201
|
Zhu Z, Chen Y, Li S, Lin H, Qin G, Cai C. Ortho-Substituted α-Phenyl Mannoside Derivatives Promoted Early-Stage Adhesion and Biofilm Formation of E. coli 83972. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21300-21310. [PMID: 32107915 DOI: 10.1021/acsami.9b17868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Prevention of catheter-associated urinary tract infection (CAUTI) over long-term usage of urinary catheters remains a great challenge. Bacterial interference using nonpathogenic bacteria, such as E. coli 83972, have been investigated in many pilot-scale clinical studies as a potentially nonantibiotic based strategy for CAUTI prevention. We have demonstrated that preforming a dense and stable biofilm of the nonpathogenic E. coli greatly enhances their capability to prevent pathogen colonization. Such nonpathogenic biofilms were formed by E. coli 83972 expressing type 1 fimbriae (fim+ E. coli 83972) on mannoside-presenting surfaces. In this work, we report the synthesis of a series of mannoside derivatives with a wide range of binding affinities, all being equipped with a handle for covalent attachment to silicone surfaces. We established a high-throughput competitive assay based on mannoside-modified particles and flow-cytometry to directly measure the binding affinity between the mannoside ligands and fim+ E. coli 83972. We demonstrated that the bacterial adhesion and biofilm formation were strongly correlated to the binding affinity of the immobilized mannoside ligands. Mass spectrometry based proteomic analysis indicated a substantial difference in the proteome of the extracellular polymeric substance (EPS) secreted by biofilms on different mannoside surfaces, which might be related to the biofilm stability.
Collapse
Affiliation(s)
- Zhiling Zhu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Yanxin Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Siheng Li
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hong Lin
- Department of Department of Computer and Mathematical Sciences, University of Houston-Downtown, Houston, Texas 77002, United States
| | - Guoting Qin
- College of Optometry, University of Houston, Houston, Texas 77204, United States
| | - Chengzhi Cai
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
202
|
Gu H, Lee SW, Carnicelli J, Zhang T, Ren D. Magnetically driven active topography for long-term biofilm control. Nat Commun 2020; 11:2211. [PMID: 32371860 PMCID: PMC7200660 DOI: 10.1038/s41467-020-16055-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Microbial biofilm formation on indwelling medical devices causes persistent infections that cannot be cured with conventional antibiotics. To address this unmet challenge, we engineer tunable active surface topographies with micron-sized pillars that can beat at a programmable frequency and force level in an electromagnetic field. Compared to the flat and static controls, active topographies with the optimized design prevent biofilm formation and remove established biofilms of uropathogenic Escherichia coli (UPEC), Pseudomonas aeruginosa, and Staphylococcus aureus, with up to 3.7 logs of biomass reduction. In addition, the detached biofilm cells are found sensitized to bactericidal antibiotics to the level comparable to exponential-phase planktonic cells. Based on these findings, a prototype catheter is engineered and found to remain clean for at least 30 days under the flow of artificial urine medium, while the control catheters are blocked by UPEC biofilms within 5 days.
Collapse
Affiliation(s)
- Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
| | - Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
| | - Joseph Carnicelli
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
| | - Teng Zhang
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA
- Department of Mechanical and Aerospace Engineering, Syracuse University, 214 Link Hall, Syracuse, New York, 13244, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York, 13244, USA.
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse, New York, 13244, USA.
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York, 13244, USA.
- Department of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York, 13244, USA.
| |
Collapse
|
203
|
Recupido F, Toscano G, Tatè R, Petala M, Caserta S, Karapantsios TD, Guido S. The role of flow in bacterial biofilm morphology and wetting properties. Colloids Surf B Biointerfaces 2020; 192:111047. [PMID: 32388030 DOI: 10.1016/j.colsurfb.2020.111047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/26/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
Abstract
Biofilms are bacterial communities embedded in an extracellular matrix, able to adhere to surfaces. Different experimental set-ups are widely used for in vitro biofilm cultivation; however, a well-defined comparison among different culture conditions, especially suited to interfacial characterization, is still lacking in the literature. The main objective of this work is to study the role of flow on biofilm formation, morphology and interfacial properties. Three different in vitro setups, corresponding to stagnant, shaking, and laminar flow conditions (custom-made flow cell), are used in this work to grow single strain biofilms of Pseudomonas fluorescens AR 11 on glass coupons. Results show that flow conditions significantly influenced biofilm formation kinetics, affecting mass transfer and cell attachment/detachment processes. Distinct morphological patterns are found under different flow regimes. Static contact angle data do not depend significantly on biofilm growth conditions in the parametric range investigated in this work.
Collapse
Affiliation(s)
- Federica Recupido
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54124, Thessaloniki, Greece; Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples, Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - Giuseppe Toscano
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples, Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - Rosarita Tatè
- Institute of Genetics and Biophysics: "A. Buzzati-Traverso" (IGB-CNR), Pietro Castellino 111, 80131, Naples, Italy
| | - Maria Petala
- Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sergio Caserta
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples, Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy; CEINGE, Advanced Biotechnologies, 80145, Naples, Italy.
| | - Thodoris D Karapantsios
- Division of Chemical Technology, School of Chemistry, Aristotle University of Thessaloniki, University Box 116, 54124, Thessaloniki, Greece.
