201
|
Crystal structure of zirconia affects osteoblast behavior. Dent Mater 2020; 36:905-913. [DOI: 10.1016/j.dental.2020.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/27/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
|
202
|
Zheng Z, Ao X, Xie P, Wu J, Dong Y, Yu D, Wang J, Zhu Z, Xu HHK, Chen W. Effects of novel non-thermal atmospheric plasma treatment of titanium on physical and biological improvements and in vivo osseointegration in rats. Sci Rep 2020; 10:10637. [PMID: 32606349 PMCID: PMC7327023 DOI: 10.1038/s41598-020-67678-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/04/2020] [Indexed: 02/05/2023] Open
Abstract
Titanium (Ti) has achieved extensive applications due to its excellent biocompatibility and mechanical properties. Plasma can enhance surface hydrophilia of Ti with decreased carbon contamination. The traditional conditions using a single gas plasma was for longer treatment time and more prone to being contaminated. We designed and developed novel and universal apparatus and methods with a special clamping device of non-thermal atmospheric plasma (NTAP) treatment using mixed gas for Ti surface activation. We systematically and quantitatively investigated the effective effects of NTAP-Ti. The surface water contact angle decreased by 100%, the carbon content decreased by 80% and oxygen content increased by 50% in the novel NTAP-Ti surfaces. NTAP treatment accelerated the attachment, spread, proliferation, osteogenic differentiation and mineralization of MC3T3-E1 mouse preosteoblasts in vitro. The percentage of bone-to-implant contact increased by 25–40%, and the osteoclasts and bone resorption were suppressed by 50% in NTAP-Ti in vivo. In conclusion, NTAP-Ti substantially enhanced the physical and biological effects and integration with bone. The novel and universal apparatus and methods with a special clamping device using gas mixtures are promising for implant activation by swiftly and effectively changing the Ti surface to a hydrophilic one to enhance dental and orthopedic applications.
Collapse
Affiliation(s)
- Zheng Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaogang Ao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Peng Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Wu
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Yuqing Dong
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Deping Yu
- School of Mechanical Engineering, Sichuan University, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhimin Zhu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hockin H K Xu
- Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA.,Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China. .,Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
203
|
Ferraris S, Yamaguchi S, Barbani N, Cristallini C, Gautier di Confiengo G, Barberi J, Cazzola M, Miola M, Vernè E, Spriano S. The mechanical and chemical stability of the interfaces in bioactive materials: The substrate-bioactive surface layer and hydroxyapatite-bioactive surface layer interfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111238. [PMID: 32806332 DOI: 10.1016/j.msec.2020.111238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022]
Abstract
Bioactive materials should maintain their properties during implantation and for long time in contact with physiological fluids and tissues. In the present research, five different bioactive materials (a bioactive glass and four different chemically treated bioactive titanium surfaces) have been studied and compared in terms of mechanical stability of the surface bioactive layer-substrate interface, their long term bioactivity, the type of hydroxyapatite matured and the stability of the hydroxyapatite-surface bioactive layer interface. Numerous physical and chemical analyses (such as Raman spectroscopy, macro and micro scratch tests, soaking in SBF, Field Emission Scanning Electron Microscopy equipped with Energy Dispersive Spectroscopy (SEM-EDS), zeta potential measurements and Fourier Transformed Infra-Red spectroscopy (FTIR) with chemical imaging) were used. Scratch measurements evidenced differences among the metallic surfaces concerning the mechanical stability of the surface bioactive layer-substrate interface. All the surfaces, despite of different kinetics of bioactivity, are covered by a bone like carbonate-hydroxyapatite with B-type substitution after 28 days of soaking in SBF. However, the stability of the apatite layer is not the same for all the materials: dissolution occurs at pH around 4 (close to inflammation condition) in a more pronounced way for the surfaces with faster bioactivity together with detachment of the surface bioactive layer. A protocol of characterization is here suggested to predict the implant-bone interface stability.
Collapse
Affiliation(s)
- S Ferraris
- Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - S Yamaguchi
- Chubu University, 1200 Matsumoto cho -, Kasugai, Japan
| | - N Barbani
- University of Pisa, DICI - Largo Lucio Lazzarino 1, 56126 Pisa, Italy
| | - C Cristallini
- CNR, IPCF - Largo Lucio Lazzarino 1, 56126 Pisa, Italy
| | | | - J Barberi
- Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - M Cazzola
- Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - M Miola
- Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - E Vernè
- Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - S Spriano
- Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
204
|
Fries MR, Stopper D, Skoda MWA, Blum M, Kertzscher C, Hinderhofer A, Zhang F, Jacobs RMJ, Roth R, Schreiber F. Enhanced protein adsorption upon bulk phase separation. Sci Rep 2020; 10:10349. [PMID: 32587383 PMCID: PMC7316800 DOI: 10.1038/s41598-020-66562-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 11/08/2022] Open
Abstract
In all areas related to protein adsorption, from medicine to biotechnology to heterogeneous nucleation, the question about its dominant forces and control arises. In this study, we used ellipsometry and quartz-crystal microbalance with dissipation (QCM-D), as well as density-functional theory (DFT) to obtain insight into the mechanism behind a wetting transition of a protein solution. We established that using multivalent ions in a net negatively charged globular protein solution (BSA) can either cause simple adsorption on a negatively charged interface, or a (diverging) wetting layer when approaching liquid-liquid phase separation (LLPS) by changing protein concentration (cp) or temperature (T). We observed that the water to protein ratio in the wetting layer is substantially larger compared to simple adsorption. In the corresponding theoretical model, we treated the proteins as limited-valence (patchy) particles and identified a wetting transition for this complex system. This wetting is driven by a bulk instability introduced by metastable LLPS exposed to an ion-activated attractive substrate.
Collapse
Affiliation(s)
- Madeleine R Fries
- Institute for Applied Physics, Auf der Morgenstelle 10, University of Tübingen, 72076, Tübingen, Germany
| | - Daniel Stopper
- Institute for Theoretical Physics, Auf der Morgenstelle 14, University of Tübingen, 72076, Tübingen, Germany
| | - Maximilian W A Skoda
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford-Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
| | - Matthias Blum
- Institute for Applied Physics, Auf der Morgenstelle 10, University of Tübingen, 72076, Tübingen, Germany
| | - Christoph Kertzscher
- Institute for Applied Physics, Auf der Morgenstelle 10, University of Tübingen, 72076, Tübingen, Germany
| | - Alexander Hinderhofer
- Institute for Applied Physics, Auf der Morgenstelle 10, University of Tübingen, 72076, Tübingen, Germany
| | - Fajun Zhang
- Institute for Applied Physics, Auf der Morgenstelle 10, University of Tübingen, 72076, Tübingen, Germany
| | - Robert M J Jacobs
- Surface Analysis Facility, Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Roland Roth
- Institute for Theoretical Physics, Auf der Morgenstelle 14, University of Tübingen, 72076, Tübingen, Germany.
| | - Frank Schreiber
- Institute for Applied Physics, Auf der Morgenstelle 10, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
205
|
Single-cell adhesion of human osteoblasts on plasma-conditioned titanium implant surfaces in vitro. J Mech Behav Biomed Mater 2020; 109:103841. [PMID: 32543406 DOI: 10.1016/j.jmbbm.2020.103841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/02/2020] [Accepted: 04/28/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This study aimed to demonstrate the effect of treating titanium-implant surfaces with plasma from two different sources on wettability and initial single-cell adhesion of human osteoblasts and to investigate whether aging affects treatment outcomes. METHODS Titanium disks with sandblasted and acid-etched (SLA) surfaces were treated with atmospheric pressure plasma (APP) and low-pressure plasma (LPP). For wetting behavior of the specimens after plasma treatment, the water contact angle was measured. The single-cell detachment force and amount of work of detachment of human osteoblasts were determined with single-cell force spectroscopy (SCFS). To evaluate the aging effect in APP-treated specimens, SCFS was conducted 10 and 60 min after treatment. RESULTS Significantly higher hydrophilicity was observed in the APP and LPP treatment groups than in the control group, but no significant difference was observed between the APP and LPP groups. No significant difference in cell-detachment force or work of detachment was observed, and there were no significant differences according to the conditioning mechanisms and storage time. SIGNIFICANCE Conditioning of the titanium surfaces with APP or LPP was not a significant influencing factor in the initial adhesion of the osteoblasts.
