201
|
Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries. Nat Biotechnol 2021; 39:630-641. [PMID: 33398154 PMCID: PMC8316984 DOI: 10.1038/s41587-020-00778-3] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 11/17/2020] [Indexed: 01/28/2023]
Abstract
Current methods used for measuring amino acid side-chain reactivity lack the throughput needed to screen large chemical libraries for interactions across the proteome. Here we redesigned the workflow for activity-based protein profiling of reactive cysteine residues by using a smaller desthiobiotin-based probe, sample multiplexing, reduced protein starting amounts and software to boost data acquisition in real time on the mass spectrometer. Our method, streamlined cysteine activity-based protein profiling (SLC-ABPP), achieved a 42-fold improvement in sample throughput, corresponding to profiling library members at a depth of >8,000 reactive cysteine sites at 18 min per compound. We applied it to identify proteome-wide targets of covalent inhibitors to mutant Kirsten rat sarcoma (KRAS)G12C and Bruton's tyrosine kinase (BTK). In addition, we created a resource of cysteine reactivity to 285 electrophiles in three human cell lines, which includes >20,000 cysteines from >6,000 proteins per line. The goal of proteome-wide profiling of cysteine reactivity across thousand-member libraries under several cellular contexts is now within reach.
Collapse
|
202
|
Crowley VM, Thielert M, Cravatt BF. Functionalized Scout Fragments for Site-Specific Covalent Ligand Discovery and Optimization. ACS CENTRAL SCIENCE 2021; 7:613-623. [PMID: 34056091 PMCID: PMC8155467 DOI: 10.1021/acscentsci.0c01336] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 05/14/2023]
Abstract
Covalent ligands are a versatile class of chemical probes and drugs that can target noncanonical sites on proteins and display differentiated pharmacodynamic properties. Chemical proteomic methods have been introduced that leverage electrophilic fragments to globally profile the covalent ligandability of nucleophilic residues, such as cysteine and lysine, in native biological systems. Further optimization of these initial ligandability events without resorting to the time-consuming process of individualized protein purification and functional assay development, however, presents a persistent technical challenge. Here, we show that broadly reactive electrophilic fragments, or "scouts", can be converted into site-specific target engagement probes for screening small molecules against a wide array of proteins in convenient gel- and ELISA-based assay formats. We use these assays to expediently optimize a weak potency fragment hit into a sub-μM inhibitor that selectively engages an active-site cysteine in the retinaldehyde reductase AKR1B10. Our findings provide a road map to optimize covalent fragments into more advanced chemical probes without requiring protein purification or structural analysis.
Collapse
|
203
|
Kim HR, Tagirasa R, Yoo E. Covalent Small Molecule Immunomodulators Targeting the Protease Active Site. J Med Chem 2021; 64:5291-5322. [PMID: 33904753 DOI: 10.1021/acs.jmedchem.1c00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cells of the immune system utilize multiple proteases to regulate cell functions and orchestrate innate and adaptive immune responses. Dysregulated protease activities are implicated in many immune-related disorders; thus, protease inhibitors have been actively investigated for pharmaceutical development. Although historically considered challenging with concerns about toxicity, compounds that covalently modify the protease active site represent an important class of agents, emerging not only as chemical probes but also as approved drugs. Here, we provide an overview of technologies useful for the study of proteases with the focus on recent advances in chemoproteomic methods and screening platforms. By highlighting covalent inhibitors that have been designed to target immunomodulatory proteases, we identify opportunities for the development of small molecule immunomodulators.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ravichandra Tagirasa
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Euna Yoo
- Chemical Biology Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
204
|
Scinto SL, Bilodeau DA, Hincapie R, Lee W, Nguyen SS, Xu M, am Ende CW, Finn MG, Lang K, Lin Q, Pezacki JP, Prescher JA, Robillard MS, Fox JM. Bioorthogonal chemistry. NATURE REVIEWS. METHODS PRIMERS 2021; 1:30. [PMID: 34585143 PMCID: PMC8469592 DOI: 10.1038/s43586-021-00028-z] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.