| | - Stefano Guido
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples, Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy; CEINGE, Advanced Biotechnologies, 80145, Naples, Italy
| |
Collapse
|
204
|
Flemming HC. Biofouling and me: My Stockholm syndrome with biofilms. WATER RESEARCH 2020; 173:115576. [PMID: 32044598 DOI: 10.1016/j.watres.2020.115576] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Biofouling is the undesired deposition and growth of microorganisms on surfaces, forming biofilms. The definition is subjective and operational: not every biofilm causes biofouling - only if a given a subjective "threshold of interference" is exceeded, biofilms cause technical or medical problems. These range from the formation of slime layers on ship hulls or in pipelines, which increase friction resistance, to separation membranes, on which biofilms increase hydraulic resistance, to heat exchangers where they interfere with heat transport to contamination of treated water by eroded biofilm cells which may comprise hygienically relevant microorganisms, and, most dangerous, to biofilms on implants and catheters which can cause persistent infections. The largest fraction of anti-fouling research, usually in short-term experiments, is focused on prevention or limiting primary microbial adhesion. Intuitively, this appears only logical, but turns out mostly hopeless. This is because in technical systems with open access for microorganisms, all surfaces are colonized sooner or later which explains the very limited success of that research. As a result, the use of biocides remains the major tool to fight persistent biofilms. However, this is costly in terms of biocides, it stresses working materials, causes off-time and environmental damage and it usually leaves large parts of biofilms in place, ready for regrowth. In order to really solve biofouling problems, it is necessary to learn how to live with biofilms and mitigate their detrimental effects. This requires rather an integrated strategy than aiming to invent "one-shot" solutions. In this context, it helps to understand the biofilm way of life as a natural phenomenon. Biofilms are the oldest, most successful and most widely distributed form of life on earth, existing even in extreme environments and being highly resilient. Microorganisms in biofilms live in a self-produced matrix of extracellular polymeric substances (EPS) which allows them to develop emerging properties such as enhanced nutrient acquisition, synergistic microconsortia, enhanced tolerance to biocides and antibiotics, intense intercellular communication and cooperation. Transiently immobilized, biofilm organisms turn their matrix into an external digestion system by retaining complexed exoenzymes in the matrix. Biofilms grow even on traces of any biodegradable material, therefore, an effective anti-fouling strategy comprises to keep the system low in nutrients (good housekeeping), employing low-fouling, easy-to-clean surfaces, monitoring of biofilm development, allowing for early intervention, and acknowledging that cleaning can be more important than trying to kill biofilms, because cleaning does not cut the nutrient supply of survivors and dead biomass serves as an additional carbon source for "cannibalizing" survivors, supporting rapid after growth. An integrated concept is presented as the result of a long journey of the author through biofouling problems.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Water Academy, Schloss-Strasse 40, D-88045, Friedrichshafen, Germany; Singapore Centre for Environmental Life Sciences Engineering (SCELSE), 60 Nanyang Drive, 637551, Singapore; Biofilm Centre, Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany; IWW Water Centre, Moritzstrasse 26, 45476, Muelheim, Germany.
| |
Collapse
|
205
|
Deschênes L, Ells T. Bacteria-nanoparticle interactions in the context of nanofouling. Adv Colloid Interface Sci 2020; 277:102106. [PMID: 31981890 DOI: 10.1016/j.cis.2020.102106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/15/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
The attachment of microbial communities to surfaces is a well-known problem recognized to be involved in a variety of critical issues in the sectors of food processing, chronic wounds, infection from implants, clogging of membranes and corrosion of equipment. Considering the importance of the detrimental impact of biofouling, it has received much attention in the scientific community and from concerned stakeholders. With the development of nanotechnology and the nowadays widespread use of engineered nanoparticles (ENPs), concerns have been raised regarding their fate in terrestrial and aquatic environments. Safety aspects and public health issues are critical in the management of handling nanomaterials and their nanowastes. The interactions of various types of nanoparticles (NPs) with planktonic bacteria have also received attention due to their antimicrobial properties. However, their behavior in regard to biofilms is not well understood although, in the environment, most of the bacteria prefer living in sessile communities. The question appears relevant considering the need to build knowledge on the fate of nanoparticles and the fact that no one can exclude the risk of accumulation of nanoparticles in biofilms and on surfaces leading to a form of nanofouling involving both engineered nanoparticles (ENPs) and nanoplastics. The present analysis of recent research accounts allows in identifying that (1) research activities related to water remediation systems have been mostly oriented on the impact of NPs on pre-existing biofilms, (2) experimental designs are restricted to few scenarios of exposure, usually limited to relative short-time periods although nanofouling could favour the development of multi-resistant bacterial species through sub-lethal exposures over prolong periods of time (3) nanofouling in other systems in which biofilms develop remains to be addressed, and (4) new research directions are required for investigating the mechanisms involved and the subsequent impact of nanofouling on bacterial consortium responses encountered in a variety of environments such as those prevailing in food production/processing settings. Finally, this review aims at providing recent information and insights on nanoparticle-bacterial interactions in the context of biofilms in order to supply an updated outlook of research perspectives that could help establish the framework for production, use and fate of nanomaterials as well as future research directions.
Collapse
Affiliation(s)
- Louise Deschênes
- Saint-Hyacinthe Research and Development Centre, 3600 Casavant Blvd West, Saint-Hyacinthe, QC J2S 8E3, Canada.
