201
|
Ribosomopathies: New Therapeutic Perspectives. Cells 2020; 9:cells9092080. [PMID: 32932838 PMCID: PMC7564184 DOI: 10.3390/cells9092080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Ribosomopathies are a group of rare diseases in which genetic mutations cause defects in either ribosome biogenesis or function, given specific phenotypes. Ribosomal proteins, and multiple other factors that are necessary for ribosome biogenesis (rRNA processing, assembly of subunits, export to cytoplasm), can be affected in ribosomopathies. Despite the need for ribosomes in all cell types, these diseases result mainly in tissue-specific impairments. Depending on the type of ribosomopathy and its pathogenicity, there are many potential therapeutic targets. The present manuscript will review our knowledge of ribosomopathies, discuss current treatments, and introduce the new therapeutic perspectives based on recent research. Diamond–Blackfan anemia, currently treated with blood transfusion prior to steroids, could be managed with a range of new compounds, acting mainly on anemia, such as L-leucine. Treacher Collins syndrome could be managed by various treatments, but it has recently been shown that proteasomal inhibition by MG132 or Bortezomib may improve cranial skeleton malformations. Developmental defects resulting from ribosomopathies could be also treated pharmacologically after birth. It might thus be possible to treat certain ribosomopathies without using multiple treatments such as surgery and transplants. Ribosomopathies remain an open field in the search for new therapeutic approaches based on our recent understanding of the role of ribosomes and progress in gene therapy for curing genetic disorders.
Collapse
|
202
|
Da Costa L, Leblanc T, Mohandas N. Diamond-Blackfan anemia. Blood 2020; 136:1262-1273. [PMID: 32702755 PMCID: PMC7483438 DOI: 10.1182/blood.2019000947] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) was the first ribosomopathy described and is a constitutional inherited bone marrow failure syndrome. Erythroblastopenia is the major characteristic of the disease, which is a model for ribosomal diseases, related to a heterozygous allelic variation in 1 of the 20 ribosomal protein genes of either the small or large ribosomal subunit. The salient feature of classical DBA is a defect in ribosomal RNA maturation that generates nucleolar stress, leading to stabilization of p53 and activation of its targets, resulting in cell-cycle arrest and apoptosis. Although activation of p53 may not explain all aspects of DBA erythroid tropism, involvement of GATA1/HSP70 and globin/heme imbalance, with an excess of the toxic free heme leading to reactive oxygen species production, account for defective erythropoiesis in DBA. Despite significant progress in defining the molecular basis of DBA and increased understanding of the mechanistic basis for DBA pathophysiology, progress in developing new therapeutic options has been limited. However, recent advances in gene therapy, better outcomes with stem cell transplantation, and discoveries of putative new drugs through systematic drug screening using large chemical libraries provide hope for improvement.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Adenosine Deaminase/blood
- Adenosine Deaminase/genetics
- Anemia, Diamond-Blackfan/diagnosis
- Anemia, Diamond-Blackfan/genetics
- Anemia, Diamond-Blackfan/metabolism
- Anemia, Diamond-Blackfan/therapy
- Child, Preschool
- Congenital Abnormalities/genetics
- Diagnosis, Differential
- Disease Management
- Drug Resistance
- Erythrocytes/enzymology
- Fetal Growth Retardation/etiology
- GATA1 Transcription Factor/genetics
- GATA1 Transcription Factor/physiology
- Genetic Heterogeneity
- Genetic Therapy
- Glucocorticoids/therapeutic use
- HSP70 Heat-Shock Proteins/metabolism
- Hematopoietic Stem Cell Transplantation
- Humans
- Infant
- Infant, Newborn
- Intercellular Signaling Peptides and Proteins/blood
- Intercellular Signaling Peptides and Proteins/genetics
- Models, Biological
- Mutation
- Neoplastic Syndromes, Hereditary/genetics
- Ribosomal Proteins/genetics
- Ribosomal Proteins/physiology
- Tumor Suppressor Protein p53/physiology
Collapse
Affiliation(s)
- Lydie Da Costa
- Service d'Hématologie Biologique, Hôpital Robert-Debré, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- U1134, Université Paris, Paris, France
- Laboratoire d'Excellence GR-Ex, Paris, France
| | - Thierry Leblanc
- Service d'Immuno-Hématologie Pédiatrique, Hôpital Robert-Debré, AP-HP, Paris, France; and
| | - Narla Mohandas
- Laboratory of Red Cell Physiology, New York Blood Center, New York, NY
| |
Collapse
|
203
|
Petelski AA, Slavov N. Analyzing Ribosome Remodeling in Health and Disease. Proteomics 2020; 20:e2000039. [PMID: 32820594 PMCID: PMC7501214 DOI: 10.1002/pmic.202000039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/01/2020] [Indexed: 12/24/2022]
Abstract
Increasing evidence suggests that ribosomes actively regulate protein synthesis. However, much of this evidence is indirect, leaving this layer of gene regulation largely unexplored, in part due to methodological limitations. Indeed, evidence is reviewed demonstrating that commonly used methods, such as transcriptomics, are inadequate because the variability in mRNAs coding for ribosomal proteins (RP) does not necessarily correspond to RP variability. Thus protein remodeling of ribosomes should be investigated by methods that allow direct quantification of RPs, ideally of isolated ribosomes. Such methods are reviewed, focusing on mass spectrometry and emphasizing method-specific biases and approaches to control these biases. It is argued that using multiple complementary methods can help reduce the danger of interpreting reproducible systematic biases as evidence for ribosome remodeling.
Collapse
Affiliation(s)
- Aleksandra A Petelski
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Barnett Institute, Northeastern University, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Nikolai Slavov
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Barnett Institute, Northeastern University, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
204
|
Bhar S, Zhou F, Reineke LC, Morris DK, Khincha PP, Giri N, Mirabello L, Bergstrom K, Lemon LD, Williams CL, Toh Y, Elghetany MT, Lloyd RE, Alter BP, Savage SA, Bertuch AA. Expansion of germline RPS20 mutation phenotype to include Diamond-Blackfan anemia. Hum Mutat 2020; 41:1918-1930. [PMID: 32790018 DOI: 10.1002/humu.24092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/18/2020] [Accepted: 08/08/2020] [Indexed: 11/10/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a ribosomopathy of variable expressivity and penetrance characterized by red cell aplasia, congenital anomalies, and predisposition to certain cancers, including early-onset colorectal cancer (CRC). DBA is primarily caused by a dominant mutation of a ribosomal protein (RP) gene, although approximately 20% of patients remain genetically uncharacterized despite exome sequencing and copy number analysis. Although somatic loss-of-function mutations in RP genes have been reported in sporadic cancers, with the exceptions of 5q-myelodysplastic syndrome (RPS14) and microsatellite unstable CRC (RPL22), these cancers are not enriched in DBA. Conversely, pathogenic variants in RPS20 were previously implicated in familial CRC; however, none of the reported individuals had classical DBA features. We describe two unrelated children with DBA lacking variants in known DBA genes who were found by exome sequencing to have de novo novel missense variants in RPS20. The variants affect the same amino acid but result in different substitutions and reduce the RPS20 protein level. Yeast models with mutation of the cognate residue resulted in defects in growth, ribosome biogenesis, and polysome formation. These findings expand the phenotypic spectrum of RPS20 mutation beyond familial CRC to include DBA, which itself is associated with increased risk of CRC.
Collapse
Affiliation(s)
- Saleh Bhar
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Fujun Zhou
- Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, Bethesda, Maryland
| | - Lucas C Reineke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Danna K Morris
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Payal P Khincha
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lisa Mirabello
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katie Bergstrom
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Laramie D Lemon
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Christopher L Williams
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Yukimatsu Toh
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - M Tarek Elghetany
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alison A Bertuch
- Department of Pediatrics, Section of Hematology/Oncology, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
205
|
Wu J, Subbaiah KCV, Xie LH, Jiang F, Khor ES, Mickelsen D, Myers JR, Tang WHW, Yao P. Glutamyl-Prolyl-tRNA Synthetase Regulates Proline-Rich Pro-Fibrotic Protein Synthesis During Cardiac Fibrosis. Circ Res 2020; 127:827-846. [PMID: 32611237 PMCID: PMC7484271 DOI: 10.1161/circresaha.119.315999] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/01/2020] [Indexed: 01/22/2023]
Abstract
RATIONALE Increased protein synthesis of profibrotic genes is a common feature in cardiac fibrosis and heart failure. Despite this observation, critical factors and molecular mechanisms for translational control of profibrotic genes during cardiac fibrosis remain unclear. OBJECTIVE To investigate the role of a bifunctional ARS (aminoacyl-tRNA synthetase), EPRS (glutamyl-prolyl-tRNA synthetase) in translational control of cardiac fibrosis. METHODS AND RESULTS Results from reanalyses of multiple publicly available data sets of human and mouse heart failure, demonstrated that EPRS acted as an integrated node among the ARSs in various cardiac pathogenic processes. We confirmed that EPRS was induced at mRNA and protein levels (≈1.5-2.5-fold increase) in failing hearts compared with nonfailing hearts using our cohort of human and mouse heart samples. Genetic knockout of one allele of Eprs globally (Eprs+/-) using CRISPR-Cas9 technology or in a Postn-Cre-dependent manner (Eprsflox/+; PostnMCM/+) strongly reduces cardiac fibrosis (≈50% reduction) in isoproterenol-, transverse aortic constriction-, and myocardial infarction (MI)-induced heart failure mouse models. Inhibition of EPRS using a PRS (prolyl-tRNA synthetase)-specific inhibitor, halofuginone, significantly decreases translation efficiency (TE) of proline-rich collagens in cardiac fibroblasts as well as TGF-β (transforming growth factor-β)-activated myofibroblasts. Overexpression of EPRS increases collagen protein expression in primary cardiac fibroblasts under TGF-β stimulation. Using transcriptome-wide RNA-Seq and polysome profiling-Seq in halofuginone-treated fibroblasts, we identified multiple novel Pro-rich genes in addition to collagens, such as Ltbp2 (latent TGF-β-binding protein 2) and Sulf1 (sulfatase 1), which are translationally regulated by EPRS. SULF1 is highly enriched in human and mouse myofibroblasts. In the primary cardiac fibroblast culture system, siRNA-mediated knockdown of SULF1 attenuates cardiac myofibroblast activation and collagen deposition. Overexpression of SULF1 promotes TGF-β-induced myofibroblast activation and partially antagonizes anti-fibrotic effects of halofuginone treatment. CONCLUSIONS Our results indicate that EPRS preferentially controls translational activation of proline codon rich profibrotic genes in cardiac fibroblasts and augments pathological cardiac remodeling. Graphical Abstract: A graphical abstract is available for this article.
