201
|
Russi M, Martin E, D'Autréaux B, Tixier L, Tricoire H, Monnier V. A Drosophila model of Friedreich ataxia with CRISPR/Cas9 insertion of GAA repeats in the frataxin gene reveals in vivo protection by N-acetyl cysteine. Hum Mol Genet 2020; 29:2831-2844. [PMID: 32744307 DOI: 10.1093/hmg/ddaa170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Friedreich ataxia (FA) is caused by GAA repeat expansions in the first intron of FXN, the gene encoding frataxin, which results in decreased gene expression. Thanks to the high degree of frataxin conservation, the Drosophila melanogaster fruitfly appears as an adequate animal model to study this disease and to evaluate therapeutic interventions. Here, we generated a Drosophila model of FA with CRISPR/Cas9 insertion of approximately 200 GAA in the intron of the fly frataxin gene fh. These flies exhibit a developmental delay and lethality associated with decreased frataxin expression. We were able to bypass preadult lethality using genetic tools to overexpress frataxin only during the developmental period. These frataxin-deficient adults are short-lived and present strong locomotor defects. RNA-Seq analysis identified deregulation of genes involved in amino-acid metabolism and transcriptomic signatures of oxidative stress. In particular, we observed a progressive increase of Tspo expression, fully rescued by adult frataxin expression. Thus, Tspo expression constitutes a molecular marker of the disease progression in our fly model and might be of interest in other animal models or in patients. Finally, in a candidate drug screening, we observed that N-acetyl cysteine improved the survival, locomotor function, resistance to oxidative stress and aconitase activity of frataxin-deficient flies. Therefore, our model provides the opportunity to elucidate in vivo, the protective mechanisms of this molecule of therapeutic potential. This study also highlights the strength of the CRISPR/Cas9 technology to introduce human mutations in endogenous orthologous genes, leading to Drosophila models of human diseases with improved physiological relevance.
Collapse
Affiliation(s)
- Maria Russi
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| | - Elodie Martin
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| | - Benoit D'Autréaux
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France
| | - Laura Tixier
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| | - Hervé Tricoire
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| | - Véronique Monnier
- Université de Paris, BFA Unit of Functional and Adaptative Biology, UMR 8251, CNRS, Paris F-75013, France
| |
Collapse
|
202
|
Bolton SG, Pluth MD. Modified cyclodextrins solubilize elemental sulfur in water and enable biological sulfane sulfur delivery. Chem Sci 2020; 11:11777-11784. [PMID: 34123204 PMCID: PMC8162768 DOI: 10.1039/d0sc04137h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
An important form of biological sulfur is sulfane sulfur, or S0, which is found in polysulfide and persulfide compounds as well as in elemental sulfur. Sulfane sulfur, often in the form of S8, functions as a key energy source in the metabolic processes of thermophilic Archaean organisms found in sulfur-rich environments and can be metabolized both aerobically and anaerobically by different archaeons. Despite this importance, S8 has a low solubility in water (∼19 nM), raising questions of how it can be made chemically accessible in complex environments. Motivated by prior crystallographic data showing S8 binding to hydrophobic motifs in filamentous glycoproteins from the sulfur reducing Staphylothermus marinus anaerobe, we demonstrate that simple macrocyclic hydrophobic motifs, such as 2-hydroxypropyl β-cyclodextrin (2HPβ), are sufficient to solubilize S8 at concentrations up to 2.0 ± 0.2 mM in aqueous solution. We demonstrate that the solubilized S8 can be reduced with the common reductant tris(2-carboxyethyl)phosphine (TCEP) and reacts with thiols to generate H2S. The thiol-mediated conversion of 2HPβ/S8 to H2S ranges from 80% to quantitative efficiency for Cys and glutathione (GSH). Moreover, we demonstrate that 2HPβ can catalyze the Cys-mediated reduction of S8 to H2S in water. Adding to the biological relevance of the developed systems, we demonstrate that treatment of Raw 264.7 macrophage cells with the 2HPβ/S8 complex prior to LPS stimulation decreases NO2 - levels, which is consistent with known activities of bioavailable H2S and sulfane sulfur. Taken together, these investigations provide a new strategy for delivering H2S and sulfane sulfur in complex systems and more importantly provide new insights into the chemical accessibility and storage of S0 and S8 in biological environments.
Collapse
Affiliation(s)
- Sarah G Bolton
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon Eugene OR 97403 USA
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon Eugene OR 97403 USA
| |
Collapse
|
203
|
Gibhardt CS, Ezeriņa D, Sung HM, Messens J, Bogeski I. Redox regulation of the mitochondrial calcium transport machinery. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
204
|
Abstract
Psoriasis is caused by a complex interplay among the immune system, genetic background, autoantigens, and environmental factors. Recent studies have demonstrated that patients with psoriasis have a significantly higher serum homocysteine (Hcy) level and a higher prevalence of hyperhomocysteinaemia (HHcy). Insufficiency of folic acid and vitamin B12 can be a cause of HHcy in psoriasis. Hcy may promote the immuno-inflammatory process in the pathogenesis of psoriasis by activating Th1 and Th17 cells and neutrophils, while suppressing regulatory T cells. Moreover, Hcy can drive the immuno-inflammatory process by enhancing the production of the pro-inflammatory cytokines in related to psoriasis. Hcy can induce nuclear factor kappa B activation, which is critical in the immunopathogenesis of psoriasis. There may be a link between the oxidative stress state in psoriasis and the effect of HHcy. Hydrogen sulfide (H2S) may play a protective role in the pathogenesis of psoriasis and the deficiency of H2S in psoriasis may be caused by HHcy. As the role of Hcy in the pathogenesis of psoriasis is most likely established, Hcy can be a potential therapeutic target for the treatment of psoriasis. Systemic folinate calcium, a folic acid derivative, and topical vitamin B12 have found to be effective in treating psoriasis.
Collapse
|
205
|
Walsh BJC, Giedroc DP. H 2S and reactive sulfur signaling at the host-bacterial pathogen interface. J Biol Chem 2020; 295:13150-13168. [PMID: 32699012 PMCID: PMC7504917 DOI: 10.1074/jbc.rev120.011304] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial pathogens that cause invasive disease in the vertebrate host must adapt to host efforts to cripple their viability. Major host insults are reactive oxygen and reactive nitrogen species as well as cellular stress induced by antibiotics. Hydrogen sulfide (H2S) is emerging as an important player in cytoprotection against these stressors, which may well be attributed to downstream more oxidized sulfur species termed reactive sulfur species (RSS). In this review, we summarize recent work that suggests that H2S/RSS impacts bacterial survival in infected cells and animals. We discuss the mechanisms of biogenesis and clearance of RSS in the context of a bacterial H2S/RSS homeostasis model and the bacterial transcriptional regulatory proteins that act as "sensors" of cellular RSS that maintain H2S/RSS homeostasis. In addition, we cover fluorescence imaging- and MS-based approaches used to detect and quantify RSS in bacterial cells. Last, we discuss proteome persulfidation (S-sulfuration) as a potential mediator of H2S/RSS signaling in bacteria in the context of the writer-reader-eraser paradigm, and progress toward ascribing regulatory significance to this widespread post-translational modification.
Collapse
Affiliation(s)
- Brenna J C Walsh
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
206
|
Echizen H, Hanaoka K. Recent advances in probe design to detect reactive sulfur species and in the chemical reactions employed for fluorescence switching. J Clin Biochem Nutr 2020; 68:9-17. [PMID: 33536707 PMCID: PMC7844667 DOI: 10.3164/jcbn.20-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/12/2020] [Indexed: 11/22/2022] Open
Abstract
Reactive sulfur species, including hydrogen sulfide, hydropersulfide, and polysulfide, have many roles in biological systems. For example, hydrogen sulfide is involved in the relaxation of vascular smooth muscles and mediation of neurotransmission, while sulfane sulfur, which exists in cysteine persulfide/polysulfide, and glutathione persulfide/polysulfide, is involved in physiological antioxidation and cytoprotection mechanisms. Fluorescence imaging is well suited for real-time monitoring of reactive sulfur species in living cells, and many fluorescent probes for reactive sulfur species have been reported. In such probes, the choice of detection chemistry is extremely important, not only to achieve effective fluorescence switching and high selectivity, but also because the reactions may be applicable to develop other chemical tools, such as reactive sulfur species donors/scavengers. Here, we present an overview of both widely used and recently developed fluorescent probes for reactive sulfur species, focusing especially on the chemical reactions employed in them for fluorescence switching. We also briefly introduce some applications of fluorescent probes for hydrogen sulfide and sulfane sulfur.
Collapse
Affiliation(s)
- Honami Echizen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
207
|
Wang Y, Dillon KM, Li Z, Winckler EW, Matson JB. Alleviating Cellular Oxidative Stress through Treatment with Superoxide-Triggered Persulfide Prodrugs. Angew Chem Int Ed Engl 2020; 59:16698-16704. [PMID: 32592216 PMCID: PMC7719095 DOI: 10.1002/anie.202006656] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Indexed: 12/21/2022]
Abstract
Overproduction of superoxide anion (O2.- ), the primary cellular reactive oxygen species (ROS), is implicated in various human diseases. To reduce cellular oxidative stress caused by overproduction of superoxide, we developed a compound that reacts with O2.- to release a persulfide (RSSH), a type of reactive sulfur species related to the gasotransmitter hydrogen sulfide (H2 S). Termed SOPD-NAC, this persulfide donor reacts specifically with O2.- , decomposing to generate N-acetyl cysteine (NAC) persulfide. To enhance persulfide delivery to cells, we conjugated the SOPD motif to a short, self-assembling peptide (Bz-CFFE-NH2 ) to make a superoxide-responsive, persulfide-donating peptide (SOPD-Pep). Both SOPD-NAC and SOPD-Pep delivered persulfides/H2 S to H9C2 cardiomyocytes and lowered ROS levels as confirmed by quantitative in vitro fluorescence imaging studies. Additional in vitro studies on RAW 264.7 macrophages showed that SOPD-Pep mitigated toxicity induced by phorbol 12-myristate 13-acetate (PMA) more effectively than SOPD-NAC and several control compounds, including common H2 S donors.
