201
|
Ji P, Chen J, Golding A, Nikolov NP, Saluja B, Ren YR, Sahajwalla CG. Immunomodulatory Therapeutic Proteins in COVID-19: Current Clinical Development and Clinical Pharmacology Considerations. J Clin Pharmacol 2020; 60:1275-1293. [PMID: 32779201 PMCID: PMC7436618 DOI: 10.1002/jcph.1729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/07/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID‐19) pandemic caused by infection with SARS‐CoV‐2 has led to more than 600 000 deaths worldwide. Patients with severe disease often experience acute respiratory distress characterized by upregulation of multiple cytokines. Immunomodulatory biological therapies are being evaluated in clinical trials for the management of the systemic inflammatory response and pulmonary complications in patients with advanced stages of COVID‐19. In this review, we summarize the clinical pharmacology considerations in the development of immunomodulatory therapeutic proteins for mitigating the heightened inflammatory response identified in COVID‐19.
Collapse
Affiliation(s)
- Ping Ji
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jianmeng Chen
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Amit Golding
- Division of Rheumatology and Transplant Medicine, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Nikolay P Nikolov
- Division of Rheumatology and Transplant Medicine, Office of Immunology and Inflammation, Office of New Drugs, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Bhawana Saluja
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yunzhao R Ren
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Chandrahas G Sahajwalla
- Division of Inflammation and Immune Pharmacology, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
202
|
Talotta R, Robertson E. Autoimmunity as the comet tail of COVID-19 pandemic. World J Clin Cases 2020; 8:3621-3644. [PMID: 32953841 PMCID: PMC7479552 DOI: 10.12998/wjcc.v8.i17.3621] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/29/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can give rise to different clinical manifestations that are directly related to viral tissue damage or indirectly induced by the antiviral immune response. Hyper-activation of the immune system in an attempt to eradicate the infection may trigger autoimmunity. Several immune-mediated disorders have been described in SARS-CoV-2-infected individuals. These include cutaneous rashes and vasculitis, autoimmune cytopenia, anti-phospholipid syndrome, central or peripheral neuropathy, myositis and myocarditis. On the other hand, rheumatic patients were reported to have similar coronavirus disease 2019 (COVID-19) incidence, morbidity and mortality rates compared to general population. This opinion review will summarize the crucial immunologic steps which occur during SARS-CoV-2-infection that may link autoimmunity to COVID-19 and provides an opportunity for further discussion regarding this association.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU “Gaetano Martino”, University of Messina, Messina 98100, Italy
| | - Erle Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, United States
| |
Collapse
|
203
|
Nasonov EL, Beketova TV, Reshetnyak TM, Lila AM, Ananieva LP, Lisitsyna TA, Soloviev SK. Coronavirus disease 2019 (COVID-19) and immune-mediated inflammatory rheumatic diseases: at the crossroads of thromboinflammation and autoimmunity. RHEUMATOLOGY SCIENCE AND PRACTICE 2020. [DOI: 10.47360/1995-4484-2020-353-367] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation and coagulation are key basic mechanism of protection against all potentially pathogenic mechanical and biological factors targeting human organism from inner and outer environment. On the other hand, uncontrolled inflammation results in hypercoagulation, inhibition of anticoagulation and alteration of mechanisms responsible for resolution of inflammation, while production of “procoagulant” mediators (thrombin, tissue factor and others), activation of platelets and of vascular endothelial cells maintains inflammation. All factors taken together serve as the basis for a pathological process called thromboinflammation or immunothrombosis. Currently thromboinflammation is considered in the broad sense as a universal pathogenetic mechanism of numerous widespread acute and chronic conditions, including immune-mediated (autoimmune) inflammatory rheumatic diseases, oftentimes complicated by severe irreversible damage to vital organs. Thromboinflammation gained specific attention during СОVID-19 (coronavirus disease 2019) pandemic, caused by SARS-Cov-2 (severe acute respiratory syndrome Coronavirus-2). COVID-19 is considered currently as systemic thromboinflammation syndrome, manifesting via generalized thrombosis of arterial and venous macro- and microvasculature, termed as COVID-19-coagulopathy. The paper discusses common pathogenetic coagulopathy mechanisms in COVID-19 and immune-mediated (autoimmune) inflammatory rheumatic diseases (IMRDs), associated with overproduction of antiphospholipid antibodies, activation of the complement system, and dis-regulated synthesis of proinflammatory cytokines, etc. Delineating the autoimmune subtype of thromboinflammation, identification of genetic (i.e., genes encoding the complement system and others) and molecular-biologic biomarkers associated with higher occurrence of COVID-19-coagulopathy are the most relevant undertakings for the current practice. Gaining insights into mechanisms of thromboinflammation and converting them into potential pharmacotherapies of IMDs would facilitate and accelerate the drafting of effective therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- E. L. Nasonov
- VA Nasonova Research Institute of Rheumatology;
I.M. Sechenov First Moscow State Medical University, MOH (Sechenov University)
| | | | - T. M. Reshetnyak
- VA Nasonova Research Institute of Rheumatology;
Russian Medical Academy of Continuing Prefessional Education, Ministry of Health of Russia
| | - A. M. Lila
- VA Nasonova Research Institute of Rheumatology
| | | | | | | |
Collapse
|
204
|
Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: The anger of inflammation. Cytokine 2020; 133:155151. [PMID: 32544563 PMCID: PMC7260598 DOI: 10.1016/j.cyto.2020.155151] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
Patients with COVID-19 who require ICU admission might have the cytokine storm. It is a state of out-of-control release of a variety of inflammatory cytokines. The molecular mechanism of the cytokine storm has not been explored extensively yet. The attachment of SARS-CoV-2 spike glycoprotein with angiotensin-converting enzyme 2 (ACE2), as its cellular receptor, triggers complex molecular events that leads to hyperinflammation. Four molecular axes that may be involved in SARS-CoV-2 driven inflammatory cytokine overproduction are addressed in this work. The virus-mediated down-regulation of ACE2 causes a burst of inflammatory cytokine release through dysregulation of the renin-angiotensin-aldosterone system (ACE/angiotensin II/AT1R axis), attenuation of Mas receptor (ACE2/MasR axis), increased activation of [des-Arg9]-bradykinin (ACE2/bradykinin B1R/DABK axis), and activation of the complement system including C5a and C5b-9 components. The molecular clarification of these axes will elucidate an array of therapeutic strategies to confront the cytokine storm in order to prevent and treat COVID-19 associated acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Mehdi Mahmudpour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shokrollah Farrokhi
- Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Future Studies Group, The Academy of Medical Sciences of the I.R., Iran.
