role in mediating the neuroprotective effects of W112 against AD-like pathology. W112 may become a potential drug for AD intervention.
Collapse
|
232
|
Cannon J. Invited Perspective: Long-Lasting Legacy of Banned Contaminants in Alzheimer's Disease Etiology-Convergence of Epidemiological and Toxicological Findings. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:81303. [PMID: 35946939 PMCID: PMC9364815 DOI: 10.1289/ehp11650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Jason Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
233
|
Eid A, Mhatre-Winters I, Sammoura FM, Edler MK, von Stein R, Hossain MM, Han Y, Lisci M, Carney K, Konsolaki M, Hart RP, Bennett JW, Richardson JR. Effects of DDT on Amyloid Precursor Protein Levels and Amyloid Beta Pathology: Mechanistic Links to Alzheimer's Disease Risk. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:87005. [PMID: 35946953 PMCID: PMC9364816 DOI: 10.1289/ehp10576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND The interaction of aging-related, genetic, and environmental factors is thought to contribute to the etiology of late-onset, sporadic Alzheimer's disease (AD). We previously reported that serum levels of p,p'-dichlorodiphenyldichloroethylene (DDE), a long-lasting metabolite of the organochlorine pesticide dichlorodiphenyltrichloroethane (DDT), were significantly elevated in patients with AD and associated with the risk of AD diagnosis. However, the mechanism by which DDT may contribute to AD pathogenesis is unknown. OBJECTIVES This study sought to assess effects of DDT exposure on the amyloid pathway in multiple in vitro and in vivo models. METHODS Cultured cells (SH-SY5Y and primary neurons), transgenic flies overexpressing amyloid beta (Aβ), and C57BL/6J and 3xTG-AD mice were treated with DDT to assess impacts on the amyloid pathway. Real time quantitative polymerase chain reaction, multiplex assay, western immunoblotting and immunohistochemical methods were used to assess the effects of DDT on amyloid precursor protein (APP) and other contributors to amyloid processing and deposition. RESULTS Exposure to DDT revealed significantly higher APP mRNA and protein levels in immortalized and primary neurons, as well as in wild-type and AD-models. This was accompanied by higher levels of secreted Aβ in SH-SY5Y cells, an effect abolished by the sodium channel antagonist tetrodotoxin. Transgenic flies and 3xTG-AD mice had more Aβ pathology following DDT exposure. Furthermore, loss of the synaptic markers synaptophysin and PSD95 were observed in the cortex of the brains of 3xTG-AD mice. DISCUSSION Sporadic Alzheimer's disease risk involves contributions from genetic and environmental factors. Here, we used multiple model systems, including primary neurons, transgenic flies, and mice to demonstrate the effects of DDT on APP and its pathological product Aβ. These data, combined with our previous epidemiological findings, provide a mechanistic framework by which DDT exposure may contribute to increased risk of AD by impacting the amyloid pathway. https://doi.org/10.1289/EHP10576.
Collapse
Affiliation(s)
- Aseel Eid
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Isha Mhatre-Winters
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Ferass M. Sammoura
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Melissa K. Edler
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Richard von Stein
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Muhammad M. Hossain
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
| | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
| | - Miriam Lisci
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Kristina Carney
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
| | - Mary Konsolaki
- Department of Genetics, Rutgers University, Piscataway, New Jersey, USA
- Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Ronald P. Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | - Joan W. Bennett
- Department of Plant Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Jason R. Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey, USA
- Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
234
|
Andersen JV, Schousboe A, Verkhratsky A. Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol 2022; 217:102331. [PMID: 35872221 DOI: 10.1016/j.pneurobio.2022.102331] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023]
Abstract
Astrocytes contribute to the complex cellular pathology of Alzheimer's disease (AD). Neurons and astrocytes function in close collaboration through neurotransmitter recycling, collectively known as the glutamate/GABA-glutamine cycle, which is essential to sustain neurotransmission. Neurotransmitter recycling is intimately linked to astrocyte energy metabolism. In the course of AD, astrocytes undergo extensive metabolic remodeling, which may profoundly affect the glutamate/GABA-glutamine cycle. The consequences of altered astrocyte function and metabolism in relation to neurotransmitter recycling are yet to be comprehended. Metabolic alterations of astrocytes in AD deprive neurons of metabolic support, thereby contributing to synaptic dysfunction and neurodegeneration. In addition, several astrocyte-specific components of the glutamate/GABA-glutamine cycle, including glutamine synthesis and synaptic neurotransmitter uptake, are perturbed in AD. Integration of the complex astrocyte biology within the context of AD is essential for understanding the fundamental mechanisms of the disease, while restoring astrocyte metabolism may serve as an approach to arrest or even revert clinical progression of AD.