Collapse
Affiliation(s)
| | | | - Zhao Li
- Department of of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ethan W. Winckler
- Department of of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B. Matson
- Department of of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
208
|
Yang X, Zhang R, Nakahira K, Gu Z. Mitochondrial DNA Mutation, Diseases, and Nutrient-Regulated Mitophagy. Annu Rev Nutr 2020; 39:201-226. [PMID: 31433742 DOI: 10.1146/annurev-nutr-082018-124643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A wide spectrum of human diseases, including cancer, neurodegenerative diseases, and metabolic disorders, have been shown to be associated with mitochondrial dysfunction through multiple molecular mechanisms. Mitochondria are particularly susceptible to nutrient deficiencies, and nutritional intervention is an essential way to maintain mitochondrial homeostasis. Recent advances in genetic manipulation and next-generation sequencing reveal the crucial roles of mitochondrial DNA (mtDNA) in various pathophysiological conditions. Mitophagy, a term coined to describe autophagy that targets dysfunctional mitochondria, has emerged as an important cellular process to maintain mitochondrial homeostasis and has been shown to be regulated by various nutrients and nutritional stresses. Given the high prevalence of mtDNA mutations in humans and their impact on mitochondrial function, it is important to investigate the mechanisms that regulate mtDNA mutation. Here, we discuss mitochondrial genetics and mtDNA mutations and their implications for human diseases. We also examine the role of mitophagy as a therapeutic target, highlighting how nutrients may eliminate mtDNA mutations through mitophagy.
Collapse
Affiliation(s)
- Xuan Yang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| | - Ruoyu Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| |
Collapse
|
209
|
Soo SK, Rudich PD, Traa A, Harris-Gauthier N, Shields HJ, Van Raamsdonk JM. Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Mech Ageing Dev 2020; 190:111297. [PMID: 32610099 PMCID: PMC7484136 DOI: 10.1016/j.mad.2020.111297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
While aging is the greatest risk factor for the development of neurodegenerative disease, the role of aging in these diseases is poorly understood. In the inherited forms of these diseases, the disease-causing mutation is present from birth but symptoms appear decades later. This indicates that these mutations are well tolerated in younger individuals but not in older adults. Based on this observation, we hypothesized that changes taking place during normal aging make the cells in the brain (and elsewhere) susceptible to the disease-causing mutations. If so, then delaying some of these age-related changes may be beneficial in the treatment of neurodegenerative disease. In this review, we examine the effects of five compounds that have been shown to extend longevity (metformin, rapamycin, resveratrol, N-acetyl-l-cysteine, curcumin) in four of the most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis). While not all investigations observe a beneficial effect of these compounds, there are multiple studies that show a protective effect of each of these lifespan-extending compounds in animal models of neurodegenerative disease. Combined with genetic studies, this suggests the possibility that targeting the aging process may be an effective strategy to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Namasthée Harris-Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
210
|
Pandiella-Alonso A, Díaz-Rodríguez E, Sanz E. Antitumoral Properties of the Nutritional Supplement Ocoxin Oral Solution: A Comprehensive Review. Nutrients 2020; 12:nu12092661. [PMID: 32878230 PMCID: PMC7551453 DOI: 10.3390/nu12092661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022] Open
Abstract
Ocoxin Oral Solution (OOS) is a nutritional supplement whose formulation includes several plant extracts and natural products with demonstrated antitumoral properties. This review summarizes the antitumoral action of the different constituents of OOS. The action of this formulation on different preclinical models as well as clinical trials is reviewed, paying special attention to the mechanism of action and quality of life improvement properties of this nutritional supplement. Molecularly, its mode of action includes a double edge role on tumor biology, that involves a slowdown in cell proliferation accompanied by cell death induction. Given the safety and good tolerability of OOS, and its potentiation of the antitumoral effect of other standard of care drugs, OOS may be used in the oncology clinic in combination with conventional therapies.
Collapse
Affiliation(s)
- Atanasio Pandiella-Alonso
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain;
- Correspondence:
| | - Elena Díaz-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-IBSAL and CIBERONC, 37007 Salamanca, Spain;
| | | |
Collapse
|
211
|
Sies H, Parnham MJ. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic Biol Med 2020; 156:107-112. [PMID: 32598985 PMCID: PMC7319625 DOI: 10.1016/j.freeradbiomed.2020.06.032] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Ebselen is an organoselenium compound exhibiting hydroperoxide- and peroxynitrite-reducing activity, acting as a glutathione peroxidase and peroxiredoxin enzyme mimetic. Ebselen reacts with a multitude of protein thiols, forming a selenosulfide bond, which results in pleiotropic effects of antiviral, antibacterial and anti-inflammatory nature. The main protease (Mpro) of the corona virus SARS-CoV-2 is a potential drug target, and a screen with over 10,000 compounds identified ebselen as a particularly promising inhibitor of Mpro (Jin, Z. et al. (2020) Nature 582, 289-293). We discuss here the reaction of ebselen with cysteine proteases, the role of ebselen in infections with viruses and with other microorganisms. We also discuss effects of ebselen in lung inflammation. In further research on the inhibition of Mpro in SARS-CoV-2, ebselen can serve as a promising lead compound, if the inhibitory effect is confirmed in intact cells in vivo. Independently of this action, potential beneficial effects of ebselen in COVID-19 are ascribed to a number of targets critical to pathogenesis, such as attenuation of inflammatory oxidants and cytokines.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Michael J Parnham
- Faculty of Biochemistry, Chemistry and Pharmacy, JW Goethe University Frankfurt, Frankfurt am Main, Germany; Pharmacology Consultant, Bad Soden am Taunus, Germany.
| |
Collapse
|
212
|
Brier MI, Mundell JW, Yu X, Su L, Holmann A, Squeri J, Zhang B, Stanley SA, Friedman JM, Dordick JS. Uncovering a possible role of reactive oxygen species in magnetogenetics. Sci Rep 2020; 10:13096. [PMID: 32753716 PMCID: PMC7403421 DOI: 10.1038/s41598-020-70067-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Recent reports have shown that intracellular, (super)paramagnetic ferritin nanoparticles can gate TRPV1, a non-selective cation channel, in a magnetic field. Here, we report the effects of differing field strength and frequency as well as chemical inhibitors on channel gating using a Ca2+-sensitive promoter to express a secreted embryonic alkaline phosphatase (SEAP) reporter. Exposure of TRPV1-ferritin-expressing HEK-293T cells at 30 °C to an alternating magnetic field of 501 kHz and 27.1 mT significantly increased SEAP secretion by ~ 82% relative to control cells, with lesser effects at other field strengths and frequencies. Between 30-32 °C, SEAP production was strongly potentiated 3.3-fold by the addition of the TRPV1 agonist capsaicin. This potentiation was eliminated by the competitive antagonist AMG-21629, the NADPH oxidase assembly inhibitor apocynin, and the reactive oxygen species (ROS) scavenger N-acetylcysteine, suggesting that ROS contributes to magnetogenetic TRPV1 activation. These results provide a rational basis to address the heretofore unknown mechanism of magnetogenetics.
Collapse
Affiliation(s)
- Matthew I Brier
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jordan W Mundell
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xiaofei Yu
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY, 10065, USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lichao Su
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, College of Material Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin, 541004, China
| | - Alexander Holmann
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jessica Squeri
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Baolin Zhang
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, College of Material Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin, 541004, China
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine At Mount Sinai, New York, NY, 10029, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Departments of Biomedical Engineering and Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
213
|
In vivo tracking cystine/glutamate antiporter-mediated cysteine/cystine pool under ferroptosis. Anal Chim Acta 2020; 1125:66-75. [DOI: 10.1016/j.aca.2020.05.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/01/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022]
|
214
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol 2020; 35:101499. [PMID: 32192916 PMCID: PMC7284946 DOI: 10.1016/j.redox.2020.101499] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Redox reactions control fundamental processes of human biology. Therefore, it is safe to assume that the responses and adaptations to exercise are, at least in part, mediated by redox reactions. In this review, we are trying to show that redox reactions are the basis of exercise physiology by outlining the redox signaling pathways that regulate four characteristic acute exercise-induced responses (muscle contractile function, glucose uptake, blood flow and bioenergetics) and four chronic exercise-induced adaptations (mitochondrial biogenesis, muscle hypertrophy, angiogenesis and redox homeostasis). Based on our analysis, we argue that redox regulation should be acknowledged as central to exercise physiology.