| |
Collapse
|
205
|
Korsukewitz C, Reddel SW, Bar-Or A, Wiendl H. Neurological immunotherapy in the era of COVID-19 - looking for consensus in the literature. Nat Rev Neurol 2020; 16:493-505. [PMID: 32641860 PMCID: PMC7341707 DOI: 10.1038/s41582-020-0385-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 01/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is concerning for patients with neuroimmunological diseases who are receiving immunotherapy. Uncertainty remains about whether immunotherapies increase the risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or increase the risk of severe disease and death upon infection. National and international societies have developed guidelines and statements, but consensus does not exist in several areas. In this Review, we attempt to clarify where consensus exists and where uncertainty remains to inform management approaches based on the first principles of neuroimmunology. We identified key questions that have been addressed in the literature and collated the recommendations to generate a consensus calculation in a Delphi-like approach to summarize the information. We summarize the international recommendations, discuss them in light of the first available data from patients with COVID-19 receiving immunotherapy and provide an overview of management approaches in the COVID-19 era. We stress the principles of medicine in general and neuroimmunology in particular because, although the risk of viral infection has become more relevant, most of the considerations apply to the general management of neurological immunotherapy. We also give special consideration to immunosuppressive treatment and cell-depleting therapies that might increase susceptibility to SARS-CoV-2 infection but reduce the risk of severe COVID-19.
Collapse
Affiliation(s)
- Catharina Korsukewitz
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Muenster, Germany
| | - Stephen W Reddel
- Department of Neurology, Concord Hospital and The Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Amit Bar-Or
- Center for Neuroinflammation and Neurotherapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Muenster, Muenster, Germany.
| |
Collapse
|
206
|
Montalvo Villalba MC, Valdés Ramírez O, Muné Jiménez M, Arencibia Garcia A, Martinez Alfonso J, González Baéz G, Roque Arrieta R, Rosell Simón D, Alvárez Gainza D, Sierra Vázquez B, Resik Aguirre S, Guzmán Tirado MG. Interferon gamma, TGF-β1 and RANTES expression in upper airway samples from SARS-CoV-2 infected patients. Clin Immunol 2020; 220:108576. [PMID: 32866645 PMCID: PMC7455570 DOI: 10.1016/j.clim.2020.108576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 12/23/2022]
Abstract
Upper respiratory tract is the primary site of SARS-CoV-2 replication. Releasing of pro and anti-inflammatory mediators plays an important role in the immunopathogenesis of Coronavirus Disease 2019 (COVID-19). The aim of this study was to evaluate the early inflammatory response in upper airway by measuring of IFN-γ, TGF-β1 and RANTES at mRNA level. Forty five SARS-CoV-2 infected patients were enrolled, whose were divided in two groups: asymptomatic and symptomatic. Twenty healthy persons, SARS-CoV-2 negative were included as controls. Higher IFN-γ expression was detected in SARS-CoV-2 infected patients in comparison with controls (p = 0.0393). IFN-γ expression was increased in symptomatic patients (p = 0.0405). TGF-β1 and RANTES expressions were lower in SARS-CoV-2 infected patients than controls (p < 0.0001; p = 0.0011, respectively). A significant correlation between IFN-γ and TGF-β1 was observed in SARS-CoV-2 asymptomatic patients (r = +0.61, p = 0.0014). The findings suggest that imbalance between IFN-γ and TGF-β1 expression could be an impact in clinical expression of SARS-CoV-2 infection. Up-regulation of IFN-γ expression in upper airway may determinate pathogenesis of COVID-19 De novo gene expression of TGF-β1 and RANTES is arrested at early stage of infection Correlation IFN-γ:TGF-β1 could influence early clinical expression of SARS-CoV-2 infection RANTES-dependent recruitment of immune cells decreases in initial phase of SARS-CoV-2 infection
Collapse
Affiliation(s)
- María Caridad Montalvo Villalba
- Department of Virology, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodía km 61/2, Havana 17100, Cuba.
| | - Odalys Valdés Ramírez
- Department of Virology, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodía km 61/2, Havana 17100, Cuba
| | - Mayra Muné Jiménez
- Department of Virology, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodía km 61/2, Havana 17100, Cuba
| | - Amely Arencibia Garcia
- Department of Virology, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodía km 61/2, Havana 17100, Cuba
| | - Javier Martinez Alfonso
- Department of Virology, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodía km 61/2, Havana 17100, Cuba
| | - Guelsy González Baéz
- Department of Virology, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodía km 61/2, Havana 17100, Cuba
| | - Rosmery Roque Arrieta
- Department of Virology, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodía km 61/2, Havana 17100, Cuba
| | - Dianelvys Rosell Simón
- Department of Virology, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodía km 61/2, Havana 17100, Cuba
| | - Delmis Alvárez Gainza
- Department of Computation, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodía km 61/2, Havana 17100, Cuba
| | - Beatriz Sierra Vázquez
- Department of Virology, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodía km 61/2, Havana 17100, Cuba
| | - Sonia Resik Aguirre
- Department of Virology, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodía km 61/2, Havana 17100, Cuba
| | - Maria Guadalupe Guzmán Tirado
- Department of Virology, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodía km 61/2, Havana 17100, Cuba
| |
Collapse
|
207
|
Abstract
Purpose of Review To review current literature on endothelial dysfunction with previous coronaviruses, and present available data on the role of endothelial dysfunction in coronavirus disease-2019 (COVID-19) infection in terms of pathophysiology and clinical phenotype Recent Findings Recent evidence suggests that signs and symptoms of severe COVID-19 infection resemble the clinical phenotype of endothelial dysfunction, implicating mutual pathophysiological pathways. Dysfunction of endothelial cells is believed to mediate a variety of viral infections, including those caused by previous coronaviruses. Experience from previous coronaviruses has triggered hypotheses on the role of endothelial dysfunction in the pathophysiology of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), which are currently being tested in preclinical and clinical studies. Summary Endothelial dysfunction is the common denominator of multiple clinical aspects of severe COVID-19 infection that have been problematic for treating physicians. Given the global impact of this pandemic, better understanding of the pathophysiology could significantly affect management of patients.