Collapse
Affiliation(s)
- Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
| | - Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
| | - Li Huitong Xie
- Graduate Program in Genetics, Development and Stem Cells, Department of Biomedical Genetics
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry
| | - Eng-Soon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
| | - Deanne Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
| | - Jason R Myers
- Genomics Research Center, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | | | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry
| |
Collapse
|
206
|
Polymenis M. Ribosomal proteins: mutant phenotypes by the numbers and associated gene expression changes. Open Biol 2020; 10:200114. [PMID: 32810425 PMCID: PMC7479938 DOI: 10.1098/rsob.200114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ribosomal proteins are highly conserved, many universally so among organisms. All ribosomal proteins are structural parts of the same molecular machine, the ribosome. However, when ribosomal proteins are mutated individually, they often lead to distinct and intriguing phenotypes, including specific human pathologies. This review is an attempt to collect and analyse all the reported phenotypes of each ribosomal protein mutant in several eukaryotes (Saccharomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Mus musculus, Homo sapiens). These phenotypes were processed with unbiased computational approaches to reveal associations between different phenotypes and the contributions of individual ribosomal protein genes. An overview of gene expression changes in ribosomal protein mutants, with emphasis on ribosome profiling studies, is also presented. The available data point to patterns that may account for most of the observed phenotypes. The information presented here may also inform future studies about the molecular basis of the phenotypes that arise from mutations in ribosomal proteins.
Collapse
Affiliation(s)
- Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA
| |
Collapse
|
207
|
Transcriptional States and Chromatin Accessibility Underlying Human Erythropoiesis. Cell Rep 2020; 27:3228-3240.e7. [PMID: 31189107 PMCID: PMC6579117 DOI: 10.1016/j.celrep.2019.05.046] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/03/2019] [Accepted: 05/14/2019] [Indexed: 02/01/2023] Open
Abstract
Human erythropoiesis serves as a paradigm of physiologic cellular differentiation. This process is also of considerable interest for better understanding anemias and identifying new therapies. Here, we apply deep transcriptomic and accessible chromatin profiling to characterize a faithful ex vivo human erythroid differentiation system from hematopoietic stem and progenitor cells. We reveal stage-specific transcriptional states and chromatin accessibility during various stages of erythropoiesis, including 14,260 differentially expressed genes and 63,659 variably accessible chromatin peaks. Our analysis suggests differentiation stage-predominant roles for specific master regulators, including GATA1 and KLF1. We integrate chromatin profiles with common and rare genetic variants associated with erythroid cell traits and diseases, finding that variants regulating different erythroid phenotypes likely act at variable points during differentiation. In addition, we identify a regulator of terminal erythropoiesis, TMCC2, more broadly illustrating the value of this comprehensive analysis to improve our understanding of erythropoiesis in health and disease. Ludwig et al. chart the dynamic transcriptional and chromatin landscapes as hematopoietic stem and progenitor cells differentiate into mature red blood cells. This multi-omic profiling reveals dynamic transcription factor activities and human genetic variation that modulate this process.
Collapse
|
208
|
Peltomäki P, Olkinuora A, Nieminen TT. Updates in the field of hereditary nonpolyposis colorectal cancer. Expert Rev Gastroenterol Hepatol 2020; 14:707-720. [PMID: 32755332 DOI: 10.1080/17474124.2020.1782187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Up to one third of colorectal cancers show familial clustering and 5% are hereditary single-gene disorders. Hereditary non-polyposis colorectal cancer comprises DNA mismatch repair-deficient and -proficient subsets, represented by Lynch syndrome (LS) and familial colorectal cancer type X (FCCTX), respectively. Accurate knowledge of molecular etiology and genotype-phenotype correlations are critical for tailored cancer prevention and treatment. AREAS COVERED The authors highlight advances in the molecular dissection of hereditary non-polyposis colorectal cancer, based on recent literature retrieved from PubMed. Future possibilities for novel gene discoveries are discussed. EXPERT COMMENTARY LS is molecularly well established, but new information is accumulating of the associated clinical and tumor phenotypes. FCCTX remains poorly defined, but several promising candidate genes have been discovered and share some preferential biological pathways. Multi-level characterization of specimens from large patient cohorts representing multiple populations, combined with proper bioinformatic and functional analyses, will be necessary to resolve the outstanding questions.
Collapse
Affiliation(s)
- Paivi Peltomäki
- Department of Medical and Clinical Genetics, University of Helsinki , Helsinki, Finland
| | - Alisa Olkinuora
- Department of Medical and Clinical Genetics, University of Helsinki , Helsinki, Finland
| | - Taina T Nieminen
- Department of Medical and Clinical Genetics, University of Helsinki , Helsinki, Finland
| |
Collapse
|
209
|
Belle JI, Wang H, Fiore A, Petrov JC, Lin YH, Feng CH, Nguyen TTM, Tung J, Campeau PM, Behrends U, Brunet T, Leszinski GS, Gros P, Langlais D, Nijnik A. MYSM1 maintains ribosomal protein gene expression in hematopoietic stem cells to prevent hematopoietic dysfunction. JCI Insight 2020; 5:125690. [PMID: 32641579 DOI: 10.1172/jci.insight.125690] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/21/2020] [Indexed: 01/09/2023] Open
Abstract
Ribosomopathies are congenital disorders caused by mutations in the genes encoding ribosomal and other functionally related proteins. They are characterized by anemia, other hematopoietic and developmental abnormalities, and p53 activation. Ribosome assembly requires coordinated expression of many ribosomal protein (RP) genes; however, the regulation of RP gene expression, especially in hematopoietic stem cells (HSCs), remains poorly understood. MYSM1 is a transcriptional regulator essential for HSC function and hematopoiesis. We established that HSC dysfunction in Mysm1 deficiency is driven by p53; however, the mechanisms of p53 activation remained unclear. Here, we describe the transcriptome of Mysm1-deficient mouse HSCs and identify MYSM1 genome-wide DNA binding sites. We establish a direct role for MYSM1 in RP gene expression and show a reduction in protein synthesis in Mysm1-/- HSCs. Loss of p53 in mice fully rescues Mysm1-/- anemia phenotype but not RP gene expression, indicating that RP gene dysregulation is a direct outcome of Mysm1 deficiency and an upstream mediator of Mysm1-/- phenotypes through p53 activation. We characterize a patient with a homozygous nonsense MYSM1 gene variant, and we demonstrate reduced protein synthesis and increased p53 levels in patient hematopoietic cells. Our work provides insights into the specialized mechanisms regulating RP gene expression in HSCs and establishes a common etiology of MYSM1 deficiency and ribosomopathy syndromes.
Collapse
Affiliation(s)
- Jad I Belle
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - HanChen Wang
- Department of Physiology.,McGill University Research Centre on Complex Traits, and.,Department of Human Genetics, McGill University, Quebec, Canada
| | - Amanda Fiore
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Jessica C Petrov
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Yun Hsiao Lin
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Chu-Han Feng
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Thi Tuyet Mai Nguyen
- Centre Hospitalier Universitaire St. Justine Research Center, University of Montreal, Quebec, Canada
| | - Jacky Tung
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| | - Philippe M Campeau
- Centre Hospitalier Universitaire St. Justine Research Center, University of Montreal, Quebec, Canada
| | | | - Theresa Brunet
- Institute of Human Genetics, Technische Universität München (TUM), Munich, Germany
| | - Gloria Sarah Leszinski
- Institute of Human Genetics, Technische Universität München (TUM), Munich, Germany.,Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Philippe Gros
- McGill University Research Centre on Complex Traits, and.,Department of Biochemistry and.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Quebec, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, and.,Department of Human Genetics, McGill University, Quebec, Canada.,McGill University Genome Centre, Montreal, Quebec, Canada
| | - Anastasia Nijnik
- Department of Physiology.,McGill University Research Centre on Complex Traits, and
| |
Collapse
|
210
|
Zhu X, Zhang W, Guo J, Zhang X, Li L, Wang T, Yan J, Zhang F, Hou B, Gao N, Gao GF, Zhou X. Noc4L-Mediated Ribosome Biogenesis Controls Activation of Regulatory and Conventional T Cells. Cell Rep 2020; 27:1205-1220.e4. [PMID: 31018134 DOI: 10.1016/j.celrep.2019.03.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 02/12/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
Regulatory T cell (Treg) activation is crucial for maintaining self-tolerance, but the translational regulation of this process is still poorly understood. Although ribosome biogenesis is considered a housekeeping process, emerging evidence supports the hypothesis that ribosome biogenesis can selectively regulate protein synthesis by tuning translation. Here, we focused on the ribosome biogenesis factor Noc4L, based on the observations that Noc4L is highly expressed in activated Tregs. Conditional Noc4L knockout in Tregs resulted in a lethal autoimmune phenotype resembling Treg-deficient scurfy mice. Interestingly, the Noc4L defect did not globally affect overall protein translation in Tregs but was selectively detrimental to the expression of mRNAs related to Treg activation. These results demonstrate the critical role of Noc4L-mediated ribosome biogenesis in controlling the activation of Tregs and maintaining immune tolerance.
Collapse
Affiliation(s)
- Xueping Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Jie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Xuejie Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Fuping Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baidong Hou
- University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Ning Gao
- School of Life Sciences, Peking University, Beijing 100871, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China.
| | - Xuyu Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
211
|
Gillespie MA, Palii CG, Sanchez-Taltavull D, Shannon P, Longabaugh WJR, Downes DJ, Sivaraman K, Espinoza HM, Hughes JR, Price ND, Perkins TJ, Ranish JA, Brand M. Absolute Quantification of Transcription Factors Reveals Principles of Gene Regulation in Erythropoiesis. Mol Cell 2020; 78:960-974.e11. [PMID: 32330456 PMCID: PMC7344268 DOI: 10.1016/j.molcel.2020.03.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/20/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Dynamic cellular processes such as differentiation are driven by changes in the abundances of transcription factors (TFs). However, despite years of studies, our knowledge about the protein copy number of TFs in the nucleus is limited. Here, by determining the absolute abundances of 103 TFs and co-factors during the course of human erythropoiesis, we provide a dynamic and quantitative scale for TFs in the nucleus. Furthermore, we establish the first gene regulatory network of cell fate commitment that integrates temporal protein stoichiometry data with mRNA measurements. The model revealed quantitative imbalances in TFs' cross-antagonistic relationships that underlie lineage determination. Finally, we made the surprising discovery that, in the nucleus, co-repressors are dramatically more abundant than co-activators at the protein level, but not at the RNA level, with profound implications for understanding transcriptional regulation. These analyses provide a unique quantitative framework to understand transcriptional regulation of cell differentiation in a dynamic context.