| | - Timothy Ells
- Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5, Canada
| |
Collapse
|
206
|
Mahamuni-Badiger PP, Patil PM, Badiger MV, Patel PR, Thorat- Gadgil BS, Pandit A, Bohara RA. Biofilm formation to inhibition: Role of zinc oxide-based nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110319. [DOI: 10.1016/j.msec.2019.110319] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/19/2019] [Accepted: 10/14/2019] [Indexed: 12/28/2022]
|
207
|
Furuichi Y, Yoshimoto S, Inaba T, Nomura N, Hori K. Process Description of an Unconventional Biofilm Formation by Bacterial Cells Autoagglutinating through Sticky, Long, and Peritrichate Nanofibers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2520-2529. [PMID: 31972092 DOI: 10.1021/acs.est.9b06577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we elucidated the formation process of an unconventional biofilm formed by a bacterium autoagglutinating through sticky, long, and peritrichate nanofibers. Understanding the mechanisms of biofilm formation is essential to control microbial behavior and improve environmental biotechnologies. Acinetobacter sp. Tol 5 autoagglutinate through the interaction of the long, peritrichate nanofiber protein AtaA, a trimeric autotransporter adhesin. Using AtaA, without cell growth or extracellular polymeric substances production, Tol 5 cells quickly form an unconventional biofilm. The process forming this unconventional biofilm started with cell-cell interactions, proceeded to cell clumping, and led to the formation of large cell aggregates. The cell-cell interaction was described by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory based on a new concept, which considers two independent interactions between two cell bodies and between two AtaA fiber tips forming a discontinuous surface. If cell bodies cannot collide owing to an energy barrier at low ionic strengths but approach within the interactive distance of AtaA fibers, cells can agglutinate through their contact. Cell clumping proceeds following the cluster-cluster aggregation model, and an unconventional biofilm containing void spaces and a fractal nature develops. Understanding its formation process would extend the utilization of various types of biofilms, enhancing environmental biotechnologies.
Collapse
Affiliation(s)
- Yoshihide Furuichi
- Department of Biotechnology, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya , Aichi 464-8603 , Japan
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya , Aichi 464-8603 , Japan
| | - Tomohiro Inaba
- Graduate School of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-0006 , Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Ibaraki 305-0006 , Japan
- Microbiology Research Center for Sustainability , University of Tsukuba , Tsukuba , Ibaraki 305-8572 , Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering , Nagoya University , Furo-cho, Chikusa-ku , Nagoya , Aichi 464-8603 , Japan
| |
Collapse
|
208
|
Wang J, Liu Q, Li X, Ma S, Hu H, Wu B, Zhang XX, Ren H. In-situ monitoring AHL-mediated quorum-sensing regulation of the initial phase of wastewater biofilm formation. ENVIRONMENT INTERNATIONAL 2020; 135:105326. [PMID: 31794939 DOI: 10.1016/j.envint.2019.105326] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/05/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Initial attachment plays an important role in biofilm formation in wastewater treatment processes. However, the initial attachment process mediated by N-acyl-homoserine lactones (AHLs) is difficult to be fully understood due to the lack of non-invasive and on-line investigation techniques. In this study, the AHL-regulated wastewater biofilm attachment was quantified using ultrasonic time-domain reflectometry (UTDR) as an in-situ and non-invasive monitoring technique. Results demonstrated that the reversible adhesion time in municipal and industrial wastewaters was significantly decreased in the presence of exogenous AHLs. Biofilm thickness in municipal and industrial wastewaters increased significantly with the addition of exogenous AHLs. Also, the addition of acylase delayed the initial biofilm formation (lengthened reversible adhesion time and decreased biofilm thickness and density). Compared with biofilm behavior in the presence of low concentrations of AHLs (4.92 ± 0.17 μg/L), both reversible adhesion time and biofilm thickness were not significantly increased (p > 0.05) with an increase in AHL concentration (9.75 ± 0.41 μg/L). Furthermore, the addition of exogenous AHLs resulted in significant changes in the attached bacterial community structures, in which both QS and quorum-quenching (QQ) bacteria were stimulated. The current work presents an effective approach to in-situ monitoring of the regulation of AHL-mediated QS in the initial attachment of biofilms, especially in the reversible adhesion process, which may provide a potential strategy to facilitate biofilm establishment in wastewater treatment processes.
Collapse
Affiliation(s)
- Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Qiuju Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xianhui Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Sijia Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
209
|
Zahir T, Pesek J, Franke S, Van Pee J, Rathore A, Smeets B, Ramon H, Xu X, Fauvart M, Michiels J. Model-Driven Controlled Alteration of Nanopillar Cap Architecture Reveals its Effects on Bactericidal Activity. Microorganisms 2020; 8:microorganisms8020186. [PMID: 32013036 PMCID: PMC7074768 DOI: 10.3390/microorganisms8020186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/25/2022] Open
Abstract
Nanostructured surfaces can be engineered to kill bacteria in a contact-dependent manner. The study of bacterial interactions with a nanoscale topology is thus crucial to developing antibacterial surfaces. Here, a systematic study of the effects of nanoscale topology on bactericidal activity is presented. We describe the antibacterial properties of highly ordered and uniformly arrayed cotton swab-shaped (or mushroom-shaped) nanopillars. These nanostructured surfaces show bactericidal activity against Staphylococcus aureus and Pseudomonas aeruginosa. A biophysical model of the cell envelope in contact with the surface, developed ab initio from the infinitesimal strain theory, suggests that bacterial adhesion and subsequent lysis are highly influenced by the bending rigidity of the cell envelope and the surface topography formed by the nanopillars. We used the biophysical model to analyse the influence of the nanopillar cap geometry on the bactericidal activity and made several geometrical alterations of the nanostructured surface. Measurement of the bactericidal activities of these surfaces confirms model predictions, highlights the non-trivial role of cell envelope bending rigidity, and sheds light on the effects of nanopillar cap architecture on the interactions with the bacterial envelope. More importantly, our results show that the surface nanotopology can be rationally designed to enhance the bactericidal efficiency.