Collapse
Affiliation(s)
- N V Margaritelis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece; Dialysis Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece.
| | - V Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A A Theodorou
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - A Kyparos
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M G Nikolaidis
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
215
|
Wang Y, Dillon KM, Li Z, Winckler EW, Matson JB. Alleviating Cellular Oxidative Stress through Treatment with Superoxide‐Triggered Persulfide Prodrugs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yin Wang
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| | - Kearsley M. Dillon
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| | - Zhao Li
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| | - Ethan W. Winckler
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| | - John B. Matson
- Department of of ChemistryVirginia Tech Center for Drug DiscoveryMacromolecules Innovation InstituteVirginia Tech Blacksburg VA 24061 USA
| |
Collapse
|
216
|
Local endothelial DNA repair deficiency causes aging-resembling endothelial-specific dysfunction. Clin Sci (Lond) 2020; 134:727-746. [PMID: 32202295 DOI: 10.1042/cs20190124] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 01/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
We previously identified genomic instability as a causative factor for vascular aging. In the present study, we determined which vascular aging outcomes are due to local endothelial DNA damage, which was accomplished by genetic removal of ERCC1 (excision repair cross-complementation group 1) DNA repair in mice (EC-knockout (EC-KO) mice). EC-KO showed a progressive decrease in microvascular dilation of the skin, increased microvascular leakage in the kidney, decreased lung perfusion, and increased aortic stiffness compared with wild-type (WT). EC-KO showed expression of DNA damage and potential senescence marker p21 exclusively in the endothelium, as demonstrated in aorta. Also the kidney showed p21-positive cells. Vasodilator responses measured in organ baths were decreased in aorta, iliac and coronary artery EC-KO compared with WT, of which coronary artery was the earliest to be affected. Nitric oxide-mediated endothelium-dependent vasodilation was abolished in aorta and coronary artery, whereas endothelium-derived hyperpolarization and responses to exogenous nitric oxide (NO) were intact. EC-KO showed increased superoxide production compared with WT, as measured in lung tissue, rich in endothelial cells (ECs). Arterial systolic blood pressure (BP) was increased at 3 months, but normal at 5 months, at which age cardiac output (CO) was decreased. Since no further signs of cardiac dysfunction were detected, this decrease might be an adaptation to prevent an increase in BP. In summary, a selective DNA repair defect in the endothelium produces features of age-related endothelial dysfunction, largely attributed to loss of endothelium-derived NO. Increased superoxide generation might contribute to the observed changes affecting end organ perfusion, as demonstrated in kidney and lung.
Collapse
|
217
|
Kwok ML, Chan KM. Oxidative stress and apoptotic effects of copper and cadmium in the zebrafish liver cell line ZFL. Toxicol Rep 2020; 7:822-835. [PMID: 32670800 PMCID: PMC7347715 DOI: 10.1016/j.toxrep.2020.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/08/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and apoptosis created by Cu2+ and Cd2+ insults were studied in ZFL. Cu2+ and Cd2+ both created lipid peroxidation, causing oxidative stress in cytoplasm. Mitochondrial superoxide was induced by Cd2+ but supressed by Cu2+. Cu2+ suppressed Casp3 activity, resulting in suppressed the apoptosis. Pre-treatments of low concentration of Cu2+ protected the cell from Cd2+ insults.
Copper (Cu) and cadmium (Cd) are widely used in industrial activities, resulting in Cu and Cd contamination in aquatic systems worldwide. Although Cu plays an essential role in many biological functions, an excessive amount of the metal causes cytotoxicity. In contrast, Cd is a non-essential metal that usually co-exists with Cu. Together, they cause oxidative stress in cells, leading to cell damage. These metal ions are also believed to cause cell apoptosis. In this study, we used a zebrafish liver cell line, ZFL, to study combined Cu and Cd cytotoxicity. Although Cd is more toxic than Cu, both were found to regulate the expression of oxidative stress related genes, and neither significantly altered the activity of oxidative stress related enzymes. Co-exposure tests with the antioxidant N-acetyl-l-cysteine and the Cu chelator bathocuproinedisulfonic acid disodium salt demonstrated that Cd toxicity was due to the oxidative stress caused by Cu, and that Cu at a low concentration could in fact exert an antioxidant effect against the oxidative stress in ZFL. Excessive Cu concentration triggered the expression of initiator caspases (caspase 8 and caspase 9) but suppressed that of an executioner caspase (caspase 3), halting apoptosis. Cd could only trigger the expression of initiator caspases; it could not halt apoptosis. However, a low concentration of Cu reduced the mitochondrial superoxide level, suppressing the Cd-induced apoptotic effects in ZFL.
Collapse
Key Words
- BCS, bathocuproinedisulfonic acid disodium salt
- CAT, catalase protein
- Casp3, caspase 3 protein
- Casp8, caspase 8 protein
- Casp9, caspase 9 protein
- Cd, cadmium
- Combined effects
- Cu, copper
- Cytotoxicity
- GR, glutathione reductase protein
- GST, glutathione-S-transferase protein
- LC, lethal concentration
- LC20, lethal concentration of 20 % population
- LC50, median lethal concentration
- Mitochondrial function
- NAC, N-acetyl-l-cysteine
- PBS, phosphate-buffered saline
- SOD, superoxide dismutase proteins
- VE, tocopherol (Vitamin E)
- cat, catalase gene
- ccs, copper chaperone for superoxide dismutase gene
- ef1a, elongation factor 1-alpha gene
- gr, glutathione reductase gene
- gst, glutathione-S-transferase gene
- mtDNA, mitochondrial DNA
- sod1, superoxide dismutase 1 gene
- sod2, superoxide dismutase 2 gene
- ybx1, Y box-binding protein 1 gene
- z, zebrafish
Collapse
Affiliation(s)
- Man Long Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| |
Collapse
|
218
|
Kwok RML, Chan KM. WITHDRAWN: Oxidative Stress and Apoptotic Effects of Copper and Cadmium in the Zebrafish Liver Cell Line ZFL. Toxicol Rep 2020. [DOI: 10.1016/j.toxrep.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
219
|
The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? Mol Biol Rep 2020; 47:5587-5620. [PMID: 32564227 DOI: 10.1007/s11033-020-05590-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Nitro-oxidative stress and lowered antioxidant defences play a key role in neuropsychiatric disorders such as major depression, bipolar disorder and schizophrenia. The first part of this paper details mitochondrial antioxidant mechanisms and their importance in reactive oxygen species (ROS) detoxification, including details of NO networks, the roles of H2O2 and the thioredoxin/peroxiredoxin system, and the relationship between mitochondrial respiration and NADPH production. The second part highlights and identifies the causes of the multiple pathological sequelae arising from self-amplifying increases in mitochondrial ROS production and bioenergetic failure. Particular attention is paid to NAD+ depletion as a core cause of pathology; detrimental effects of raised ROS and reactive nitrogen species on ATP and NADPH generation; detrimental effects of oxidative and nitrosative stress on the glutathione and thioredoxin systems; and the NAD+-induced signalling cascade, including the roles of SIRT1, SIRT3, PGC-1α, the FOXO family of transcription factors, Nrf1 and Nrf2. The third part discusses proposed therapeutic interventions aimed at mitigating such pathology, including the use of the NAD+ precursors nicotinamide mononucleotide and nicotinamide riboside, both of which rapidly elevate levels of NAD+ in the brain and periphery following oral administration; coenzyme Q10 which, when given with the aim of improving mitochondrial function and reducing nitro-oxidative stress in the brain, may be administered via the use of mitoquinone, which is in essence ubiquinone with an attached triphenylphosphonium cation; and N-acetylcysteine, which is associated with improved mitochondrial function in the brain and produces significant decreases in oxidative and nitrosative stress in a dose-dependent manner.
Collapse
|
220
|
Winiarska-Mieczan A, Mieczan T, Wójcik G. Importance of Redox Equilibrium in the Pathogenesis of Psoriasis-Impact of Antioxidant-Rich Diet. Nutrients 2020; 12:E1841. [PMID: 32575706 PMCID: PMC7353401 DOI: 10.3390/nu12061841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/25/2022] Open
Abstract
Psoriasis is a common, chronic, hyperproliferative, inflammatory skin disease occurring in most ethnic groups in the world. The disease is hereditary but the process of its inheritance is complex and still not fully understood. At the same time, it has been observed that psoriatic lesions may be triggered by certain prooxidative external factors: using narcotics, smoking, drinking alcohol, physical and mental stress, as well as bacterial infections and injury. Since the main physiological marker of psoriasis relates to disorders in the organism's antioxidative system, it is necessary to develop a well-balanced combination of pharmaceuticals and dietary antioxidants to facilitate the effective treatment and/or prevention of the disease. The dietary sources of antioxidants must be adequate for chronic use regardless of the patient's age and be easily available, e.g., as ingredients of regular food or dietary supplements. Diet manipulation is a promising therapeutic approach in the context of modulating the incidence of chronic diseases. Another potentially viable method entails the use of nutrigenomics, which guarantees a multiaspectual approach to the problem, including, in particular, analyses of the genetic profiles of psoriasis patients with the view to more accurately targeting key problems. The present paper pertains to the significance of redox equilibrium in the context of psoriasis. Based on information published in worldwide literature over the last decade, the impact of dietary exogenous antioxidants on the course of this chronic disease was analysed.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Tomasz Mieczan
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, 20-262 Lublin, Poland
| | - Grzegorz Wójcik
- Department of Inorganic Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland;
| |
Collapse
|
221
|
Shin J, Song MH, Oh JW, Keum YS, Saini RK. Pro-Oxidant Actions of Carotenoids in Triggering Apoptosis of Cancer Cells: A Review of Emerging Evidence. Antioxidants (Basel) 2020; 9:E532. [PMID: 32560478 PMCID: PMC7346220 DOI: 10.3390/antiox9060532] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Carotenoids are well known for their potent antioxidant function in the cellular system. However, in cancer cells with an innately high level of intracellular reactive oxygen species (ROS), carotenoids may act as potent pro-oxidant molecules and trigger ROS-mediated apoptosis. In recent years, the pro-oxidant function of several common dietary carotenoids, including astaxanthin, β-carotene, fucoxanthin, and lycopene, has been investigated for their effective killing effects on various cancer cell lines. Besides, when carotenoids are delivered with ROS-inducing cytotoxic drugs (e.g., anthracyclines), they can minimize the adverse effects of these drugs on normal cells by acting as antioxidants without interfering with their cytotoxic effects on cancer cells as pro-oxidants. These dynamic actions of carotenoids can optimize oxidative stress in normal cells while enhancing oxidative stress in cancer cells. This review discusses possible mechanisms of carotenoid-triggered ROS production in cancer cells, the activation of pro-apoptotic signaling by ROS, and apoptotic cell death. Moreover, synergistic actions of carotenoids with ROS-inducing anti-cancer drugs are discussed, and research gaps are suggested.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.S.); (J.-W.O.)
| | - Min-Ho Song
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (Y.-S.K.)