Collapse
Affiliation(s)
| | - Carmen G Palii
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada
| | - Daniel Sanchez-Taltavull
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada; Visceral Surgery and Medicine, Inselspital, Bern University Hospital, Department for BioMedical Research, University of Bern, Murtenstrasse 35, 3008 Bern, Switzerland
| | - Paul Shannon
- Institute for Systems Biology, Seattle, WA 98109, USA
| | | | - Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Karthi Sivaraman
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada
| | | | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | | | - Theodore J Perkins
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada.
| | - Jeffrey A Ranish
- Institute for Systems Biology, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Marjorie Brand
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H8L6, Canada.
| |
Collapse
|
212
|
Li D, Wang J. Ribosome heterogeneity in stem cells and development. J Cell Biol 2020; 219:e202001108. [PMID: 32330234 PMCID: PMC7265316 DOI: 10.1083/jcb.202001108] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023] Open
Abstract
Translation control is critical to regulate protein expression. By directly adjusting protein levels, cells can quickly respond to dynamic transitions during stem cell differentiation and embryonic development. Ribosomes are multisubunit cellular assemblies that mediate translation. Previously seen as invariant machines with the same composition of components in all conditions, recent studies indicate that ribosomes are heterogeneous and that different ribosome types can preferentially translate specific subsets of mRNAs. Such heterogeneity and specialized translation functions are very important in stem cells and development, as they allow cells to quickly respond to stimuli through direct changes of protein abundance. In this review, we discuss ribosome heterogeneity that arises from multiple features of rRNAs, including rRNA variants and rRNA modifications, and ribosomal proteins, including their stoichiometry, compositions, paralogues, and posttranslational modifications. We also discuss alterations of ribosome-associated proteins (RAPs), with a particular focus on their consequent specialized translational control in stem cells and development.
Collapse
Affiliation(s)
- Dan Li
- Department of Cell, Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jianlong Wang
- Department of Cell, Developmental and Regenerative Biology, The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Medicine, Columbia Center for Human Development, Columbia University Irving Medical Center, New York, NY
| |
Collapse
|
213
|
Maitra N, He C, Blank HM, Tsuchiya M, Schilling B, Kaeberlein M, Aramayo R, Kennedy BK, Polymenis M. Translational control of one-carbon metabolism underpins ribosomal protein phenotypes in cell division and longevity. eLife 2020; 9:53127. [PMID: 32432546 PMCID: PMC7263821 DOI: 10.7554/elife.53127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
A long-standing problem is how cells that lack one of the highly similar ribosomal proteins (RPs) often display distinct phenotypes. Yeast and other organisms live longer when they lack specific ribosomal proteins, especially of the large 60S subunit of the ribosome. However, longevity is neither associated with the generation time of RP deletion mutants nor with bulk inhibition of protein synthesis. Here, we queried actively dividing RP mutants through the cell cycle. Our data link transcriptional, translational, and metabolic changes to phenotypes associated with the loss of paralogous RPs. We uncovered translational control of transcripts encoding enzymes of methionine and serine metabolism, which are part of one-carbon (1C) pathways. Cells lacking Rpl22Ap, which are long-lived, have lower levels of metabolites associated with 1C metabolism. Loss of 1C enzymes increased the longevity of wild type cells. 1C pathways exist in all organisms and targeting the relevant enzymes could represent longevity interventions.
Collapse
Affiliation(s)
- Nairita Maitra
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Chong He
- Buck Institute for Research on Aging, Novato, United States
| | - Heidi M Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| | - Mitsuhiro Tsuchiya
- Department of Pathology, University of Washington, Seattle, United States
| | | | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, United States
| | - Rodolfo Aramayo
- Department of Biology, Texas A&M University, College Station, United States
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, United States.,Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Centre for Healthy Ageing, National University of Singapore, National University Health System, Singapore, Singapore
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, United States
| |
Collapse
|
214
|
Infantile Myelofibrosis and Myeloproliferation with CDC42 Dysfunction. J Clin Immunol 2020; 40:554-566. [PMID: 32303876 PMCID: PMC7253386 DOI: 10.1007/s10875-020-00778-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022]
Abstract
Studies of genetic blood disorders have advanced our understanding of the intrinsic regulation of hematopoiesis. However, such genetic studies have only yielded limited insights into how interactions between hematopoietic cells and their microenvironment are regulated. Here, we describe two affected siblings with infantile myelofibrosis and myeloproliferation that share a common de novo mutation in the Rho GTPase CDC42 (Chr1:22417990:C>T, p.R186C) due to paternal germline mosaicism. Functional studies using human cells and flies demonstrate that this CDC42 mutant has altered activity and thereby disrupts interactions between hematopoietic progenitors and key tissue microenvironmental factors. These findings suggest that further investigation of this and other related disorders may provide insights into how hematopoietic cell-microenvironment interactions play a role in human health and can be disrupted in disease. In addition, we suggest that deregulation of CDC42 may underlie more common blood disorders, such as primary myelofibrosis.
Collapse
|
215
|
Kampen KR, Sulima SO, Vereecke S, De Keersmaecker K. Hallmarks of ribosomopathies. Nucleic Acids Res 2020; 48:1013-1028. [PMID: 31350888 PMCID: PMC7026650 DOI: 10.1093/nar/gkz637] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosomopathies are diseases caused by defects in ribosomal constituents or in factors with a role in ribosome assembly. Intriguingly, congenital ribosomopathies display a paradoxical transition from early symptoms due to cellular hypo-proliferation to an elevated cancer risk later in life. Another association between ribosome defects and cancer came into view after the recent discovery of somatic mutations in ribosomal proteins and rDNA copy number changes in a variety of tumor types, giving rise to somatic ribosomopathies. Despite these clear connections between ribosome defects and cancer, the molecular mechanisms by which defects in this essential cellular machinery are oncogenic only start to emerge. In this review, the impact of ribosomal defects on the cellular function and their mechanisms of promoting oncogenesis are described. In particular, we discuss the emerging hallmarks of ribosomopathies such as the appearance of ‘onco-ribosomes’ that are specialized in translating oncoproteins, dysregulation of translation-independent extra-ribosomal functions of ribosomal proteins, rewired cellular protein and energy metabolism, and extensive oxidative stress leading to DNA damage. We end by integrating these findings in a model that can provide an explanation how ribosomopathies could lead to the transition from hypo- to hyper-proliferation in bone marrow failure syndromes with elevated cancer risk.
Collapse
Affiliation(s)
- Kim R Kampen
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Sergey O Sulima
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Stijn Vereecke
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
216
|
|
217
|
Smekalova EM, Gerashchenko MV, O'Connor PBF, Whittaker CA, Kauffman KJ, Fefilova AS, Zatsepin TS, Bogorad RL, Baranov PV, Langer R, Gladyshev VN, Anderson DG, Koteliansky V. In Vivo RNAi-Mediated eIF3m Knockdown Affects Ribosome Biogenesis and Transcription but Has Limited Impact on mRNA-Specific Translation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:252-266. [PMID: 31855834 PMCID: PMC6926209 DOI: 10.1016/j.omtn.2019.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/20/2019] [Accepted: 11/05/2019] [Indexed: 12/19/2022]
Abstract
Translation is an essential biological process, and dysregulation is associated with a range of diseases including ribosomopathies, diabetes, and cancer. Here, we examine translation dysregulation in vivo using RNAi to knock down the m-subunit of the translation initiation factor eIF3 in the mouse liver. Transcriptome sequencing, ribosome profiling, whole proteome, and phosphoproteome analyses show that eIF3m deficiency leads to the transcriptional response and changes in cellular translation that yield few detectable differences in the translation of particular mRNAs. The transcriptional response fell into two main categories: ribosome biogenesis (increased transcription of ribosomal proteins) and cell metabolism (alterations in lipid, amino acid, nucleic acid, and drug metabolism). Analysis of ribosome biogenesis reveals inhibition of rRNA processing, highlighting decoupling of rRNA synthesis and ribosomal protein gene transcription in response to eIF3m knockdown. Interestingly, a similar reduction in eIF3m protein levels is associated with induction of the mTOR pathway in vitro but not in vivo. Overall, this work highlights the utility of a RNAi-based in vivo approach for studying the regulation of mammalian translation in vivo.
Collapse
Affiliation(s)
- Elena M Smekalova
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Maxim V Gerashchenko
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Patrick B F O'Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 YN60, Ireland
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kevin J Kauffman
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Anna S Fefilova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 121205, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 121205, Russia; Department of Chemistry and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Roman L Bogorad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork T12 YN60, Ireland; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow 117997, Russia
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA; Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA; Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Victor Koteliansky
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow, 121205, Russia.
| |
Collapse
|
218
|
Heme-regulated eIF2α kinase in erythropoiesis and hemoglobinopathies. Blood 2020; 134:1697-1707. [PMID: 31554636 DOI: 10.1182/blood.2019001915] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
As essential components of hemoglobin, iron and heme play central roles in terminal erythropoiesis. The impairment of this process in iron/heme deficiency results in microcytic hypochromic anemia, the most prevalent anemia globally. Heme-regulated eIF2α kinase, also known as heme-regulated inhibitor (HRI), is a key heme-binding protein that senses intracellular heme concentrations to balance globin protein synthesis with the amount of heme available for hemoglobin production. HRI is activated during heme deficiency to phosphorylate eIF2α (eIF2αP), which simultaneously inhibits the translation of globin messenger RNAs (mRNAs) and selectively enhances the translation of activating transcription factor 4 (ATF4) mRNA to induce stress response genes. This coordinated translational regulation is a universal hallmark across the eIF2α kinase family under various stress conditions and is termed the integrated stress response (ISR). Inhibition of general protein synthesis by HRI-eIF2αP in erythroblasts is necessary to prevent proteotoxicity and maintain protein homeostasis in the cytoplasm and mitochondria. Additionally, the HRI-eIF2αP-ATF4 pathway represses mechanistic target of rapamycin complex 1 (mTORC1) signaling, specifically in the erythroid lineage as a feedback mechanism of erythropoietin-stimulated erythropoiesis during iron/heme deficiency. Furthermore, ATF4 target genes are most highly activated during iron deficiency to maintain mitochondrial function and redox homeostasis, as well as to enable erythroid differentiation. Thus, heme and translation regulate erythropoiesis through 2 key signaling pathways, ISR and mTORC1, which are coordinated by HRI to circumvent ineffective erythropoiesis (IE). HRI-ISR is also activated to reduce the severity of β-thalassemia intermedia in the Hbbth1/th1 murine model. Recently, HRI has been implicated in the regulation of human fetal hemoglobin production. Therefore, HRI-ISR has emerged as a potential therapeutic target for hemoglobinopathies.