Collapse
Affiliation(s)
- Samuel L. Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Didier A. Bilodeau
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Robert Hincapie
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Wankyu Lee
- Pfizer Worldwide Research and Development, Cambridge, MA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Sean S. Nguyen
- Department of Chemistry, University of California, Irvine, CA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | - Minghao Xu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- These authors contributed equally: Didier A. Bilodeau, Robert Hincapie, Wankyu Lee, Sean S. Nguyen, Minghao Xu
| | | | - M. G. Finn
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kathrin Lang
- Department of Chemistry, Technical University of Munich, Garching, Germany
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Qing Lin
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Jennifer A. Prescher
- Department of Chemistry, University of California, Irvine, CA, USA
- Molecular Biology & Biochemistry, University of California, Irvine, CA, USA
| | | | - Joseph M. Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| |
Collapse
|
205
|
Guan I, Williams K, Pan J, Liu X. New Cysteine Covalent Modification Strategies Enable Advancement of Proteome‐wide Selectivity of Kinase Modulators. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ivy Guan
- School of Chemistry The Heart Research Institute The University of Sydney Sydney New South Wales 2006 Australia
| | - Kayla Williams
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Jolyn Pan
- Faculty of Science & Engineering The University of Waikato 124 Hillcrest Road, Hillcrest Hamilton 3216 New Zealand
| | - Xuyu Liu
- School of Chemistry The Heart Research Institute The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
206
|
Vinogradova EV, Cravatt BF. Multiplexed proteomic profiling of cysteine reactivity and ligandability in human T cells. STAR Protoc 2021; 2:100458. [PMID: 33899026 PMCID: PMC8055706 DOI: 10.1016/j.xpro.2021.100458] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Differential amino acid reactivity with chemical probes can provide valuable information on the functionality and ligandability of proteins in native biological systems. Here, we present a quantitative, multiplexed chemical proteomic protocol for in-depth reactivity and ligandability profiling of cysteines in proteins in quiescent and stimulated T cells. This protocol illuminates dynamic immune state-dependent alterations in cysteine reactivity, revealing chemoselective and stereoselective small-molecule interactions with cysteines in structurally and functionally diverse proteins that lack chemical probes. For complete details on the use and execution of this protocol, please refer to Vinogradova et al. (2020). Cysteine reactivity profiling to compare biochemical changes across T cell states Cysteine ligandability profiling to discover small-molecule-protein interactions Stereoisomeric covalent probes facilitate mechanism-of-action studies
Collapse
Affiliation(s)
- Ekaterina V Vinogradova
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.,Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
207
|
Reddi R, Resnick E, Rogel A, Rao BV, Gabizon R, Goldenberg K, Gurwicz N, Zaidman D, Plotnikov A, Barr H, Shulman Z, London N. Tunable Methacrylamides for Covalent Ligand Directed Release Chemistry. J Am Chem Soc 2021; 143:4979-4992. [PMID: 33761747 PMCID: PMC8041284 DOI: 10.1021/jacs.0c10644] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 02/07/2023]
Abstract
Targeted covalent inhibitors are an important class of drugs and chemical probes. However, relatively few electrophiles meet the criteria for successful covalent inhibitor design. Here we describe α-substituted methacrylamides as a new class of electrophiles suitable for targeted covalent inhibitors. While typically α-substitutions inactivate acrylamides, we show that hetero α-substituted methacrylamides have higher thiol reactivity and undergo a conjugated addition-elimination reaction ultimately releasing the substituent. Their reactivity toward thiols is tunable and correlates with the pKa/pKb of the leaving group. In the context of the BTK inhibitor ibrutinib, these electrophiles showed lower intrinsic thiol reactivity than the unsubstituted ibrutinib acrylamide. This translated to comparable potency in protein labeling, in vitro kinase assays, and functional cellular assays, with improved selectivity. The conjugate addition-elimination reaction upon covalent binding to their target cysteine allows functionalizing α-substituted methacrylamides as turn-on probes. To demonstrate this, we prepared covalent ligand directed release (CoLDR) turn-on fluorescent probes for BTK, EGFR, and K-RasG12C. We further demonstrate a BTK CoLDR chemiluminescent probe that enabled a high-throughput screen for BTK inhibitors. Altogether we show that α-substituted methacrylamides represent a new and versatile addition to the toolbox of targeted covalent inhibitor design.