Collapse
|
206
|
Abstract
Dental implants are frequently used to support fixed or removable dental prostheses to replace missing teeth. The clinical success of titanium dental implants is owed to the exceptional biocompatibility and osseointegration with the bone. Therefore, the enhanced therapeutic effectiveness of dental implants had always been preferred. Several concepts for implant coating and local drug delivery had been developed during the last decades. A drug is generally released by diffusion-controlled, solvent-controlled, and chemical controlled methods. Although a range of surface modifications and coatings (antimicrobial, bioactive, therapeutic drugs) have been explored for dental implants, it is still a long way from designing sophisticated therapeutic implant surfaces to achieve the specific needs of dental patients. The present article reviews various interdisciplinary aspects of surface coatings on dental implants from the perspectives of biomaterials, coatings, drug release, and related therapeutic effects. Additionally, the various types of implant coatings, localized drug release from coatings, and how released agents influence the bone–implant surface interface characteristics are discussed. This paper also highlights several strategies for local drug delivery and their limitations in dental implant coatings as some of these concepts are yet to be applied in clinical settings due to the specific requirements of individual patients.
Collapse
|
207
|
Biofunctionalization of Microgroove Surfaces with Antibacterial Nanocoatings. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8387574. [PMID: 32626766 PMCID: PMC7317309 DOI: 10.1155/2020/8387574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Objectives To investigate the physical properties of the modified microgroove (MG) and antibacterial nanocoated surfaces. In addition, the biological interactions of the modified surfaces with human gingival fibroblasts (HGFs) and the antibacterial activity of the surfaces against Porphyromonas gingivalis were studied. Methods The titanium nitride (TiN) and silver (Ag) coatings were deposited onto the smooth and MG surfaces using magnetron sputtering. A smooth titanium surface (Ti-S) was used as the control. The physicochemical properties including surface morphology, roughness, and hydrophilicity were characterized using scanning electron microscopy, atomic force microscopy, and an optical contact angle analyzer. The "contact guidance" morphology was assessed using confocal laser scanning microscopy. Cell proliferation was analyzed using the Cell Counting Kit-8 assay. The expression level of the main focal adhesion-related structural protein vinculin was compared using quantitative reverse transcription PCR and Western blotting. The antibacterial activity against P. gingivalis was evaluated using the LIVE/DEAD BacLight™ Bacterial Viability Kit. Results The Ag and TiN antibacterial nanocoatings were successfully deposited onto the smooth and MG surfaces using magnetron sputtering technology. TiN coating on a grooved surface (TiN-MG) resulted in less nanoroughness and greater surface hydrophilicity than Ag coating on a smooth surface (Ag-S), which was more hydrophobic. Cell proliferation and expression of vinculin were higher on the TiN-MG surface than on the Ag-coated surfaces. Ag-coated surfaces showed the strongest antibacterial activity, followed by TiN-coated surfaces. Conclusion Nano-Ag coating resulted in good antimicrobial activity; however, the biocompatibility was questionable. TiN nanocoating on an MG surface showed antibacterial properties with an optimal biocompatibility and maintained the "contact guidance" effects for HGFs.
Collapse
|
208
|
Comparison of the osteoblastic activity of low elastic modulus Ti-24Nb-4Zr-8Sn alloy and pure titanium modified by physical and chemical methods. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:111018. [PMID: 32487417 DOI: 10.1016/j.msec.2020.111018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
Ti-24Nb-4Zr-8Sn (Ti2448) alloy is a novel low elastic modulus β-titanium alloy without toxic elements. It also has the advantage of high strength, so it has potential application prospects for implantation. To develop its osteogenic effects, it can be modified by electrochemical, and physical processes. The main research aim of this study was to explore the bioactivity of Ti2448 alloy modified by sandblasted, large-grit, acid-etched (SLA), micro-arc oxidation (MAO) and anodic oxidation (AO), and to determine which of the three surface modifications is the best way for developing the osteogenesis of bone marrow mesenchymal stem cells (BMMSCs). In vitro studies, the cytoskeleton, focal adhesion and proliferation of BMMSCs showed that both pure titanium and Ti2448 alloy have good biocompatibility. The osteogenic differentiation of BMMSCs with the Ti2448 alloy were examined by detecting alkaline phosphatase (ALP), mineralization nodules and osteogenic proteins and were better than that with pure titanium. These results showed that the Ti2448 alloy treated by SLA has a better effect on osteogenesis than pure titanium, and AO is the best way of three surface treatments to improve osteogenesis in this study.
Collapse
|
209
|
Andrukhov O, Behm C, Blufstein A, Wehner C, Gahn J, Pippenger B, Wagner R, Rausch-Fan X. Effect of implant surface material and roughness to the susceptibility of primary gingival fibroblasts to inflammatory stimuli. Dent Mater 2020; 36:e194-e205. [PMID: 32360041 DOI: 10.1016/j.dental.2020.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/04/2020] [Accepted: 04/13/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The impact of the implant surface material and roughness on inflammatory processes in peri-implantitis is not entirely clear. Hence, we investigated how titanium and zirconia surfaces with different roughness influence the susceptibility of primary human gingival fibroblasts to different inflammatory stimuli. METHODS Primary human gingival fibroblasts were isolated from 8 healthy individuals and cultured on following surfaces: smooth titanium machined surface (TiM), smooth zirconia machined surface (ZrM), moderately rough titanium surface (SLA), or moderately rough zirconia surface (ZLA). Subsequently, stimulation with one of the following stimuli was performed: Porphyromonas gingivalis lipopolysaccharide (LPS), tumor necrosis factor (TNF)-α, interleukin (IL)-1β. The resulting production of IL-6, IL-8, and monocyte chemoattractant protein (MCP)-1 was measured by qPCR and ELISA. RESULTS P. gingivalis LPS induced IL-6 and MCP-1 production was slightly higher on titanium surfaces compared to zirconia surfaces. IL-1β induced IL-6 production was not affected by any surface characteristic. The production of MCP-1 in response to IL-1β was higher on smooth compared to rough surfaces and was not affected by the material. The production of IL-6 and MCP-1 in response to TNF-α was most strongly affected by surface characteristics. Higher production of these cytokine was observed on smooth compared to rough surfaces and on titanium compared to zirconia surfaces. Surface characteristics had only minor effects on IL-8 production. SIGNIFICANCE The susceptibility of primary gingival fibroblasts to inflammation depends on various factors, such as surface material, surface roughness and the nature of inflammatory stimuli. All these factors might determine susceptibility to peri-implantitis.