Collapse
|
219
|
Shao Z, Flynn RA, Crowe JL, Zhu Y, Liang J, Jiang W, Aryan F, Aoude P, Bertozzi CR, Estes VM, Lee BJ, Bhagat G, Zha S, Calo E. DNA-PKcs has KU-dependent function in rRNA processing and haematopoiesis. Nature 2020; 579:291-296. [PMID: 32103174 PMCID: PMC10919329 DOI: 10.1038/s41586-020-2041-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 01/28/2020] [Indexed: 11/09/2022]
Abstract
The DNA-dependent protein kinase (DNA-PK), which comprises the KU heterodimer and a catalytic subunit (DNA-PKcs), is a classical non-homologous end-joining (cNHEJ) factor1. KU binds to DNA ends, initiates cNHEJ, and recruits and activates DNA-PKcs. KU also binds to RNA, but the relevance of this interaction in mammals is unclear. Here we use mouse models to show that DNA-PK has an unexpected role in the biogenesis of ribosomal RNA (rRNA) and in haematopoiesis. The expression of kinase-dead DNA-PKcs abrogates cNHEJ2. However, most mice that both expressed kinase-dead DNA-PKcs and lacked the tumour suppressor TP53 developed myeloid disease, whereas all other previously characterized mice deficient in both cNHEJ and TP53 expression succumbed to pro-B cell lymphoma3. DNA-PK autophosphorylates DNA-PKcs, which is its best characterized substrate. Blocking the phosphorylation of DNA-PKcs at the T2609 cluster, but not the S2056 cluster, led to KU-dependent defects in 18S rRNA processing, compromised global protein synthesis in haematopoietic cells and caused bone marrow failure in mice. KU drives the assembly of DNA-PKcs on a wide range of cellular RNAs, including the U3 small nucleolar RNA, which is essential for processing of 18S rRNA4. U3 activates purified DNA-PK and triggers phosphorylation of DNA-PKcs at T2609. DNA-PK, but not other cNHEJ factors, resides in nucleoli in an rRNA-dependent manner and is co-purified with the small subunit processome. Together our data show that DNA-PK has RNA-dependent, cNHEJ-independent functions during ribosome biogenesis that require the kinase activity of DNA-PKcs and its phosphorylation at the T2609 cluster.
Collapse
Affiliation(s)
- Zhengping Shao
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Ryan A Flynn
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Jennifer L Crowe
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Graduate Program of Pathobiology and Molecular Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yimeng Zhu
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jialiang Liang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wenxia Jiang
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Fardin Aryan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick Aoude
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Govind Bhagat
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Department of Immunology and Microbiology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
220
|
Guimaraes JC, Mittal N, Gnann A, Jedlinski D, Riba A, Buczak K, Schmidt A, Zavolan M. A rare codon-based translational program of cell proliferation. Genome Biol 2020; 21:44. [PMID: 32102681 PMCID: PMC7045563 DOI: 10.1186/s13059-020-1943-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The speed of translation elongation is primarily determined by the abundance of tRNAs. Thus, the codon usage influences the rate with which individual mRNAs are translated. As the nature of tRNA pools and modifications can vary across biological conditions, codon elongation rates may also vary, leading to fluctuations in the protein production from individual mRNAs. Although it has been observed that functionally related mRNAs exhibit similar codon usage, presumably to provide an effective way to coordinate expression of multiple proteins, experimental evidence for codon-mediated translation efficiency modulation of functionally related mRNAs in specific conditions is scarce and the associated mechanisms are still debated. RESULTS Here, we reveal that mRNAs whose expression increases during cell proliferation are enriched in rare codons, poorly adapted to tRNA pools. Ribosome occupancy profiling and proteomics measurements show that upon increased cell proliferation, transcripts enriched in rare codons undergo a higher translation boost than transcripts with common codons. Re-coding of a fluorescent reporter with rare codons increased protein output by ~ 30% relative to a reporter re-coded with common codons. Although the translation capacity of proliferating cells was higher compared to resting cells, we did not find evidence for the regulation of individual tRNAs. Among the models that were proposed so far to account for codon-mediated translational regulation upon changing conditions, the one that seems most consistent with our data involves a global upregulation of ready-to-translate tRNAs, which we show can lead to a higher increase in the elongation velocity at rare codons compared to common codons. CONCLUSIONS We propose that the alleviation of translation bottlenecks in rapidly dividing cells enables preferential upregulation of pro-proliferation proteins, encoded by mRNAs that are enriched in rare codons.
Collapse
Affiliation(s)
- Joao C Guimaraes
- Computational and Systems Biology, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland.
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
| | - Alexandra Gnann
- Computational and Systems Biology, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
- Department of Biomedicine, University of Basel/University Hospital Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Dominik Jedlinski
- Computational and Systems Biology, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
| | - Andrea Riba
- Computational and Systems Biology, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch CEDEX, France
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland.
| |
Collapse
|
221
|
Jaud M, Philippe C, Di Bella D, Tang W, Pyronnet S, Laurell H, Mazzolini L, Rouault-Pierre K, Touriol C. Translational Regulations in Response to Endoplasmic Reticulum Stress in Cancers. Cells 2020; 9:cells9030540. [PMID: 32111004 PMCID: PMC7140484 DOI: 10.3390/cells9030540] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
During carcinogenesis, almost all the biological processes are modified in one way or another. Among these biological processes affected, anomalies in protein synthesis are common in cancers. Indeed, cancer cells are subjected to a wide range of stresses, which include physical injuries, hypoxia, nutrient starvation, as well as mitotic, oxidative or genotoxic stresses. All of these stresses will cause the accumulation of unfolded proteins in the Endoplasmic Reticulum (ER), which is a major organelle that is involved in protein synthesis, preservation of cellular homeostasis, and adaptation to unfavourable environment. The accumulation of unfolded proteins in the endoplasmic reticulum causes stress triggering an unfolded protein response in order to promote cell survival or to induce apoptosis in case of chronic stress. Transcription and also translational reprogramming are tightly controlled during the unfolded protein response to ensure selective gene expression. The majority of stresses, including ER stress, induce firstly a decrease in global protein synthesis accompanied by the induction of alternative mechanisms for initiating the translation of mRNA, later followed by a translational recovery. After a presentation of ER stress and the UPR response, we will briefly present the different modes of translation initiation, then address the specific translational regulatory mechanisms acting during reticulum stress in cancers and highlight the importance of translational control by ER stress in tumours.
Collapse
Affiliation(s)
- Manon Jaud
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
| | - Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Doriana Di Bella
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Weiwei Tang
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Stéphane Pyronnet
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
| | - Henrik Laurell
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
- Inserm UMR1048, I2MC (Institut des Maladies Métaboliques et Cardiovasculaires), BP 84225, CEDEX 04, 31 432 Toulouse, France
| | - Laurent Mazzolini
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- CNRS ERL5294, CRCT, F-31037 Toulouse, France
| | - Kevin Rouault-Pierre
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Christian Touriol
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
- Correspondence:
| |
Collapse
|
222
|
Choe HK, Cho J. Comprehensive Genome-Wide Approaches to Activity-Dependent Translational Control in Neurons. Int J Mol Sci 2020; 21:ijms21051592. [PMID: 32111062 PMCID: PMC7084349 DOI: 10.3390/ijms21051592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
Activity-dependent regulation of gene expression is critical in experience-mediated changes in the brain. Although less appreciated than transcriptional control, translational control is a crucial regulatory step of activity-mediated gene expression in physiological and pathological conditions. In the first part of this review, we overview evidence demonstrating the importance of translational controls under the context of synaptic plasticity as well as learning and memory. Then, molecular mechanisms underlying the translational control, including post-translational modifications of translation factors, mTOR signaling pathway, and local translation, are explored. We also summarize how activity-dependent translational regulation is associated with neurodevelopmental and psychiatric disorders, such as autism spectrum disorder and depression. In the second part, we highlight how recent application of high-throughput sequencing techniques has added insight into genome-wide studies on translational regulation of neuronal genes. Sequencing-based strategies to identify molecular signatures of the active neuronal population responding to a specific stimulus are discussed. Overall, this review aims to highlight the implication of translational control for neuronal gene regulation and functions of the brain and to suggest prospects provided by the leading-edge techniques to study yet-unappreciated translational regulation in the nervous system.
Collapse
Affiliation(s)
- Han Kyoung Choe
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: (H.K.C.); (J.C.)
| | - Jun Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
- Correspondence: (H.K.C.); (J.C.)
| |
Collapse
|
223
|
Oertlin C, Lorent J, Murie C, Furic L, Topisirovic I, Larsson O. Generally applicable transcriptome-wide analysis of translation using anota2seq. Nucleic Acids Res 2020; 47:e70. [PMID: 30926999 PMCID: PMC6614820 DOI: 10.1093/nar/gkz223] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/18/2019] [Accepted: 03/28/2019] [Indexed: 12/28/2022] Open
Abstract
mRNA translation plays an evolutionarily conserved role in homeostasis and when dysregulated contributes to various disorders including metabolic and neurological diseases and cancer. Notwithstanding that optimal and universally applicable methods are critical for understanding the complex role of translational control under physiological and pathological conditions, approaches to analyze translatomes are largely underdeveloped. To address this, we developed the anota2seq algorithm which outperforms current methods for statistical identification of changes in translation. Notably, in contrast to available analytical methods, anota2seq also allows specific identification of an underappreciated mode of gene expression regulation whereby translation acts as a buffering mechanism which maintains protein levels despite fluctuations in corresponding mRNA abundance (‘translational buffering’). Thus, the universal anota2seq algorithm allows efficient and hitherto unprecedented interrogation of translatomes which is anticipated to advance knowledge regarding the role of translation in homeostasis and disease.