Collapse
Affiliation(s)
- Rambabu
N. Reddi
- Department
of Organic Chemistry, The Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Efrat Resnick
- Department
of Organic Chemistry, The Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Adi Rogel
- Department
of Organic Chemistry, The Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Boddu Venkateswara Rao
- Department
of Organic Chemistry, The Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Ronen Gabizon
- Department
of Organic Chemistry, The Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Kim Goldenberg
- Department
of Organic Chemistry, The Weizmann Institute
of Science, Rehovot, 7610001, Israel
- Department
of Immunology, The Weizmann Institute of
Science, Rehovot, 7610001, Israel
| | - Neta Gurwicz
- Department
of Immunology, The Weizmann Institute of
Science, Rehovot, 7610001, Israel
| | - Daniel Zaidman
- Department
of Organic Chemistry, The Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Alexander Plotnikov
- Wohl
Institute for Drug Discovery of the Nancy and Stephen Grand Israel
National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Haim Barr
- Wohl
Institute for Drug Discovery of the Nancy and Stephen Grand Israel
National Center for Personalized Medicine, The Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ziv Shulman
- Department
of Immunology, The Weizmann Institute of
Science, Rehovot, 7610001, Israel
| | - Nir London
- Department
of Organic Chemistry, The Weizmann Institute
of Science, Rehovot, 7610001, Israel
| |
Collapse
|
208
|
Spradlin JN, Zhang E, Nomura DK. Reimagining Druggability Using Chemoproteomic Platforms. Acc Chem Res 2021; 54:1801-1813. [PMID: 33733731 DOI: 10.1021/acs.accounts.1c00065] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
One of the biggest bottlenecks in modern drug discovery efforts is in tackling the undruggable proteome. Currently, over 85% of the proteome is still considered undruggable because most proteins lack well-defined binding pockets that can be functionally targeted with small molecules. Tackling the undruggable proteome necessitates innovative approaches for ligand discovery against undruggable proteins as well as the development of new therapeutic modalities to functionally manipulate proteins of interest. Chemoproteomic platforms, in particular activity-based protein profiling (ABPP), have arisen to tackle the undruggable proteome by using reactivity-based chemical probes and advanced quantitative mass spectrometry-based proteomic approaches to enable the discovery of "ligandable hotspots" or proteome-wide sites that can be targeted with small-molecule ligands. These sites can subsequently be pharmacologically targeted with covalent ligands to rapidly discover functional or nonfunctional binders against therapeutic proteins of interest. Chemoproteomic approaches have also revealed unique insights into ligandability such as the discovery of unique allosteric sites or intrinsically disordered regions of proteins that can be pharmacologically and selectively targeted for biological modulation and therapeutic benefit. Chemoproteomic platforms have also expanded the scope of emerging therapeutic modalities for targeted protein degradation and proteolysis-targeting chimeras (PROTACs) through the discovery of several new covalent E3 ligase recruiters. Looking into the future, chemoproteomic approaches will unquestionably have a major impact in further expansion of existing efforts toward proteome-wide ligandability mapping, targeted ligand discovery efforts against high-value undruggable therapeutic targets, further expansion of the scope of targeted protein degradation platforms, the discovery of new molecular glue scaffolds that enable unique modulation of protein function, and perhaps most excitingly the development of next-generation small-molecule induced-proximity-based therapeutic modalities that go beyond degradation. Exciting days lie ahead in this field as chemical biology becomes an increasingly major driver in drug discovery, and chemoproteomic approaches are sure to be a mainstay in developing next-generation therapeutics.