Collapse
Affiliation(s)
- Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.
| | - Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Alice Blufstein
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christian Wehner
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Johannes Gahn
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | | | | | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
210
|
Koopaie M, Kia Darbandsari A, Hakimiha N, Kolahdooz S. Er,Cr:YSGG laser surface treatment of gamma titanium aluminide: Scanning electron microscopy-energy-dispersive X-ray spectrometer analysis, wettability and Eikenella corrodens and Aggregatibacter actinomycetemcomitans bacteria count-in vitro study. Proc Inst Mech Eng H 2020; 234:769-783. [PMID: 32419598 DOI: 10.1177/0954411920924517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Dental implants play an important role in oral health. Titanium dental implants must endure the complex microflora environment of the oral cavity. Moreover, bacterial infections have been considered as one of the most important factors of implant failure. The issue of dental improvement through modification of chemical composition and surface treatment has received considerable critical attention. γ-TiAl as a novo biocompatible material revealed a slower corrosion rate in biological media rather Ti-6Al-4V. The objective of this study is to investigate the effect of Er,Cr:YSGG laser on γ-TiAl in comparison with sandblasted and acid-etched samples as the control groups and machined samples.Wettability, surface roughness, surface topography, scanning electron microscopy-energy dispersive X-ray spectrometer analysis of surface and subsurface of samples were investigated and bacteria counts of two periodontal bacterial strains (Aggregatibacter actinomycetemcomitans and Eikenella corrodens) were evaluated on the Er,Cr:YSGG laser surface-treated sandblasted and acid-etched and machined samples.The results of this investigation show that Er,Cr:YSGG laser surface treatment affects surface roughness, surface topography, wettability, chemical composition of the surface and bacteria count. Scanning electron microscopy-energy dispersive X-ray spectrometer analysis of the sample revealed the increment of titanium and oxygen content and reduction of aluminum content in the surface and subsurface layer. A. actinomycetemcomitans and E. corrodens count were found from the lowest level to highest in the sandblasted and acid-etched samples, laser samples and machined samples, respectively.Using controlled parameters of Er,Cr:YSGG laser ensured no significant adverse alteration. The findings to emerge from this study revealed the significant correlation between microbial count and wettability. Furthermore, the contact angle strongly correlated with surface roughness.
Collapse
Affiliation(s)
- Maryam Koopaie
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Kia Darbandsari
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Neda Hakimiha
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Kolahdooz
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
211
|
Mertgen AS, Trossmann VT, Guex AG, Maniura-Weber K, Scheibel T, Rottmar M. Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21342-21367. [PMID: 32286789 DOI: 10.1021/acsami.0c01893] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the human body, cells in a tissue are exposed to signals derived from their specific extracellular matrix (ECM), such as architectural structure, mechanical properties, and chemical composition (proteins, growth factors). Research on biomaterials in tissue engineering and regenerative medicine aims to recreate such stimuli using engineered materials to induce a specific response of cells at the interface. Although traditional biomaterials design has been mostly limited to varying individual signals, increasing interest has arisen on combining several features in recent years to improve the mimicry of extracellular matrix properties. Tremendous progress in combinatorial surface modification exploiting, for example, topographical features or variations in mechanics combined with biochemical cues has enabled the identification of their key regulatory characteristics on various cell fate decisions. Gradients especially facilitated such research by enabling the investigation of combined continuous changes of different signals. Despite unravelling important synergies for cellular responses, challenges arise in terms of fabrication and characterization of multifunctional engineered materials. This review summarizes recent work on combinatorial surface modifications that aim to control biological responses. Modification and characterization methods for enhanced control over multifunctional material properties are highlighted and discussed. Thereby, this review deepens the understanding and knowledge of biomimetic combinatorial material modification, their challenges but especially their potential.
Collapse
Affiliation(s)
- Anne-Sophie Mertgen
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Vanessa Tanja Trossmann
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, Bayreuth 95440, Germany
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Thomas Scheibel
- Lehrstuhl für Biomaterialien, Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| |
Collapse
|
212
|
Yao Q, Jiang Y, Tan S, Fu X, Li B, Liu L. Composition and bioactivity of calcium phosphate coatings on anodic oxide nanotubes formed on pure Ti and Ti-6Al-4V alloy substrates. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110687. [DOI: 10.1016/j.msec.2020.110687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 01/31/2023]
|
213
|
Yang J, Yu X, Zhang Z, Xu R, Wu F, Wang T, Liu Y, Ouyang J, Deng F. Surface modification of titanium manufactured through selective laser melting inhibited osteoclast differentiation through mitogen-activated protein kinase signaling pathway. J Biomater Appl 2020; 35:169-181. [PMID: 32340522 DOI: 10.1177/0885328220920457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selective laser melting used in manufacturing custom-made titanium implants becomes more popular. In view of the important role played by osteoclasts in peri-implant bone resorption and osseointegration, we modified selective laser melting-manufactured titanium surfaces using sandblasting/alkali-heating and sandblasting/acid-etching, and investigated their effect on osteoclast differentiation as well as their underlying mechanisms. The properties of the surfaces, including elements, roughness, wettability and topography, were analyzed. We evaluated the proliferation and morphology of primary mouse bone marrow-derived monocytes, as well as induced osteoclasts derived from bone marrow-derived monocytes, on samples. Then, osteoclast differentiation was determined by the tartrate-resistant acid phosphatase activity assay, calcitonin receptors immunofluorescence staining and the expression of osteoclast-related genes. The results showed that sandblasting/alkali-heating established nanonet structure with the lowest water contact angle, and both sandblasting/alkali-heating and sandblasting/acid-etching significantly decreased surface roughness and heterogeneity compared with selective laser melting. Surface modifications of selective laser melting-produced titanium altered bone marrow-derived monocyte morphology and suppressed bone marrow-derived monocyte proliferation and osteoclastogenesis in vitro (sandblasting/alkali-heating>sandblasting/acid-etching>selective laser melting). These surface modifications reduced the activation of extracellular signal-regulated kinase and c-Jun N-terminal kinases compared to native-selective laser melting. Sandblasting/alkali-heating additionally blocked tumor necrosis factor receptor-associated factor 6 recruitment. The results suggested that sandblasting/alkali-heating and sandblasting/acid-etching modifications on selective laser melting titanium could inhibit osteoclast differentiation through suppressing extracellular signal-regulated kinase and c-Jun N-terminal kinase phosphorylation in mitogen-activated protein kinase signaling pathway and provide a promising technique which might reduce peri-implant bone resorption for optimizing native-selective laser melting implants.