Collapse
Affiliation(s)
- Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102 Vilnius, Lithuania.
| |
Collapse
|
235
|
Bold CS, Baltissen D, Ludewig S, Back MK, Just J, Kilian L, Erdinger S, Banicevic M, Rehra L, Almouhanna F, Nigri M, Wolfer DP, Spilger R, Rohr K, Kann O, Buchholz CJ, von Engelhardt J, Korte M, Müller UC. APPsα Rescues Tau-Induced Synaptic Pathology. J Neurosci 2022; 42:5782-5802. [PMID: 35667850 PMCID: PMC9302470 DOI: 10.1523/jneurosci.2200-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/06/2022] [Accepted: 05/22/2022] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is histopathologically characterized by Aβ plaques and the accumulation of hyperphosphorylated Tau species, the latter also constituting key hallmarks of primary tauopathies. Whereas Aβ is produced by amyloidogenic APP processing, APP processing along the competing nonamyloidogenic pathway results in the secretion of neurotrophic and synaptotrophic APPsα. Recently, we demonstrated that APPsα has therapeutic effects in transgenic AD model mice and rescues Aβ-dependent impairments. Here, we examined the potential of APPsα to mitigate Tau-induced synaptic deficits in P301S mice (both sexes), a widely used mouse model of tauopathy. Analysis of synaptic plasticity revealed an aberrantly increased LTP in P301S mice that could be normalized by acute application of nanomolar amounts of APPsα to hippocampal slices, indicating a homeostatic function of APPsα on a rapid time scale. Further, AAV-mediated in vivo expression of APPsα restored normal spine density of CA1 neurons even at stages of advanced Tau pathology not only in P301S mice, but also in independent THY-Tau22 mice. Strikingly, when searching for the mechanism underlying aberrantly increased LTP in P301S mice, we identified an early and progressive loss of major GABAergic interneuron subtypes in the hippocampus of P301S mice, which may lead to reduced GABAergic inhibition of principal cells. Interneuron loss was paralleled by deficits in nest building, an innate behavior highly sensitive to hippocampal impairments. Together, our findings indicate that APPsα has therapeutic potential for Tau-mediated synaptic dysfunction and suggest that loss of interneurons leads to disturbed neuronal circuits that compromise synaptic plasticity as well as behavior.SIGNIFICANCE STATEMENT Our findings indicate, for the first time, that APPsα has the potential to rescue Tau-induced spine loss and abnormal synaptic plasticity. Thus, APPsα might have therapeutic potential not only because of its synaptotrophic functions, but also its homeostatic capacity for neuronal network activity. Hence, APPsα is one of the few molecules which has proven therapeutic effects in mice, both for Aβ- and Tau-dependent synaptic impairments and might therefore have therapeutic potential for patients suffering from AD or primary tauopathies. Furthermore, we found in P301S mice a pronounced reduction of inhibitory interneurons as the earliest pathologic event preceding the accumulation of hyperphosphorylated Tau species. This loss of interneurons most likely disturbs neuronal circuits that are important for synaptic plasticity and behavior.
Collapse
Affiliation(s)
- Charlotte S Bold
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls Universität Heidelberg, Heidelberg, 69120, Germany
| | - Danny Baltissen
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls Universität Heidelberg, Heidelberg, 69120, Germany
| | - Susann Ludewig
- TU Braunschweig, Zoological Institute, Braunschweig, 38106, Germany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, 38124, Germany
| | - Michaela K Back
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55128, Germany
| | - Jennifer Just
- TU Braunschweig, Zoological Institute, Braunschweig, 38106, Germany
| | - Lara Kilian
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls Universität Heidelberg, Heidelberg, 69120, Germany
| | - Susanne Erdinger
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls Universität Heidelberg, Heidelberg, 69120, Germany
| | - Marija Banicevic
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls Universität Heidelberg, Heidelberg, 69120, Germany
| | - Lena Rehra
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls Universität Heidelberg, Heidelberg, 69120, Germany
| | - Fadi Almouhanna
- Institute of Physiology and Pathophysiology, Ruprecht Karls Universität Heidelberg, Heidelberg, 69120, Germany
| | - Martina Nigri
- Institute of Anatomy, University of Zurich, Zurich, 8057, Switzerland
| | - David P Wolfer
- Institute of Anatomy, University of Zurich, Zurich, 8057, Switzerland
- Institute of Human Movement Sciences and Sport, ETH Zurich, Zurich, Switzerland
| | - Roman Spilger
- BioQuant Center, Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls Universität Heidelberg and DKFZ, Heidelberg, 69120, Germany
| | - Karl Rohr
- BioQuant Center, Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls Universität Heidelberg and DKFZ, Heidelberg, 69120, Germany
| | - Oliver Kann
- Institute of Physiology and Pathophysiology, Ruprecht Karls Universität Heidelberg, Heidelberg, 69120, Germany
| | | | - Jakob von Engelhardt
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55128, Germany
| | - Martin Korte
- TU Braunschweig, Zoological Institute, Braunschweig, 38106, Germany
- Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, 38124, Germany
| | - Ulrike C Müller
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls Universität Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
236
|
Gutierrez BA, Limon A. Synaptic Disruption by Soluble Oligomers in Patients with Alzheimer's and Parkinson's Disease. Biomedicines 2022; 10:1743. [PMID: 35885050 PMCID: PMC9313353 DOI: 10.3390/biomedicines10071743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative diseases are the result of progressive dysfunction of the neuronal activity and subsequent neuronal death. Currently, the most prevalent neurodegenerative diseases are by far Alzheimer's (AD) and Parkinson's (PD) disease, affecting millions of people worldwide. Although amyloid plaques and neurofibrillary tangles are the neuropathological hallmarks for AD and Lewy bodies (LB) are the hallmark for PD, current evidence strongly suggests that oligomers seeding the neuropathological hallmarks are more toxic and disease-relevant in both pathologies. The presence of small soluble oligomers is the common bond between AD and PD: amyloid β oligomers (AβOs) and Tau oligomers (TauOs) in AD and α-synuclein oligomers (αSynOs) in PD. Such oligomers appear to be particularly increased during the early pathological stages, targeting synapses at vulnerable brain regions leading to synaptic plasticity disruption, synapse loss, inflammation, excitation to inhibition imbalance and cognitive impairment. Absence of TauOs at synapses in individuals with strong AD disease pathology but preserved cognition suggests that mechanisms of resilience may be dependent on the interactions between soluble oligomers and their synaptic targets. In this review, we will discuss the current knowledge about the interactions between soluble oligomers and synaptic dysfunction in patients diagnosed with AD and PD, how it affects excitatory and inhibitory synaptic transmission, and the potential mechanisms of synaptic resilience in humans.