Collapse
|
208
|
Urwyler P, Moser S, Charitos P, Heijnen IAFM, Rudin M, Sommer G, Giannetti BM, Bassetti S, Sendi P, Trendelenburg M, Osthoff M. Treatment of COVID-19 With Conestat Alfa, a Regulator of the Complement, Contact Activation and Kallikrein-Kinin System. Front Immunol 2020; 11:2072. [PMID: 32922409 PMCID: PMC7456998 DOI: 10.3389/fimmu.2020.02072] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
A dysregulated immune response with hyperinflammation is observed in patients with severe coronavirus disease 2019 (COVID-19). The aim of the present study was to assess the safety and potential benefits of human recombinant C1 esterase inhibitor (conestat alfa), a complement, contact activation and kallikrein-kinin system regulator, in severe COVID-19. Patients with evidence of progressive disease after 24 h including an oxygen saturation <93% at rest in ambient air were included at the University Hospital Basel, Switzerland in April 2020. Conestat alfa was administered by intravenous injections of 8400 IU followed by 3 additional doses of 4200 IU in 12-h intervals. Five patients (age range, 53-85 years; one woman) with severe COVID-19 pneumonia (11-39% lung involvement on computed tomography scan of the chest) were treated a median of 1 day (range 1-7 days) after admission. Treatment was well-tolerated. Immediate defervescence occurred, and inflammatory markers and oxygen supplementation decreased or stabilized in 4 patients (e.g., median C-reactive protein 203 (range 31-235) mg/L before vs. 32 (12-72) mg/L on day 5). Only one patient required mechanical ventilation. All patients recovered. C1INH concentrations were elevated before conestat alfa treatment. Levels of complement activation products declined after treatment. Viral loads in nasopharyngeal swabs declined in 4 patients. In this uncontrolled case series, targeting multiple inflammatory cascades by conestat alfa was safe and associated with clinical improvements in the majority of severe COVID-19 patients. Controlled clinical trials are needed to assess its safety and efficacy in preventing disease progression.
Collapse
Affiliation(s)
- Pascal Urwyler
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Stephan Moser
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Ingmar A. F. M. Heijnen
- Laboratory Medicine, Division of Medical Immunology, University Hospital Basel, Basel, Switzerland
| | - Melanie Rudin
- Laboratory Medicine, Division of Medical Immunology, University Hospital Basel, Basel, Switzerland
| | - Gregor Sommer
- Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | | | - Stefano Bassetti
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research and Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Parham Sendi
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research and Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Michael Osthoff
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- Department of Clinical Research and Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
209
|
Computational analysis of complement inhibitor compstatin using molecular dynamics. J Mol Model 2020; 26:231. [PMID: 32789582 PMCID: PMC8851517 DOI: 10.1007/s00894-020-04472-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022]
Abstract
The complement system plays a major role in human immunity, but its abnormal activation can have severe pathological impacts. By mimicking a natural mechanism of complement regulation, the small peptide compstatin has proven to be a very promising complement inhibitor. Over the years, several compstatin analogs have been created, with improved inhibitory potency. A recent analog is being developed as a candidate drug against several pathological conditions, including COVID-19. However, the reasons behind its higher potency and increased binding affinity to complement proteins are not fully clear. This computational study highlights the mechanistic properties of several compstatin analogs, thus complementing previous experimental studies. We perform molecular dynamics simulations involving six analogs alone in solution and two complexes with compstatin bound to complement component 3. These simulations reveal that all the analogs we consider, except the original compstatin, naturally adopt a pre-bound conformation in solution. Interestingly, this set of analogs adopting a pre-bound conformation includes analogs that were not known to benefit from this behavior. We also show that the most recent compstatin analog (among those we consider) forms a stronger hydrogen bond network with its complement receptor than an earlier analog.
Collapse
|
210
|
Polycarpou A, Howard M, Farrar CA, Greenlaw R, Fanelli G, Wallis R, Klavinskis LS, Sacks S. Rationale for targeting complement in COVID-19. EMBO Mol Med 2020; 12:e12642. [PMID: 32559343 PMCID: PMC7323084 DOI: 10.15252/emmm.202012642] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
A novel coronavirus, SARS-CoV-2, has recently emerged in China and spread internationally, posing a health emergency to the global community. COVID-19 caused by SARS-CoV-2 is associated with an acute respiratory illness that varies from mild to the life-threatening acute respiratory distress syndrome (ARDS). The complement system is part of the innate immune arsenal against pathogens, in which many viruses can evade or employ to mediate cell entry. The immunopathology and acute lung injury orchestrated through the influx of pro-inflammatory macrophages and neutrophils can be directly activated by complement components to prime an overzealous cytokine storm. The manifestations of severe COVID-19 such as the ARDS, sepsis and multiorgan failure have an established relationship with activation of the complement cascade. We have collected evidence from all the current studies we are aware of on SARS-CoV-2 immunopathogenesis and the preceding literature on SARS-CoV-1 and MERS-CoV infection linking severe COVID-19 disease directly with dysfunction of the complement pathways. This information lends support for a therapeutic anti-inflammatory strategy against complement, where a number of clinically ready potential therapeutic agents are available.
Collapse
MESH Headings
- Adult
- Alveolar Epithelial Cells/immunology
- Alveolar Epithelial Cells/metabolism
- Alveolar Epithelial Cells/virology
- Angiotensin-Converting Enzyme 2
- Animals
- Betacoronavirus/physiology
- COVID-19
- Child
- Complement Activation/drug effects
- Complement C3b/antagonists & inhibitors
- Complement C3b/physiology
- Complement Inactivating Agents/pharmacology
- Complement Inactivating Agents/therapeutic use
- Coronavirus Infections/drug therapy
- Coronavirus Infections/immunology
- Cytokine Release Syndrome/drug therapy
- Cytokine Release Syndrome/etiology
- Cytokine Release Syndrome/immunology
- Glycosylation
- Humans
- Immunity, Innate
- Ligands
- Mice
- Models, Animal
- Models, Molecular
- Pandemics
- Pattern Recognition, Automated
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/immunology
- Protein Conformation
- Protein Processing, Post-Translational
- Receptors, Virus/metabolism
- Respiratory Distress Syndrome/etiology
- Respiratory Distress Syndrome/immunology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- COVID-19 Drug Treatment
Collapse
Affiliation(s)
- Anastasia Polycarpou
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Mark Howard
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Conrad A Farrar
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Roseanna Greenlaw
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Giorgia Fanelli
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Russell Wallis
- Department of Respiratory Science and InfectionLeicester Institute of Chemical and Structural BiologyUniversity of LeicesterLeicesterUK
| | - Linda S Klavinskis
- Department of Infectious DiseasesSchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| | - Steven Sacks
- MRC Centre of TransplantationPeter Gorer Department of ImmunobiologySchool of Immunology and Microbial SciencesGuy's HospitalKing's College LondonLondonUK
| |
Collapse
|
211
|
Java A, Apicelli AJ, Liszewski MK, Coler-Reilly A, Atkinson JP, Kim AH, Kulkarni HS. The complement system in COVID-19: friend and foe? JCI Insight 2020; 5:140711. [PMID: 32554923 PMCID: PMC7455060 DOI: 10.1172/jci.insight.140711] [Citation(s) in RCA: 252] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in a global pandemic and a disruptive health crisis. COVID-19-related morbidity and mortality have been attributed to an exaggerated immune response. The role of complement activation and its contribution to illness severity is being increasingly recognized. Here, we summarize current knowledge about the interaction of coronaviruses with the complement system. We posit that (a) coronaviruses activate multiple complement pathways; (b) severe COVID-19 clinical features often resemble complementopathies; (c) the combined effects of complement activation, dysregulated neutrophilia, endothelial injury, and hypercoagulability appear to be intertwined to drive the severe features of COVID-19; (d) a subset of patients with COVID-19 may have a genetic predisposition associated with complement dysregulation; and (e) these observations create a basis for clinical trials of complement inhibitors in life-threatening illness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hrishikesh S. Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
212
|
Song WC, FitzGerald GA. COVID-19, microangiopathy, hemostatic activation, and complement. J Clin Invest 2020; 130:3950-3953. [PMID: 32459663 PMCID: PMC7410042 DOI: 10.1172/jci140183] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics, and
| | - Garret A. FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics
- Institute for Translational Medicine and Therapeutics, and
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
213
|
Jodele S, Köhl J. Tackling COVID-19 infection through complement-targeted immunotherapy. Br J Pharmacol 2020; 178:2832-2848. [PMID: 32643798 PMCID: PMC7361469 DOI: 10.1111/bph.15187] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
The complement system is an ancient part of innate immunity sensing highly pathogenic coronaviruses by mannan‐binding lectin (MBL) resulting in lectin pathway activation and subsequent generation of the anaphylatoxins (ATs) C3a and C5a as important effector molecules. Complement deposition on endothelial cells and high blood C5a serum levels have been reported in COVID‐19 patients with severe illness, suggesting vigorous complement activation leading to systemic thrombotic microangiopathy (TMA). Complement regulator gene variants prevalent in African‐Americans have been associated with a higher risk for severe TMA and multi‐organ injury. Strikingly, severe acute respiratory syndrome Coronavirus 2 (SARS‐CoV‐2)‐infected African‐Americans suffer from high mortality. These findings allow us to apply our knowledge from other complement‐mediated diseases to COVID‐19 infection to better understand severe disease pathogenesis. Here, we discuss the multiple aspects of complement activation, regulation, crosstalk with other parts of the immune system, and the options to target complement in COVID‐19 patients to halt disease progression and death.