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 143-701, Korea; (J.S.); (J.-W.O.)
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (Y.-S.K.)
| | - Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Korea; (M.-H.S.); (Y.-S.K.)
- Institute of Natural Science and Agriculture, Konkuk University, Seoul 143-701, Korea
| |
Collapse
|
222
|
Abstract
The outbreak of COVID-19 pneumonia caused by a new coronavirus (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2) is posing a global health emergency and has led to more than 380,000 deaths worldwide. The cell entry of SARS-CoV-2 depends on two host proteins angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). There is currently no vaccine available and also no effective drug for the treatment of COVID-19. Hydrogen sulfide (H2S) as a novel gasotransmitter has been shown to protect against lung damage via its anti-inflammation, antioxidative stress, antiviral, prosurvival, and antiaging effects. In light of the research advances on H2S signaling in biology and medicine, this review proposed H2S as a potential defense against COVID-19. It is suggested that H2S may block SARS-CoV-2 entry into host cells by interfering with ACE2 and TMPRSS2, inhibit SARS-CoV-2 replication by attenuating virus assembly/release, and protect SARS-CoV-2-induced lung damage by suppressing immune response and inflammation development. Preclinical studies and clinical trials with slow-releasing H2S donor(s) or the activators of endogenous H2S-generating enzymes should be considered as a preventative treatment or therapy for COVID-19.
Collapse
Affiliation(s)
- Guangdong Yang
- Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Ontario, Canada.,Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
223
|
Oncogenic hijacking of a developmental transcription factor evokes vulnerability toward oxidative stress in Ewing sarcoma. Nat Commun 2020; 11:2423. [PMID: 32415069 PMCID: PMC7228971 DOI: 10.1038/s41467-020-16244-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/23/2020] [Indexed: 01/20/2023] Open
Abstract
Ewing sarcoma (EwS) is an aggressive childhood cancer likely originating from mesenchymal stem cells or osteo-chondrogenic progenitors. It is characterized by fusion oncoproteins involving EWSR1 and variable members of the ETS-family of transcription factors (in 85% FLI1). EWSR1-FLI1 can induce target genes by using GGAA-microsatellites as enhancers. Here, we show that EWSR1-FLI1 hijacks the developmental transcription factor SOX6 – a physiological driver of proliferation of osteo-chondrogenic progenitors – by binding to an intronic GGAA-microsatellite, which promotes EwS growth in vitro and in vivo. Through integration of transcriptome-profiling, published drug-screening data, and functional in vitro and in vivo experiments including 3D and PDX models, we discover that constitutively high SOX6 expression promotes elevated levels of oxidative stress that create a therapeutic vulnerability toward the oxidative stress-inducing drug Elesclomol. Collectively, our results exemplify how aberrant activation of a developmental transcription factor by a dominant oncogene can promote malignancy, but provide opportunities for targeted therapy. Ewing sarcoma is characterized by the fusion of EWSR1 and FLI1. Here, the authors show that EWSR1-FLI1 increases the activity of the developmental transcription factor SOX6, which promotes tumor growth but also increases sensitivity to oxidative stress.
Collapse
|
224
|
Matsumura T, Uryu O, Matsuhisa F, Tajiri K, Matsumoto H, Hayakawa Y. N-acetyl-l-tyrosine is an intrinsic triggering factor of mitohormesis in stressed animals. EMBO Rep 2020; 21:e49211. [PMID: 32118349 PMCID: PMC10563448 DOI: 10.15252/embr.201949211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 10/12/2023] Open
Abstract
Under stress conditions, mitochondria release low levels of reactive oxygen species (ROS), which triggers a cytoprotective response, called "mitohormesis". It still remains unclear how mitochondria respond to stress-derived stimuli and release a low level of ROS. Here, we show that N-acetyl-l-tyrosine (NAT) functions as a plausible intrinsic factor responsible for these tasks in stressed animals. NAT is present in the blood or hemolymph of healthy animals, and its concentrations increase in response to heat stress. Pretreatment with NAT significantly increases the stress tolerance of tested insects and mice. Analyses using Drosophila larvae and cultured cells demonstrate that the hormetic effects are triggered by transient NAT-induced perturbation of mitochondria, which causes a small increase in ROS production and leads to sequential retrograde responses: NAT-dependent FoxO activation increases in the gene expression of antioxidant enzymes and Keap1. Moreover, we find that NAT represses tumor growth, possibly via the activation of Keap1. In sum, we propose that NAT is a vital endogenous molecule that could serve as a triggering factor for mitohormesis.
Collapse
Affiliation(s)
- Takashi Matsumura
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Outa Uryu
- Department of Applied Biological SciencesSaga UniversitySagaJapan
| | - Fumikazu Matsuhisa
- Analytical Research Center for Experimental SciencesSaga UniversitySagaJapan
| | - Keiji Tajiri
- Department of Applied Biological SciencesSaga UniversitySagaJapan
- Present address:
Fuji Environment Service Co., Kansai BranchKyotoJapan
| | | | - Yoichi Hayakawa
- The United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
- Department of Applied Biological SciencesSaga UniversitySagaJapan
| |
Collapse
|
225
|
Samet JM, Chen H, Pennington ER, Bromberg PA. Non-redox cycling mechanisms of oxidative stress induced by PM metals. Free Radic Biol Med 2020; 151:26-37. [PMID: 31877355 PMCID: PMC7803379 DOI: 10.1016/j.freeradbiomed.2019.12.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022]
Abstract
Metallic compounds contribute to the oxidative stress of ambient particulate matter (PM) exposure. The toxicity of redox inert ions of cadmium, mercury, lead and zinc, as well as redox-active ions of vanadium and chromium is underlain by dysregulation of mitochondrial function and loss of signaling quiescence. Central to the initiation of these effects is the interaction of metal ions with cysteinyl thiols on glutathione and key regulatory proteins, which leads to impaired mitochondrial electron transport and persistent pan-activation of signal transduction pathways. The mitochondrial and signaling effects are linked by the production of H2O2, generated from mitochondrial superoxide anion or through the activation of NADPH oxidase, which extends the range and amplifies the magnitude of the oxidative effects of the metals. This oxidative burden can be further potentiated by inhibitory effects of the metals on the enzymes of the glutathione and thioredoxin systems. Along with the better-known Fenton-based mechanisms, the non-redox cycling mechanisms of oxidative stress induced by metals constitute significant pathways for cellular injury induced by PM inhalation.
Collapse
Affiliation(s)
- James M Samet
- Environmental Public Health Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Chapel Hill, NC, USA.
| | - Hao Chen
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | | | - Philip A Bromberg
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
226
|
Puro DG. How goblet cells respond to dry eye: adaptive and pathological roles of voltage-gated calcium channels and P2X 7 purinoceptors. Am J Physiol Cell Physiol 2020; 318:C1305-C1315. [PMID: 32348177 DOI: 10.1152/ajpcell.00086.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dry eye is a common sight-impairing, painful disorder characterized by disruption of the preocular tear film, whose integrity is required for ~70% of the eye's refractive power. A universal feature of clinical dry eye is hyperosmolarity of the tears resulting from their accelerated evaporation due to dysfunction of tear- and oil-producing ocular glands. A key adaptive response to dryness/hyperosmolarity is release of tear-stabilizing mucin by conjunctival goblet cells. Yet the mechanisms mediating this response to hyperosmolarity remain poorly understood. In this study of freshly excised rat conjunctiva, perforated-patch recordings revealed that during sustained hyperosmolarity, the development of a nonspecific cation (NSC) conductance depolarizes the goblet cells to a near-optimal voltage for the tonic activation of their voltage-gated calcium channels (VGCCs). In turn, as demonstrated by high-resolution membrane capacitance measurements, VGCC activation boosts the exocytotic response of conjunctival goblet cells to neural input. However, over time, VGCC activation also increases the vulnerability of these cells to the lethality of hyperosmolarity. Viability assays further revealed that hyperosmotic-induced goblet cell death is critically dependent on P2X7 receptor channels. Similar to the yin-yang impact of VGCCs on goblet cell physiology and pathobiology, P2X7 activation not only compromises goblet cell viability but also enhances exocytotic activity. Thus, the NSC/VGCC and P2X7 purinoceptor pathways are components of a previously unappreciated high-gain/high-risk adaptive strategy to combat ocular dryness. These pathways boost release of tear-stabilizing mucin at the risk of jeopardizing the viability of the conjunctival goblet cells, whose loss is a histopathological hallmark of irreversible mucin-deficient dry eye.
Collapse
Affiliation(s)
- Donald G Puro
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
227
|
Harris IS, DeNicola GM. The Complex Interplay between Antioxidants and ROS in Cancer. Trends Cell Biol 2020; 30:440-451. [PMID: 32303435 DOI: 10.1016/j.tcb.2020.03.002] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) play important roles in tissue homeostasis, cellular signaling, differentiation, and survival. In this review, we discuss the types ofROS, their impact on cellular processes, and their pro- and antitumorigenic effects. Further, we discuss recent advances in our understanding of both endogenous and exogenous antioxidants in tumorigenic processes. Finally, wediscuss how aberrant activation of antioxidant programs by the transcription factor NFE2-related factor 2 (NRF2) influences tumorigenesis and metastasis, and where the current gaps in our knowledge remain.