Collapse
Affiliation(s)
| | - Agenor Limon
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA;
| |
Collapse
|
237
|
Ursino M, Cesaretti N, Pirazzini G. A model of working memory for encoding multiple items and ordered sequences exploiting the theta-gamma code. Cogn Neurodyn 2022; 17:489-521. [PMID: 37007198 PMCID: PMC10050512 DOI: 10.1007/s11571-022-09836-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/25/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractRecent experimental evidence suggests that oscillatory activity plays a pivotal role in the maintenance of information in working memory, both in rodents and humans. In particular, cross-frequency coupling between theta and gamma oscillations has been suggested as a core mechanism for multi-item memory. The aim of this work is to present an original neural network model, based on oscillating neural masses, to investigate mechanisms at the basis of working memory in different conditions. We show that this model, with different synapse values, can be used to address different problems, such as the reconstruction of an item from partial information, the maintenance of multiple items simultaneously in memory, without any sequential order, and the reconstruction of an ordered sequence starting from an initial cue. The model consists of four interconnected layers; synapses are trained using Hebbian and anti-Hebbian mechanisms, in order to synchronize features in the same items, and desynchronize features in different items. Simulations show that the trained network is able to desynchronize up to nine items without a fixed order using the gamma rhythm. Moreover, the network can replicate a sequence of items using a gamma rhythm nested inside a theta rhythm. The reduction in some parameters, mainly concerning the strength of GABAergic synapses, induce memory alterations which mimic neurological deficits. Finally, the network, isolated from the external environment (“imagination phase”) and stimulated with high uniform noise, can randomly recover sequences previously learned, and link them together by exploiting the similarity among items.
Collapse
Affiliation(s)
- Mauro Ursino
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| | - Nicole Cesaretti
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| | - Gabriele Pirazzini
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi”, University of Bologna, Campus of Cesena Area di Campus Cesena Via Dell’Università 50, 47521 Cesena, FC Italy
| |
Collapse
|
238
|
Katsuki F, Gerashchenko D, Brown RE. Alterations of sleep oscillations in Alzheimer's disease: A potential role for GABAergic neurons in the cortex, hippocampus, and thalamus. Brain Res Bull 2022; 187:181-198. [PMID: 35850189 DOI: 10.1016/j.brainresbull.2022.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Sleep abnormalities are widely reported in patients with Alzheimer's disease (AD) and are linked to cognitive impairments. Sleep abnormalities could be potential biomarkers to detect AD since they are often observed at the preclinical stage. Moreover, sleep could be a target for early intervention to prevent or slow AD progression. Thus, here we review changes in brain oscillations observed during sleep, their connection to AD pathophysiology and the role of specific brain circuits. Slow oscillations (0.1-1 Hz), sleep spindles (8-15 Hz) and their coupling during non-REM sleep are consistently reduced in studies of patients and in AD mouse models although the timing and magnitude of these alterations depends on the pathophysiological changes and the animal model studied. Changes in delta (1-4 Hz) activity are more variable. Animal studies suggest that hippocampal sharp-wave ripples (100-250 Hz) are also affected. Reductions in REM sleep amount and slower oscillations during REM are seen in patients but less consistently in animal models. Thus, changes in a variety of sleep oscillations could impact sleep-dependent memory consolidation or restorative functions of sleep. Recent mechanistic studies suggest that alterations in the activity of GABAergic neurons in the cortex, hippocampus and thalamic reticular nucleus mediate sleep oscillatory changes in AD and represent a potential target for intervention. Longitudinal studies of the timing of AD-related sleep abnormalities with respect to pathology and dysfunction of specific neural networks are needed to identify translationally relevant biomarkers and guide early intervention strategies to prevent or delay AD progression.