Collapse
Affiliation(s)
- Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cancer and Blood Disease Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jörg Köhl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
214
|
Turi S, Nardelli P, Landoni G. Anticoagulants and immunosuppressants in COVID-19: Bullets to Defeat MicroCLOTS. Ann Card Anaesth 2020; 23:258-259. [PMID: 32687078 PMCID: PMC7559961 DOI: 10.4103/aca.aca_126_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- S Turi
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - P Nardelli
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - G Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute; Faculty of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
215
|
Ibrahim H, Perl A, Smith D, Lewis T, Kon Z, Goldenberg R, Yarta K, Staniloae C, Williams M. Therapeutic blockade of inflammation in severe COVID-19 infection with intravenous N-acetylcysteine. Clin Immunol 2020; 219:108544. [PMID: 32707089 PMCID: PMC7374140 DOI: 10.1016/j.clim.2020.108544] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
Glucose 6-phosphate dehydrogenase (G6PD) deficiency facilitates human coronavirus infection due to glutathione depletion. G6PD deficiency may especially predispose to hemolysis upon coronavirus disease-2019 (COVID-19) infection when employing pro-oxidant therapy. However, glutathione depletion is reversible by N-acetylcysteine (NAC) administration. We describe a severe case of COVID-19 infection in a G6PD-deficient patient treated with hydroxychloroquine who benefited from intravenous (IV) NAC beyond reversal of hemolysis. NAC blocked hemolysis and elevation of liver enzymes, C-reactive protein (CRP), and ferritin and allowed removal from respirator and veno-venous extracorporeal membrane oxygenator and full recovery of the G6PD-deficient patient. NAC was also administered to 9 additional respirator-dependent COVID-19-infected patients without G6PD deficiency. NAC elicited clinical improvement and markedly reduced CRP in all patients and ferritin in 9/10 patients. NAC mechanism of action may involve the blockade of viral infection and the ensuing cytokine storm that warrant follow-up confirmatory studies in the setting of controlled clinical trials.
Collapse
Affiliation(s)
- Homam Ibrahim
- New York University Grossman School of Medicine, NY, New York, United States of America.
| | - Andras Perl
- Upstate Medical University Hospital, Syracuse, New York, United States of America.
| | - Deane Smith
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Tyler Lewis
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Zachary Kon
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Ronald Goldenberg
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Kinan Yarta
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Cezar Staniloae
- New York University Grossman School of Medicine, NY, New York, United States of America
| | - Mathew Williams
- New York University Grossman School of Medicine, NY, New York, United States of America
| |
Collapse
|
216
|
Bosmann M. Complement Activation during Critical Illness: Current Findings and an Outlook in the Era of COVID-19. Am J Respir Crit Care Med 2020; 202:163-165. [PMID: 32437622 PMCID: PMC7365374 DOI: 10.1164/rccm.202005-1926ed] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Markus Bosmann
- Department of MedicineBoston University School of MedicineBoston, Massachusettsand.,Center for Thrombosis and HemostasisUniversity Medical Center of the Johannes Gutenberg-UniversityMainz, Germany
| |
Collapse
|
217
|
Gavriilaki E, Sakellari I, Gavriilaki M, Anagnostopoulos A. Thrombocytopenia in COVID-19: pathophysiology matters. Ann Hematol 2020; 100:2139-2140. [PMID: 32683455 PMCID: PMC7368623 DOI: 10.1007/s00277-020-04183-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department-BMT Unit, G Papanicolaou Hospital, Exochi, 57010, Thessaloniki, Greece.
| | - Ioanna Sakellari
- Hematology Department-BMT Unit, G Papanicolaou Hospital, Exochi, 57010, Thessaloniki, Greece
| | - Maria Gavriilaki
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
218
|
Stahel PF, Barnum SR. Complement Inhibition in Coronavirus Disease (COVID)-19: A Neglected Therapeutic Option. Front Immunol 2020; 11:1661. [PMID: 32733489 PMCID: PMC7358522 DOI: 10.3389/fimmu.2020.01661] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Affiliation(s)
- Philip F Stahel
- Department of Specialty Medicine, College of Osteopathic Medicine, Rocky Vista University, Parker, CO, United States
| | | |
Collapse
|
219
|
Borges-Velez G, Rosario-Rodriguez LJ, Rosado-Philippi JE, Cartagena LJ, Garcia-Requena L, Gonzalez A, Perez J, Melendez LM. SARS-Cov-2: Biology, Detection, Macrophage Mediated Pathogenesis and Potential Treatments. VIROLOGY & IMMUNOLOGY JOURNAL 2020; 4:242. [PMID: 34485853 PMCID: PMC8415769 DOI: 10.23880/vij-16000242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The respiratory disease caused by the Coronavirus infectious disease 2019 (COVID19) has spread rapidly since December 2019 in Wuhan, China. This new strain of Coronavirus is similar to the SARS Corona virus and has been termed SARS-CoV-2. Both viruses have emerged from bats and adapted to humans. On March 11, 2020 COVID19 was declared Pandemic by the WHO and as of May 1, 2020 COVID19 disease continues to grow rapidly with 3,400,595 cases and 239,583 deaths world-wide. This review describes the biology of SARSCOV2, Detection, Macrophage-Mediated Pathogenesis and Potential Treatments.