Collapse
Affiliation(s)
- Isaac S Harris
- Department of Biomedical Genetics and Wilmot Cancer Institute, University of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
228
|
De Henau S, Pagès-Gallego M, Pannekoek WJ, Dansen TB. Mitochondria-Derived H 2O 2 Promotes Symmetry Breaking of the C. elegans Zygote. Dev Cell 2020; 53:263-271.e6. [PMID: 32275886 DOI: 10.1016/j.devcel.2020.03.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022]
Abstract
Symmetry breaking is an essential step in cell differentiation and early embryonic development. However, the molecular cues that trigger symmetry breaking remain largely unknown. Here, we show that mitochondrial H2O2 acts as a symmetry-breaking cue in the C. elegans zygote. We find that symmetry breaking is marked by a local H2O2 increase and coincides with a relocation of mitochondria to the cell cortex. Lowering endogenous H2O2 levels delays the onset of symmetry breaking, while artificially targeting mitochondria to the cellular cortex using a light-induced heterodimerization technique is sufficient to initiate symmetry breaking in a H2O2-dependent manner. In wild-type development, both sperm and maternal mitochondria contribute to symmetry breaking. Our findings reveal that mitochondrial H2O2-signaling promotes the onset of polarization, a fundamental process in development and cell differentiation, and this is achieved by both mitochondrial redistribution and differential H2O2-production.
Collapse
Affiliation(s)
- Sasha De Henau
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Marc Pagès-Gallego
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Willem-Jan Pannekoek
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands
| | - Tobias B Dansen
- Center for Molecular Medicine, Molecular Cancer Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
229
|
Brenig K, Grube L, Schwarzländer M, Köhrer K, Stühler K, Poschmann G. The Proteomic Landscape of Cysteine Oxidation That Underpins Retinoic Acid-Induced Neuronal Differentiation. J Proteome Res 2020; 19:1923-1940. [DOI: 10.1021/acs.jproteome.9b00752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Katrin Brenig
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Leonie Grube
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Markus Schwarzländer
- Institute for Plant Biology and Biotechnology, Plant Energy Biology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Karl Köhrer
- Genomics & Transcriptomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Kai Stühler
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Gereon Poschmann
- Institute for Molecular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
230
|
Yadav PK, Vitvitsky V, Carballal S, Seravalli J, Banerjee R. Thioredoxin regulates human mercaptopyruvate sulfurtransferase at physiologically-relevant concentrations. J Biol Chem 2020; 295:6299-6311. [PMID: 32179647 DOI: 10.1074/jbc.ra120.012616] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/13/2020] [Indexed: 11/06/2022] Open
Abstract
3-Mercaptopyruvate sulfur transferase (MPST) catalyzes the desulfuration of 3-mercaptopyruvate (3-MP) and transfers sulfane sulfur from an enzyme-bound persulfide intermediate to thiophilic acceptors such as thioredoxin and cysteine. Hydrogen sulfide (H2S), a signaling molecule implicated in many physiological processes, can be released from the persulfide product of the MPST reaction. Two splice variants of MPST, differing by 20 amino acids at the N terminus, give rise to the cytosolic MPST1 and mitochondrial MPST2 isoforms. Here, we characterized the poorly-studied MPST1 variant and demonstrated that substitutions in its Ser-His-Asp triad, proposed to serve a general acid-base role, minimally affect catalytic activity. We estimated the 3-MP concentration in murine liver, kidney, and brain tissues, finding that it ranges from 0.4 μmol·kg-1 in brain to 1.4 μmol·kg-1 in kidney. We also show that N-acetylcysteine, a widely-used antioxidant, is a poor substrate for MPST and is unlikely to function as a thiophilic acceptor. Thioredoxin exhibits substrate inhibition, increasing the KM for 3-MP ∼15-fold compared with other sulfur acceptors. Kinetic simulations at physiologically-relevant substrate concentrations predicted that the proportion of sulfur transfer to thioredoxin increases ∼3.5-fold as its concentration decreases from 10 to 1 μm, whereas the total MPST reaction rate increases ∼7-fold. The simulations also predicted that cysteine is a quantitatively-significant sulfane sulfur acceptor, revealing MPST's potential to generate low-molecular-weight persulfides. We conclude that the MPST1 and MPST2 isoforms are kinetically indistinguishable and that thioredoxin modulates the MPST-catalyzed reaction in a physiologically-relevant concentration range.
Collapse
Affiliation(s)
- Pramod Kumar Yadav
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Victor Vitvitsky
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| | - Sebastián Carballal
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600.,Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Javier Seravalli
- Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600
| |
Collapse
|
231
|
Cysteine becomes conditionally essential during hypobaric hypoxia and regulates adaptive neuro-physiological responses through CBS/H 2S pathway. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165769. [PMID: 32184133 DOI: 10.1016/j.bbadis.2020.165769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 02/02/2020] [Accepted: 03/12/2020] [Indexed: 12/17/2022]
Abstract
Brain is well known for its disproportionate oxygen consumption and high energy-budget for optimal functioning. The decrease in oxygen supply to brain, thus, necessitates rapid activation of adaptive pathways - the absence of which manifest into vivid pathological conditions. Amongst these, oxygen sensing in glio-vascular milieu and H2S-dependent compensatory increase in cerebral blood flow (CBF) is a major adaptive response. We had recently demonstrated that the levels of H2S were significantly decreased during chronic hypobaric hypoxia (HH)-induced neuro-pathological effects. The mechanistic basis of this phenomenon, however, remained to be deciphered. We, here, describe experimental evidence for marked limitation of cysteine during HH - both in animal model as well as human volunteers ascending to high altitude. We show that the preservation of brain cysteine level, employing cysteine pro-drug (N-acetyl-L-cysteine, NAC), markedly curtailed effects of HH - not only on endogenous H2S levels but also, impairment of spatial reference memory in our animal model. We, further, present multiple lines of experimental evidence that the limitation of cysteine was causally governed by physiological propensity of brain to utilize cysteine, in cystathionine beta synthase (CBS)-dependent manner, past its endogenous replenishment potential. Notably, decrease in the levels of brain cysteine manifested despite positive effect (up-regulation) of HH on endogenous cysteine maintenance pathways and thus, qualifying cysteine as a conditionally essential nutrient (CEN) during HH. In brief, our data supports an adaptive, physiological role of CBS-mediated cysteine-utilization pathway - activated to increase endogenous levels of H2S - for optimal responses of brain to hypobaric hypoxia.
Collapse
|
232
|
Pak VV, Ezeriņa D, Lyublinskaya OG, Pedre B, Tyurin-Kuzmin PA, Mishina NM, Thauvin M, Young D, Wahni K, Martínez Gache SA, Demidovich AD, Ermakova YG, Maslova YD, Shokhina AG, Eroglu E, Bilan DS, Bogeski I, Michel T, Vriz S, Messens J, Belousov VV. Ultrasensitive Genetically Encoded Indicator for Hydrogen Peroxide Identifies Roles for the Oxidant in Cell Migration and Mitochondrial Function. Cell Metab 2020; 31:642-653.e6. [PMID: 32130885 PMCID: PMC7088435 DOI: 10.1016/j.cmet.2020.02.003] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/18/2019] [Accepted: 02/07/2020] [Indexed: 11/19/2022]
Abstract
Hydrogen peroxide (H2O2) is a key redox intermediate generated within cells. Existing probes for H2O2 have not solved the problem of detection of the ultra-low concentrations of the oxidant: these reporters are not sensitive enough, or pH-dependent, or insufficiently bright, or not functional in mammalian cells, or have poor dynamic range. Here we present HyPer7, the first bright, pH-stable, ultrafast, and ultrasensitive ratiometric H2O2 probe. HyPer7 is fully functional in mammalian cells and in other higher eukaryotes. The probe consists of a circularly permuted GFP integrated into the ultrasensitive OxyR domain from Neisseria meningitidis. Using HyPer7, we were able to uncover the details of H2O2 diffusion from the mitochondrial matrix, to find a functional output of H2O2 gradients in polarized cells, and to prove the existence of H2O2 gradients in wounded tissue in vivo. Overall, HyPer7 is a probe of choice for real-time H2O2 imaging in various biological contexts.