Collapse
Affiliation(s)
- Fumi Katsuki
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA.
| | - Dmitry Gerashchenko
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA
| | - Ritchie E Brown
- VA Boston Healthcare System and Harvard Medical School, Dept. of Psychiatry, West Roxbury, MA 02132, USA
| |
Collapse
|
239
|
Kawabata S. Excessive/Aberrant and Maladaptive Synaptic Plasticity: A Hypothesis for the Pathogenesis of Alzheimer’s Disease. Front Aging Neurosci 2022; 14:913693. [PMID: 35865745 PMCID: PMC9294348 DOI: 10.3389/fnagi.2022.913693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/08/2022] [Indexed: 01/01/2023] Open
Abstract
The amyloid hypothesis for the pathogenesis of Alzheimer’s disease (AD) is widely accepted. Last year, the US Food and Drug Administration considered amyloid-β peptide (Aβ) as a surrogate biomarker and approved an anti-Aβ antibody, aducanumab, although its effectiveness in slowing the progression of AD is still uncertain. This approval has caused a great deal of controversy. Opinions are divided about whether there is enough evidence to definitely consider Aβ as a causative substance of AD. To develop this discussion constructively and to discover the most suitable therapeutic interventions in the end, an alternative persuasive hypothesis needs to emerge to better explain the facts. In this paper, I propose a hypothesis that excessive/aberrant and maladaptive synaptic plasticity is the pathophysiological basis for AD.
Collapse
|
240
|
Antón-Toro LF, Bruña R, Del Cerro-León A, Shpakivska D, Mateos-Gordo P, Porras-Truque C, García-Gómez R, Maestú F, García-Moreno LM. Electrophysiological resting-state hyperconnectivity and poorer behavioural regulation as predisposing profiles of adolescent binge drinking. Addict Biol 2022; 27:e13199. [PMID: 35754100 PMCID: PMC9286401 DOI: 10.1111/adb.13199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022]
Abstract
Adolescent Binge Drinking (BD) has become an increasing health and social concern, with detrimental consequences for brain development and functional integrity. However, research on neurophysiological and neuropsychological traits predisposing to BD are limited at this time. In this work, we conducted a 2‐year longitudinal magnetoencephalography (MEG) study over a cohort of initially alcohol‐naïve adolescents with the purpose of exploring anomalies in resting‐state electrophysiological networks, impulsivity, sensation‐seeking, and dysexecutive behaviour able to predict future BD patterns. In a sample of 67 alcohol‐naïve adolescents (age = 14.5 ± 0.9), we measured resting‐state activity using MEG. Additionally, we evaluated their neuropsychological traits using self‐report ecological scales (BIS‐11, SSS‐V, BDEFS, BRIEF‐SR and DEX). In a second evaluation, 2 years later, we measured participant's alcohol consumption, sub‐dividing the original sample in two groups: future binge drinkers (22 individuals, age 14.6 ± 0.8; eight females) and future light/no drinkers (17 individuals, age 14.5 ± 0.8; eight females). Then, we searched for differences predating alcohol BD intake. We found abnormalities in MEG resting state, in a form of gamma band hyperconnectivity, in those adolescents who transitioned into BD years later. Furthermore, they showed higher impulsivity, dysexecutive behaviours and sensation seeking, positively correlated with functional connectivity (FC). Sensation seeking and impulsivity mainly predicted BD severity in the future, while the relationship between dysexecutive trait and FC with future BD was mediated by sensation seeking. These findings shed light to electrophysiological and neuropsychological traits of vulnerability towards alcohol consumption. We hypothesise that these differences may rely on divergent neurobiological development of inhibitory neurotransmission pathways and executive prefrontal circuits.
Collapse
Affiliation(s)
- Luis F Antón-Toro
- Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Ricardo Bruña
- Department of Radiology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Alberto Del Cerro-León
- Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Danylyna Shpakivska
- Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Patricia Mateos-Gordo
- Department of Psychobiology and Methodology in Behavioral Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| | - Claudia Porras-Truque
- Department of Psychobiology and Methodology in Behavioral Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| | - Raquel García-Gómez
- Department of Psychobiology and Methodology in Behavioral Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Luis Miguel García-Moreno
- Department of Psychobiology and Methodology in Behavioral Sciences, Complutense University of Madrid (UCM), Madrid, Spain
| |
Collapse
|
241
|
Wu XM, Ji MH, Yin XY, Gu HW, Zhu TT, Wang RZ, Yang JJ, Shen JC. Reduced inhibition underlies early life LPS exposure induced-cognitive impairment: Prevention by environmental enrichment. Int Immunopharmacol 2022; 108:108724. [DOI: 10.1016/j.intimp.2022.108724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 01/08/2023]
|
242
|
Cross-frequency coupling in psychiatric disorders: A systematic review. Neurosci Biobehav Rev 2022; 138:104690. [PMID: 35569580 DOI: 10.1016/j.neubiorev.2022.104690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 05/02/2022] [Accepted: 05/08/2022] [Indexed: 11/21/2022]
Abstract
Cross-frequency coupling (CFC), an electrophysiologically derived measure of oscillatory coupling in the brain, is believed to play a critical role in neuronal computation, learning and communication. It has received much recent attention in the study of both health and disease. We searched for literature that studied CFC during resting state and task-related activities during electroencephalography and magnetoencephalography in psychiatric disorders. Thirty-eight studies were identified, which included attention-deficit hyperactivity disorder, Alzheimer's dementia, autism spectrum disorder, bipolar disorder, depression, obsessive compulsive disorder, social anxiety disorder and schizophrenia. The systematic review was registered with PROSPERO (ID#CRD42021224188). The current review indicates measurable differences exist between CFC in disease states vs. healthy controls. There was variance in CFC at different regions of the brain within the same psychiatric disorders, perhaps this could be explained by the mechanisms and functionality of CFC. There was heterogeneity in methodologies used, which may lead to spurious CFC analyses. Going forward, standardized methodologies need to be established and utilized in further research to understand the neuropathophysiology associated with psychiatric disorders.