Collapse
Affiliation(s)
- Gabriel Borges-Velez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, USA
| | | | | | - Luz J Cartagena
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, USA
| | | | - Andrea Gonzalez
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, USA
| | - Jean Perez
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, USA
| | - Loyda M Melendez
- Corresponding author: Loyda M Melendez, PhD, Professor, Department of Microbiology, University of Puerto Rico School of Medicine, San Juan, USA,
| |
Collapse
|
220
|
Tarasova O, Ivanov S, Filimonov DA, Poroikov V. Data and Text Mining Help Identify Key Proteins Involved in the Molecular Mechanisms Shared by SARS-CoV-2 and HIV-1. Molecules 2020; 25:E2944. [PMID: 32604797 PMCID: PMC7357070 DOI: 10.3390/molecules25122944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Viruses can be spread from one person to another; therefore, they may cause disorders in many people, sometimes leading to epidemics and even pandemics. New, previously unstudied viruses and some specific mutant or recombinant variants of known viruses constantly appear. An example is a variant of coronaviruses (CoV) causing severe acute respiratory syndrome (SARS), named SARS-CoV-2. Some antiviral drugs, such as remdesivir as well as antiretroviral drugs including darunavir, lopinavir, and ritonavir are suggested to be effective in treating disorders caused by SARS-CoV-2. There are data on the utilization of antiretroviral drugs against SARS-CoV-2. Since there are many studies aimed at the identification of the molecular mechanisms of human immunodeficiency virus type 1 (HIV-1) infection and the development of novel therapeutic approaches against HIV-1, we used HIV-1 for our case study to identify possible molecular pathways shared by SARS-CoV-2 and HIV-1. We applied a text and data mining workflow and identified a list of 46 targets, which can be essential for the development of infections caused by SARS-CoV-2 and HIV-1. We show that SARS-CoV-2 and HIV-1 share some molecular pathways involved in inflammation, immune response, cell cycle regulation.
Collapse
Affiliation(s)
- Olga Tarasova
- Department for Bioinformatics, Institute of Biomedical Chemistry, 107076 Moscow, Russia; (S.I.); (D.A.F.); (V.P.)
| | - Sergey Ivanov
- Department for Bioinformatics, Institute of Biomedical Chemistry, 107076 Moscow, Russia; (S.I.); (D.A.F.); (V.P.)
- Department of Bioinformatics of Pirogov Russian National Research Medical University, 107076 Moscow, Russia
| | - Dmitry A. Filimonov
- Department for Bioinformatics, Institute of Biomedical Chemistry, 107076 Moscow, Russia; (S.I.); (D.A.F.); (V.P.)
| | - Vladimir Poroikov
- Department for Bioinformatics, Institute of Biomedical Chemistry, 107076 Moscow, Russia; (S.I.); (D.A.F.); (V.P.)
| |
Collapse
|
221
|
Cavalli E, Bramanti A, Ciurleo R, Tchorbanov AI, Giordano A, Fagone P, Belizna C, Bramanti P, Shoenfeld Y, Nicoletti F. Entangling COVID-19 associated thrombosis into a secondary antiphospholipid antibody syndrome: Diagnostic and therapeutic perspectives (Review). Int J Mol Med 2020; 46:903-912. [PMID: 32588061 PMCID: PMC7388827 DOI: 10.3892/ijmm.2020.4659] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 01/19/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel β coronavirus that is the etiological agent of the pandemic coronavirus disease 2019 (COVID-19) that at the time of writing (June 16, 2020) has infected almost 6 million people with some 450,000 deaths. These numbers are still rising daily. Most (some 80%) cases of COVID-19 infection are asymptomatic, a substantial number of cases (15%) require hospitalization and an additional fraction of patients (5%) need recovery in intensive care units. Mortality for COVID-19 infection appears to occur globally between 0.1 and 0.5% of infected patients although the frequency of lethality is significantly augmented in the elderly and in patients with other comorbidities. The development of acute respiratory distress syndrome and episodes of thromboembolism that may lead to disseminated intravascular coagulation (DIC) represent the primary causes of lethality during COVID-19 infection. Increasing evidence suggests that thrombotic diathesis is due to multiple derangements of the coagulation system including marked elevation of D-dimer that correlate negatively with survival. We propose here that the thromboembolic events and eventually the development of DIC provoked by SARS-CoV-2 infection may represent a secondary anti-phospholipid antibody syndrome (APS). We will apply both Baconian inductivism and Cartesian deductivism to prove that secondary APS is likely responsible for coagulopathy during the course of COVID-19 infection. Diagnostic and therapeutic implications of this are also discussed.
Collapse
Affiliation(s)
- Eugenio Cavalli
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | | | - Rosella Ciurleo
- IRCCS Centro Neurolesi 'Bonino‑Pulejo', I-98124 Messina, Italy
| | - Andrey I Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Cristina Belizna
- Vascular and Coagulation Department, University Hospital Angers, 49000 Angers, France
| | | | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Affiliated to Tel‑Aviv University, Ramat Gan 5265601, Israel
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
222
|
Nasonov EL. IMMUNOPATHOLOGY AND IMMUNOPHARMACOTHERAPY OF CORONAVIRUS DISEASE 2019 (COVID-19): FOCUS ON INTERLEUKIN 6. RHEUMATOLOGY SCIENCE AND PRACTICE 2020. [DOI: 10.14412/1995-4484-2020-245-261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic has drawn closer attention than ever before to the problems of the immunopathology of human diseases, many of which have been reflected when studying immune-mediated inflammatory rheumatic diseases (IIRDs). The hyperimmune response called a cytokine storm, the pathogenetic subtypes of which include hemophagocytic lymphohistiocytosis, macrophage activation syndrome, and cytokine release syndrome, is among the most serious complications of IIRDs or treatment for malignant neoplasms and may be a stage of COVID-19 progression. A premium is placed to interleukin-6 (IL-6) in the spectrum of cytokines involved in the pathogenesis of the cytokine storm syndrome. The clinical introduction of monoclonal antibodies (mAbs) that inhibit the activity of this cytokine (tocilizumab, sarilumab, etc.) is one of the major advances in the treatment of IIRDs and critical conditions within the cytokine storm syndrome in COVID-19. The review discusses data on the clinical and prognostic value of IL-6 and the effectiveness of anti-IL-6 receptor and anti-IL-6 mAbs, as well as prospects for personalized therapy of the cytokine storm syndrome in COVID-19.