Collapse
Affiliation(s)
- Valeriy V Pak
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen 37073, Germany
| | - Daria Ezeriņa
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie - Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Olga G Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Brandán Pedre
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie - Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | | | - Natalie M Mishina
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris 75231, France; Sorbonne Université, Collège Doctoral, Paris 75005, France
| | - David Young
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie - Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie - Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Santiago Agustín Martínez Gache
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie - Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Alexandra D Demidovich
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Yulia G Ermakova
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Yulia D Maslova
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Arina G Shokhina
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Emrah Eroglu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dmitry S Bilan
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Ivan Bogeski
- Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen 37073, Germany
| | - Thomas Michel
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris 75231, France; University Paris-Diderot, Paris 75006, France
| | - Joris Messens
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie - Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Brussels Center for Redox Biology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Vsevolod V Belousov
- Department of Metabolism and Redox Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia; Institute for Cardiovascular Physiology, Georg August University Göttingen, Göttingen 37073, Germany; Federal Center for Cerebrovascular Pathology and Stroke, Moscow 117997, Russia.
| |
Collapse
|
233
|
Lapenna D, Ciofani G, Lelli Chiesa P, Porreca E. Evidence for oxidative and not reductive stress in the aged rabbit heart. Exp Gerontol 2020; 134:110871. [PMID: 32035990 DOI: 10.1016/j.exger.2020.110871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022]
Abstract
Reductive stress, which is due to a paradoxical excess of antioxidants such as reduced glutathione (GSH) and GSH-related enzymes associated with decreased oxidant levels, has emerged as a pathogenetic mechanism of myocardial damage in pathological conditions such as protein aggregation cardiomyopathy. Notably, in the aged heart a cardiomyopathy-like pathology occurs leading to myocardial dysfunction. Whether reductive stress, or instead its counterpart oxidative stress, is operative in the aged mammalian heart needs to be elucidated also for the different therapeutic implications of such redox stress conditions. In the present investigation, we assessed GSH and the specific enzymatic activities of γ-glutamylcysteine synthetase (γ-GCS), glutathione reductase (GSSG-Red) and selenium-dependent glutathione peroxidase (GSH-Px) as endogenous antioxidants, together with oxidized glutathione (GSSG) and the glutathione redox ratio (GSH/GSSG), in the aerobically perfused hearts of aged rabbits (about 4.5 years old) and young adult control rabbits (3-4 months old). We also assessed in the aged and control hearts H2O2 and catalytically active low molecular weight iron (LMWI) as oxidant forces, as well as fluorescent damage products of lipid peroxidation (FDPL) and protein carbonyls (PC) as biomarkers of lipid and protein oxidation. Moreover, the effects of 4.5 mM N-acetylcysteine (NAC) as reducing thiol antioxidant were studied on hemodynamic parameters and lipid peroxidation in the perfused hearts of the aged and control rabbits. The levels of GSH and of the GSH/GSSG ratio were lower, and those of GSSG higher, in the aged than in the control hearts. The aged hearts were also characterized by decreased activities of the antioxidant enzymes γ-GCS, GSSG-Red and GSH-Px, as well as by heightened levels of H2O2, LMWI, FDPL and PC, highlighting the occurrence of aging-dependent oxidative stress. Associated with such biochemical alterations, hemodynamic dysfunction occurred in the aged rabbit hearts, as evidenced by lowered developed pressure (DP) and enhanced end-diastolic pressure (EDP) with decreased coronary flow (CF). Remarkably, NAC administration significantly improved DP and EDP, and lowered lipid peroxidation, electively in the aged hearts. In conclusion, oxidative and not reductive stress is operative in the aged rabbit heart, whose hemodynamic dysfunction is improved by NAC together with reduction in myocardial lipid peroxidation.
Collapse
Affiliation(s)
- Domenico Lapenna
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" Chieti Pescara, 66100 Chieti, Italy; Laboratorio di Fisiopatologia dello Stress Ossidativo, Center for Advanced Studies and Technology (CAST, former CeSI-MeT, Center of Excellence on Aging), Università degli Studi "G. d'Annunzio" Chieti Pescara, 66100 Chieti, Italy.
| | - Giuliano Ciofani
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" Chieti Pescara, 66100 Chieti, Italy; Laboratorio di Fisiopatologia dello Stress Ossidativo, Center for Advanced Studies and Technology (CAST, former CeSI-MeT, Center of Excellence on Aging), Università degli Studi "G. d'Annunzio" Chieti Pescara, 66100 Chieti, Italy
| | - Pierluigi Lelli Chiesa
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" Chieti Pescara, 66100 Chieti, Italy
| | - Ettore Porreca
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, Università degli Studi "G. d'Annunzio" Chieti Pescara, 66100 Chieti, Italy
| |
Collapse
|
234
|
Su D, Cheng D, Lv Y, Ren X, Wu Q, Yuan L. A unique off-on near-infrared QCy7-derived probe for selective detection and imaging of hydrogen sulfide in cells and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117635. [PMID: 31605973 DOI: 10.1016/j.saa.2019.117635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/02/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S) has been found to be an important biological regulator that plays important roles in many physiological and pathological processes. Near-infrared (NIR) fluorescent probes capable of selectively detecting H2S in vivo will be useful tools to understand its mechanisms in biological processes. Herein, we reported an easily synthesized and stimuli-responsive NIR fluorescent probe (QCy7-HS) for selective evaluation of endogenous H2S in the living cells and mice. In response to cellular H2S stimulus, QCy7-HS is converted to QCy7 and shows a unique off-on near-infrared fluorescence signal change. The results of selectivity and kinetic studies indicated that our probe has high H2S binding capacity. Therefore, this probe was used for the fluorescence detection of H2S in cells. Moreover, the probe was applied for study exogenous and endogenous H2S in live mice, indicating that the new probe can be used as an efficient tool on H2S related events in living animals.
Collapse
Affiliation(s)
- Dongdong Su
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, PR China.
| | - Dan Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Yun Lv
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Xiaojun Ren
- Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Qian Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
235
|
Persulfides, at the crossroads between hydrogen sulfide and thiols. Essays Biochem 2020; 64:155-168. [DOI: 10.1042/ebc20190049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
AbstractPersulfides (RSSH/RSS−) can be formed in protein and non-protein thiols (RSH) through several different pathways, some of which are dependent on hydrogen sulfide (H2S/HS−). In addition to their roles in biosynthetic processes, persulfides are possible transducers of physiological effects of H2S through the modification of critical cysteines. Persulfides have a very rich biological chemistry that is currently under investigation. They are more nucleophilic and acidic than thiols and, unlike thiols, they can also be electrophilic. They are especially good one-electron reductants. Methods to detect their formation are under continuous development. In this minireview we describe the pathways of formation of persulfides, their biochemical properties and the techniques available for their detection, and we discuss the possible implications of their formation in biological systems.
Collapse
|
236
|
Adamakis IDS, Sperdouli I, Eleftheriou EP, Moustakas M. Hydrogen Peroxide Production by the Spot-Like Mode Action of Bisphenol A. FRONTIERS IN PLANT SCIENCE 2020; 11:1196. [PMID: 32849741 PMCID: PMC7419983 DOI: 10.3389/fpls.2020.01196] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/23/2020] [Indexed: 05/11/2023]
Abstract
Bisphenol A (BPA), an intermediate chemical used for synthesizing polycarbonate plastics, has now become a wide spread organic pollutant. It percolates from a variety of sources, and plants are among the first organisms to encounter, absorb, and metabolize it, while its toxic effects are not yet fully known. Therefore, we experimentally studied the effects of aqueous BPA solutions (50 and 100 mg L-1, for 6, 12, and 24 h) on photosystem II (PSII) functionality and evaluated the role of reactive oxygen species (ROS) on detached leaves of the model plant Arabidopsis thaliana. Chlorophyll fluorescence imaging analysis revealed a spatiotemporal heterogeneity in the quantum yields of light energy partitioning at PSII in Arabidopsis leaves exposed to BPA. Under low light PSII function was negatively influenced only at the spot-affected BPA zone in a dose- and time-dependent manner, while at the whole leaf only the maximum photochemical efficiency (Fv/Fm) was negatively affected. However, under high light all PSII photosynthetic parameters measured were negatively affected by BPA application, in a time-dependent manner. The affected leaf areas by the spot-like mode of BPA action showed reduced chlorophyll autofluorescence and increased accumulation of hydrogen peroxide (H2O2). When H2O2 was scavenged via N-acetylcysteine under BPA exposure, PSII functionality was suspended, while H2O2 scavenging under non-stress had more detrimental effects on PSII function than BPA alone. It can be concluded that the necrotic death-like spots under BPA exposure could be due to ROS accumulation, but also H2O2 generation seems to play a role in the leaf response against BPA-related stress conditions.
Collapse
Affiliation(s)
- Ioannis-Dimosthenis S. Adamakis
- Department of Botany, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Ioannis-Dimosthenis S. Adamakis, ; Michael Moustakas,
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization Demeter, Thessaloniki, Greece
| | | | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, Thessaloniki, Greece
- *Correspondence: Ioannis-Dimosthenis S. Adamakis, ; Michael Moustakas,
| |
Collapse
|
237
|
Locatelli L, Cazzaniga A, De Palma C, Castiglioni S, Maier JAM. Mitophagy contributes to endothelial adaptation to simulated microgravity. FASEB J 2019; 34:1833-1845. [PMID: 31914607 DOI: 10.1096/fj.201901785rrr] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
Exposure to real or simulated microgravity is sensed as a stress by mammalian cells, which activate a complex adaptive response. In human primary endothelial cells, we have recently shown the sequential intervention of various stress proteins which are crucial to prevent apoptosis and maintain cell function. We here demonstrate that mitophagy contributes to endothelial adaptation to gravitational unloading. After 4 and 10 d of exposure to simulated microgravity in the rotating wall vessel, the amount of BCL2 interacting protein 3, a marker of mitophagy, is increased and, in parallel, mitochondrial content, oxygen consumption, and maximal respiratory capacity are reduced, suggesting the acquisition of a thrifty phenotype to meet the novel metabolic challenges generated by gravitational unloading. Moreover, we suggest that microgravity induced-disorganization of the actin cytoskeleton triggers mitophagy, thus creating a connection between cytoskeletal dynamics and mitochondrial content upon gravitational unloading.