Collapse
|
243
|
Albeely AM, Williams OOF, Perreault ML. GSK-3β Disrupts Neuronal Oscillatory Function to Inhibit Learning and Memory in Male Rats. Cell Mol Neurobiol 2022; 42:1341-1353. [PMID: 33392916 PMCID: PMC11421759 DOI: 10.1007/s10571-020-01020-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022]
Abstract
Alterations in glycogen synthase kinase-3β (GSK-3β) activity have been implicated in disorders of cognitive impairment, including Alzheimer's disease and schizophrenia. Cognitive dysfunction is also characterized by the dysregulation of neuronal oscillatory activity, macroscopic electrical rhythms in brain that are critical to systems communication. A direct functional relationship between GSK-3β and neuronal oscillations has not been elucidated. Therefore, in the present study, using an adeno-associated viral vector containing a persistently active mutant form of GSK-3β, GSK-3β(S9A), the impact of elevated kinase activity in prefrontal cortex (PFC) or ventral hippocampus (vHIP) of rats on neuronal oscillatory activity was evaluated. GSK-3β(S9A)-induced changes in learning and memory were also assessed and the phosphorylation status of tau protein, a substrate of GSK-3β, examined. It was demonstrated that increasing GSK-3β(S9A) activity in either the PFC or vHIP had similar effects on neuronal oscillatory activity, enhancing theta and/or gamma spectral power in one or both regions. Increasing PFC GSK-3β(S9A) activity additionally suppressed high gamma PFC-vHIP coherence. These changes were accompanied by deficits in recognition memory, spatial learning, and/or reversal learning. Elevated pathogenic tau phosphorylation was also evident in regions where GSK-3β(S9A) activity was upregulated. The neurophysiological and learning and memory deficits induced by GSK-3β(S9A) suggest that aberrant GSK-3β signalling may not only play an early role in cognitive decline in Alzheimer's disease but may also have a more central involvement in disorders of cognitive dysfunction through the regulation of neurophysiological network function.
Collapse
Affiliation(s)
- Abdalla M Albeely
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
- Collaborative Neuroscience Program, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada
| | - Olivia O F Williams
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada
| | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd. E, Guelph, ON, N1G 2W1, Canada.
- Collaborative Neuroscience Program, University of Guelph, 50 Stone Rd. E, Guelph, ON, Canada.
| |
Collapse
|
244
|
Tok S, Maurin H, Delay C, Crauwels D, Manyakov NV, Van Der Elst W, Moechars D, Drinkenburg WHIM. Pathological and neurophysiological outcomes of seeding human-derived tau pathology in the APP-KI NL-G-F and NL-NL mouse models of Alzheimer's Disease. Acta Neuropathol Commun 2022; 10:92. [PMID: 35739575 PMCID: PMC9219251 DOI: 10.1186/s40478-022-01393-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
The two main histopathological hallmarks that characterize Alzheimer’s Disease are the presence of amyloid plaques and neurofibrillary tangles. One of the current approaches to studying the consequences of amyloid pathology relies on the usage of transgenic animal models that incorporate the mutant humanized form of the amyloid precursor protein (hAPP), with animal models progressively developing amyloid pathology as they age. However, these mice models generally overexpress the hAPP protein to facilitate the development of amyloid pathology, which has been suggested to elicit pathological and neuropathological changes unrelated to amyloid pathology. In this current study, we characterized APP knock-in (APP-KI) animals, that do not overexpress hAPP but still develop amyloid pathology to understand the influence of protein overexpression. We also induced tau pathology via human-derived tau seeding material to understand the neurophysiological effects of amyloid and tau pathology. We report that tau-seeded APP-KI animals progressively develop tau pathology, exacerbated by the presence of amyloid pathology. Interestingly, older amyloid-bearing, tau-seeded animals exhibited more amyloid pathology in the entorhinal area, isocortex and hippocampus, but not thalamus, which appeared to correlate with impairments in gamma oscillations before seeding. Tau-seeded animals also featured immediate deficits in power spectra values and phase-amplitude indices in the hippocampus after seeding, with gamma power spectra deficits persisting in younger animals. Both deficits in hippocampal phase-amplitude coupling and gamma power differentiate tau-seeded, amyloid-positive animals from buffer controls. Based on our results, impairments in gamma oscillations appear to be strongly associated with the presence and development of amyloid and tau pathology, and may also be an indicator of neuropathology, network dysfunction, and even potential disposition to the future development of amyloid pathology.