Collapse
Affiliation(s)
- E. L. Nasonov
- V.A. Nasonova Research Institute of Rheumatology; I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia
| |
Collapse
|
223
|
Ciceri F, Castagna A, Rovere-Querini P, De Cobelli F, Ruggeri A, Galli L, Conte C, De Lorenzo R, Poli A, Ambrosio A, Signorelli C, Bossi E, Fazio M, Tresoldi C, Colombo S, Monti G, Fominskiy E, Franchini S, Spessot M, Martinenghi C, Carlucci M, Beretta L, Scandroglio AM, Clementi M, Locatelli M, Tresoldi M, Scarpellini P, Martino G, Bosi E, Dagna L, Lazzarin A, Landoni G, Zangrillo A. Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy. Clin Immunol 2020; 217:108509. [PMID: 32535188 PMCID: PMC7289745 DOI: 10.1016/j.clim.2020.108509] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023]
Abstract
Background National health-system hospitals of Lombardy faced a heavy burden of admissions for acute respiratory distress syndromes associated with coronavirus disease (COVID-19). Data on patients of European origin affected by COVID-19 are limited. Methods All consecutive patients aged ≥18 years, coming from North-East of Milan's province and admitted at San Raffaele Hospital with COVID-19, between February 25th and March 24th, were reported, all patients were followed for at least one month. Clinical and radiological features at admission and predictors of clinical outcomes were evaluated. Results Of the 500 patients admitted to the Emergency Unit, 410 patients were hospitalized and analyzed: median age was 65 (IQR 56–75) years, and the majority of patients were males (72.9%). Median (IQR) days from COVID-19 symptoms onset was 8 (5–11) days. At hospital admission, fever (≥ 37.5 °C) was present in 67.5% of patients. Median oxygen saturation (SpO2) was 93% (range 60–99), with median PaO2/FiO2 ratio, 267 (IQR 184–314). Median Radiographic Assessment of Lung Edema (RALE) score was 9 (IQR 4–16). More than half of the patients (56.3%) had comorbidities, with hypertension, coronary heart disease, diabetes and chronic kidney failure being the most common. The probability of overall survival at day 28 was 66%. Multivariable analysis showed older age, coronary artery disease, cancer, low lymphocyte count and high RALE score as factors independently associated with an increased risk of mortality. Conclusion In a large cohort of COVID-19 patients of European origin, main risk factors for mortality were older age, comorbidities, low lymphocyte count and high RALE.
Collapse
Affiliation(s)
- Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Antonella Castagna
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco De Cobelli
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Laura Galli
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Caterina Conte
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Rebecca De Lorenzo
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Poli
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Carlo Signorelli
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Bossi
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Fazio
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Giacomo Monti
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | | | | - Luigi Beretta
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Massimo Clementi
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Gianvito Martino
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Bosi
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lorenzo Dagna
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adriano Lazzarin
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Landoni
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alberto Zangrillo
- Vita-Salute San Raffaele University, Milan, Italy; IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
224
|
Yan B, Freiwald T, Chauss D, Wang L, West E, Bibby J, Olson M, Kordasti S, Portilla D, Laurence A, Lionakis MS, Kemper C, Afzali B, Kazemian M. SARS-CoV2 drives JAK1/2-dependent local and systemic complement hyper-activation. RESEARCH SQUARE 2020:rs.3.rs-33390. [PMID: 32702726 PMCID: PMC7336704 DOI: 10.21203/rs.3.rs-33390/v1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with coronavirus disease 2019 (COVID-19) present with a range of devastating acute clinical manifestations affecting the lungs, liver, kidneys and gut. The best-characterized entry receptor for the disease-causing virus SARS-CoV2, angiotensin converting enzyme (ACE) 2, is highly expressed in these tissues. However, the pathways that underlie the disease are still poorly understood. Here we show that the complement system is unexpectedly one of the intracellular pathways most highly induced by SARS-CoV2 infection in lung epithelial and liver cells. Within cells of the bronchoalveolar lavage of patients, distinct signatures of complement activation in myeloid, lymphoid and epithelial cells tracked with disease severity. Modelling the regulome of host genes induced by COVID-19 and the drugs that could normalize these genes both implicated the JAK1/2-STAT1 signaling system downstream of type I interferon receptors, and NF-kB. Ruxolitinib, a JAK1/2 inhibitor and the top predicted pharmaceutical candidate, normalized interferon signature genes, IL-6 (the best characterized severity marker in COVID-19) and all complement genes induced by SARS-CoV2, but did not affect NF-kB-regulated genes. We predict that combination therapy with JAK inhibitors and other agents with the potential to normalize NF-kB-signaling, such as anti-viral agents, may serve as an effective clinical strategy.
Collapse
Affiliation(s)
- Bingyu Yan
- Departments of Biochemistry and Computer Science, Purdue
University, West Lafayette, IN, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD,
USA
| | - Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD,
USA
| | - Luopin Wang
- Departments of Biochemistry and Computer Science, Purdue
University, West Lafayette, IN, USA
| | - Erin West
- Laboratory of Molecular Immunology and the Immunology Center,
National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH),
Bethesda, MD, USA
| | - Jack Bibby
- Laboratory of Molecular Immunology and the Immunology Center,
National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH),
Bethesda, MD, USA
| | - Matthew Olson
- Department of Biological Sciences, Purdue University, West
Lafayette, IN, USA
| | - Shahram Kordasti
- School of Immunology and Microbial Sciences, Faculty of Life
Sciences and Medicine, King’s College London, London, UK
| | - Didier Portilla
- Immunoregulation Section, Kidney Diseases Branch, National
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD,
USA
- Division of Nephrology and the Center for Immunity, Inflammation
and Regenerative Medicine, University of Virginia, VA, USA
| | - Arian Laurence
- Nuffield Department of Medicine, University of Oxford, UK
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology
and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH,
Bethesda, MD, USA
| | - Claudia Kemper
- Laboratory of Molecular Immunology and the Immunology Center,
National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH),
Bethesda, MD, USA
- Institute for Systemic Inflammation Research, University of
Lübeck, Lübeck, Germany
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD,
USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue
University, West Lafayette, IN, USA
| |
Collapse
|
225
|
Vuitton DA, Vuitton L, Seillès E, Galanaud P. A plea for the pathogenic role of immune complexes in severe Covid-19. Clin Immunol 2020; 217:108493. [PMID: 32526273 PMCID: PMC7278649 DOI: 10.1016/j.clim.2020.108493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022]
Affiliation(s)