Collapse
Affiliation(s)
- Jessica N. Spradlin
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, California 94720, United States
| | - Erika Zhang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Center for Proteomics and Chemistry Technologies, Berkeley, California 94720, United States
- Departments of Molecular and Cell Biology and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
209
|
Borne AL, Brulet JW, Yuan K, Hsu KL. Development and biological applications of sulfur-triazole exchange (SuTEx) chemistry. RSC Chem Biol 2021; 2:322-337. [PMID: 34095850 PMCID: PMC8174820 DOI: 10.1039/d0cb00180e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
Sulfur electrophiles constitute an important class of covalent small molecules that have found widespread applications in synthetic chemistry and chemical biology. Various electrophilic scaffolds, including sulfonyl fluorides and arylfluorosulfates as recent examples, have been applied for protein bioconjugation to probe ligand sites amenable for chemical proteomics and drug discovery. In this review, we describe the development of sulfonyl-triazoles as a new class of electrophiles for sulfur-triazole exchange (SuTEx) chemistry. SuTEx achieves covalent reaction with protein sites through irreversible modification of a residue with an adduct group (AG) upon departure of a leaving group (LG). A principal differentiator of SuTEx from other chemotypes is the selection of a triazole heterocycle as the LG, which introduces additional capabilities for tuning the sulfur electrophile. We describe the opportunities afforded by modifications to the LG and AG alone or in tandem to facilitate nucleophilic substitution reactions at the SO2 center in cell lysates and live cells. As a result of these features, SuTEx serves as an efficient platform for developing chemical probes with tunable bioactivity to study novel nucleophilic sites on established and poorly annotated protein targets. Here, we highlight a suite of biological applications for the SuTEx electrophile and discuss future goals for this enabling covalent chemistry.
Collapse
Affiliation(s)
- Adam L. Borne
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
| | - Jeffrey W. Brulet
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Kun Yuan
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
| | - Ku-Lung Hsu
- Department of Pharmacology, University of Virginia School of MedicineCharlottesvilleVirginia 22908USA
- Department of Chemistry, University of VirginiaMcCormick Road, P.O. Box 400319CharlottesvilleVirginia 22904USA+1-434-297-4864
- University of Virginia Cancer Center, University of VirginiaCharlottesvilleVA 22903USA
- Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesvilleVirginia 22908USA
| |
Collapse
|
210
|
Lu W, Kostic M, Zhang T, Che J, Patricelli MP, Jones LH, Chouchani ET, Gray NS. Fragment-based covalent ligand discovery. RSC Chem Biol 2021; 2:354-367. [PMID: 34458789 PMCID: PMC8341086 DOI: 10.1039/d0cb00222d] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Targeted covalent inhibitors have regained widespread attention in drug discovery and have emerged as powerful tools for basic biomedical research. Fueled by considerable improvements in mass spectrometry sensitivity and sample processing, chemoproteomic strategies have revealed thousands of proteins that can be covalently modified by reactive small molecules. Fragment-based drug discovery, which has traditionally been used in a target-centric fashion, is now being deployed on a proteome-wide scale thereby expanding its utility to both the discovery of novel covalent ligands and their cognate protein targets. This powerful approach is allowing 'high-throughput' serendipitous discovery of cryptic pockets leading to the identification of pharmacological modulators of proteins previously viewed as "undruggable". The reactive fragment toolkit has been enabled by recent advances in the development of new chemistries that target residues other than cysteine including lysine and tyrosine. Here, we review the emerging area of covalent fragment-based ligand discovery, which integrates the benefits of covalent targeting and fragment-based medicinal chemistry. We discuss how the two strategies synergize to facilitate the efficient discovery of new pharmacological modulators of established and new therapeutic target proteins.