Collapse
Affiliation(s)
- S Tok
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium.,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - H Maurin
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - C Delay
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - D Crauwels
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - N V Manyakov
- Data Sciences, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - W Van Der Elst
- Quantitative Sciences Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - D Moechars
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - W H I M Drinkenburg
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium. .,Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
245
|
Khalil R, Kallel S, Farhat A, Dlotko P. Topological Sholl descriptors for neuronal clustering and classification. PLoS Comput Biol 2022; 18:e1010229. [PMID: 35731804 PMCID: PMC9255741 DOI: 10.1371/journal.pcbi.1010229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 07/05/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronal morphology is a fundamental factor influencing information processing within neurons and networks. Dendritic morphology in particular can widely vary among cell classes, brain regions, and animal species. Thus, accurate quantitative descriptions allowing classification of large sets of neurons is essential for their structural and functional characterization. Current robust and unbiased computational methods that characterize groups of neurons are scarce. In this work, we introduce a novel technique to study dendritic morphology, complementing and advancing many of the existing techniques. Our approach is to conceptualize the notion of a Sholl descriptor and associate, for each morphological feature, and to each neuron, a function of the radial distance from the soma, taking values in a metric space. Functional distances give rise to pseudo-metrics on sets of neurons which are then used to perform the two distinct tasks of clustering and classification. To illustrate the use of Sholl descriptors, four datasets were retrieved from the large public repository https://neuromorpho.org/ comprising neuronal reconstructions from different species and brain regions. Sholl descriptors were subsequently computed, and standard clustering methods enhanced with detection and metric learning algorithms were then used to objectively cluster and classify each dataset. Importantly, our descriptors outperformed conventional morphometric techniques (L-Measure metrics) in several of the tested datasets. Therefore, we offer a novel and effective approach to the analysis of diverse neuronal cell types, and provide a toolkit for researchers to cluster and classify neurons.
Collapse
Affiliation(s)
- Reem Khalil
- American University of Sharjah, Department of Biology Chemistry and Environmental Sciences, Sharjah, United Arab Emirates
- * E-mail:
| | - Sadok Kallel
- American University of Sharjah, Department of Mathematics, Sharjah, United Arab Emirates
| | - Ahmad Farhat
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dlotko
- Dioscuri Centre in Topological Data Analysis, Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
246
|
Targa Dias Anastacio H, Matosin N, Ooi L. Neuronal hyperexcitability in Alzheimer's disease: what are the drivers behind this aberrant phenotype? Transl Psychiatry 2022; 12:257. [PMID: 35732622 PMCID: PMC9217953 DOI: 10.1038/s41398-022-02024-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to loss of cognitive abilities and ultimately, death. With no cure available, limited treatments mostly focus on symptom management. Identifying early changes in the disease course may provide new therapeutic targets to halt or reverse disease progression. Clinical studies have shown that cortical and hippocampal hyperactivity are a feature shared by patients in the early stages of disease, progressing to hypoactivity during later stages of neurodegeneration. The exact mechanisms causing neuronal excitability changes are not fully characterized; however, animal and cell models have provided insights into some of the factors involved in this phenotype. In this review, we summarize the evidence for neuronal excitability changes over the course of AD onset and progression and the molecular mechanisms underpinning these differences. Specifically, we discuss contributors to aberrant neuronal excitability, including abnormal levels of intracellular Ca2+ and glutamate, pathological amyloid β (Aβ) and tau, genetic risk factors, including APOE, and impaired inhibitory interneuron and glial function. In light of recent research indicating hyperexcitability could be a predictive marker of cognitive dysfunction, we further argue that the hyperexcitability phenotype could be leveraged to improve the diagnosis and treatment of AD, and present potential targets for future AD treatment development.
Collapse
Affiliation(s)
- Helena Targa Dias Anastacio
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Natalie Matosin
- grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia ,grid.1007.60000 0004 0486 528XMolecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia. .,Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
247
|
Olah VJ, Goettemoeller AM, Rayaprolu S, Dammer EB, Seyfried NT, Rangaraju S, Dimidschstein J, Rowan MJM. Biophysical Kv3 channel alterations dampen excitability of cortical PV interneurons and contribute to network hyperexcitability in early Alzheimer's. eLife 2022; 11:75316. [PMID: 35727131 PMCID: PMC9278953 DOI: 10.7554/elife.75316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
In Alzheimer’s disease (AD), a multitude of genetic risk factors and early biomarkers are known. Nevertheless, the causal factors responsible for initiating cognitive decline in AD remain controversial. Toxic plaques and tangles correlate with progressive neuropathology, yet disruptions in circuit activity emerge before their deposition in AD models and patients. Parvalbumin (PV) interneurons are potential candidates for dysregulating cortical excitability as they display altered action potential (AP) firing before neighboring excitatory neurons in prodromal AD. Here, we report a novel mechanism responsible for PV hypoexcitability in young adult familial AD mice. We found that biophysical modulation of Kv3 channels, but not changes in their mRNA or protein expression, were responsible for dampened excitability in young 5xFAD mice. These K+ conductances could efficiently regulate near-threshold AP firing, resulting in gamma-frequency-specific network hyperexcitability. Thus, biophysical ion channel alterations alone may reshape cortical network activity prior to changes in their expression levels. Our findings demonstrate an opportunity to design a novel class of targeted therapies to ameliorate cortical circuit hyperexcitability in early AD.