| | - Lucine Vuitton
- Department of Acute and Chronic Diseases, Education, and Transplantation, Gastroenterology unit, University Hospital, Besançon, France
| | - Estelle Seillès
- Immuno-biology Laboratory, Établissement Français du Sang (EFS) Bourgogne Franche-Comté, Besançon, France; U1098, Inserm-EFS-Université Bourgogne Franche-Comté, Besançon, France
| | - Pierre Galanaud
- U996, Inflammation, Microbiome and Immunosurveillance, Inserm, Université Paris-Saclay, Clamart, France
| |
Collapse
|
226
|
Ramlall V, Thangaraj PM, Meydan C, Foox J, Butler D, May B, De Freitas JK, Glicksberg BS, Mason CE, Tatonetti NP, Shapira SD. Identification of Immune complement function as a determinant of adverse SARS-CoV-2 infection outcome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.05.20092452. [PMID: 32511494 PMCID: PMC7273262 DOI: 10.1101/2020.05.05.20092452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Understanding the pathophysiology of SARS-CoV-2 infection is critical for therapeutics and public health intervention strategies. Viral-host interactions can guide discovery of regulators of disease outcomes, and protein structure function analysis points to several immune pathways, including complement and coagulation, as targets of the coronavirus proteome. To determine if conditions associated with dysregulation of the complement or coagulation systems impact adverse clinical outcomes, we performed a retrospective observational study of 11,116 patients who presented with suspected SARS-CoV-2 infection. We found that history of macular degeneration (a proxy for complement activation disorders) and history of coagulation disorders (thrombocytopenia, thrombosis, and hemorrhage) are risk factors for morbidity and mortality in SARS-CoV-2 infected patients - effects that could not be explained by age, sex, or history of smoking. Further, transcriptional profiling of nasopharyngeal (NP) swabs from 650 control and SARS-CoV-2 infected patients demonstrated that in addition to innate Type-I interferon and IL-6 dependent inflammatory immune responses, infection results in robust engagement and activation of the complement and coagulation pathways. Finally, we conducted a candidate driven genetic association study of severe SARS-CoV-2 disease. Among the findings, our scan identified putative complement and coagulation associated loci including missense, eQTL and sQTL variants of critical regulators of the complement and coagulation cascades. In addition to providing evidence that complement function modulates SARS-CoV-2 infection outcome, the data point to putative transcriptional genetic markers of susceptibility. The results highlight the value of using a multi-modal analytical approach, combining molecular information from virus protein structure-function analysis with clinical informatics, transcriptomics, and genomics to reveal determinants and predictors of immunity, susceptibility, and clinical outcome associated with infection.
Collapse
Affiliation(s)
- Vijendra Ramlall
- Department of Biomedical Informatics, Columbia University, New York, NY, USA. USA
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, USA
| | - Phyllis M. Thangaraj
- Department of Biomedical Informatics, Columbia University, New York, NY, USA. USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Cem Meydan
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jonathan Foox
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Butler
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Ben May
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jessica K. De Freitas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, 10065
| | - Benjamin S. Glicksberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, 10065
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas P. Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, USA. USA
- Department of Systems Biology, Columbia University, New York, NY, USA. USA
| | - Sagi D. Shapira
- Department of Systems Biology, Columbia University, New York, NY, USA. USA
| |
Collapse
|
227
|
Birra D, Benucci M, Landolfi L, Merchionda A, Loi G, Amato P, Licata G, Quartuccio L, Triggiani M, Moscato P. COVID 19: a clue from innate immunity. Immunol Res 2020; 68:161-168. [PMID: 32524333 PMCID: PMC7286633 DOI: 10.1007/s12026-020-09137-5] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent COVID-19 pandemic has had a significant impact on our lives and has rapidly expanded to reach more than 4 million cases worldwide by May 2020. These cases are characterized by extreme variability, from a mild or asymptomatic form lasting for a few days up to severe forms of interstitial pneumonia that may require ventilatory therapy and can lead to patient death.Several hypotheses have been drawn up to understand the role of the interaction between the infectious agent and the immune system in the development of the disease and the most severe forms; the role of the cytokine storm seems important.Innate immunity, as one of the first elements of guest interaction with different infectious agents, could play an important role in the development of the cytokine storm and be responsible for boosting more severe forms. Therefore, it seems important to study also this important arm of the immune system to adequately understand the pathogenesis of the disease. Research on this topic is also needed to develop therapeutic strategies for treatment of this disease.
Collapse
Affiliation(s)
- Domenico Birra
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy.
| | | | - Luigi Landolfi
- UOC of Internal Medicine, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| | - Anna Merchionda
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy
| | - Gabriella Loi
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy
| | | | - Gaetano Licata
- Dermatology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Quartuccio
- Clinic of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, Udine, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano, Italy
| | - Paolo Moscato
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy
| |
Collapse
|
228
|
D’Marco L, Puchades MJ, Romero-Parra M, Gimenez-Civera E, Soler MJ, Ortiz A, Gorriz JL. Coronavirus disease 2019 in chronic kidney disease. Clin Kidney J 2020; 13:297-306. [PMID: 32699615 PMCID: PMC7367105 DOI: 10.1093/ckj/sfaa104] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 01/04/2023] Open
Abstract
The clinical spectrum of coronavirus disease 2019 (COVID-19) infection ranges from asymptomatic infection to severe pneumonia with respiratory failure and even death. More severe cases with higher mortality have been reported in older patients and in those with chronic illness such as hypertension, diabetes or cardiovascular diseases. In this regard, patients with chronic kidney disease (CKD) have a higher rate of all-type infections and cardiovascular disease than the general population. A markedly altered immune system and immunosuppressed state may predispose CKD patients to infectious complications. Likewise, they have a state of chronic systemic inflammation that may increase their morbidity and mortality. In this review we discuss the chronic immunologic changes observed in CKD patients, the risk of COVID-19 infections and the clinical implications for and specific COVID-19 therapy in CKD patients. Indeed, the risk for severe COVID-19 is 3-fold higher in CKD than in non-CKD patients; CKD is 12-fold more frequent in intensive care unit than in non-hospitalized COVID-19 patients, and this ratio is higher than for diabetes or cardiovascular disease; and acute COVID-19 mortality is 15-25% for haemodialysis patients even when not developing pneumonia.