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| | - Milka Kostic
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA 02215 USA
| | | | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute Boston MA 02215 USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA
- Department of Cell Biology, Harvard Medical School Boston MA 02215 USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute Boston MA 02215 USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School Boston MA 02215 USA
| |
Collapse
|
211
|
Zhang X, Luukkonen LM, Eissler CL, Crowley VM, Yamashita Y, Schafroth MA, Kikuchi S, Weinstein DS, Symons KT, Nordin BE, Rodriguez JL, Wucherpfennig TG, Bauer LG, Dix MM, Stamos D, Kinsella TM, Simon GM, Baltgalvis KA, Cravatt BF. DCAF11 Supports Targeted Protein Degradation by Electrophilic Proteolysis-Targeting Chimeras. J Am Chem Soc 2021; 143:5141-5149. [PMID: 33783207 DOI: 10.1021/jacs.1c00990] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ligand-induced protein degradation has emerged as a compelling approach to promote the targeted elimination of proteins from cells by directing these proteins to the ubiquitin-proteasome machinery. So far, only a limited number of E3 ligases have been found to support ligand-induced protein degradation, reflecting a dearth of E3-binding compounds for proteolysis-targeting chimera (PROTAC) design. Here, we describe a functional screening strategy performed with a focused library of candidate electrophilic PROTACs to discover bifunctional compounds that degrade proteins in human cells by covalently engaging E3 ligases. Mechanistic studies revealed that the electrophilic PROTACs act through modifying specific cysteines in DCAF11, a poorly characterized E3 ligase substrate adaptor. We further show that DCAF11-directed electrophilic PROTACs can degrade multiple endogenous proteins, including FBKP12 and the androgen receptor, in human prostate cancer cells. Our findings designate DCAF11 as an E3 ligase capable of supporting ligand-induced protein degradation via electrophilic PROTACs.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| | - Lena M Luukkonen
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Christie L Eissler
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Vincent M Crowley
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| | - Yu Yamashita
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States.,Medicinal Chemistry Research Laboratories, New Drug Research Division, Otsuka Pharmaceutical Co., Ltd., 463-10 Kawauchi-cho, Tokushima, 771-0192, Japan
| | - Michael A Schafroth
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| | - Shota Kikuchi
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - David S Weinstein
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Kent T Symons
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Brian E Nordin
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Joe L Rodriguez
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Thomas G Wucherpfennig
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| | - Ludwig G Bauer
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| | - Melissa M Dix
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| | - Dean Stamos
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Todd M Kinsella
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Gabriel M Simon
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Kristen A Baltgalvis
- Vividion Therapeutics, 5820 Nancy Ridge Dr, San Diego, California 92121, United States
| | - Benjamin F Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92307, United States
| |
Collapse
|
212
|
Litwin K, Crowley VM, Suciu RM, Boger DL, Cravatt BF. Chemical proteomic identification of functional cysteines with atypical electrophile reactivities. Tetrahedron Lett 2021; 67. [PMID: 33776155 DOI: 10.1016/j.tetlet.2021.152861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cysteine-directed covalent ligands have emerged as a versatile category of chemical probes and drugs that leverage thiol nucleophilicity to form permanent adducts with proteins of interest. Understanding the scope of cysteines that can be targeted by covalent ligands, as well as the types of electrophiles that engage these residues, represent important challenges for fully realizing the potential of cysteine-directed chemical probe discovery. Although chemical proteomic strategies have begun to address these important questions, only a limited number of electrophilic chemotypes have been explored to date. Here, we describe a diverse set of candidate electrophiles appended to a common core 6-methoxy-1,2,3,4-tetrahydroquinoline fragment and evaluate their global cysteine reactivity profiles in human cancer cell proteomes. This work uncovered atypical reactivity patterns for a discrete set of cysteines, including residues involved in enzymatic catalysis and located in proximity to protein-protein interactions. These findings thus point to potentially preferred electrophilic groups for site-selectively targeting functional cysteines in the human proteome.
Collapse
Affiliation(s)
- Kevin Litwin
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, United States
| | - Vincent M Crowley
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, United States
| | - Radu M Suciu
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, United States
| | - Dale L Boger
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, United States
| | - Benjamin F Cravatt
- The Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, United States
| |
Collapse
|
213
|
Yan T, Desai HS, Boatner LM, Yen SL, Cao J, Palafox MF, Jami-Alahmadi Y, Backus KM. SP3-FAIMS Chemoproteomics for High-Coverage Profiling of the Human Cysteinome*. Chembiochem 2021; 22:1841-1851. [PMID: 33442901 DOI: 10.1002/cbic.202000870] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/12/2021] [Indexed: 12/23/2022]
Abstract