Collapse
Affiliation(s)
- Taiyeb Zahir
- Centre of Microbial and Plant Genetics, 3001 KU Leuven, Belgium
- Flanders Institute for Biotechnology (VIB)-KU Leuven Center of Microbiology, 3001 Leuven, Belgium
| | - Jiri Pesek
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), 3001 KU Leuven, Belgium
| | - Sabine Franke
- Centre of Microbial and Plant Genetics, 3001 KU Leuven, Belgium
| | - Jasper Van Pee
- Centre of Microbial and Plant Genetics, 3001 KU Leuven, Belgium
| | - Ashish Rathore
- Interuniversity Microelectronics Centre (imec), 3001 Leuven, Belgium
| | - Bart Smeets
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), 3001 KU Leuven, Belgium
| | - Herman Ramon
- Division of Mechatronics, Biostatistics and Sensors (MeBioS), 3001 KU Leuven, Belgium
| | - Xiumei Xu
- Interuniversity Microelectronics Centre (imec), 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, 3001 KU Leuven, Belgium
- Flanders Institute for Biotechnology (VIB)-KU Leuven Center of Microbiology, 3001 Leuven, Belgium
- Interuniversity Microelectronics Centre (imec), 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, 3001 KU Leuven, Belgium
- Flanders Institute for Biotechnology (VIB)-KU Leuven Center of Microbiology, 3001 Leuven, Belgium
- Correspondence:
| |
Collapse
|
210
|
Liu X, Liu H, Wu W, Zhang X, Gu T, Zhu M, Tan W. Oxidative Stress Induced by Metal Ions in Bioleaching of LiCoO 2 by an Acidophilic Microbial Consortium. Front Microbiol 2020; 10:3058. [PMID: 32010108 PMCID: PMC6974807 DOI: 10.3389/fmicb.2019.03058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022] Open
Abstract
An acidophilic microbial consortium (AMC) was used to investigate the fundamental mechanism behind the adverse effects of pulp density increase in the bioleaching of waste lithium ion batteries (WLIBs). Results showed that there existed the effect of metal-ion stress on the bio-oxidative activity of AMC. The Li+ and Co2+ accumulated in the leachate were the direct cause for the decrease in lithium and cobalt recovery yields under a high pulp density. In a simulated bioleaching system with 4.0% (w ⋅v-1) LiCoO2, the intracellular reactive oxygen species (ROS) content in AMC increased from 0.82 to 6.02 within 24 h, which was almost three times higher than that of the control (2.04). After the supplementation of 0.30 g⋅L-1 of exogenous glutathione (GSH), the bacterial intracellular ROS content decreased by 40% within 24 h and the activities of intracellular ROS scavenging enzymes, including glutathione peroxidase (GSH-Px) and catalase (CAT), were 1.4- and 2.0-folds higher in comparison with the control within 24 h. In the biofilms formed on pyrite in the bioleaching of WLIBs, it was found that metal-ion stress had a great influence on the 3-D structure and the amount of biomass of the biofilms. After the exogenous addition of GSH, the structure and the amount of biomass of the biofilms were restored to some extent. Eventually, through ROS regulation by the exogenous addition of GSH, very high metal recovery yields of 98.1% Li and 96.3% Co were obtained at 5.0% pulp density.
Collapse
Affiliation(s)
- Xiaocui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hao Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Weijin Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, United States
| | - Minglong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
211
|
Koopaie M, Bordbar-Khiabani A, Kolahdooz S, Darbandsari AK, Mozafari M. Advanced surface treatment techniques counteract biofilm-associated infections on dental implants. MATERIALS RESEARCH EXPRESS 2020; 7:015417. [DOI: 10.1088/2053-1591/ab6a57] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
Abstract
Abstract
Topography and surface chemistry can significantly affect biofilm formation on dental implants. Recently, the γ-TiAl alloy was considered as the most reliable candidates for the preparation of dental implants because of its excellent mechanical strength, chemical stability and biocompatibility. The emphasis of this study lies in the effects of high-speed milling assisted the minimum quantity of lubrication (HSM-MQL), micro-current wire electrical discharge machining (mWEDM), Er,Cr:YSGG laser and sandblasting/large-grit/acid-etching (SLA) treatments on surface morphology, topography, chemical composition, wettability and biofilm-associated infections on the surface of each group. The surface-treated samples were analyzed using a scanning electron microscope (SEM), SEM surface reconstruction, energy dispersive x-ray spectroscopy (EDS) and water contact angle measuring system. SEM and topography images of mWEDM and laser-treated surfaces showed more irregular surfaces compared to SLA and HSM-MQL surfaces. Results showed that mWEDM and laser-treated surfaces revealed hydrophobic behavior. A significant decrease of biofilm formation was observed on mWEDM treated surface due to the hydrophobicity and existence of the copper element in the recast layer chemical composition. Moreover, EDS confirmed that the zirconium, silicon, and fluorine elements were decorated onto the SLA treated γ-TiAl surface that can have a direct effect on the anti-bacterial activity.
Collapse
|
212
|
Kim LH, Vrouwenvelder JS. Insignificant Impact of Chemotactic Responses of Pseudomonas aeruginosa on the Bacterial Attachment to Organic Pre-Conditioned RO Membranes. MEMBRANES 2019; 9:membranes9120162. [PMID: 31810273 PMCID: PMC6950137 DOI: 10.3390/membranes9120162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/03/2022]
Abstract
We investigated the impact of conditioning compositions on the way bacteria move and adhere to reverse osmosis (RO) membranes that have been pre-conditioned by organic compounds. We used humic acid (HA), bovine serum albumin (BSA), and sodium alginate (SA) to simulate conditioning layers on the RO membranes. First, we investigated the chemotactic responses of Pseudomonas aeruginosa PAO1 to the organic substances and the impact of changes in physicochemical characteristics of pre-conditioned membranes on bacterial attachment. Second, we observed bacterial attachment under the presence or absence of nutrients or microbial metabolic activity. Results showed that there was no relationship between the chemotactic response of P. aeruginosa PAO1 and the organic substances, and the changes in hydrophobicity, surface free energy, and surface charge resulting from changing the composition of the conditioning layer did not seem to affect bacterial attachment, whereas changing the roughness of the conditioned membrane exponentially did (exponential correlation coefficient, R2 = 0.85). We found that the initial bacterial attachment on the membrane surface is influenced by (i) the nutrients in the feed solution and (ii) the microbial metabolic activity, whereas the chemotaxis response has a negligible impact. This study would help to establish a suitable strategy to manage bacterial attachment.