Collapse
Affiliation(s)
- Christian Oertlin
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Julie Lorent
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Carl Murie
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Luc Furic
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, VIC, Australia.,Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Ivan Topisirovic
- Lady Davis Institute, SMBD Jewish General Hospital, Gerald Bronfman Department of Oncology, and Departments of Experimental Medicine, and Biochemistry McGill University, Montreal, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
224
|
Chen C, Lu M, Lin S, Qin W. The nuclear gene rpl18 regulates erythroid maturation via JAK2-STAT3 signaling in zebrafish model of Diamond-Blackfan anemia. Cell Death Dis 2020; 11:135. [PMID: 32075953 PMCID: PMC7031319 DOI: 10.1038/s41419-020-2331-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 11/09/2022]
Abstract
Diamond-Blackfan anemia (DBA) is a rare, inherited bone marrow failure syndrome, characterized by red blood cell aplasia, developmental abnormalities, and enhanced risk of malignancy. However, the underlying pathogenesis of DBA is yet to be understood. Recently, mutations in the gene encoding ribosomal protein (RP) L18 were identified in DBA patients. RPL18 is a crucial component of the ribosomal large subunit but its role in hematopoiesis remains unknown. To genetically model the ribosomal defect identified in DBA, we generated a rpl18 mutant line in zebrafish, using CRISPR/Cas9 system. Molecular characterization of this mutant line demonstrated that Rpl18 deficiency mirrored the erythroid defects of DBA, namely a lack of mature red blood cells. Rpl18 deficiency caused an increase in p53 activation and JAK2-STAT3 activity. Furthermore, we found inhibitors of JAK2 or STAT3 phosphorylation could rescue anemia in rpl18 mutants. Our research provides a new in vivo model of Rpl18 deficiency and suggests involvement of signal pathway of JAK2-STAT3 in the DBA pathogenesis.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Mengjia Lu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Wei Qin
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
225
|
Chua BA, Van Der Werf I, Jamieson C, Signer RAJ. Post-Transcriptional Regulation of Homeostatic, Stressed, and Malignant Stem Cells. Cell Stem Cell 2020; 26:138-159. [PMID: 32032524 PMCID: PMC7158223 DOI: 10.1016/j.stem.2020.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cellular identity is not driven by differences in genomic content but rather by epigenomic, transcriptomic, and proteomic heterogeneity. Although regulation of the epigenome plays a key role in shaping stem cell hierarchies, differential expression of transcripts only partially explains protein abundance. The epitranscriptome, translational control, and protein degradation have emerged as fundamental regulators of proteome complexity that regulate stem cell identity and function. Here, we discuss how post-transcriptional mechanisms enable stem cell homeostasis and responsiveness to developmental cues and environmental stressors by rapidly shaping the content of their proteome and how these processes are disrupted in pre-malignant and malignant states.
Collapse
Affiliation(s)
- Bernadette A Chua
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA
| | - Inge Van Der Werf
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA; Sanford Stem Cell Clinical Center, La Jolla, CA 92037, USA
| | - Catriona Jamieson
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA; Sanford Stem Cell Clinical Center, La Jolla, CA 92037, USA.
| | - Robert A J Signer
- Division of Regenerative Medicine, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093 USA.
| |
Collapse
|
226
|
Ebright RY, Lee S, Wittner BS, Niederhoffer KL, Nicholson BT, Bardia A, Truesdell S, Wiley DF, Wesley B, Li S, Mai A, Aceto N, Vincent-Jordan N, Szabolcs A, Chirn B, Kreuzer J, Comaills V, Kalinich M, Haas W, Ting DT, Toner M, Vasudevan S, Haber DA, Maheswaran S, Micalizzi DS. Deregulation of ribosomal protein expression and translation promotes breast cancer metastasis. Science 2020; 367:1468-1473. [PMID: 32029688 DOI: 10.1126/science.aay0939] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/01/2019] [Accepted: 01/26/2020] [Indexed: 12/11/2022]
Abstract
Circulating tumor cells (CTCs) are shed into the bloodstream from primary tumors, but only a small subset of these cells generates metastases. We conducted an in vivo genome-wide CRISPR activation screen in CTCs from breast cancer patients to identify genes that promote distant metastasis in mice. Genes coding for ribosomal proteins and regulators of translation were enriched in this screen. Overexpression of RPL15, which encodes a component of the large ribosomal subunit, increased metastatic growth in multiple organs and selectively enhanced translation of other ribosomal proteins and cell cycle regulators. RNA sequencing of freshly isolated CTCs from breast cancer patients revealed a subset with strong ribosome and protein synthesis signatures; these CTCs expressed proliferation and epithelial markers and correlated with poor clinical outcome. Therapies targeting this aggressive subset of CTCs may merit exploration as potential suppressors of metastatic progression.
Collapse
Affiliation(s)
- Richard Y Ebright
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sooncheol Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kira L Niederhoffer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Benjamin T Nicholson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Samuel Truesdell
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Devon F Wiley
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Benjamin Wesley
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Selena Li
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Andy Mai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicola Aceto
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicole Vincent-Jordan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Annamaria Szabolcs
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Brian Chirn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Johannes Kreuzer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Valentine Comaills
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mark Kalinich
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Shriners Hospital for Children, Boston, MA 02114, USA.,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shobha Vasudevan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. .,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Douglas S Micalizzi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
227
|
Hung RJ, Hu Y, Kirchner R, Liu Y, Xu C, Comjean A, Tattikota SG, Li F, Song W, Ho Sui S, Perrimon N. A cell atlas of the adult Drosophila midgut. Proc Natl Acad Sci U S A 2020; 117:1514-1523. [PMID: 31915294 PMCID: PMC6983450 DOI: 10.1073/pnas.1916820117] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies of the adult Drosophila midgut have led to many insights in our understanding of cell-type diversity, stem cell regeneration, tissue homeostasis, and cell fate decision. Advances in single-cell RNA sequencing provide opportunities to identify new cell types and molecular features. We used single-cell RNA sequencing to characterize the transcriptome of midgut epithelial cells and identified 22 distinct clusters representing intestinal stem cells, enteroblasts, enteroendocrine cells (EEs), and enterocytes. This unbiased approach recovered most of the known intestinal stem cells/enteroblast and EE markers, highlighting the high quality of the dataset, and led to insights on intestinal stem cell biology, cell type-specific organelle features, the roles of new transcription factors in progenitors and regional variation along the gut, 5 additional EE gut hormones, EE hormonal expression diversity, and paracrine function of EEs. To facilitate mining of this rich dataset, we provide a web-based resource for visualization of gene expression in single cells. Altogether, our study provides a comprehensive resource for addressing functions of genes in the midgut epithelium.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
| | - Yanhui Hu
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Rory Kirchner
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Yifang Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Chiwei Xu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Aram Comjean
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Fangge Li
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Shannan Ho Sui
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
228
|
Ferreira R, Schneekloth JS, Panov KI, Hannan KM, Hannan RD. Targeting the RNA Polymerase I Transcription for Cancer Therapy Comes of Age. Cells 2020; 9:cells9020266. [PMID: 31973211 PMCID: PMC7072222 DOI: 10.3390/cells9020266] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Transcription of the ribosomal RNA genes (rDNA) that encode the three largest ribosomal RNAs (rRNA), is mediated by RNA Polymerase I (Pol I) and is a key regulatory step for ribosomal biogenesis. Although it has been reported over a century ago that the number and size of nucleoli, the site of ribosome biogenesis, are increased in cancer cells, the significance of this observation for cancer etiology was not understood. The realization that the increase in rRNA expression has an active role in cancer progression, not only through increased protein synthesis and thus proliferative capacity but also through control of cellular check points and chromatin structure, has opened up new therapeutic avenues for the treatment of cancer through direct targeting of Pol I transcription. In this review, we discuss the rational of targeting Pol I transcription for the treatment of cancer; review the current cancer therapeutics that target Pol I transcription and discuss the development of novel Pol I-specific inhibitors, their therapeutic potential, challenges and future prospects.
Collapse
Affiliation(s)
- Rita Ferreira
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Correspondence:
| | - John S. Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Konstantin I. Panov
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- CCRCB and School of Biological Sciences, Queen’s University Belfast Medical Biology Centre, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Katherine M. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ross D. Hannan
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Acton 2601, NSW, Australia; (K.I.P.); (K.M.H.); (R.D.H.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
229
|
Basak A, Munschauer M, Lareau CA, Montbleau KE, Ulirsch JC, Hartigan CR, Schenone M, Lian J, Wang Y, Huang Y, Wu X, Gehrke L, Rice CM, An X, Christou HA, Mohandas N, Carr SA, Chen JJ, Orkin SH, Lander ES, Sankaran VG. Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation. Nat Genet 2020; 52:138-145. [PMID: 31959994 PMCID: PMC7031047 DOI: 10.1038/s41588-019-0568-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/11/2019] [Indexed: 12/17/2022]
Abstract
Increased production of fetal hemoglobin (HbF) can ameliorate the severity of sickle cell disease and β-thalassemia1. BCL11A represses the genes encoding HbF and regulates human hemoglobin switching through variation in its expression during development2–7. However, the mechanisms underlying the developmental expression of BCL11A remain mysterious. Here we show that BCL11A is regulated at the level of mRNA translation during human hematopoietic development. Despite decreased BCL11A protein synthesis earlier in development, BCL11A mRNA continues to be associated with ribosomes. Through unbiased genomic and proteomic analyses, we demonstrate that the RNA-binding protein LIN28B, which is developmentally expressed in a reciprocal pattern to BCL11A, directly interacts with ribosomes and BCL11A mRNA. Furthermore, we show that BCL11A mRNA translation is suppressed by LIN28B through direct interactions, independent of its role in regulating let-7 microRNAs, and BCL11A is the major target of LIN28B-mediated HbF induction. Our results reveal a previously unappreciated mechanism underlying human hemoglobin switching that illuminates new therapeutic opportunities.