Collapse
Affiliation(s)
- Jiamin Yang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xiaolin Yu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Ruogu Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Fan Wu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Tianlu Wang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yun Liu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Jianglin Ouyang
- Guangzhou Institute of Advanced Technology, Chinese Academy of Science, Guangzhou, PR China.,Guangzhou Janus Biotechnology Co., Ltd, Chinese Academy of Sciences, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| |
Collapse
|
214
|
Wehner C, Lettner S, Moritz A, Andrukhov O, Rausch-Fan X. Effect of bisphosphonate treatment of titanium surfaces on alkaline phosphatase activity in osteoblasts: a systematic review and meta-analysis. BMC Oral Health 2020; 20:125. [PMID: 32334598 PMCID: PMC7183598 DOI: 10.1186/s12903-020-01089-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/26/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bisphosphonate coating of dental implants is a promising tool for surface modification aiming to improve the osseointegration process and clinical outcome. The biological effects of bisphosphonates are thought to be mainly associated with osteoclasts inhibition, whereas their effects on osteoblast function are unclear. A potential of bisphosphonate coated surfaces to stimulate osteoblast differentiation was investigated by several in vitro studies with contradictory results. The purpose of this systematic review and meta-analysis was to evaluate the effect of bisphosphonate coated implant surfaces on alkaline phosphatase activity in osteoblasts. METHODS In vitro studies that assessed alkaline phosphatase activity in osteoblasts following cell culture on bisphosphonate coated titanium surfaces were searched in electronic databases PubMed/MEDLINE, Scopus and ISI Web of Science. Animal studies and clinical trials were excluded. The literature search was restricted to articles written in English and published up to August 2019. Publication bias was assessed by the construction of funnel plots. RESULTS Eleven studies met the inclusion criteria. Meta-analysis showed that coating of titanium surfaces with bisphosphonates increases alkaline phosphatase activity in osteoblasts after 3 days (n = 1), 7 (n = 7), 14 (n = 6) and 21 (n = 3) days. (7 days beta coefficient = 1.363, p-value = 0.001; 14 days beta coefficient = 1.325, p-value < 0.001; 21 days beta coefficient = 1.152, p-value = 0.159). CONCLUSIONS The meta-analysis suggests that bisphosphonate coatings of titanium implant surfaces may have beneficial effects on osteogenic behaviour of osteoblasts grown on titanium surfaces in vitro. Further studies are required to assess to which extent bisphosphonates coating might improve osseointegration in clinical situations.
Collapse
Affiliation(s)
- Christian Wehner
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, A-1090, Vienna, Austria
| | - Stefan Lettner
- Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, A-1090, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, A-1090, Vienna, Austria.
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, A-1090, Vienna, Austria
| |
Collapse
|
215
|
Lotz EM, Cohen DJ, Schwartz Z, Boyan BD. Titanium implant surface properties enhance osseointegration in ovariectomy induced osteoporotic rats without pharmacologic intervention. Clin Oral Implants Res 2020; 31:374-387. [PMID: 31953969 PMCID: PMC7771214 DOI: 10.1111/clr.13575] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/03/2019] [Accepted: 01/04/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study determined whether implant surfaces that promote osseointegration in normal rats can promote osseointegration in osteoporotic rats without pharmacologic intervention. MATERIALS AND METHODS Virgin female 8-month-old CD Sprague Dawley rats (N = 25) were ovariectomized. At 6 weeks, microstructured/non-nanostructured/hydrophobic, microstructured/nanostructured/hydrophobic, or microstructured/nanostructured/hydrophilic Ti implants (Ø2.5 × 3.5 mm; Institut Straumann AG, Basel, Switzerland) were placed in the distal metaphysis of each femur. At 28 days, bone quality and implant osseointegration were assessed using microCT, histomorphometrics, and removal torque values (RTVs). Calvarial osteoblasts were isolated and cultured for 7 days on Ø15 mm Ti disks processed to exhibit similar surface characteristics as the implants used for the in vivo studies. The phenotype was assessed by measuring the production of osteocalcin, osteoprotegerin, osteopontin, BMP2, VEGF, and RANKL. RESULTS Microstructured/nanostructured/hydrophilic implants promoted increased bone-to-implant contact and RTVs in vivo and increased osteoblastic marker production in vitro compared to microstructured/non-nanostructured/hydrophobic and microstructured/nanostructured/hydrophobic implants, suggesting that osseointegration occurs in osteoporotic animals, and implant surface properties improve its rate. CONCLUSIONS Although all modified implants were able to osseointegrate in rats with OVX-induced osteoporosis without pharmacologic intervention, the degree of osseointegration was greater around microstructured/nanostructured/hydrophilic implant surfaces. These results suggest that when appropriate microstructure is present, hydrophilicity has a greater influence on Ti implant osseointegration compared to nanostructures. Moreover, modified implant surfaces can exert their control over the altered bone turnover observed in osteoporotic patients to stimulate functional osseointegration. These results provide critical insight for developing implants with improved osseointegration in patients with metabolic disorders of bone remodeling.
Collapse
Affiliation(s)
- Ethan M. Lotz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David J. Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Barbara D. Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
216
|
Jiang X, Yao Y, Tang W, Han D, Zhang L, Zhao K, Wang S, Meng Y. Design of dental implants at materials level: An overview. J Biomed Mater Res A 2020; 108:1634-1661. [PMID: 32196913 DOI: 10.1002/jbm.a.36931] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022]
Abstract
Due to the excellent restoration of masticatory function, satisfaction on aesthetics and other superiorities, dental implants represent an effective method to resolve tooth losing and damaging. Current dental implant systems still have problems waiting to be addressed, and problems are centralized on the materials of implant bodies. This review aims to summarize major developments in the field of dental implant materials, starting with an overview on structures, procedures of dental implants and challenges of implant materials. Next, implant materials are examined in three categories, that is, metals, ceramics, and polymers, their mechanical properties, biocompatibility, and bioactivity are summarized. And as an important aspect, strategies of surface modification are also reviewed, along with some finite element analysis to guiding the research direction of implant materials. Finally, the conclusive remarks are outlined to provide an outlook on the future research directions and prospects of dental implants.
Collapse
Affiliation(s)
- Xunyuan Jiang
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yitong Yao
- Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weiming Tang
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Dongmei Han
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Zhang
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ke Zhao
- Department of Prosthodontics, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry and Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials Technologies, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
217
|
Long-Term Clinical Outcomes of Treatment with Dental Implants with Acid Etched Surface. MATERIALS 2020; 13:ma13071553. [PMID: 32230917 PMCID: PMC7177283 DOI: 10.3390/ma13071553] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
Implant dentistry constitutes a therapeutic modality in the prosthodontic treatment of partially and totally edentulous patients. This study reports a long-term evaluation of treatment by the early loading of acid-etched surface implants. Forty-eight partially and totally edentulous patients were treated with 169 TSA Defcon® acid-etched surface implants for prosthodontic rehabilitation. Implants were loaded after a healing free-loading period of 6–8 weeks in mandible and maxilla, respectively. Implant and prosthodontic clinical findings were followed during at least 17 years. Clinical results indicate a survival and success rate of implants of 92.9%, demonstrating that acid-etched surface achieves and maintains successful osseointegration. Five implants in three patients were lost during the healing period. Sixty-five prostheses were placed in 45 patients over the remaining 164 implants, 30 single crowns, 21 partially fixed bridges, 9 overdentures, and 5 full-arch fixed rehabilitations. A total of 12 implants were lost during the follow-up period. Mean marginal bone loss was 1.91 ± 1.24 mm, ranging from 1.1 to 3.6 mm. The most frequent complication was prosthetic technical complications (14.2%), followed by peri-implantitis (10.6%). The mean follow-up was of 214.4 months (208–228 months). Prosthodontic rehabilitation with an early-loading protocol over acid-etched surface implants is a successful implant treatment.