Collapse
Affiliation(s)
- Laura Locatelli
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| | - Alessandra Cazzaniga
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| | - Clara De Palma
- Unit of Clinical Pharmacology, Luigi Sacco University Hospital, ASST Fatebenefratelli Sacco, Milano, Italy
| | - Sara Castiglioni
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| | - Jeanette A M Maier
- Department Biomedical and Clinical Sciences L. Sacco, Università di Milano, Milano, Italy
| |
Collapse
|
238
|
Antagonizing Effects of Clematis apiifolia DC. Extract against Benzo[a]pyrene-Induced Damage to Human Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2386163. [PMID: 31885779 PMCID: PMC6925742 DOI: 10.1155/2019/2386163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022]
Abstract
Background. Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon present in the atmosphere, has cytotoxic and carcinogenic effects. There have been no reports to demonstrate involvement of Clematis apiifolia DC. extract (CAE) in B[a]P-induced effects. This study was conducted to investigate the effect of CAE on B[a]P-induced effects and to elucidate its mechanism of action in HaCaT human keratinocytes. CAE inhibited aryl hydrocarbon receptor (AhR) signaling by decreasing both XRE reporter activity and expression of cytochrome P450 1A1 (CYP1A1) induced by B[a]P treatment in HaCaT cells. We also found that B[a]P-induced nuclear translocation of AhR and production of reactive oxygen species (ROS) and proinflammatory cytokines were attenuated by CAE treatment. CAE treatment suppressed B[a]P-induced phosphorylation of Src (Tyr416). In addition, dasatinib, a Src inhibitor, also inhibited B[a]P-induced nuclear translocation of AhR, similar to CAE treatment. In addition, CAE activated antioxidant response element (ARE) signaling by increasing ARE luciferase reporter activity and expression of ARE-dependent genes such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase [quinone] 1 (NQO1), and heme oxygenase-1 (HO-1). Nuclear translocation of Nrf2 by CAE was demonstrated by Western blot analysis and immunocytochemistry. The effects of CAE on ARE signaling were attenuated by knockdown of the Nrf2 gene. Inhibition of AhR signaling and activation of antioxidant activity by CAE operated in a reciprocally independent manner as evidenced by AhR and Nrf2 siRNA experiments. These findings indicate that CAE exerts protective effects against B[a]P by inhibiting AhR signaling and activating Nrf2-mediated signaling, suggesting its potential in protection from harmful B[a]P-containing pollutants.
Collapse
|
239
|
Pajuelo D, Gonzalez-Juarbe N, Niederweis M. NAD hydrolysis by the tuberculosis necrotizing toxin induces lethal oxidative stress in macrophages. Cell Microbiol 2019; 22:e13115. [PMID: 31509891 DOI: 10.1111/cmi.13115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) kills infected macrophages through necroptosis, a programmed cell death that enhances mycobacterial replication and dissemination. The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of Mtb in macrophages and induces necroptosis by NAD+ hydrolysis. Here, we show that the catalytic activity of TNT triggers the production of reactive oxygen species (ROS) in Mtb-infected macrophages causing cell death and promoting mycobacterial replication. TNT induces ROS formation both by activating necroptosis and by a necroptosis-independent mechanism. Most of the detected ROS originate in mitochondria as a consequence of opening the mitochondrial permeability transition pore. However, a significant part of ROS is produced by mechanisms independent of TNT and necroptosis. Expressing only the tnt gene in Jurkat T-cells also induces lethal ROS formation indicating that these molecular mechanisms are not restricted to macrophages. Both the antioxidant N-acetyl-cysteine and replenishment of NAD+ by providing nicotinamide reduce ROS levels in Mtb-infected macrophages, protect them from cell death, and restrict mycobacterial replication. Our results indicate that a host-directed therapy combining replenishment of NAD+ with inhibition of necroptosis and/or antioxidants might improve the health status of TB patients and augment antibacterial TB chemotherapy.
Collapse
Affiliation(s)
- David Pajuelo
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Norberto Gonzalez-Juarbe
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute (JCVI), Rockville, MD, USA
| | - Michael Niederweis
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
240
|
Hydrogen Sulfide in Bone Tissue Regeneration and Repair: State of the Art and New Perspectives. Int J Mol Sci 2019; 20:ijms20205231. [PMID: 31652532 PMCID: PMC6834365 DOI: 10.3390/ijms20205231] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
The importance of hydrogen sulfide (H2S) in the regulation of multiple physiological functions has been clearly recognized in the over 20 years since it was first identified as a novel gasotransmitter. In bone tissue H2S exerts a cytoprotective effect and promotes bone formation. Just recently, the scientific community has begun to appreciate its role as a therapeutic agent in bone pathologies. Pharmacological administration of H2S achieved encouraging results in preclinical studies in the treatment of systemic bone diseases, such as osteoporosis; however, a local delivery of H2S at sites of bone damage may provide additional opportunities of treatment. Here, we highlight how H2S stimulates multiple signaling pathways involved in various stages of the processes of bone repair. Moreover, we discuss how material science and chemistry have recently developed biomaterials and H2S-donors with improved features, laying the ground for the development of H2S-releasing devices for bone regenerative medicine. This review is intended to give a state-of-the-art description of the pro-regenerative properties of H2S, with a focus on bone tissue, and to discuss the potential of H2S-releasing scaffolds as a support for bone repair.
Collapse
|
241
|
Cytoprotective Preconditioning of Osteoblast-Like Cells with N-Acetyl- L-Cysteine for Bone Regeneration in Cell Therapy. Int J Mol Sci 2019; 20:ijms20205199. [PMID: 31635184 PMCID: PMC6834301 DOI: 10.3390/ijms20205199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress hinders tissue regeneration in cell therapy by inducing apoptosis and dysfunction in transplanted cells. N-acetyl-L-cysteine (NAC) reinforces cellular antioxidant capabilities by increasing a major cellular endogenous antioxidant molecule, glutathione, and promotes osteogenic differentiation. This study investigates the effects of pretreatment of osteoblast-like cells with NAC on oxidative stress-induced apoptosis and dysfunction and bone regeneration in local transplants. Rat femur bone marrow-derived osteoblast-like cells preincubated for 3 h with and without 5 mM NAC were cultured in a NAC-free osteogenic differentiation medium with continuous exposure to 50 μM hydrogen peroxide to induce oxidative stress. NAC preincubation prevented disruption of intracellular redox balance and alleviated apoptosis and negative impact on osteogenic differentiation, even under oxidative stress. Autologous osteoblast-like cells with and without NAC pretreatment in a collagen sponge vehicle were implanted in critical-size defects in rat femurs. In the third week, NAC-pretreated cells yielded complete defect closure with significantly matured lamellar bone tissue in contrast with poor bone healing by cells without pretreatment. Cell-tracking analysis demonstrated direct bone deposition by transplanted cells pretreated with NAC. Pretreatment of osteoblast-like cells with NAC enhances bone regeneration in local transplantation by preventing oxidative stress-induced apoptosis and dysfunction at the transplanted site.
Collapse
|
242
|
Roma LP, Jonas JC. Nutrient Metabolism, Subcellular Redox State, and Oxidative Stress in Pancreatic Islets and β-Cells. J Mol Biol 2019; 432:1461-1493. [PMID: 31634466 DOI: 10.1016/j.jmb.2019.10.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
Insulin-secreting pancreatic β-cells play a critical role in blood glucose homeostasis and the development of type 2 diabetes (T2D) in the context of insulin resistance. Based on data obtained at the whole cell level using poorly specific chemical probes, reactive oxygen species (ROS) such as superoxide and hydrogen peroxide have been proposed to contribute to the stimulation of insulin secretion by nutrients (positive role) and to the alterations of cell survival and secretory function in T2D (negative role). This raised the controversial hypothesis that any attempt to decrease β-cell oxidative stress and apoptosis in T2D would further impair insulin secretion. Over the last decade, the development of genetically-encoded redox probes that can be targeted to cellular compartments of interest and are specific of redox couples allowed the evaluation of short- and long-term effects of nutrients on β-cell redox changes at the subcellular level. The data indicated that the nutrient regulation of β-cell redox signaling and ROS toxicity is far more complex than previously thought and that the subcellular compartmentation of these processes cannot be neglected when evaluating the mechanisms of ROS production or the efficacy of antioxidant enzymes and antioxidant drugs under glucolipotoxic conditions and in T2D. In this review, we present what is currently known about the compartmentation of redox homeostatic systems and tools to investigate it. We then review data about the effects of nutrients on β-cell subcellular redox state under normal conditions and in the context of T2D and discuss challenges and opportunities in the field.
Collapse
Affiliation(s)
- Leticia P Roma
- Universität des Saarlandes, Biophysics Department, Center for Human and Molecular Biology, Kirbergerstrasse Building 48, 66421, Homburg/Saar, Germany
| | - Jean-Christophe Jonas
- Université Catholique de Louvain, Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Avenue Hippocrate 55 (B1.55.06), B-1200 Brussels, Belgium.
| |
Collapse
|
243
|
Mlejnek P, Dolezel P, Maier V, Kikalova K, Skoupa N. N-acetylcysteine dual and antagonistic effect on cadmium cytotoxicity in human leukemia cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 71:103213. [PMID: 31288199 DOI: 10.1016/j.etap.2019.103213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/15/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Although cadmium (Cd2+) is unable to form reactive oxygen species (ROS) directly, many of its adverse effects are connected to increased ROS generation resulting in cell death. In support of this supposition, a large number of studies have shown protective effects of antioxidants such as N-acetylcysteine (NAC) against cadmium induced cytotoxicity. Here, we describe the cytotoxic effects of Cd2+ on human leukemia U937 and K562 cells that were not mediated by oxidative stress. Surprisingly, we observed that addition of low concentrations of NAC can drastically potentiate cadmium cytotoxicity solely via ROS production. However, all adverse effects of the metal were prevented by NAC at high concentrations. Detailed analysis indicated that the protective effect of NAC was mediated by its ability to form stable complex with cadmium [Cd(NAC)2]. In conclusion, NAC exhibits dual and antagonistic effects on Cd2+ cytotoxicity in human leukemia cells.