Collapse
Affiliation(s)
- Anindita Basak
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| | - Mathias Munschauer
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Caleb A Lareau
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Kara E Montbleau
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Boston University School of Medicine, Boston, MA, USA
| | - Jacob C Ulirsch
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA
| | - Christina R Hartigan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Monica Schenone
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - John Lian
- Institute for Biomedical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | | | - Yumin Huang
- New York Blood Center, New York, NY, USA.,The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Xianfang Wu
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Lee Gehrke
- Institute for Biomedical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Charles M Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Xiuli An
- New York Blood Center, New York, NY, USA.,School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Helen A Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jane-Jane Chen
- Institute for Biomedical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.,Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Eric S Lander
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
230
|
Baxter M, Voronkov M, Poolman T, Galli G, Pinali C, Goosey L, Knight A, Krakowiak K, Maidstone R, Iqbal M, Zi M, Prehar S, Cartwright EJ, Gibbs J, Matthews LC, Adamson AD, Humphreys NE, Rebelo-Guiomar P, Minczuk M, Bechtold DA, Loudon A, Ray D. Cardiac mitochondrial function depends on BUD23 mediated ribosome programming. eLife 2020; 9:e50705. [PMID: 31939735 PMCID: PMC7002040 DOI: 10.7554/elife.50705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/24/2019] [Indexed: 01/21/2023] Open
Abstract
Efficient mitochondrial function is required in tissues with high energy demand such as the heart, and mitochondrial dysfunction is associated with cardiovascular disease. Expression of mitochondrial proteins is tightly regulated in response to internal and external stimuli. Here we identify a novel mechanism regulating mitochondrial content and function, through BUD23-dependent ribosome generation. BUD23 was required for ribosome maturation, normal 18S/28S stoichiometry and modulated the translation of mitochondrial transcripts in human A549 cells. Deletion of Bud23 in murine cardiomyocytes reduced mitochondrial content and function, leading to severe cardiomyopathy and death. We discovered that BUD23 selectively promotes ribosomal interaction with low GC-content 5'UTRs. Taken together we identify a critical role for BUD23 in bioenergetics gene expression, by promoting efficient translation of mRNA transcripts with low 5'UTR GC content. BUD23 emerges as essential to mouse development, and to postnatal cardiac function.
Collapse
Affiliation(s)
- Matthew Baxter
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Maria Voronkov
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Toryn Poolman
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Gina Galli
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Christian Pinali
- Division of Cardiovascular SciencesUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Laurence Goosey
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Abigail Knight
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Karolina Krakowiak
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Robert Maidstone
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Mudassar Iqbal
- Division of Cardiovascular SciencesUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Min Zi
- Division of Cardiovascular SciencesUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Sukhpal Prehar
- Division of Cardiovascular SciencesUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular SciencesUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Julie Gibbs
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Laura C Matthews
- Leeds Institute of Medical ResearchFaculty of Medicine and Health, University of LeedsLeedsUnited Kingdom
| | - Antony D Adamson
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Neil E Humphreys
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Pedro Rebelo-Guiomar
- Graduate Program in Areas of Basic and Applied Biology (GABBA)University of PortoPortoPortugal
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology UnitUniversity of CambridgeCambridgeUnited Kingdom
| | - David A Bechtold
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - Andrew Loudon
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
| | - David Ray
- Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Science CentreManchesterUnited Kingdom
- Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUnited Kingdom
- NIHR Oxford Biomedical Research CentreJohn Radcliffe HospitalOxfordUnited Kingdom
| |
Collapse
|
231
|
An epitranscriptomic mechanism underlies selective mRNA translation remodelling in melanoma persister cells. Nat Commun 2019; 10:5713. [PMID: 31844050 PMCID: PMC6915789 DOI: 10.1038/s41467-019-13360-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 11/04/2019] [Indexed: 01/20/2023] Open
Abstract
Cancer persister cells tolerate anticancer drugs and serve as the founders of acquired resistance and cancer relapse. Here we show that a subpopulation of BRAFV600 mutant melanoma cells that tolerates exposure to BRAF and MEK inhibitors undergoes a reversible remodelling of mRNA translation that evolves in parallel with drug sensitivity. Although this process is associated with a global reduction in protein synthesis, a subset of mRNAs undergoes an increased efficiency in translation. Inhibiting the eIF4A RNA helicase, a component of the eIF4F translation initiation complex, abrogates this selectively increased translation and is lethal to persister cells. Translation remodelling in persister cells coincides with an increased N6-methyladenosine modification in the 5′-untranslated region of some highly translated mRNAs. Combination of eIF4A inhibitor with BRAF and MEK inhibitors effectively inhibits the emergence of persister cells and may represent a new therapeutic strategy to prevent acquired drug resistance. Melanoma persister cells are tolerant to anti-BRAF and anti-MEK inhibition and can trigger cancer relapse. Here the authors show that a subset of N6-methyladenosine modified mRNAs is translationally activated in persister cells. This preferential translation can be abrogated via eIF4A inhibition.
Collapse
|
232
|
Drosophila RpS12 controls translation, growth, and cell competition through Xrp1. PLoS Genet 2019; 15:e1008513. [PMID: 31841522 PMCID: PMC6936874 DOI: 10.1371/journal.pgen.1008513] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 12/30/2019] [Accepted: 11/08/2019] [Indexed: 01/01/2023] Open
Abstract
Whereas complete loss of Rp function is generally lethal, most heterozygous Rp mutants grow more slowly and are subject to competitive loss from mosaics tissues that also contain wild type cells. The rpS12 gene has a special role in the cell competition of other Ribosomal Protein (Rp) mutant cells in Drosophila. Elimination by cell competition is promoted by higher RpS12 levels and prevented by a specific rpS12 mis-sense mutation, identifying RpS12 as a key effector of cell competition due to mutations in other Rp genes. Here we show that RpS12 is also required for other aspects of Rp mutant phenotypes, including hundreds of gene expression changes that occur in 'Minute' Rp heterozygous wing imaginal discs, overall translation rate, and the overall rate of organismal development, all through the bZip protein Xrp1 that is one of the RpS12-regulated genes. Our findings outline the regulatory response to mutations affecting essential Rp genes that controls overall translation, growth, and cell competition, and which may contribute to cancer and other diseases.
Collapse
|
233
|
Abstract
In the past 25 years, genetic and biochemical analyses of ribosome assembly in yeast have identified most of the factors that participate in this complex pathway and have generated models for the mechanisms driving the assembly. More recently, the publication of numerous cryo-electron microscopy structures of yeast ribosome assembly intermediates has provided near-atomic resolution snapshots of ribosome precursor particles. Satisfyingly, these structural data support the genetic and biochemical models and provide additional mechanistic insight into ribosome assembly. In this Review, we discuss the mechanisms of assembly of the yeast small ribosomal subunit and large ribosomal subunit in the nucleolus, nucleus and cytoplasm. Particular emphasis is placed on concepts such as the mechanisms of RNA compaction, the functions of molecular switches and molecular mimicry, the irreversibility of assembly checkpoints and the roles of structural and functional proofreading of pre-ribosomal particles.
Collapse
|
234
|
van Galen P, Mbong N, Kreso A, Schoof EM, Wagenblast E, Ng SWK, Krivdova G, Jin L, Nakauchi H, Dick JE. Integrated Stress Response Activity Marks Stem Cells in Normal Hematopoiesis and Leukemia. Cell Rep 2019; 25:1109-1117.e5. [PMID: 30380403 DOI: 10.1016/j.celrep.2018.10.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/25/2018] [Accepted: 10/02/2018] [Indexed: 12/20/2022] Open
Abstract
Lifelong maintenance of the blood system requires equilibrium between clearance of damaged hematopoietic stem cells (HSCs) and long-term survival of the HSC pool. Severe perturbations of cellular homeostasis result in rapid HSC loss to maintain clonal purity. However, normal homeostatic processes can also generate lower-level stress; how HSCs survive these conditions remains unknown. Here we show that the integrated stress response (ISR) is uniquely active in HSCs and facilitates their persistence. Activating transcription factor 4 (ATF4) mediates the ISR and is highly expressed in HSCs due to scarcity of the eIF2 translation initiation complex. Amino acid deprivation results in eIF2α phosphorylation-dependent upregulation of ATF4, promoting HSC survival. Primitive acute myeloid leukemia (AML) cells also display eIF2 scarcity and ISR activity marks leukemia stem cells (LSCs) in primary AML samples. These findings identify a link between the ISR and stem cell survival in the normal and leukemic contexts.
Collapse
Affiliation(s)
- Peter van Galen
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nathan Mbong
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Antonia Kreso
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Erwin M Schoof
- The Finsen Laboratory, Rigshospitalet/Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elvin Wagenblast
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Stanley W K Ng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5G 1A1, Canada
| | - Gabriela Krivdova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liqing Jin
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
235
|
Gutiérrez L, Caballero N, Fernández-Calleja L, Karkoulia E, Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 2019; 72:89-105. [PMID: 31769197 DOI: 10.1002/iub.2192] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
GATA1 is considered as the "master" transcription factor in erythropoiesis. It regulates at the transcriptional level all aspects of erythroid maturation and function, as revealed by gene knockout studies in mice and by genome-wide occupancies in erythroid cells. The GATA1 protein contains two zinc finger domains and an N-terminal transactivation domain. GATA1 translation results in the production of the full-length protein and of a shorter variant (GATA1s) lacking the N-terminal transactivation domain, which is functionally deficient in supporting erythropoiesis. GATA1 protein abundance is highly regulated in erythroid cells at different levels, including transcription, mRNA translation, posttranslational modifications, and protein degradation, in a differentiation-stage-specific manner. Maintaining high GATA1 protein levels is essential in the early stages of erythroid maturation, whereas downregulating GATA1 protein levels is a necessary step in terminal erythroid differentiation. The importance of maintaining proper GATA1 protein homeostasis in erythropoiesis is demonstrated by the fact that both GATA1 loss and its overexpression result in lethal anemia. Importantly, alterations in any of those GATA1 regulatory checkpoints have been recognized as an important cause of hematological disorders such as dyserythropoiesis (with or without thrombocytopenia), β-thalassemia, Diamond-Blackfan anemia, myelodysplasia, or leukemia. In this review, we provide an overview of the multilevel regulation of GATA1 protein homeostasis in erythropoiesis and of its deregulation in hematological disease.
Collapse
Affiliation(s)
- Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Noemí Caballero
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Fernández-Calleja
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elena Karkoulia
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Crete, Greece
| | - John Strouboulis
- Cancer Comprehensive Center, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
236
|
Nürenberg-Goloub E, Tampé R. Ribosome recycling in mRNA translation, quality control, and homeostasis. Biol Chem 2019; 401:47-61. [DOI: 10.1515/hsz-2019-0279] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
Abstract
Protein biosynthesis is a conserved process, essential for life. Ongoing research for four decades has revealed the structural basis and mechanistic details of most protein biosynthesis steps. Numerous pathways and their regulation have recently been added to the translation system describing protein quality control and messenger ribonucleic acid (mRNA) surveillance, ribosome-associated protein folding and post-translational modification as well as human disorders associated with mRNA and ribosome homeostasis. Thus, translation constitutes a key regulatory process placing the ribosome as a central hub at the crossover of numerous cellular pathways. Here, we describe the role of ribosome recycling by ATP-binding cassette sub-family E member 1 (ABCE1) as a crucial regulatory step controlling the biogenesis of functional proteins and the degradation of aberrant nascent chains in quality control processes.