Collapse
Affiliation(s)
- Luis D’Marco
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - María Jesús Puchades
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - María Romero-Parra
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - Elena Gimenez-Civera
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| | - María José Soler
- Nephrology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Diaz UAM and School of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - José Luis Gorriz
- Nephrology Department, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
229
|
Gavriilaki E, Sakellari I, Gavriilaki M, Anagnostopoulos A. A New Era in Endothelial Injury Syndromes: Toxicity of CAR-T Cells and the Role of Immunity. Int J Mol Sci 2020; 21:E3886. [PMID: 32485958 PMCID: PMC7312228 DOI: 10.3390/ijms21113886] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy with chimeric antigen receptor T (CAR-T cells) has been recently approved for patients with relapsed/refractory B-lymphoproliferative neoplasms. Along with great efficacy in patients with poor prognosis, CAR-T cells have been also linked with novel toxicities in a significant portion of patients. Cytokine release syndrome (CRS) and neurotoxicity present with unique clinical phenotypes that have not been previously observed. Nevertheless, they share similar characteristics with endothelial injury syndromes developing post hematopoietic cell transplantation (HCT). Evolution in complement therapeutics has attracted renewed interest in these life-threatening syndromes, primarily concerning transplant-associated thrombotic microangiopathy (TA-TMA). The immune system emerges as a key player not only mediating cytokine responses but potentially contributing to endothelial injury in CAR-T cell toxicity. The interplay between complement, endothelial dysfunction, hypercoagulability, and inflammation seems to be a common denominator in these syndromes. As the indications for CAR-T cells and patient populations expand, there in an unmet clinical need of better understanding of the pathophysiology of CAR-T cell toxicity. Therefore, this review aims to provide state-of-the-art knowledge on cellular therapies in clinical practice (indications and toxicities), endothelial injury syndromes and immunity, as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department—BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (I.S.); (A.A.)
| | - Ioanna Sakellari
- Hematology Department—BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (I.S.); (A.A.)
| | - Maria Gavriilaki
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Achilles Anagnostopoulos
- Hematology Department—BMT Unit, G Papanicolaou Hospital, 57010 Thessaloniki, Greece; (I.S.); (A.A.)
| |
Collapse
|
230
|
Type 3 hypersensitivity in COVID-19 vasculitis. Clin Immunol 2020; 217:108487. [PMID: 32479986 PMCID: PMC7256503 DOI: 10.1016/j.clim.2020.108487] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) is an ongoing public health emergency and new knowledge about its immunopathogenic mechanisms is deemed necessary in the attempt to reduce the death burden, globally. For the first time in worldwide literature, we provide scientific evidence that in COVID-19 vasculitis a life-threatening escalation from type 2 T-helper immune response (humoral immunity) to type 3 hypersensitivity (immune complex disease) takes place. The subsequent deposition of immune complexes inside the vascular walls is supposed to induce a severe inflammatory state and a cytokine release syndrome, whose interleukin-6 is the key myokine, from the smooth muscle cells of blood vessels. COVID-19 is an ongoing public health emergency around the world. New knowledge about its immunopathogenic mechanisms is required. Type 3 hypersensitivity reaction in COVID-19 vasculitis is here disclosed. Inflamed vascular smooth muscle cells concur to the cytokine storm via IL-6. Histology, histochemistry and immunofluorescence have been successfully applied.
Collapse
|
231
|
Murck H. Symptomatic Protective Action of Glycyrrhizin (Licorice) in COVID-19 Infection? Front Immunol 2020; 11:1239. [PMID: 32574273 PMCID: PMC7270278 DOI: 10.3389/fimmu.2020.01239] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023] Open
Abstract
The role of the ACE2 enzyme in the COVID-19 infection is 2-fold, with opposing implications for the disease development. 1. The membrane bound angiotensin converting enzyme 2 (ACE2) serves as the entry point of COVID-19 2. Conversely, it supports an anti-inflammatory pathway. This led to the controversy of the impact of medications, which influence its expression. ACE2 is part of the wider renin-angiotensin-aldosterone system (RAAS) and is upregulated via compounds, which inhibits the classical ACE, thereby plasma aldosterone and aldosterone receptor (MR) activation. MR activation may therefore protect organs from binding the COVID-19 by reducing ACE2 expression. Glycyrrhizin (GL) is a frequent component in traditional Chinese medicines, which have been used to control COVID-19 infections. Its systemically active metabolite glycyrrhetinic acid (GA) inhibits 11beta hydroxysteroid dehydrogenase(11betaHSD2) and activates MR in organs, which express this enzyme, including the lungs. Does this affect the protective effect of ACE2? Importantly, GL has anti-inflammatory properties by itself via toll like receptor 4 (TLR4) antagonism and therefore compensates for the reduced protection of the downregulated ACE2. Finally, a direct effect of GL or GA to reduce virus transmission exists, which may involve reduced expression of type 2 transmembrane serine protease (TMPRSS2), which is required for virus uptake. Glycyrrhizin may reduce the severity of an infection with COVID-19 at the two stages of the COVID-19 induced disease process, 1. To block the number of entry points and 2. provide an ACE2 independent anti-inflammatory mechanism.
Collapse
Affiliation(s)
- Harald Murck
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.,Murck-Neuroscience LLC, Westfield, NJ, United States
| |
Collapse
|
232
|
Gavriilaki E, Brodsky RA. Severe COVID‐19 infection and thrombotic microangiopathy: success does not come easily. Br J Haematol 2020; 189:e227-e230. [DOI: 10.1111/bjh.16783] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Eleni Gavriilaki
- Hematology Department – BMT Unit G Papanicolaou Hospital Thessaloniki Greece
| | - Robert A. Brodsky
- Division of Hematology Department of Medicine Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
233
|
Zamanian Azodi M, Arjmand B, Zali A, Razzaghi M. Introducing APOA1 as a key protein in COVID-19 infection: a bioinformatics approach. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2020; 13:367-373. [PMID: 33244380 PMCID: PMC7682979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/18/2020] [Indexed: 11/03/2022]
Abstract
AIM Introducing possible diagnostic and therapeutic biomarker candidates via the identification of chief dysregulated proteins in COVID-19 patients is the aim of this study. BACKGROUND Molecular studies, especially proteomics, can be considered as suitable approaches for discovering the hidden aspect of the disease. METHODS Differentially expressed proteins (DEPs) of three patients with demonstrated severe condition (S-COVID-19) were compared to healthy cases by a proteomics study. Cytoscape software and STRING database were used to construct the protein-protein interaction (PPI) network. The central DEPs were identified through topological analysis of the network. ClueGO+CluePedia were applied to find the biological processes related to the central nodes. MCODE molecular complex detection (MCODE) was used to discover protein complexes. RESULTS A total of 242 DEPs from among 256 query ones were included in the network. Centrality analysis of the network assigned 16 hub-bottlenecks, nine of which were presented in the highest-scored protein complex. Ten protein complexes were determined. APOA1 was identified as the protein complex seed, and APP, EGF, and C3 were the top hub-bottlenecks of the network. The results specify that up-regulation of C3 and down-regulation of APOA1 in urine play a role in the stiffness in respiration and, accordingly, the severity of COVID-19. Moreover, dysregulation of APP and APOA1 could both contribute to the possible adverse effects of COVID-19 on the nervous system. CONCLUSION The introduced central proteins of the S-COVID-19 interaction network, particularly APOA1, can be considered as diagnostic and therapeutic targets related to the coronavirus disease after being approved with complementary studies.
Collapse
Affiliation(s)
- Mona Zamanian Azodi
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Razzaghi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|