Collapse
|
218
|
Han A, Ding H, Tsoi JKH, Imazato S, Matinlinna JP, Chen Z. Prolonged UV-C Irradiation is a Double-Edged Sword on the Zirconia Surface. ACS OMEGA 2020; 5:5126-5133. [PMID: 32201799 PMCID: PMC7081443 DOI: 10.1021/acsomega.9b04123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/25/2020] [Indexed: 05/28/2023]
Abstract
Zirconia has become an excellent choice of dental implants because of its excellent mechanical strength, aesthetic, and biocompatibility. Although some studies have shown ultraviolet (UV) irradiation is effective to photofunctionalize dental zirconia that can improve osteoblastic function, the scattered information has not identified the most effective exposure time and wavelength of UV. Herein, this study has investigated the effects of UV irradiation on zirconia after UV-A (365 nm) or UV-C (243 nm) photofunctionalization for different times (15 min, 3 and 24 h). After irradiation, the zirconia surface was analyzed by color spectrophotometry, scanned electron microscopy (SEM), energy-dispersive X-ray spectrometry, water contact angle (WCA) with goniometer, and X-ray diffraction. Osteoblastic (MC3T3-E1) cells were cultured on zirconia discs and evaluated with a CCK-8 test kit for cell proliferation (3 h and 1 day) and with alkaline phosphatase (ALP) activity (14 days). Significant color change (ΔE) was observed by irradiating with UV-C for 15 min (1.99), 3 h (1.92), and 24 h (3.35), whereas only minute changes were observed with UV-A (respectively, ΔE: 0.18, 0.14, 0.57). No surface textural changes were observed nor a monoclinic phase was detected on both the UV-A and UV-C irradiated samples. UV-C significantly decreased the C/Zr ratios and WCA, with irradiating for 24 h presenting the lowest values, and it was the only condition to give significantly higher ALP activity at 14 days (p < 0.05) and CCK-8 values for 1 day culture (p < 0.05). It is concluded that UV-C (but not UV-A) irradiation can significantly change the aesthetic in color, and only prolonged 24 h UV-C irradiation can enhance MC3T3-E1 cell adhesion on zirconia by photofunctionalization.
Collapse
Affiliation(s)
- Aifang Han
- Dental
Materials Science, Division of Applied Oral Sciences and Community
Dental Care, Faculty of Dentistry, The University
of Hong Kong, Pokfulam, Hong Kong SAR, P.R. China
| | - Hao Ding
- Dental
Materials Science, Division of Applied Oral Sciences and Community
Dental Care, Faculty of Dentistry, The University
of Hong Kong, Pokfulam, Hong Kong SAR, P.R. China
| | - James Kit Hon Tsoi
- Dental
Materials Science, Division of Applied Oral Sciences and Community
Dental Care, Faculty of Dentistry, The University
of Hong Kong, Pokfulam, Hong Kong SAR, P.R. China
| | - Satoshi Imazato
- Department
of Biomaterials Science, Osaka University
Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Jukka P. Matinlinna
- Dental
Materials Science, Division of Applied Oral Sciences and Community
Dental Care, Faculty of Dentistry, The University
of Hong Kong, Pokfulam, Hong Kong SAR, P.R. China
| | - Zhuofan Chen
- Dental
Materials Science, Division of Applied Oral Sciences and Community
Dental Care, Faculty of Dentistry, The University
of Hong Kong, Pokfulam, Hong Kong SAR, P.R. China
- Zhujiang
New Town Dental Clinic, Hospital of Stomatology, Guanghua School of
Stomatology, Sun Yat-sen University, Guangzhou 510275, P.R. China
| |
Collapse
|
219
|
Shahramian K, Gasik M, Kangasniemi I, Walboomers XF, Willberg J, Abdulmajeed A, Närhi T. Zirconia implants with improved attachment to the gingival tissue. J Periodontol 2020; 91:1213-1224. [PMID: 31858607 DOI: 10.1002/jper.19-0323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 11/03/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Gingival tissue attachment is known to be important for long-term prognosis of implants. This in vitro study evaluated the gingival attachment to zirconia implants and zirconia implants modified with sol-gel derived TiO2 coatings. METHODS Zirconia endodontic posts (n = 23) were used to function as implants that were inserted into the center of full-thickness porcine gingival explants (n = 31). The tissue/implant specimens were then individually placed at an air/liquid interface on a stainless-steel grid in cell culture wells containing a nutrient solution. The tissue cultures were incubated at 37°C in a 5% CO2 environment and at days 7 and 14, the specimens were harvested and analyzed by dynamic mechanical analysis (DMA) measurements under dynamic loading conditions mimicking natural mastication. Specimens were also analyzed by immunohistochemical staining identifying the laminin (Ln) γ2 chain specific for Ln-332, which is known to be a crucial molecule for the proper attachment of epithelium to tooth/implant surface. RESULTS Tissue attachment to TiO2 -coated zirconia demonstrated higher dynamic modulus of elasticity and higher creep modulus, meaning that the attachment is stronger and more resistant to damage during function over time. Laminin γ2 was identified in the attachment of epithelium to TiO2 -coated zirconia. CONCLUSIONS Both DMA and histological analysis support each other, so the gingival tissue is more strongly attached to sol-gel derived TiO2 -coated zirconia than uncoated zirconia. Immunohistochemical staining showed that TiO2 coating may enhance the synthesis and deposition of Ln-332 in the epithelial attachment to the implant surface.
Collapse
Affiliation(s)
- Khalil Shahramian
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland.,Turku Clinical Biomaterials Center (TCBC), University of Turku, Turku, Finland
| | - Michael Gasik
- School of Chemical Engineering, Aalto University Foundation, AALTO, Espoo, Finland
| | - Ilkka Kangasniemi
- Turku Clinical Biomaterials Center (TCBC), University of Turku, Turku, Finland
| | - X Frank Walboomers
- Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Jaana Willberg
- Department of Oral Pathology and Radiology, Institute of Dentistry, University of Turku, Turku, Finland.,Department of Pathology, Turku University Central Hospital, Turku, Finland.,Welfare Division, Oral Health Care, Turku, Finland
| | - Aous Abdulmajeed
- Department of General Practice, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Timo Närhi
- Department of Prosthetic Dentistry and Stomatognathic Physiology, Institute of Dentistry, University of Turku, Turku, Finland.,Turku Clinical Biomaterials Center (TCBC), University of Turku, Turku, Finland.,Welfare Division, Oral Health Care, Turku, Finland
| |
Collapse
|
220
|
Tretto PHW, Dos Santos MBF, Spazzin AO, Pereira GKR, Bacchi A. Assessment of stress/strain in dental implants and abutments of alternative materials compared to conventional titanium alloy-3D non-linear finite element analysis. Comput Methods Biomech Biomed Engin 2020; 23:372-383. [PMID: 32116034 DOI: 10.1080/10255842.2020.1731481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The aim of this study was to assess the stress/strain in dental implant/abutments with alternative materials, in implants with different microgeometry, through finite element analysis (FEA). Three-dimensional models were created to simulate the clinical situation of replacement of a maxillary central incisor with implants, in a type III bone, with a provisional single crown, loaded with 100 N in a perpendicular direction. The FEA parameters studied were: implant materials-titanium, porous titanium, titanium-zirconia, zirconia, reinforced fiberglass composite (RFC), and polyetheretherketone (PEEK); and abutment materials-titanium, zirconia, RFC, and PEEK; implant macrogeometry-tapered of trapezoidal threads (TTT) and cylindrical of triangular threads (CTT) (ø4.3 mm × 11 mm). Microstrain, von Mises, shear, and maximum and minimum principal stresses in the structures and in peri-implant bone were compared. There was increased stress and strain in peri-implant bone tissue caused by implants of materials with lower elastic modulus (mainly for PEEK and RFC). They also presented higher concentration of stresses in the implant itself (especially RFC). Zirconia implants led to lower stress and strains in peri-implant bone tissue. Less rigid abutments (RFC and PEEK) associated with titanium implants led to higher stress in the implant and in peri-implant bone tissue. The TTT macrogeometry showed a higher stress concentration in the implant and peri-implant bone tissue. The stress/strain in peri-implant bone tissue and implant structures were affected by the material used, where reduced values were caused by stiffer materials. Lower stress/strain values were obtained with cylindrical implants of triangular treads.