Collapse
Affiliation(s)
- P Mlejnek
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic.
| | - P Dolezel
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - V Maier
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - K Kikalova
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - N Skoupa
- Department of Anatomy, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, Olomouc 77515, Czech Republic
| |
Collapse
|
244
|
Li X, Wei X, Sun Y, Du J, Li X, Xun Z, Li YC. High-fat diet promotes experimental colitis by inducing oxidative stress in the colon. Am J Physiol Gastrointest Liver Physiol 2019; 317:G453-G462. [PMID: 31411504 DOI: 10.1152/ajpgi.00103.2019] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diets high in animal fats are associated with increased risks of inflammatory bowel disease, but the mechanism remains unclear. In this study, we investigated the effect of high-fat diet (HFD) on the development of experimental colitis in mice. Relative to mice fed low-fat diet (LFD), HFD feeding for 4 wk increased the levels of triglyceride, cholesterol, and free fatty acids in the plasma as well as within the colonic mucosa. In an experimental colitis model induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS), mice on 4-wk HFD exhibited more severe colonic inflammation and developed more severe colitis compared with the LFD counterparts. HFD feeding resulted in higher production of mucosal pro-inflammatory cytokines, greater activation of the myosin light chain kinase (MLCK) tight junction regulatory pathway, and greater increases in mucosal barrier permeability in mice following TNBS induction. HFD feeding also induced gp91, an NADPH oxidase subunit, and promoted reactive oxygen species (ROS) production in both colonic epithelial cells and lamina propria cells. In HCT116 cell culture, palmitic acid or palmitic acid and TNF-α combination markedly increased ROS production and induced the MLCK pathway, and these effects were markedly diminished in the presence of a ROS scavenger. Taken together, these data suggest that HFD promotes colitis by aggravating mucosal oxidative stress, which rapidly drives mucosal inflammation and increases intestinal mucosal barrier permeability.NEW & NOTEWORTHY This study demonstrates high-fat diet feeding promotes colitis in a 2,4,6-trinitrobenzenesulfonic acid-induced experimental colitis model in mice. The underlying mechanism is that high-fat diet induces oxidative stress in the colonic mucosa, which increases colonic epithelial barrier permeability and drives colonic mucosal inflammation. These observations provide molecular evidence that diets high in saturated fats are detrimental to patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Xue Li
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Xinzhi Wei
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yue Sun
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Jie Du
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| | - Xin Li
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhe Xun
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yan Chun Li
- Department of Medicine, Division of Biological Sciences, The University of Chicago, Chicago, Illinois
| |
Collapse
|
245
|
Nelp MT, Zheng V, Davis KM, Stiefel KJE, Groves JT. Potent Activation of Indoleamine 2,3-Dioxygenase by Polysulfides. J Am Chem Soc 2019; 141:15288-15300. [PMID: 31436417 DOI: 10.1021/jacs.9b07338] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO1) is a heme enzyme that catalyzes the oxygenation of the indole ring of tryptophan to afford N-formylkynurenine. This activity significantly suppresses the immune response, mediating inflammation and autoimmune reactions. These consequential effects are regulated through redox changes in the heme cofactor of IDO1, which autoxidizes to the inactive ferric state during turnover. This change in redox status increases the lability of the heme cofactor leading to further suppression of activity. The cell can thus regulate IDO1 activity through the supply of heme and reducing agents. We show here that polysulfides bind to inactive ferric IDO1 and reduce it to the oxygen-binding ferrous state, thus activating IDO1 to maximal turnover even at low, physiologically significant concentrations. The on-rate for hydrogen disulfide binding to ferric IDO1 was found to be >106 M-1 s-1 at pH 7 using stopped-flow spectrometry. Fe K-edge XANES and EPR spectroscopy indicated initial formation of a low-spin ferric sulfur-bound species followed by reduction to the ferrous state. The μM affinity of polysulfides for IDO1 implicates these polysulfides as important signaling factors in immune regulation through the kynurenine pathway. Tryptophan significantly enhanced the relatively lower-affinity binding of hydrogen sulfide to IDO1, inspiring the use of the small molecule 3-mercaptoindole (3MI), which selectively binds to and activates ferric IDO1. 3MI sustains turnover by catalytically transferring reducing equivalents from glutathione to IDO1, representing a novel strategy of upregulating innate immunosuppression for treatment of autoimmune disorders. Reactive sulfur species are thus likely unrecognized immune-mediators with potential as therapeutic agents through these interactions with IDO1.
Collapse
Affiliation(s)
- Micah T Nelp
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Vincent Zheng
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Katherine M Davis
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Katherine J E Stiefel
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - John T Groves
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| |
Collapse
|
246
|
Hicks J, Halkerston R, Silman N, Jackson S, Aylott J, Rawson F. Real-time bacterial detection with an intracellular ROS sensing platform. Biosens Bioelectron 2019; 141:111430. [DOI: 10.1016/j.bios.2019.111430] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 02/08/2023]
|
247
|
Zuhra K, Tomé CS, Masi L, Giardina G, Paulini G, Malagrinò F, Forte E, Vicente JB, Giuffrè A. N-Acetylcysteine Serves as Substrate of 3-Mercaptopyruvate Sulfurtransferase and Stimulates Sulfide Metabolism in Colon Cancer Cells. Cells 2019; 8:cells8080828. [PMID: 31382676 PMCID: PMC6721681 DOI: 10.3390/cells8080828] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenously produced signaling molecule. The enzymes 3-mercaptopyruvate sulfurtransferase (MST), partly localized in mitochondria, and the inner mitochondrial membrane-associated sulfide:quinone oxidoreductase (SQR), besides being respectively involved in the synthesis and catabolism of H2S, generate sulfane sulfur species such as persulfides and polysulfides, currently recognized as mediating some of the H2S biological effects. Reprogramming of H2S metabolism was reported to support cellular proliferation and energy metabolism in cancer cells. As oxidative stress is a cancer hallmark and N-acetylcysteine (NAC) was recently suggested to act as an antioxidant by increasing intracellular levels of sulfane sulfur species, here we evaluated the effect of prolonged exposure to NAC on the H2S metabolism of SW480 colon cancer cells. Cells exposed to NAC for 24 h displayed increased expression and activity of MST and SQR. Furthermore, NAC was shown to: (i) persist at detectable levels inside the cells exposed to the drug for up to 24 h and (ii) sustain H2S synthesis by human MST more effectively than cysteine, as shown working on the isolated recombinant enzyme. We conclude that prolonged exposure of colon cancer cells to NAC stimulates H2S metabolism and that NAC can serve as a substrate for human MST.
Collapse
Affiliation(s)
- Karim Zuhra
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Catarina S Tomé
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Letizia Masi
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giorgio Giardina
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Giulia Paulini
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Francesca Malagrinò
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy
| | - Elena Forte
- Department of Biochemical Sciences, Sapienza University of Rome, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal.
| | - Alessandro Giuffrè
- CNR Institute of Molecular Biology and Pathology, Piazzale Aldo Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
248
|
Cazzola M, Calzetta L, Page C, Rogliani P, Matera MG. Thiol-Based Drugs in Pulmonary Medicine: Much More than Mucolytics. Trends Pharmacol Sci 2019; 40:452-463. [DOI: 10.1016/j.tips.2019.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 04/03/2019] [Accepted: 04/30/2019] [Indexed: 02/02/2023]
|
249
|
Ward NP, DeNicola GM. Sulfur metabolism and its contribution to malignancy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 347:39-103. [PMID: 31451216 DOI: 10.1016/bs.ircmb.2019.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metabolic dysregulation is an appreciated hallmark of cancer and a target for therapeutic intervention. Cellular metabolism involves a series of oxidation/reduction (redox) reactions that yield the energy and biomass required for tumor growth. Cells require diverse molecular species with constituent sulfur atoms to facilitate these processes. For humans, this sulfur is derived from the dietary consumption of the proteinogenic amino acids cysteine and methionine, as only lower organisms (e.g., bacteria, fungi, and plants) can synthesize them de novo. In addition to providing the sulfur required to sustain redox chemistry, the metabolism of these sulfur-containing amino acids yield intermediate metabolites that constitute the cellular antioxidant system, mediate inter- and intracellular signaling, and facilitate the epigenetic regulation of gene expression, all of which contribute to tumorigenesis.
Collapse
Affiliation(s)
- Nathan P Ward
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Gina M DeNicola
- Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL, United States.
| |
Collapse
|
250
|
Abstract
N-Acetylcysteine is a commonly used antioxidant that is broadly effective despite its limited reactive oxygen species (ROS) reactivity. Chemoprotection by N-acetylcysteine frequently results from inactivation of primary toxicants or reactive electrophiles arising as metabolites or lipid peroxidation products. ROS are linked to the development of many human diseases and biological injury by numerous xenobiotics. Oxidative damage is the first mechanism that is often tested for toxicants. There is also a frequent projection of the established ROS mechanism for one member to a broader group to which this chemical belongs. However, the biological significance of oxidative processes is not always easy to establish, as oxidants could be a cause or result of cellular injury. The role of ROS is tested through genetic manipulations of oxidative stress-protective proteins and addition of small antioxidants. In general, genetic approaches produce protective effects weaker than those of small antioxidants, which can reflect different anti-ROS specificity. Another possibility is that chemical antioxidants have ROS-unrelated chemoprotective activities.
Collapse
Affiliation(s)
- Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine , Brown University , 70 Ship Street , Providence , Rhode Island 02912 , United States
| |
Collapse
|