Collapse
Affiliation(s)
- Elina Nürenberg-Goloub
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt/Main , Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Max-von-Laue-Str. 9 , D-60438 Frankfurt/Main , Germany
| |
Collapse
|
237
|
Ling T, Crispino JD. GATA1 mutations in red cell disorders. IUBMB Life 2019; 72:106-118. [PMID: 31652397 DOI: 10.1002/iub.2177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
Abstract
GATA1 is an essential regulator of erythroid cell gene expression and maturation. In its absence, erythroid progenitors are arrested in differentiation and undergo apoptosis. Much has been learned about GATA1 function through animal models, which include genetic knockouts as well as ones with decreased levels of expression. However, even greater insights have come from the finding that a number of rare red cell disorders, including Diamond-Blackfan anemia, are associated with GATA1 mutations. These mutations affect the amino-terminal zinc finger (N-ZF) and the amino-terminus of the protein, and in both cases can alter the DNA-binding activity, which is primarily conferred by the third functional domain, the carboxyl-terminal zinc finger (C-ZF). Here we discuss the role of GATA1 in erythropoiesis with an emphasis on the mutations found in human patients with red cell disorders.
Collapse
Affiliation(s)
- Te Ling
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| |
Collapse
|
238
|
Vujovic F, Hunter N, Farahani RM. Notch pathway: a bistable inducer of biological noise? Cell Commun Signal 2019; 17:133. [PMID: 31640734 PMCID: PMC6805690 DOI: 10.1186/s12964-019-0453-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Notch signalling pathway is central to development of metazoans. The pathway codes a binary fate switch. Upon activation, downstream signals contribute to resolution of fate dichotomies such as proliferation/differentiation or sub-lineage differentiation outcome. There is, however, an interesting paradox in the Notch signalling pathway. Despite remarkable predictability of fate outcomes instructed by the Notch pathway, the associated transcriptome is versatile and plastic. This inconsistency suggests the presence of an interface that compiles input from the plastic transcriptome of the Notch pathway but communicates only a binary output in biological decisions. Herein, we address the interface that determines fate outcomes. We provide an alternative hypothesis for the Notch pathway as a biological master switch that operates by induction of genetic noise and bistability in order to facilitate resolution of dichotomous fate outcomes in development.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145 Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145 Australia
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2145 Australia
| |
Collapse
|
239
|
Invariable stoichiometry of ribosomal proteins in mouse brain tissues with aging. Proc Natl Acad Sci U S A 2019; 116:22567-22572. [PMID: 31636180 DOI: 10.1073/pnas.1912060116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Across phyla, the ribosomes-the central molecular machines for translation of genetic information-exhibit an overall preserved architecture and a conserved functional core. The natural heterogeneity of the ribosome periodically phases a debate on their functional specialization and the tissue-specific variations of the ribosomal protein (RP) pool. Using sensitive differential proteomics, we performed a thorough quantitative inventory of the protein composition of ribosomes from 3 different mouse brain tissues, i.e., hippocampus, cortex, and cerebellum, across various ages, i.e., juvenile, adult, and middle-aged mouse groups. In all 3 brain tissues, in both monosomal and polysomal ribosome fractions, we detected an invariant set of 72 of 79 core RPs, RACK1 and 2 of the 8 RP paralogs, the stoichiometry of which remained constant across different ages. The amount of a few RPs punctually varied in either one tissue or one age group, but these fluctuations were within the tight bounds of the measurement noise. Further comparison with the ribosomes from a high-metabolic-rate organ, e.g., the liver, revealed protein composition identical to that of the ribosomes from the 3 brain tissues. Together, our data show an invariant protein composition of ribosomes from 4 tissues across different ages of mice and support the idea that functional heterogeneity may arise from factors other than simply ribosomal protein stoichiometry.
Collapse
|
240
|
Uechi T, Kenmochi N. Zebrafish Models of Diamond-Blackfan Anemia: A Tool for Understanding the Disease Pathogenesis and Drug Discovery. Pharmaceuticals (Basel) 2019; 12:ph12040151. [PMID: 31600948 PMCID: PMC6958429 DOI: 10.3390/ph12040151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare bone marrow failure syndrome characterized by red blood cell aplasia. Currently, mutations in 19 ribosomal protein genes have been identified in patients. However, the pathogenic mechanism of DBA remains unknown. Recently, several DBA models were generated in zebrafish (Danio rerio) to elucidate the molecular pathogenesis of disease and to explore novel treatments. Zebrafish have strong advantages in drug discovery due to their rapid development and transparency during embryogenesis and their applicability to chemical screens. Together with mice, zebrafish have now become a powerful tool for studying disease mechanisms and drug discovery. In this review, we introduce recent advances in DBA drug development and discuss the usefulness of zebrafish as a disease model.
Collapse
Affiliation(s)
- Tamayo Uechi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Naoya Kenmochi
- Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| |
Collapse
|
241
|
Nachmani D, Bothmer AH, Grisendi S, Mele A, Bothmer D, Lee JD, Monteleone E, Cheng K, Zhang Y, Bester AC, Guzzetti A, Mitchell CA, Mendez LM, Pozdnyakova O, Sportoletti P, Martelli MP, Vulliamy TJ, Safra M, Schwartz S, Luzzatto L, Bluteau O, Soulier J, Darnell RB, Falini B, Dokal I, Ito K, Clohessy JG, Pandolfi PP. Germline NPM1 mutations lead to altered rRNA 2'-O-methylation and cause dyskeratosis congenita. Nat Genet 2019; 51:1518-1529. [PMID: 31570891 PMCID: PMC6858547 DOI: 10.1038/s41588-019-0502-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
Abstract
RNA modifications are emerging as key determinants of gene expression. However, compelling genetic demonstrations of their relevance to human disease are lacking. Here, we link ribosomal RNA 2'-O-methylation (2'-O-Me) to the etiology of dyskeratosis congenita. We identify nucleophosmin (NPM1) as an essential regulator of 2'-O-Me on rRNA by directly binding C/D box small nucleolar RNAs, thereby modulating translation. We demonstrate the importance of 2'-O-Me-regulated translation for cellular growth, differentiation and hematopoietic stem cell maintenance, and show that Npm1 inactivation in adult hematopoietic stem cells results in bone marrow failure. We identify NPM1 germline mutations in patients with dyskeratosis congenita presenting with bone marrow failure and demonstrate that they are deficient in small nucleolar RNA binding. Mice harboring a dyskeratosis congenita germline Npm1 mutation recapitulate both hematological and nonhematological features of dyskeratosis congenita. Thus, our findings indicate that impaired 2'-O-Me can be etiological to human disease.
Collapse
Affiliation(s)
- Daphna Nachmani
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Anne H Bothmer
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Silvia Grisendi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aldo Mele
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Dietmar Bothmer
- Hochschule Zittau/Görlitz, Institute of Ecology and Environmental Protection, Zittau, Germany
| | - Jonathan D Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emanuele Monteleone
- Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Ke Cheng
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yang Zhang
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Assaf C Bester
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alison Guzzetti
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Caitlin A Mitchell
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lourdes M Mendez
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Olga Pozdnyakova
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Paolo Sportoletti
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maria-Paola Martelli
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Tom J Vulliamy
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Modi Safra
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Lucio Luzzatto
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Olivier Bluteau
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France
| | - Jean Soulier
- INSERM UMR944 and CNRS UMR7212, Hôpital Saint-Louis, Paris, France
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Brunangelo Falini
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche, University of Perugia, Perugia, Italy
| | - Inderjeet Dokal
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, NY, USA
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
242
|
Farley-Barnes KI, Ogawa LM, Baserga SJ. Ribosomopathies: Old Concepts, New Controversies. Trends Genet 2019; 35:754-767. [PMID: 31376929 PMCID: PMC6852887 DOI: 10.1016/j.tig.2019.07.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022]
Abstract
Ribosomopathies are a diverse subset of diseases caused by reduced expression of, or mutations in, factors necessary for making ribosomes, the protein translation machinery in the cell. Despite the ubiquitous need for ribosomes in all cell types, ribosomopathies manifest with tissue-specific defects and sometimes increased cancer susceptibility, but few treatments target the underlying cause. By highlighting new research in the field, we review current hypotheses for the basis of this tissue specificity. Based on new work, we broaden our understanding of the role of ribosome biogenesis in diverse tissue types throughout embryonic development. We also pose the question of whether previously described human conditions such as aging can be at least partially attributed to defects in making ribosomes.
Collapse
Affiliation(s)
- Katherine I Farley-Barnes
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lisa M Ogawa
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
243
|
Kazerounian S, Yuan D, Alexander MS, Beggs AH, Gazda HT. Rpl5-Inducible Mouse Model for Studying Diamond-Blackfan Anemia. Discoveries (Craiova) 2019; 7:e96. [PMID: 32309614 PMCID: PMC7086081 DOI: 10.15190/d.2019.9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow disorder with mutations in ribosomal protein genes. Several animal models have been developed to study the pathological mechanism of DBA. Previously, we reported that the complete knock-out of both Rpl5 and Rps24 alleles were lethal, while heterozygous Rpl5+/- and Rps24+/- mice showed normal phenotype. To establish a more efficient mouse model for mimicking DBA symptoms, we have taken advantage of RNAi technology to generate an inducible mouse model utilizing tetracycline-induced down-regulation of Rpl5. After two weeks of treatment with doxycycline in drinking water, a subset of treated shRNA Rpl5+/- adult mice developed mild anemia while control mice had normal complete blood counts. Similarly, treated shRNA Rpl5+/- mice developed reticulocytopenia and bone marrow erythroblastopenia. Detection of DBA symptoms in these mice make them a valuable DBA model for studying the pathological mechanism underlying DBA and for further assessment of the disease and drug testing for novel therapies.
Collapse
Affiliation(s)
- Shideh Kazerounian
- Boston Children's Hospital, Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Daniel Yuan
- Boston Children's Hospital, Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA
| | - Matthew S Alexander
- University of Alabama at Birmingham and Children's of Alabama, Departments of Pediatrics and Genetics, Division of Neurology, Birmingham, AL, USA
| | - Alan H Beggs
- Boston Children's Hospital, Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Hanna T Gazda
- Boston Children's Hospital, Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
244
|
Tahmasebi S, Sonenberg N, Hershey JWB, Mathews MB. Protein Synthesis and Translational Control: A Historical Perspective. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a035584. [PMID: 30082466 DOI: 10.1101/cshperspect.a035584] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein synthesis and its regulation are central to all known forms of life and impinge on biological arenas as varied as agriculture, biotechnology, and medicine. Otherwise known as translation and translational control, these processes have been investigated with increasing intensity since the middle of the 20th century, and in increasing depth with advances in molecular and cell biology. We review the origins of the field, focusing on the underlying concepts and early studies of the cellular machinery and mechanisms involved. We highlight key discoveries and events on a timeline, consider areas where current research has engendered new ideas, and conclude with some speculation on future directions for the field.