Collapse
Affiliation(s)
| | | | - Aloisio Oro Spazzin
- Graduate Program in Dentistry, Meridional Faculty-IMED, Passo Fundo, RS, Brazil
| | - Gabriel Kalil Rocha Pereira
- Graduate Program in Oral Science (Prosthodontics Units), Federal University of Santa Maria - UFSM, Santa Maria, RS, Brazil
| | - Atais Bacchi
- Graduate Program in Dentistry, Meridional Faculty-IMED, Passo Fundo, RS, Brazil
| |
Collapse
|
221
|
Florea DA, Albuleț D, Grumezescu AM, Andronescu E. Surface modification – A step forward to overcome the current challenges in orthopedic industry and to obtain an improved osseointegration and antimicrobial properties. MATERIALS CHEMISTRY AND PHYSICS 2020; 243:122579. [DOI: 10.1016/j.matchemphys.2019.122579] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
222
|
Esthetic and Physical Changes of Innovative Titanium Surface Properties Obtained with Laser Technology. MATERIALS 2020; 13:ma13051066. [PMID: 32121085 PMCID: PMC7084452 DOI: 10.3390/ma13051066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/30/2023]
Abstract
Aim: The purpose of the study was the evaluation of the esthetic and physical changes produced on colored titanium Grade 5 (Ti6Al4V) laser treated surfaces to be used in implant dentistry for esthetic success. Materials and methods: Colored titanium surfaces were obtained with laser treatment. The physical and topographic properties were evaluated by stereo, light, and electron microscopy and profilometric analyses. L*a*b* colorimetric coordinates were measured by spectrometry, and the superficial chemical characteristics were evaluated by energy dispersive X-ray analysis. Results: Within the complete palette of titanium colors, pinks (P1-P2), incarnadine (I), and white (W) obtained by laser were selected. The topography, texture, hues, saturation, roughness, and porosity of the samples were compared with those of machined (M) and sand-blasted and etched (SBAE) control surfaces. P1, P2, and I, similar in hue and roughness (Ra ≅ 0.5 μm), had a microgroove spacing of 56 μm and a decreasing porosity. The W sample with a “checkerboard” texture and a light color (L* 96.31) was similar to the M samples (Ra = 0.32 μm), but different from SBAE (Ra = 1.41 μm, L* 65.47). Discussion: The aspects of hard and soft tissue could result in an esthetic failure of the dental implant by showing the dark color of the fixture or abutment. The two different pinks and incarnadine surfaces showed favorable esthetic and physical features to promote dental implant success even in the maxillary anterior area with gingival recession, asymmetry, and deficiency. Conclusion: Titanium colored laser surfaces represent a valid alternative to those currently traditionally obtained and interesting and potential perspectives in the management of dental implants’ esthetic failure.
Collapse
|
223
|
Montemezzi P, Ferrini F, Pantaleo G, Gherlone E, Capparè P. Dental Implants with Different Neck Design: A Prospective Clinical Comparative Study with 2-Year Follow-Up. MATERIALS 2020; 13:ma13051029. [PMID: 32106401 PMCID: PMC7084739 DOI: 10.3390/ma13051029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/16/2022]
Abstract
The present study was conducted to investigate whether a different implant neck design could affect survival rate and peri-implant tissue health in a cohort of disease-free partially edentulous patients in the molar–premolar region. The investigation was conducted on 122 dental implants inserted in 97 patients divided into two groups: Group A (rough wide-neck implants) vs. Group B (rough reduced-neck implants). All patients were monitored through clinical and radiological checkups. Survival rate, probing depth, and marginal bone loss were assessed at 12- and 24-month follow-ups. Patients assigned to Group A received 59 implants, while patients assigned to Group B 63. Dental implants were placed by following a delayed loading protocol, and cemented metal–ceramic crowns were delivered to the patients. The survival rates for both Group A and B were acceptable and similar at the two-year follow-up (96.61% vs. 95.82%). Probing depth and marginal bone loss tended to increase over time (follow-up: t1 = 12 vs. t2 = 24 months) in both groups of patients. Probing depth (p = 0.015) and bone loss (p = 0.001) were significantly lower in Group A (3.01 vs. 3.23 mm and 0.92 vs. 1.06 mm; Group A vs. Group B). Within the limitations of the present study, patients with rough wide-neck implants showed less marginal bone loss and minor probing depth, as compared to rough reduced-neck implants placed in the molar–premolar region. These results might be further replicated through longer-term trials, as well as comparisons between more collar configurations (e.g., straight vs. reduced vs. wide collars).
Collapse
Affiliation(s)
- Pietro Montemezzi
- Dental School, Vita-Salute San Raffaele University, 20132 Milan, Italy; (F.F.); (E.G.); (P.C.)
- Department of Dentistry, IRCCS San Raffaele Hospital, 20132 Milan, Italy
- Correspondence:
| | - Francesco Ferrini
- Dental School, Vita-Salute San Raffaele University, 20132 Milan, Italy; (F.F.); (E.G.); (P.C.)
- Department of Dentistry, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Giuseppe Pantaleo
- UniSR-Social.Lab (Research Methods), Faculty of Psychology, Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Enrico Gherlone
- Dental School, Vita-Salute San Raffaele University, 20132 Milan, Italy; (F.F.); (E.G.); (P.C.)
- Department of Dentistry, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Paolo Capparè
- Dental School, Vita-Salute San Raffaele University, 20132 Milan, Italy; (F.F.); (E.G.); (P.C.)
- Department of Dentistry, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| |
Collapse
|
224
|
Fang D, Yuran S, Reches M, Catunda R, Levin L, Febbraio M. A peptide coating preventing the attachment of
Porphyromonas gingivalis
on the surfaces of dental implants. J Periodontal Res 2020; 55:503-510. [DOI: 10.1111/jre.12737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/19/2020] [Accepted: 02/05/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Dongdong Fang
- Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Sivan Yuran
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology The Hebrew University of Jerusalem Jerusalem Israel
| | - Raisa Catunda
- Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Liran Levin
- Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Maria Febbraio
- Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| |
Collapse
|
225
|
Repeated Exposure of Nanostructured Titanium to Osteoblasts with Respect to Peri-Implantitis. MATERIALS 2020; 13:ma13030697. [PMID: 32033100 PMCID: PMC7040921 DOI: 10.3390/ma13030697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 01/04/2023]
Abstract
Titanium offers excellent biocompatibility and extraordinary mechanical properties. As a result, it is used as a material for dental implants. Implants infected by peri-implantitis can be cleaned for successful re-osseointegration. Optimal surface properties, such as roughness and wettability, have a significant impact on cell adhesion. The aim of this study was to evaluate the adhesion and proliferation of osteoblasts on the surface of repeatedly cleaned nanostructured titanium samples. Human osteoblast-like cells MG-63 were seeded on nanostructured titanium specimens manufactured from rods produced by the equal channel angular pressing. For surface characterization, roughness and wettability were measured. Cell adhesion after 2 h as well as cell proliferation after 48 h from plating was assessed. We have found that this repeated cleaning of titanium surface reduced cell adhesion as well as proliferation. These events depend on interplay of surface properties, such as wettability, roughness and topography. It is difficult to distinguish which factors are responsible for these events and further investigations will be required. However, even after the several rounds of repeated cleaning, there was a certain rate of adhesion and proliferation recorded. Therefore the attempts to save failing implants by using in situ cleaning are promising.