Collapse
Affiliation(s)
- Lan Hee Kim
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Johannes S. Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
- Correspondence:
| |
Collapse
|
213
|
Kliewer S, Wicha SG, Bröker A, Naundorf T, Catmadim T, Oellingrath EK, Rohnke M, Streit WR, Vollstedt C, Kipphardt H, Maison W. Contact-active antibacterial polyethylene foils via atmospheric air plasma induced polymerisation of quaternary ammonium salts. Colloids Surf B Biointerfaces 2019; 186:110679. [PMID: 31810045 DOI: 10.1016/j.colsurfb.2019.110679] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/19/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
Polyethylene (PE) foils were modified with potent contact-active antibacterial quaternary ammonium salts (QAS) by an atmospheric air plasma activation step, followed by graft-polymerisation of vinylbenzyltrimethylammonium chloride (VBTAC) monomers. The presented approach uses a cost efficient air plasma activation and subsequent radical polymerisation in highly concentrated aqueous monomer solutions to generate efficient antibacterial materials. The obtained contact-active poly-VBTAC modified PE foils feature a homogeneous and 300 nm thick polymer layer with a high charge density of approximately 1016 N+/cm2. The antibacterial properties were evaluated against Gram-negative (P. aeruginosa, E. coli) and Gram-positive (S. aureus, S. epidermidis) bacteria. The materials showed strong antibacterial activity by eradicating all the inoculated bacteria with bacterial challenges of 104 to 105 CFU/cm2 and good reductions even at maximum challenge (108 CFU/cm2). We have confirmed contact-activity by an agar diffusion assay. The obtained materials are therefore highly attractive for applications, for example, in packaging and are a contribution to an ecomic and green antimicrobial management without release of biocides to the environment.
Collapse
Affiliation(s)
- Serge Kliewer
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Sebastian G Wicha
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Astrid Bröker
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Tim Naundorf
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Tugba Catmadim
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany
| | - Eva Katharina Oellingrath
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Marcus Rohnke
- Justus-Liebig-Universität Giessen, Center for Materials Science, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
| | - Wolfgang R Streit
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Christel Vollstedt
- Universität Hamburg, Department of Microbiology and Biotechnology, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - Helmut Kipphardt
- Metall-Chemie Technologies GmbH, Kaiser-Wilhelm-Strasse 93, 20355 Hamburg, Germany
| | - Wolfgang Maison
- Universität Hamburg, Department of Chemistry, Bundesstrasse 45, 20146 Hamburg, Germany.
| |
Collapse
|
214
|
Pacha-Olivenza MÁ, Rodríguez-Cano A, González-Martín ML, Gallardo-Moreno AM. Kinetic of Adhesion of S. epidermidis with Different EPS Production on Ti6Al4V Surfaces. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1437806. [PMID: 31915679 PMCID: PMC6930745 DOI: 10.1155/2019/1437806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022]
Abstract
Controlling initial bacterial adhesion is essential to prevent biofilm formation and implant-related infection. The search for surface coatings that prevent initial adhesion is a powerful strategy to obtain implants that are more resistant to infection. Tracking the progression of adhesion on surfaces from the beginning of the interaction between bacteria and the surface provides a deeper understanding of the initial adhesion behavior. To this purpose, we have studied the progression over time of bacterial adhesion from a laminar flow of a bacterial suspension, using a modified Robbins device (MRD). Comparing with other laminar flow devices, such as the parallel plate flow chamber, MRD allows the use of diverse substrata under the same controlled flow conditions simultaneously. Two different surfaces of Ti6Al4V and two strains of Staphylococcus epidermidis with different exopolymer production were tested. In addition, the modified Robbins device was examined for its convenience and suitability for the purpose of this study. Results were analyzed according to a pseudofirst order kinetic. The values of the parameters obtained from this model make it possible to discriminate the adhesive behavior of surfaces and bacteria. One of the fitting parameters depends on the bacterial strain and the other only on the surface properties of the substrate.
Collapse
Affiliation(s)
- Miguel Ángel Pacha-Olivenza
- Department of Biomedical Sciences, Faculty of Medicine, University of Extremadura, Avda de Elvas s/n, Badajoz 06006, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
- University Institute of Biosanitary Research of Extremadura (INUBE), Badajoz 06006, Spain
| | - Abraham Rodríguez-Cano
- Department of Applied Physics, Faculty of Science, University of Extremadura, Avda de Elvas s/n, Badajoz 06006, Spain
| | - M. Luisa González-Martín
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
- University Institute of Biosanitary Research of Extremadura (INUBE), Badajoz 06006, Spain
- Department of Applied Physics, Faculty of Science, University of Extremadura, Avda de Elvas s/n, Badajoz 06006, Spain
| | - Amparo M. Gallardo-Moreno
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
- University Institute of Biosanitary Research of Extremadura (INUBE), Badajoz 06006, Spain
- Department of Applied Physics, Faculty of Science, University of Extremadura, Avda de Elvas s/n, Badajoz 06006, Spain
| |
Collapse
|
215
|
Rijavec T, Zrimec J, van Spanning R, Lapanje A. Natural Microbial Communities Can Be Manipulated by Artificially Constructed Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901408. [PMID: 31763146 PMCID: PMC6865284 DOI: 10.1002/advs.201901408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Biofouling proceeds in successive steps where the primary colonizers affect the phylogenetic and functional structure of a future microbial consortium. Using microbiologically influenced corrosion (MIC) as a study case, a novel approach for material surface protection is described, which does not prevent biofouling, but rather shapes the process of natural biofilm development to exclude MIC-related microorganisms. This approach interferes with the early steps of natural biofilm formation affecting how the community is finally developed. It is based on a multilayer artificial biofilm, composed of electrostatically modified bacterial cells, producing antimicrobial compounds, extracellular antimicrobial polyelectrolyte matrix, and a water-proof rubber elastomer barrier. The artificial biofilm is constructed layer-by-layer (LBL) by manipulating the electrostatic interactions between microbial cells and material surfaces. Field testing on standard steel coupons exposed in the sea for more than 30 days followed by laboratory analyses using molecular-biology tools demonstrate that the preapplied artificial biofilm affects the phylogenetic structure of the developing natural biofilm, reducing phylogenetic diversity and excluding MIC-related bacteria. This sustainable solution for material protection showcases the usefulness of artificially guiding microbial evolutionary processes via the electrostatic modification and controlled delivery of bacterial cells and extracellular matrix to the exposed material surfaces.