Chemoproteomics has enabled the rapid and proteome-wide discovery of functional, redox-sensitive, and ligandable cysteine residues. Despite widespread adoption and considerable advances in both sample-preparation workflows and MS instrumentation, chemoproteomics experiments still typically only identify a small fraction of all cysteines encoded by the human genome. Here, we develop an optimized sample-preparation workflow that combines enhanced peptide labeling with single-pot, solid-phase-enhanced sample-preparation (SP3) to improve the recovery of biotinylated peptides, even from small sample sizes. By combining this improved workflow with on-line high-field asymmetric waveform ion mobility spectrometry (FAIMS) separation of labeled peptides, we achieve unprecedented coverage of >14000 unique cysteines in a single-shot 70 min experiment. Showcasing the wide utility of the SP3-FAIMS chemoproteomic method, we find that it is also compatible with competitive small-molecule screening by isotopic tandem orthogonal proteolysis-activity-based protein profiling (isoTOP-ABPP). In aggregate, our analysis of 18 samples from seven cell lines identified 34225 unique cysteines using only ∼28 h of instrument time. The comprehensive spectral library and improved coverage provided by the SP3-FAIMS chemoproteomics method will provide the technical foundation for future studies aimed at deciphering the functions and druggability of the human cysteineome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Heta S Desai
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Lisa M Boatner
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Stephanie L Yen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA
| | - Jian Cao
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Maria F Palafox
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Keriann M Backus
- Department of Biological Chemistry Department, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA.,DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
214
|
Conway LP, Li W, Parker CG. Chemoproteomic-enabled phenotypic screening. Cell Chem Biol 2021; 28:371-393. [PMID: 33577749 DOI: 10.1016/j.chembiol.2021.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/26/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
The ID of disease-modifying, chemically accessible targets remains a central priority of modern therapeutic discovery. The phenotypic screening of small-molecule libraries not only represents an attractive approach to identify compounds that may serve as drug leads but also serves as an opportunity to uncover compounds with novel mechanisms of action (MoAs). However, a major bottleneck of phenotypic screens continues to be the ID of pharmacologically relevant target(s) for compounds of interest. The field of chemoproteomics aims to map proteome-wide small-molecule interactions in complex, native systems, and has proved a key technology to unravel the protein targets of pharmacological modulators. In this review, we discuss the application of modern chemoproteomic methods to identify protein targets of phenotypic screening hits and investigate MoAs, with a specific focus on the development of chemoproteomic-enabled compound libraries to streamline target discovery.
Collapse
Affiliation(s)
- Louis P Conway
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Weichao Li
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
215
|
Health disparities: Intracellular consequences of social determinants of health. Toxicol Appl Pharmacol 2021; 416:115444. [PMID: 33549591 DOI: 10.1016/j.taap.2021.115444] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Health disparities exist dependent on socioeconomic status, living conditions, race/ethnicity, diet, and exposures to environmental pollutants. Herein, the various exposures contributing to a person's exposome are collectively considered social determinants of health (SDOH), and the SDOH-exposome impacts health more than health care. This review discusses the extent of evidence of the physiologic consequences of these exposures at the intracellular level. We consider how the SDOH-exposome, which captures how individuals live, work and age, induces cell processes that modulate a conceptual "redox rheostat." Like an electrical resistor, the SDOH-exposome, along with genetic predisposition and age, regulate reductive and oxidative (redox) stress circuits and thereby stimulate inflammation. Regardless of the source of the SDOH-exposome that induces chronic inflammation and immunosenescence, the outcome influences cardiometabolic diseases, cancers, infections, sepsis, neurodegeneration and autoimmune diseases. The endogenous redox rheostat is connected with regulatory molecules such as NAD+/NADH and SIRT1 that drive redox pathways. In addition to these intracellular and mitochondrial processes, we discuss how the SDOH-exposome can influence the balance between metabolism and regulation of immune responsiveness involving the two main molecular drivers of inflammation, the NLRP3 inflammasome and NF-κB induction. Mitochondrial and inflammasome activities play key roles in mediating defenses against pathogens and controlling inflammation before diverse cell death pathways are induced. Specifically, pyroptosis, cell death by inflammation, is intimately associated with common disease outcomes that are influenced by the SDOH-exposome. Redox influences on immunometabolism including protein cysteines and ion fluxes are discussed regarding health outcomes. In summary, this review presents a translational research perspective, with evidence from in vitro and in vivo models as well as clinical and epidemiological studies, to outline the intracellular consequences of the SDOH-exposome that drive health disparities in patients and populations. The relevance of this conceptual and theoretical model considering the SARS-CoV-2 pandemic are highlighted. Finally, the case of asthma is presented as a chronic condition that is modified by adverse SDOH exposures and is manifested through the dysregulation of immune cell redox regulatory processes we highlight in this review.