Collapse
|
226
|
Affiliation(s)
- Takao HANAWA
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
227
|
Zhou W, Hu Z, Wang T, Yang G, Xi W, Gan Y, Lu W, Hu J. Enhanced corrosion resistance and bioactivity of Mg alloy modified by Zn-doped nanowhisker hydroxyapatite coatings. Colloids Surf B Biointerfaces 2019; 186:110710. [PMID: 31838267 DOI: 10.1016/j.colsurfb.2019.110710] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/18/2019] [Accepted: 12/04/2019] [Indexed: 11/19/2022]
Abstract
In this work, Zn is doped into a hydroxyapatite coating on the surface of ZK60 magnesium alloys using a one-pot hydrothermal method to obtain a corrosion-resistant implant with abilities of osteogenic differentiation and bacterial inhibition. With the addition of Zn, the morphology changes with a nanowhisker structure appearing on the coating. Electrochemical measurements show that the nanowhisker hydroxyapatite coating provides a high corrosion resistance. Compared with hydroxyapatite coating, the nanowhisker coating not only effectively inhibits bacteria, but also promotes the adhesion and differentiation of rat bone marrow mesenchymal stem cells at appropriate Zn concentrations. In conclusion, a novel nanowhisker structure prepared by a single variable Zn doping can significantly improve the corrosion resistance and biological activity of hydroxyapatite coatings.
Collapse
Affiliation(s)
- Wuchao Zhou
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China; Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University, Nanchang 330006, China
| | - Zhenrong Hu
- Weifang Medical University School of Stomatology, Weifang 261053, China
| | - Taolei Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Guangzheng Yang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Weihong Xi
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University, Nanchang 330006, China
| | - Yanzi Gan
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine Jiangxi Province, Medical College of Nanchang University, Nanchang 330006, China
| | - Wei Lu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| | - Jingzhou Hu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China.
| |
Collapse
|
228
|
Forna N, Agop-Forna D. Esthetic aspects in implant-prosthetic rehabilitation. Med Pharm Rep 2019; 92:S6-S13. [PMID: 31989103 PMCID: PMC6978930 DOI: 10.15386/mpr-1515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
The esthetic component is critical for the successful outcome and patients’ satisfaction regarding the implant-prosthetic therapy. The esthetic outcome success depends mostly on the optimization of the algorithms specific to the pro-implant and implant stage as well as to the designing and technological execution of the future prosthetic restoration. A proper planning of optimal facial esthetics must involve a multidisciplinary approach with inclusion of periodontists, orthodontists, oral surgeons and implantology specialists. The dental practitioner must consider various factors that influence the esthetic outcome (tooth position, root position of the adjacent teeth, biotype of the periodontium, tooth shape, smile line, implant site anatomy, implant positioning). Also, some factors (anatomical limits of the implant site, periodontal status, occlusal parameters), which can alter the final esthetic result, must be assessed prior to planning the esthetic parameters of the future prosthetic restoration. The esthetic outcome can be improved by using new digital technologies based on software applications for assessment of clinical and biological indices of the prosthetic field, virtual planning of implants positioning and design projection of future prosthetic restoration.
Collapse
Affiliation(s)
- Norina Forna
- Department Implantology, Removable Restorations, Dental Medical Faculty, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Doriana Agop-Forna
- Department of Oral Surgery, Dental Medical Faculty, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
229
|
Ghezzi B, Lagonegro P, Fukata N, Parisi L, Calestani D, Galli C, Salviati G, Macaluso GM, Rossi F. Sub-Micropillar Spacing Modulates the Spatial Arrangement of Mouse MC3T3-E1 Osteoblastic Cells. NANOMATERIALS 2019; 9:nano9121701. [PMID: 31795174 PMCID: PMC6955749 DOI: 10.3390/nano9121701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022]
Abstract
Surface topography is one of the main factors controlling cell responses on implanted devices and a proper definition of the characteristics that optimize cell behavior may be crucial to improve the clinical performances of these implants. Substrate geometry is known to affect cell shape, as cells try to optimize their adhesion by adapting to the irregularities beneath, and this in turn profoundly affects their activity. In the present study, we cultured murine calvaria MC3T3-E1 cells on surfaces with pillars arranged as hexagons with two different spacings and observed their morphology during adhesion and growth. Cells on these highly ordered substrates attached and proliferated effectively, showing a marked preference for minimizing the inter-pillar distance, by following specific pathways across adjacent pillars and displaying consistent morphological modules. Moreover, cell behavior appeared to follow tightly controlled patterns of extracellular protein secretion, which preceded and matched cells and, on a sub-cellular level, cytoplasmic orientation. Taken together, these results outline the close integration of surface features, extracellular proteins alignment and cell arrangement, and provide clues on how to control and direct cell spatial order and cell morphology by simply acting on inter-pillar spacing.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; (L.P.); (G.M.M.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy;
- Correspondence:
| | - Paola Lagonegro
- ISMAC-CNR, Institute for macromolecular studies, Via Corti, 12, 20133 Milano, Italy;
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| | - Naoki Fukata
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan;
- Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
| | - Ludovica Parisi
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; (L.P.); (G.M.M.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy;
- Labör für Orale Molekularbiologie, Klinik für Kieferorthopädie, Zahnmedizinische Klinik, Universität Bern, Freiburgstrasse 7, 3008 Bern, Switzerland
| | - Davide Calestani
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| | - Carlo Galli
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Giancarlo Salviati
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| | - Guido M. Macaluso
- Centro Universitario di Odontoiatria, Università di Parma, Via Gramsci 14, 43126 Parma, Italy; (L.P.); (G.M.M.)
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Gramsci 14, 43126 Parma, Italy;
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| | - Francesca Rossi
- IMEM-CNR, Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze, 37/A, 43124 Parma, Italy; (D.C.); (G.S.); (F.R.)