Collapse
Affiliation(s)
- Viktor J Olah
- Department of Cell Biology, Emory University, Atlanta, United States
| | | | - Sruti Rayaprolu
- Department of Neurology, Emory University, Atlanta, United States
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, United States
| | | | | | | | - Matthew J M Rowan
- Department of Cell Biology, Emory University, Atlanta, United States
| |
Collapse
|
248
|
Khlaifia A, Honoré E, Artinian J, Laplante I, Lacaille JC. mTORC1 function in hippocampal parvalbumin interneurons: regulation of firing and long-term potentiation of intrinsic excitability but not long-term contextual fear memory and context discrimination. Mol Brain 2022; 15:56. [PMID: 35715811 PMCID: PMC9204956 DOI: 10.1186/s13041-022-00941-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023] Open
Abstract
Hippocampal CA1 parvalbumin-expressing interneurons (PV INs) play a central role in controlling principal cell activity and orchestrating network oscillations. PV INs receive excitatory inputs from CA3 Schaffer collaterals and local CA1 pyramidal cells, and they provide perisomatic inhibition. Schaffer collateral excitatory synapses onto PV INs express Hebbian and anti-Hebbian types of long-term potentiation (LTP), as well as elicit LTP of intrinsic excitability (LTPIE). LTPIE requires the activation of type 5 metabotropic glutamate receptors (mGluR5) and is mediated by downregulation of potassium channels Kv1.1. It is sensitive to rapamycin and thus may involve activation of the mammalian target of rapamycin complex 1 (mTORC1). LTPIE facilitates PV INs recruitment in CA1 and maintains an excitatory-inhibitory balance. Impaired CA1 PV INs activity or LTP affects network oscillations and memory. However, whether LTPIE in PV INs plays a role in hippocampus-dependent memory remains unknown. Here, we used conditional deletion of the obligatory component of mTORC1, the Regulatory-Associated Protein of mTOR (Raptor), to directly manipulate mTORC1 in PV INs. We found that homozygous, but not heterozygous, conditional knock-out of Rptor resulted in a decrease in CA1 PV INs of mTORC1 signaling via its downstream effector S6 phosphorylation assessed by immunofluorescence. In whole-cell recordings from hippocampal slices, repetitive firing of CA1 PV INs was impaired in mice with either homozygous or heterozygous conditional knock-out of Rptor. High frequency stimulation of Schaffer collateral inputs that induce LTPIE in PV INs of control mice failed to do so in mice with either heterozygous or homozygous conditional knock-out of Rptor in PV INs. At the behavioral level, mice with homozygous or heterozygous conditional knock-out of Rptor showed similar long-term contextual fear memory or contextual fear memory discrimination relative to control mice. Thus, mTORC1 activity in CA1 PV INs regulates repetitive firing and LTPIE but not consolidation of long-term contextual fear memory and context discrimination. Our results indicate that mTORC1 plays cell-specific roles in synaptic plasticity of hippocampal inhibitory interneurons that are differentially involved in hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Abdessattar Khlaifia
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group On Neural Signaling and Circuitry (GRSNC), Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada.,Department of Psychology, University of Toronto Scarborough, ON, M1C1A4, Toronto, Canada
| | - Eve Honoré
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group On Neural Signaling and Circuitry (GRSNC), Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada
| | - Julien Artinian
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group On Neural Signaling and Circuitry (GRSNC), Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada.,NeuroService, Neurocentre Magendie , Bordeaux, France
| | - Isabel Laplante
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group On Neural Signaling and Circuitry (GRSNC), Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada
| | - Jean-Claude Lacaille
- Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group On Neural Signaling and Circuitry (GRSNC), Université de Montréal, P.O. Box 6128, Station Downtown, QC, H3C 3J7, Montreal, Canada.