Collapse
|
216
|
Gabizon R, London N. The rise of covalent proteolysis targeting chimeras. Curr Opin Chem Biol 2021; 62:24-33. [PMID: 33549806 DOI: 10.1016/j.cbpa.2020.12.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/05/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
Targeted protein degradation offers several advantages over direct inhibition of protein activity and is gaining increasing interest in chemical biology and drug discovery. Proteolysis targeting chimeras (PROTACs) in particular are enjoying widespread application. However, PROTACs, which recruit an E3 ligase for degradation of a target protein, still suffer from certain challenges. These include a limited selection for E3 ligases on the one hand and the requirement for potent target binding on the other hand. Both issues restrict the target scope available for PROTACs. Degraders that covalently engage the target protein or the E3 ligase can potentially expand the pool of both targets and E3 ligases. Moreover, they may offer additional advantages by improving the kinetics of ternary complex formation or by endowing additional selectivity to the degrader. Here, we review the recent progress in the emerging field of covalent PROTACs.
Collapse
Affiliation(s)
- Ronen Gabizon
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Nir London
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
217
|
Abstract
The cGAS-STING signalling pathway has emerged as a key mediator of inflammation in the settings of infection, cellular stress and tissue damage. Underlying this broad involvement of the cGAS-STING pathway is its capacity to sense and regulate the cellular response towards microbial and host-derived DNAs, which serve as ubiquitous danger-associated molecules. Insights into the structural and molecular biology of the cGAS-STING pathway have enabled the development of selective small-molecule inhibitors with the potential to target the cGAS-STING axis in a number of inflammatory diseases in humans. Here, we outline the principal elements of the cGAS-STING signalling cascade and discuss the general mechanisms underlying the association of cGAS-STING activity with various autoinflammatory, autoimmune and degenerative diseases. Finally, we outline the chemical nature of recently developed cGAS and STING antagonists and summarize their potential clinical applications.
Collapse
|
218
|
Zhang X. Chemical Proteomics for Expanding the Druggability of Human Disease. Chembiochem 2020; 21:3319-3320. [PMID: 32964553 DOI: 10.1002/cbic.202000495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/10/2020] [Indexed: 01/01/2023]
Abstract
Over the past decade, chemical proteomics has emerged as a powerful technique to understand small molecule and protein function in the physiological system and plays a key role in unravelling the cellular targets of pharmacological modulators. Chemical proteomics that integrates activity-based protein profiling (ABPP) with mass spectrometry has been introduced to evaluate small-molecule and protein interaction and expand the druggable proteome. A much larger fraction of the human proteome can now be targeted by small molecules than estimated by past predictions of protein druggability.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- The Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92307, USA
| |
Collapse
|
219
|
Bianco G, Goodsell DS, Forli S. Selective and Effective: Current Progress in Computational Structure-Based Drug Discovery of Targeted Covalent Inhibitors. Trends Pharmacol Sci 2020; 41:1038-1049. [PMID: 33153778 PMCID: PMC7669701 DOI: 10.1016/j.tips.2020.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/28/2022]
Abstract
Targeted covalent inhibitors are currently showing great promise for systems that are normally difficult to target with small molecule therapies. This renewed interest has spurred the refinement of existing computational methods as well as the designof new ones, expanding the toolbox for discovery and optimization of selectiveand effective covalent inhibitors. Commonly applied approaches are covalentdocking methods that predict the conformation of the covalent complex with known residues. More recently, a new predictive method, reactive docking, was developed, building on the growing corpus of data generated by large proteomics experiments. This method was successfully used in several 'inverse drug discovery' programs that use high-throughput techniques to isolate effective compounds based on screening of entire compound libraries based on desired phenotypes.