Collapse
Affiliation(s)
- Soroush Tahmasebi
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
| | - John W B Hershey
- Department of Biochemistry and Molecular Medicine, University of California, School of Medicine, Davis, California 95616
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey 07103
| |
Collapse
|
245
|
Tahmasebi S, Khoutorsky A, Mathews MB, Sonenberg N. Translation deregulation in human disease. Nat Rev Mol Cell Biol 2019; 19:791-807. [PMID: 30038383 DOI: 10.1038/s41580-018-0034-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Advances in sequencing and high-throughput techniques have provided an unprecedented opportunity to interrogate human diseases on a genome-wide scale. The list of disease-causing mutations is expanding rapidly, and mutations affecting mRNA translation are no exception. Translation (protein synthesis) is one of the most complex processes in the cell. The orchestrated action of ribosomes, tRNAs and numerous translation factors decodes the information contained in mRNA into a polypeptide chain. The intricate nature of this process renders it susceptible to deregulation at multiple levels. In this Review, we summarize current evidence of translation deregulation in human diseases other than cancer. We discuss translation-related diseases on the basis of the molecular aberration that underpins their pathogenesis (including tRNA dysfunction, ribosomopathies, deregulation of the integrated stress response and deregulation of the mTOR pathway) and describe how deregulation of translation generates the phenotypic variability observed in these disorders.
Collapse
Affiliation(s)
- Soroush Tahmasebi
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada. .,Department of Biochemistry, McGill University, Montreal, Quebec, Canada. .,Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Arkady Khoutorsky
- Department of Anesthesia and Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Michael B Mathews
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montreal, Quebec, Canada. .,Department of Biochemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
246
|
Bao EL, Cheng AN, Sankaran VG. The genetics of human hematopoiesis and its disruption in disease. EMBO Mol Med 2019; 11:e10316. [PMID: 31313878 PMCID: PMC6685084 DOI: 10.15252/emmm.201910316] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/25/2022] Open
Abstract
Hematopoiesis, or the process of blood cell production, is a paradigm of multi-lineage cellular differentiation that has been extensively studied, yet in many aspects remains incompletely understood. Nearly all clinically measured hematopoietic traits exhibit extensive variation and are highly heritable, underscoring the importance of genetic variation in these processes. This review explores how human genetics have illuminated our understanding of hematopoiesis in health and disease. The study of rare mutations in blood and immune disorders has elucidated novel roles for regulators of hematopoiesis and uncovered numerous important molecular pathways, as seen through examples such as Diamond-Blackfan anemia and the GATA2 deficiency syndromes. Additionally, population studies of common genetic variation have revealed mechanisms by which human hematopoiesis can be modulated. We discuss advances in functionally characterizing common variants associated with blood cell traits and discuss therapeutic insights, such as the discovery of BCL11A as a modulator of fetal hemoglobin expression. Finally, as genetic techniques continue to evolve, we discuss the prospects, challenges, and unanswered questions that lie ahead in this burgeoning field.
Collapse
Affiliation(s)
- Erik L Bao
- Division of Hematology/OncologyBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
- Department of Pediatric OncologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Harvard‐MIT Health Sciences and TechnologyHarvard Medical SchoolBostonMAUSA
| | - Aaron N Cheng
- Division of Hematology/OncologyBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
- Department of Pediatric OncologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
| | - Vijay G Sankaran
- Division of Hematology/OncologyBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
- Department of Pediatric OncologyDana‐Farber Cancer InstituteHarvard Medical SchoolBostonMAUSA
- Broad Institute of MIT and HarvardCambridgeMAUSA
- Harvard Stem Cell InstituteCambridgeMAUSA
| |
Collapse
|
247
|
Bohnsack KE, Bohnsack MT. Uncovering the assembly pathway of human ribosomes and its emerging links to disease. EMBO J 2019; 38:e100278. [PMID: 31268599 PMCID: PMC6600647 DOI: 10.15252/embj.2018100278] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
The essential cellular process of ribosome biogenesis is at the nexus of various signalling pathways that coordinate protein synthesis with cellular growth and proliferation. The fact that numerous diseases are caused by defects in ribosome assembly underscores the importance of obtaining a detailed understanding of this pathway. Studies in yeast have provided a wealth of information about the fundamental principles of ribosome assembly, and although many features are conserved throughout eukaryotes, the larger size of human (pre-)ribosomes, as well as the evolution of additional regulatory networks that can modulate ribosome assembly and function, have resulted in a more complex assembly pathway in humans. Notably, many ribosome biogenesis factors conserved from yeast appear to have subtly different or additional functions in humans. In addition, recent genome-wide, RNAi-based screens have identified a plethora of novel factors required for human ribosome biogenesis. In this review, we discuss key aspects of human ribosome production, highlighting differences to yeast, links to disease, as well as emerging concepts such as extra-ribosomal functions of ribosomal proteins and ribosome heterogeneity.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
| | - Markus T Bohnsack
- Department of Molecular BiologyUniversity Medical Center GöttingenGöttingenGermany
- Göttingen Center for Molecular BiosciencesGeorg‐August UniversityGöttingenGermany
| |
Collapse
|
248
|
The Best for the Most Important: Maintaining a Pristine Proteome in Stem and Progenitor Cells. Stem Cells Int 2019; 2019:1608787. [PMID: 31191665 PMCID: PMC6525796 DOI: 10.1155/2019/1608787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Pluripotent stem cells give rise to reproductively enabled offsprings by generating progressively lineage-restricted multipotent stem cells that would differentiate into lineage-committed stem and progenitor cells. These lineage-committed stem and progenitor cells give rise to all adult tissues and organs. Adult stem and progenitor cells are generated as part of the developmental program and play critical roles in tissue and organ maintenance and/or regeneration. The ability of pluripotent stem cells to self-renew, maintain pluripotency, and differentiate into a multicellular organism is highly dependent on sensing and integrating extracellular and extraorganismal cues. Proteins perform and integrate almost all cellular functions including signal transduction, regulation of gene expression, metabolism, and cell division and death. Therefore, maintenance of an appropriate mix of correctly folded proteins, a pristine proteome, is essential for proper stem cell function. The stem cells' proteome must be pristine because unfolded, misfolded, or otherwise damaged proteins would interfere with unlimited self-renewal, maintenance of pluripotency, differentiation into downstream lineages, and consequently with the development of properly functioning tissue and organs. Understanding how various stem cells generate and maintain a pristine proteome is therefore essential for exploiting their potential in regenerative medicine and possibly for the discovery of novel approaches for maintaining, propagating, and differentiating pluripotent, multipotent, and adult stem cells as well as induced pluripotent stem cells. In this review, we will summarize cellular networks used by various stem cells for generation and maintenance of a pristine proteome. We will also explore the coordination of these networks with one another and their integration with the gene regulatory and signaling networks.
Collapse
|
249
|
Vatikioti A, Karkoulia E, Ioannou M, Strouboulis J. Translational regulation and deregulation in erythropoiesis. Exp Hematol 2019; 75:11-20. [PMID: 31154069 DOI: 10.1016/j.exphem.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 02/02/2023]
Abstract
Translational regulation plays a critical role in erythropoiesis, as it reflects the translational needs of enucleated mature erythroid cells in the absence of transcription and the large translational demands of balanced globin chain synthesis during erythroid maturation. In addition, red blood cells need to respond quickly to changes in their environment and the demands of the organism. Translational regulation occurs at several levels in erythroid cells, including the differential utilization of upstream open reading frames during differentiation and in response to signaling and the employment of RNA-binding proteins in an erythroid cell-specific fashion. Translation initiation is a critical juncture for translational regulation in response to environmental signals such as heme and iron availability, whereas regulatory mechanisms for ribosome recycling are consistent with recent observations highlighting the importance of maintaining adequate ribosome levels in differentiating erythroid cells. Translational deregulation in erythroid cells leads to disease associated with ineffective erythropoiesis, further highlighting the pivotal role translational regulation in erythropoiesis plays in human physiology and homeostasis. Overall, erythropoiesis has served as a unique model that has provided invaluable insight into translational regulation.
Collapse
Affiliation(s)
- Alexandra Vatikioti
- Laboratory of Molecular Hematopoiesis, Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Crete, Greece; Graduate Program in Molecular Biology and Biomedicine, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Elena Karkoulia
- Laboratory of Molecular Hematopoiesis, Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Crete, Greece
| | - Marina Ioannou
- Laboratory of Molecular Hematopoiesis, Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Crete, Greece
| | - John Strouboulis
- Laboratory of Molecular Hematopoiesis, Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Crete, Greece.
| |
Collapse
|
250
|
Stoehr A, Kennedy L, Yang Y, Patel S, Lin Y, Linask KL, Fergusson M, Zhu J, Gucek M, Zou J, Murphy E. The ribosomal prolyl-hydroxylase OGFOD1 decreases during cardiac differentiation and modulates translation and splicing. JCI Insight 2019; 5:128496. [PMID: 31112528 DOI: 10.1172/jci.insight.128496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The mechanisms regulating translation and splicing are not well understood. We provide insight into a new regulator of translation, OGFOD1 (2-oxoglutarate and iron dependent oxygenase domain-containing protein 1), which is a prolyl-hydroxylase that catalyzes the posttranslational hydroxylation of Pro-62 in the small ribosomal protein S23. We show that deletion of OGFOD1 in an in vitro model of human cardiomyocytes decreases translation of specific proteins (e.g., RNA-binding proteins) and alters splicing. RNA sequencing showed poor correlation between changes in mRNA and protein synthesis, suggesting that posttranscriptional regulation was the primary cause for the observed differences. We found that loss of OGFOD1 and the resultant alterations in protein translation modulates the cardiac proteome, shifting it towards higher protein amounts of sarcomeric proteins such as cardiac troponins, titin and cardiac myosin binding protein C. Furthermore, we found a decrease of OGFOD1 during cardiomyocyte differentiation. These results suggest that loss of OGFOD1 modulates protein translation and splicing, thereby leading to alterations in the cardiac proteome and highlight the role of altered translation and splicing in regulating the proteome..
Collapse
Affiliation(s)
| | | | | | | | - Yongshun Lin
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Kaari L Linask
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | - Jun Zhu
- DNA Sequencing and Genomics Core
| | | | - Jizhong Zou
- iPS Cell Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|