Collapse
Affiliation(s)
- Tomaž Rijavec
- Department of Environmental SciencesJožef Stefan InstituteJamova cesta 391000LjubljanaSlovenia
- Institute of Metagenomics and Microbial TechnologiesClevelandska ulica 191000LjubljanaSlovenia
| | - Jan Zrimec
- Institute of Metagenomics and Microbial TechnologiesClevelandska ulica 191000LjubljanaSlovenia
- Systems and Synthetic BiologyChalmers University of TechnologyKemivägen 10412 96GöteborgSweden
| | - Rob van Spanning
- Systems BioinformaticsFaculty of ScienceVrije Universiteit AmsterdamDe Boelelaan 11051081 HVAmsterdamThe Netherlands
| | - Aleš Lapanje
- Department of Environmental SciencesJožef Stefan InstituteJamova cesta 391000LjubljanaSlovenia
- Institute of Metagenomics and Microbial TechnologiesClevelandska ulica 191000LjubljanaSlovenia
| |
Collapse
|
216
|
Faille C, Lemy C, Allion-Maurer A, Zoueshtiagh F. Evaluation of the hydrophobic properties of latex microspheres and Bacillus spores. Influence of the particle size on the data obtained by the MATH method (microbial adhesion to hydrocarbons). Colloids Surf B Biointerfaces 2019; 182:110398. [PMID: 31376688 DOI: 10.1016/j.colsurfb.2019.110398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
The current experimental study investigates the influence of latex microsphere particles' size on the assessment of their hydrophilic/hydrophobic character, using the method known as "Microbial Adhesion to Hydrocarbons" (MATH). Since bacteria surfaces often change according to the environment in which they find themselves, most of the experiments here were carried out using the calibrated latex microspheres Polybeads® and Yellow-green Fluoresbrite® (Polyscience) microspheres with diameters between 0.2 μm and 4.5 μm. All the beads had a density of ˜1.05 g/cm3. The first set of experiments was performed to adapt the procedure for measurements of water contact angles to microsphere lawns. It was found that all the microspheres tested were hydrophobic, when using a water contact angle of around 110-118°. However, wide differences were observed using the MATH method. The smaller microspheres (0.2 μm, 0.5 μm +/- 0.75 μm) exhibited a poor affinity to hexadecane, even after long contact times, suggesting a hydrophilic character. In contrast, larger microspheres quickly adhered to hexadecane, which is consistent with the values obtained for the water contact angles observed. These results suggest that, at least where hydrophobic particles are concerned, the MATH method is not suitable for the assessment of the hydrophobic character of particles with diameters of less than 1.0 μm. We lastly investigated whether the data obtained for Bacillus spores could also be affected by spore size. The hydrophobicity of spores of eight Bacillus strains was analysed by both MATH and contact angle. Some discrepancies were observed between both methods but could not be related their size (length or width).
Collapse
Affiliation(s)
| | - Christelle Lemy
- UMET, CNRS, INRA, Univ. Lille, 59650 Villeneuve d'Ascq, France
| | - Audrey Allion-Maurer
- Aperam Isbergues Research Center - Solutions Dept., BP 15, 62330 Isbergues, France
| | - Farzam Zoueshtiagh
- IEMN, LIA LICS: Univ. Lille, UMR CNRS 8520, IEMN, 59652 Villeneuve d'Ascq, France
| |
Collapse
|
217
|
Gu H, Lee SW, Carnicelli J, Jiang Z, Ren D. Antibiotic Susceptibility of Escherichia coli Cells during Early-Stage Biofilm Formation. J Bacteriol 2019; 201:e00034-19. [PMID: 31061169 PMCID: PMC6707912 DOI: 10.1128/jb.00034-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Bacteria form complex multicellular structures on solid surfaces known as biofilms, which allow them to survive in harsh environments. A hallmark characteristic of mature biofilms is the high-level antibiotic tolerance (up to 1,000 times) compared with that of planktonic cells. Here, we report our new findings that biofilm cells are not always more tolerant to antibiotics than planktonic cells in the same culture. Specifically, Escherichia coli RP437 exhibited a dynamic change in antibiotic susceptibility during its early-stage biofilm formation. This phenomenon was not strain specific. Upon initial attachment, surface-associated cells became more sensitive to antibiotics than planktonic cells. By controlling the cell adhesion and cluster size using patterned E. coli biofilms, cells involved in the interaction between cell clusters during microcolony formation were found to be more susceptible to ampicillin than cells within clusters, suggesting a role of cell-cell interactions in biofilm-associated antibiotic tolerance. After this stage, biofilm cells became less susceptible to ampicillin and ofloxacin than planktonic cells. However, when the cells were detached by sonication, both antibiotics were more effective in killing the detached biofilm cells than the planktonic cells. Collectively, these results indicate that biofilm formation involves active cellular activities in adaption to the attached life form and interactions between cell clusters to build the complex structure of a biofilm, which can render these cells more susceptible to antibiotics. These findings shed new light on bacterial antibiotic susceptibility during biofilm formation and can guide the design of better antifouling surfaces, e.g., those with micron-scale topographic structures to interrupt cell-cell interactions.IMPORTANCE Mature biofilms are known for their high-level tolerance to antibiotics; however, antibiotic susceptibility of sessile cells during early-stage biofilm formation is not well understood. In this study, we aim to fill this knowledge gap by following bacterial antibiotic susceptibility during early-stage biofilm formation. We found that the attached cells have a dynamic change in antibiotic susceptibility, and during certain phases, they can be more sensitive to antibiotics than planktonic counterparts in the same culture. Using surface chemistry-controlled patterned biofilm formation, cell-surface and cell-cell interactions were found to affect the antibiotic susceptibility of attached cells. Collectively, these findings provide new insights into biofilm physiology and reveal how adaptation to the attached life form may influence antibiotic susceptibility of bacterial cells.