| |
Collapse
|
249
|
Xia D, Lianoglou S, Sandmann T, Calvert M, Suh JH, Thomsen E, Dugas J, Pizzo ME, DeVos SL, Earr TK, Lin CC, Davis S, Ha C, Leung AWS, Nguyen H, Chau R, Yulyaningsih E, Lopez I, Solanoy H, Masoud ST, Liang CC, Lin K, Astarita G, Khoury N, Zuchero JY, Thorne RG, Shen K, Miller S, Palop JJ, Garceau D, Sasner M, Whitesell JD, Harris JA, Hummel S, Gnörich J, Wind K, Kunze L, Zatcepin A, Brendel M, Willem M, Haass C, Barnett D, Zimmer TS, Orr AG, Scearce-Levie K, Lewcock JW, Di Paolo G, Sanchez PE. Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia. Mol Neurodegener 2022; 17:41. [PMID: 35690868 PMCID: PMC9188195 DOI: 10.1186/s13024-022-00547-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic mutations underlying familial Alzheimer's disease (AD) were identified decades ago, but the field is still in search of transformative therapies for patients. While mouse models based on overexpression of mutated transgenes have yielded key insights in mechanisms of disease, those models are subject to artifacts, including random genetic integration of the transgene, ectopic expression and non-physiological protein levels. The genetic engineering of novel mouse models using knock-in approaches addresses some of those limitations. With mounting evidence of the role played by microglia in AD, high-dimensional approaches to phenotype microglia in those models are critical to refine our understanding of the immune response in the brain. METHODS We engineered a novel App knock-in mouse model (AppSAA) using homologous recombination to introduce three disease-causing coding mutations (Swedish, Arctic and Austrian) to the mouse App gene. Amyloid-β pathology, neurodegeneration, glial responses, brain metabolism and behavioral phenotypes were characterized in heterozygous and homozygous AppSAA mice at different ages in brain and/ or biofluids. Wild type littermate mice were used as experimental controls. We used in situ imaging technologies to define the whole-brain distribution of amyloid plaques and compare it to other AD mouse models and human brain pathology. To further explore the microglial response to AD relevant pathology, we isolated microglia with fibrillar Aβ content from the brain and performed transcriptomics and metabolomics analyses and in vivo brain imaging to measure energy metabolism and microglial response. Finally, we also characterized the mice in various behavioral assays. RESULTS Leveraging multi-omics approaches, we discovered profound alteration of diverse lipids and metabolites as well as an exacerbated disease-associated transcriptomic response in microglia with high intracellular Aβ content. The AppSAA knock-in mouse model recapitulates key pathological features of AD such as a progressive accumulation of parenchymal amyloid plaques and vascular amyloid deposits, altered astroglial and microglial responses and elevation of CSF markers of neurodegeneration. Those observations were associated with increased TSPO and FDG-PET brain signals and a hyperactivity phenotype as the animals aged. DISCUSSION Our findings demonstrate that fibrillar Aβ in microglia is associated with lipid dyshomeostasis consistent with lysosomal dysfunction and foam cell phenotypes as well as profound immuno-metabolic perturbations, opening new avenues to further investigate metabolic pathways at play in microglia responding to AD-relevant pathogenesis. The in-depth characterization of pathological hallmarks of AD in this novel and open-access mouse model should serve as a resource for the scientific community to investigate disease-relevant biology.
Collapse
Affiliation(s)
- Dan Xia
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Steve Lianoglou
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Thomas Sandmann
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Meredith Calvert
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Jung H. Suh
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Elliot Thomsen
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Jason Dugas
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Michelle E. Pizzo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Sarah L. DeVos
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Timothy K. Earr
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Chia-Ching Lin
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Sonnet Davis
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Connie Ha
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Amy Wing-Sze Leung
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Hoang Nguyen
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Roni Chau
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Ernie Yulyaningsih
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Isabel Lopez
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Hilda Solanoy
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Shababa T. Masoud
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Chun-chi Liang
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Karin Lin
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Giuseppe Astarita
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Nathalie Khoury
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Joy Yu Zuchero
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Robert G. Thorne
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
- Department of Pharmaceutics, University of Minnesota, 9-177 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, MN 55455 USA
| | - Kevin Shen
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA 94158 USA
| | - Stephanie Miller
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA 94158 USA
| | - Jorge J. Palop
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158 USA
- Department of Neurology, University of California, San Francisco, CA 94158 USA
| | | | | | | | | | - Selina Hummel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Johannes Gnörich
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Karin Wind
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Lea Kunze
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Artem Zatcepin
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Michael Willem
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig- Maximilians-Universität, München, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Daniel Barnett
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY USA
| | - Till S. Zimmer
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
| | - Anna G. Orr
- Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY USA
| | - Kimberly Scearce-Levie
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Joseph W. Lewcock
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Gilbert Di Paolo
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| | - Pascal E. Sanchez
- Denali Therapeutics, Inc., 161 Oyster Point Blvd, South San Francisco, California, 94080 USA
| |
Collapse
|
250
|
Chou YH, Sundman M, Ton That V, Green J, Trapani C. Cortical excitability and plasticity in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis of transcranial magnetic stimulation studies. Ageing Res Rev 2022; 79:101660. [PMID: 35680080 DOI: 10.1016/j.arr.2022.101660] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique. When stimulation is applied over the primary motor cortex and coupled with electromyography measures, TMS can probe functions of cortical excitability and plasticity in vivo. The purpose of this meta-analysis is to evaluate the utility of TMS-derived measures for differentiating patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) from cognitively normal older adults (CN). METHODS Databases searched included PubMed, Embase, APA PsycInfo, Medline, and CINAHL Plus from inception to July 2021. RESULTS Sixty-one studies with a total of 2728 participants (1454 patients with AD, 163 patients with MCI, and 1111 CN) were included. Patients with AD showed significantly higher cortical excitability, lower cortical inhibition, and impaired cortical plasticity compared to the CN cohorts. Patients with MCI exhibited increased cortical excitability and reduced plasticity compared to the CN cohort. Additionally, lower cognitive performance was significantly associated with higher cortical excitability and lower inhibition. No seizure events due to TMS were reported, and the mild adverse response rate is approximately 3/1000 (i.e., 9/2728). CONCLUSIONS Findings of our meta-analysis demonstrate the potential of using TMS-derived cortical excitability and plasticity measures as diagnostic biomarkers and therapeutic targets for AD and MCI.
Collapse
Affiliation(s)
- Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA; Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, USA.
| | - Mark Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Viet Ton That
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Jacob Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Chrisopher Trapani
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| |
Collapse
|