Collapse
Affiliation(s)
- Giulia Bianco
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David S Goodsell
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Research Collaboratory for Structure Bioinformatics Protein Data Bank, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
220
|
Trezza A, Iovinelli D, Santucci A, Prischi F, Spiga O. An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Sci Rep 2020; 10:13866. [PMID: 32807895 PMCID: PMC7431416 DOI: 10.1038/s41598-020-70863-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The virus has rapidly spread in humans, causing the ongoing Coronavirus pandemic. Recent studies have shown that, similarly to SARS-CoV, SARS-CoV-2 utilises the Spike glycoprotein on the envelope to recognise and bind the human receptor ACE2. This event initiates the fusion of viral and host cell membranes and then the viral entry into the host cell. Despite several ongoing clinical studies, there are currently no approved vaccines or drugs that specifically target SARS-CoV-2. Until an effective vaccine is available, repurposing FDA approved drugs could significantly shorten the time and reduce the cost compared to de novo drug discovery. In this study we attempted to overcome the limitation of in silico virtual screening by applying a robust in silico drug repurposing strategy. We combined and integrated docking simulations, with molecular dynamics (MD), Supervised MD (SuMD) and Steered MD (SMD) simulations to identify a Spike protein - ACE2 interaction inhibitor. Our data showed that Simeprevir and Lumacaftor bind the receptor-binding domain of the Spike protein with high affinity and prevent ACE2 interaction.
Collapse
Affiliation(s)
- Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Daniele Iovinelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100, Siena, Italy.
| |
Collapse
|
221
|
Albini A, Di Guardo G, Noonan DM, Lombardo M. The SARS-CoV-2 receptor, ACE-2, is expressed on many different cell types: implications for ACE-inhibitor- and angiotensin II receptor blocker-based cardiovascular therapies. Intern Emerg Med 2020; 15:759-766. [PMID: 32430651 PMCID: PMC7236433 DOI: 10.1007/s11739-020-02364-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/02/2020] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 is characterized by a spike protein allowing viral binding to the angiotensin-converting enzyme (ACE)-2, which acts as a viral receptor and is expressed on the surface of several pulmonary and extra-pulmonary cell types, including cardiac, renal, intestinal and endothelial cells. There is evidence that also endothelial cells are infected by SARS-COV-2, with subsequent occurrence of systemic vasculitis, thromboembolism and disseminated intravascular coagulation. Those effects, together with the "cytokine storm" are involved in a worse prognosis. In clinical practice, angiotensin-converting enzyme inhibitors (ACE-Is) and angiotensin II receptor blockers (ARBs) are extensively used for the treatment of hypertension and other cardiovascular diseases. In in vivo studies, ACE-Is and ARBs seem to paradoxically increase ACE-2 expression, which could favour SARS-CoV-2 infection of host's cells and tissues. By contrast, in patients treated with ACE-Is and ARBs, ACE-2 shows a downregulation at the mRNA and protein levels in kidney and cardiac tissues. Yet, it has been claimed that both ARBs and ACE-Is could result potentially useful in the clinical course of SARS-CoV-2-infected patients. As detected in China and as the Italian epidemiological situation confirms, the most prevalent comorbidities in deceased patients with COVID-19 are hypertension, diabetes and cardiovascular diseases. Older COVID-19-affected patients with cardiovascular comorbidities exhibit a more severe clinical course and a worse prognosis, with many of them being also treated with ARBs or ACE-Is. Another confounding factor is cigarette smoking, which has been reported to increase ACE-2 expression in both experimental models and humans. Sex also plays a role, with chromosome X harbouring the gene coding for ACE-2, which is one of the possible explanations of why mortality in female patients is lower. Viral entry also depends on TMPRSS2 protease activity, an androgen dependent enzyme. Despite the relevance of experimental animal studies, to comprehensively address the question of the potential hazards or benefits of ACE-Is and ARBs on the clinical course of COVID-19-affected patients treated by these anti-hypertensive drugs, we will need randomized human studies. We claim the need of adequately powered, prospective studies aimed at answering the following questions of paramount importance for cardiovascular, internal and emergency medicine: Do ACE-Is and ARBs exert similar or different effects on infection or disease course? Are such effects dangerous, neutral or even useful in older, COVID-19-affected patients? Do they act on multiple cell types? Since ACE-Is and ARBs have different molecular targets, the clinical course of SARS-CoV-2 infection could be also different in patients treated by one or the other of these two drug classes. At present, insufficient detailed data from trials have been made available.
Collapse
Affiliation(s)
- Adriana Albini
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy.
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, University of Teramo, 64100, Teramo, Italy
| | - Douglas McClain Noonan
- Scientific and Technology Pole, IRCCS MultiMedica, Milan, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, Varèse, Italy
| | - Michele Lombardo
- Cardiology Unit, San Giuseppe Hospital-MultiMedica, Milan, Italy
| |
Collapse
|