Collapse
Affiliation(s)
- Huan Gu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA
| | - Sang Won Lee
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA
| | - Joseph Carnicelli
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA
| | - Zhaowei Jiang
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA
| | - Dacheng Ren
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, USA
- Syracuse Biomaterials Institute, Syracuse University, Syracuse, New York, USA
- Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York, USA
- Department of Biology, Syracuse University, Syracuse, New York, USA
| |
Collapse
|
218
|
Emergent Properties in Streptococcus mutans Biofilms Are Controlled through Adhesion Force Sensing by Initial Colonizers. mBio 2019; 10:mBio.01908-19. [PMID: 31506311 PMCID: PMC6737243 DOI: 10.1128/mbio.01908-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial adhesion is accompanied by altered gene expression, leading to "emergent" properties of biofilm bacteria that are alien to planktonic ones. With the aim of revealing the role of environmental adhesion forces in emergent biofilm properties, genes in Streptococcus mutans UA159 and a quorum-sensing-deficient mutant were identified that become expressed after adhesion to substratum surfaces. Using atomic force microscopy, adhesion forces of initial S. mutans colonizers on four different substrata were determined and related to gene expression. Adhesion forces upon initial contact were similarly low across different substrata, ranging between 0.2 and 1.2 nN regardless of the strain considered. Bond maturation required up to 21 s, depending on the strain and substratum surface involved, but stationary adhesion forces also were similar in the parent and in the mutant strain. However, stationary adhesion forces were largest on hydrophobic silicone rubber (19 to 20 nN), while being smallest on hydrophilic glass (3 to 4 nN). brpA gene expression in thin (34 to 48 μm) 5-h S. mutans UA159 biofilms was most sensitive to adhesion forces, while expression of gbpB and comDE expressions was weakly sensitive. ftf, gtfB, vicR, and relA expression was insensitive to adhesion forces. In thicker (98 to 151 μm) 24-h biofilms, adhesion-force-induced gene expression and emergent extracellular polymeric substance (EPS) production were limited to the first 20 to 30 μm above a substratum surface. In the quorum-sensing-deficient S. mutans, adhesion-force-controlled gene expression was absent in both 5- and 24-h biofilms. Thus, initial colonizers of substratum surfaces sense adhesion forces that externally trigger emergent biofilm properties over a limited distance above a substratum surface through quorum sensing.IMPORTANCE A new concept in biofilm science is introduced: "adhesion force sensitivity of genes," defining the degree up to which expression of different genes in adhering bacteria is controlled by the environmental adhesion forces they experience. Analysis of gene expression as a function of height in a biofilm showed that the information about the substratum surface to which initially adhering bacteria adhere is passed up to a biofilm height of 20 to 30 μm above a substratum surface, highlighting the importance and limitations of cell-to-cell communication in a biofilm. Bacteria in a biofilm mode of growth, as opposed to planktonic growth, are responsible for the great majority of human infections, predicted to become the number one cause of death in 2050. The concept of adhesion force sensitivity of genes provides better understanding of bacterial adaptation in biofilms, direly needed for the design of improved therapeutic measures that evade the recalcitrance of biofilm bacteria to antimicrobials.
Collapse
|
219
|
Valeriani F, Margarucci LM, Gianfranceschi G, Ciccarelli A, Tajani F, Mucci N, Ripani M, Romano Spica V. Artificial-turf surfaces for sport and recreational activities: microbiota analysis and 16S sequencing signature of synthetic vs natural soccer fields. Heliyon 2019; 5:e02334. [PMID: 31517095 PMCID: PMC6728760 DOI: 10.1016/j.heliyon.2019.e02334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/04/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Synthetic fibres are used in place of the natural grass worldwide, for realizing playgrounds, soccer fields and even domestic gardens or recreational structures. An intensive use of artificial turf is currently observed in sports facilities, due to lower costs, higher sustainability in recycling of materials, and advantages related to athletic practice and performance. However, even if chemical and physical risks were studied, the microbiological component was not fully addressed, especially considering a comprehensive evaluation of the microbiota in synthetic vs natural playground surfaces. Here, we investigated the microbial community present on soccer fields, using Next Generation Sequencing and a 16S amplicon sequencing approach. Artificial and natural turfs show own ecosystems with different microbial profiles and a mean Shannon's diversity value of 2.176 and 2.475, respectively. The bacterial community is significantly different between facilities (ANOSIM: R = 0.179; p < 0.001) and surface materials (ANOSIM: R = 0.172; p < 0.005). The relative abundance of potentially pathogenic bacterial OTUs was higher in synthetic than in natural samples (ANOVA, F = 2.2). Soccer fields are characterized by their own microbiota, showing a different 16S amplicon sequencing signature between natural and artificial turfs.
Collapse
Affiliation(s)
- Federica Valeriani
- University of Rome "Foro Italico", Department of Movement, Human and Health Sciences, Public Health Unit, Rome, Italy
| | - Lory Marika Margarucci
- University of Rome "Foro Italico", Department of Movement, Human and Health Sciences, Public Health Unit, Rome, Italy
| | - Gianluca Gianfranceschi
- University of Rome "Foro Italico", Department of Movement, Human and Health Sciences, Public Health Unit, Rome, Italy
| | - Antonello Ciccarelli
- University of Rome "Foro Italico", Department of Movement, Human and Health Sciences, Public Health Unit, Rome, Italy
| | - Filippo Tajani
- University of Rome "Foro Italico", Department of Movement, Human and Health Sciences, Public Health Unit, Rome, Italy
| | - Nicolina Mucci
- INAIL, Department of Technological Innovations and Safety of Plants, Products and Anthropic Settlements, Rome, Italy
| | - Maurizio Ripani
- University of Rome "Foro Italico", Department of Movement, Human and Health Sciences, Public Health Unit, Rome, Italy
| | - Vincenzo Romano Spica
- University of Rome "Foro Italico", Department of Movement, Human and Health Sciences, Public Health Unit, Rome, Italy
- Corresponding author.
| |
Collapse
|
220
|
Cohen N, Zhou H, Hay AG, Radian A. Curli production enhances clay-E. coli aggregation and sedimentation. Colloids Surf B Biointerfaces 2019; 182:110361. [PMID: 31351270 DOI: 10.1016/j.colsurfb.2019.110361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/02/2023]
Abstract
Curli are amyloid fibrils that polymerize extracellularly from curlin, a protein that is secreted by many enteric bacteria and is important for biofilm formation. Presented here is a systematic study of the effects of curli on bacteria-clay interactions. The aggregation trends of curli-producing and curli-deficient bacteria with clay minerals were followed using gradient-sedimentation experiments, Lumisizer measurements, bright-field and electron microscopy. The results revealed that curli-producing bacteria auto-aggregated into high-density flocs (1.23 g/cm3), ranging in size from 10 to 50 μm, that settle spontaneously. In contrast, curli-deficient bacteria remained relatively stable in solution as individual cells (1-2 μm, 1.18 g/cm3), even at high ionic strength (350 mM). The stability of clay suspensions mixed with curli-deficient bacteria depended on clay type and ionic strength, the general trends being consistent with the classic DLVO theory. However, suspensions of curli-producing bacteria mixed with clays were highly unstable regardless of clay type and solution chemistry, suggesting extensive interactions between the clays and the bacteria-curli aggregates. SEM measurements revealed interesting differences in morphologies of the aggregates; montmorillonite particles coated the bacterial auto-aggregates whereas the kaolinite platelets were embedded within the larger curli-bacteria aggregates. These new observations regarding the densities, aggregation trends, and morphologies of bacteria-curli and bacteria-curli-clay complexes make it clear that production of surface appendages, such as curli, need to be considered when addressing the fate, activity and transport of bacteria - particularly in aquatic environments.
Collapse
Affiliation(s)
- Nirrit Cohen
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Hao Zhou
- Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca, NY 14853 USA
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel.
| |
Collapse
|
221
|
Antibacterial Properties of Zn Doped Hydrophobic SiO2 Coatings Produced by Sol-Gel Method. COATINGS 2019. [DOI: 10.3390/coatings9060362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Bacteria existing on the surfaces of various materials can be both a source of infection and an obstacle to the proper functioning of structures. Increased resistance to colonization by microorganisms can be obtained by applying antibacterial coatings. This paper describes the influence of surface wettability and amount of antibacterial additive (Zn) on bacteria settlement on modified SiO2-based coatings. The coatings were made by sol-gel method. The sols were prepared on the basis of tetraethoxysilane (TEOS), modified with methyltrimethoxysilane (MTMS), hexamethyldisilazane (HMDS) and the addition of zinc nitrate or zinc acetate. Roughness and surface wettability tests, as well as study of the chemical structure of the coatings were carried out. The antibacterial properties of the coatings were checked by examining their susceptibility to colonization by Escherichia coli. It was found that the addition of zinc compound reduced the susceptibility to colonization by E. coli, while in the studied range, roughness and hydrophobicity did not affect the level of bacteria adhesion to the coatings.
Collapse
|
222
|
Liu Y, Shi L, Su L, van der Mei HC, Jutte PC, Ren Y, Busscher HJ. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem Soc Rev 2019; 48:428-446. [DOI: 10.1039/c7cs00807d] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacterial-infections are mostly due to bacteria in their biofilm-mode of growth. Nanotechnology-based antimicrobials possess excellent potential in biofilm-infection control, overcoming the biological barriers of biofilms.
Collapse
Affiliation(s)
- Yong Liu
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials, Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials, Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Linzhu Su
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Functional Polymer Materials, Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Henny C. van der Mei
- University of Groningen and University Medical Center Groningen
- Department of Biomedical Engineering
- 9713 AV Groningen
- The Netherlands
| | - Paul C. Jutte
- University of Groningen and University Medical Center of Groningen
- Department of Orthopaedic Surgery
- 9700 RB Groningen
- The Netherlands
| | - Yijin Ren
- University of Groningen and University Medical Center of Groningen
- Department of Orthodontics
- 9700 RB Groningen
- The Netherlands
| | - Henk J. Busscher
- University of Groningen and University Medical Center Groningen
- Department of Biomedical Engineering
- 9713 AV Groningen
- The Netherlands
| |
Collapse
|