| |
Collapse
|
230
|
Mouhyi J, Salama MA, Mangano FG, Mangano C, Margiani B, Admakin O. A novel guided surgery system with a sleeveless open frame structure: a retrospective clinical study on 38 partially edentulous patients with 1 year of follow-up. BMC Oral Health 2019; 19:253. [PMID: 31752811 PMCID: PMC6873693 DOI: 10.1186/s12903-019-0940-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023] Open
Abstract
Background This retrospective clinical study aims to present results of experience with a novel guided surgery system with a sleeveless, open-frame structure, in which the surgical handpiece (not the drills used for preparation) is guided. Methods This study was based on an evaluation of the records of partially edentulous patients who had been treated with a sleeveless open-frame guided surgery system (TWIN-Guide®, 2Ingis, Brussels, Belgium), between January 2015 and December 2017. Inclusion criteria were patients with good systemic/oral health and a minimum follow-up of 1 year. Exclusion criteria were patients who had been treated without a guide, or with a guide with sleeves, patients with systemic/oral diseases and who did not have a follow-up of 1 year. The main outcomes were surgical (fit and stability of the surgical guide, duration of the intervention, implant stability, and any intra-operative or immediate post-operative complication), biologic, and prosthetic. Results Thirty-eight patients (24 males, 14 females; mean age 56.5 ± 14.0 years) were included in the study. These patients had been treated with 110 implants inserted by means of 40 sleeveless, open-frame guides. With regard to fit and stability, 34 guides were excellent, 4 acceptable, and 2 inadequate for use. The mean duration of the intervention was 23.7 (± 6.7) minutes. Immediately after placement, 2 fixtures were not stable and had to be removed. Two patients experienced pain/swelling after surgery. The 108 surviving implants were restored with 36 single crowns and 32 fixed partial prostheses (24 two-unit and 8 three-unit bridges); these restorations survived until the 1-year follow-up, with a low incidence of biologic and prosthetic complications. Conclusions Within the limits of this study, this novel guided surgery system with sleeveless, open frame–structure guides seems to be clinically reliable; further studies on a larger sample of patients are needed to confirm these outcomes.
Collapse
Affiliation(s)
- Jaafar Mouhyi
- Casablanca Oral Rehabilitation Training & Education Center (CORTEC), Casablanca, Morocco. .,Biomaterials Research Department, International University of Agadir (Universiapolis), 8143, Agadir, Morocco.
| | - Maurice Albert Salama
- Department of Periodontics, University of Pennsylvania, Philadelphia, PA, USA.,Department of Periodontics, Medical College of Georgia, Atlanta, GE, USA
| | - Francesco Guido Mangano
- Department of Prevention and Communal Dentistry, Sechenov First Moscow State Medical University, 119992, Moscow, Russia
| | - Carlo Mangano
- Department of Dental Sciences, Vita and Salute University, San Raffaele, Milan, Italy
| | - Bidzina Margiani
- Department of Prevention and Communal Dentistry, Sechenov First Moscow State Medical University, 119992, Moscow, Russia
| | - Oleg Admakin
- Department of Prevention and Communal Dentistry, Sechenov First Moscow State Medical University, 119992, Moscow, Russia
| |
Collapse
|
231
|
Zhou W, Peng X, Zhou X, Li M, Ren B, Cheng L. Influence of bio-aging on corrosion behavior of different implant materials. Clin Implant Dent Relat Res 2019; 21:1225-1234. [PMID: 31729828 DOI: 10.1111/cid.12865] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Dental implants and abutments are exposed to challenging oral environment. Corrosion of these materials can affect the overall performance of titanium implants. PURPOSE To investigate the effects of biofilm-induced bio-aging on corrosion behavior of different implant materials surface. MATERIALS AND METHODS Commercial polished titanium (Polish), sand-blasted, large grit, acid-etched surface treated titanium (SLA), microarc oxidation (MAO), and hydroxyapatite (HA) coated titanium were bio-aged with saliva biofilm for 30 days. Titanium surfaces topography, chemical composition, roughness, and water contact angle changes were evaluated. In addition, human gingival fibroblasts (HGFs) adhesion, Streptococcus sanguinis (S. sanguinis) biofilm formation were determined. RESULTS Surface topography, roughness, and chemical composition have no significant changes for all groups after bio-aging (P > .05). Water contact angle of bio-aged SLA was greatly increased (P < .05). While other groups showed no sign of change (P > .05). Adhesion and proliferation of HGFs on the bio-aged SLA titanium surfaces were decreased (P < .05), but increased on bio-aged Polish and HA titanium (P < .05). S. sanguinis biofilm viability was promoted with bio-aging in HA group (P < .05). CONCLUSIONS Biological characteristics of Polish, SLA, and HA titanium surfaces were influenced by bio-aging. While MAO group was relatively resistant to saliva biofilm bio-aging.
Collapse
Affiliation(s)
- Wen Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
232
|
Asensio G, Vázquez-Lasa B, Rojo L. Achievements in the Topographic Design of Commercial Titanium Dental Implants: Towards Anti-Peri-Implantitis Surfaces. J Clin Med 2019; 8:E1982. [PMID: 31739615 PMCID: PMC6912779 DOI: 10.3390/jcm8111982] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Titanium and its alloys constitute the gold standard materials for oral implantology in which their performance is mainly conditioned by their osseointegration capacity in the host's bone. We aim to provide an overview of the advances in surface modification of commercial dental implants analyzing and comparing the osseointegration capacity and the clinical outcome exhibited by different surfaces. Besides, the development of peri-implantitis constitutes one of the most common causes of implant loss due to bacteria colonization. Thus, a synergic response from industry and materials scientists is needed to provide reliable technical and commercial solutions to this issue. The second part of the review focuses on an update of the recent findings toward the development of new materials with osteogenic and antibacterial capacity that are most likely to be marketed, and their correlation with implant geometry, biomechanical behavior, biomaterials features, and clinical outcomes.
Collapse
Affiliation(s)
- Gerardo Asensio
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; (G.A.); (B.V.-L.)
| | - Blanca Vázquez-Lasa
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; (G.A.); (B.V.-L.)
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| | - Luis Rojo
- Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; (G.A.); (B.V.-L.)
- Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28029 Madrid, Spain
| |
Collapse
|
233
|
Liddell RS, Liu Z, Mendes VC, Davies JE. Relative contributions of implant hydrophilicity and nanotopography to implant anchorage in bone at Early Time Points. Clin Oral Implants Res 2019; 31:49-63. [DOI: 10.1111/clr.13546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/29/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Robert S. Liddell
- Dental Research Institute Faculty of Dentistry University of Toronto Toronto ON Canada
| | - Zhen‐Mei Liu
- Dental Research Institute Faculty of Dentistry University of Toronto Toronto ON Canada
| | - Vanessa C. Mendes
- Dental Research Institute Faculty of Dentistry University of Toronto Toronto ON Canada
| | - John E. Davies
- Dental Research Institute Faculty of Dentistry University of Toronto Toronto ON Canada
- Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto ON Canada
| |
Collapse
|
234
|
Wu H, Xie L, He M, Zhang R, Tian Y, Liu S, Gong T, Huo F, Yang T, Zhang Q, Guo S, Tian W. A wear-resistant TiO 2 nanoceramic coating on titanium implants for visible-light photocatalytic removal of organic residues. Acta Biomater 2019; 97:597-607. [PMID: 31398472 DOI: 10.1016/j.actbio.2019.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
An effective treatment for peri-implantitis is to completely remove all the bacterial deposits from the contaminated implants, especially the organic residues, to regain biocompatibility and re-osseointegration, but none of the conventional decontamination treatments has achieve this goal. The photocatalytic activity of TiO2 coating on titanium implants to degrade organic contaminants has attracted researchers' attention recently. But a pure TiO2 coating only responses to harmful ultraviolet light. Additionally, the poor coating mechanical properties are unable to protect the coating integrity versus initial mechanical decontamination. To address these issues, a unique TiO2 nanoceramic coating was fabricated on titanium substrates through an innovative plasma electrolytic oxidation (PEO) based procedure, which showed a disordered layer with oxygen vacancies on the outmost part. As a result, the coating could decompose methylene blue, rhodamine B, and pre-adsorbed lipopolysaccharide (LPS) under visible light. Additionally, the coating showed two-fold higher hardness than untreated titanium and excellent wear resistance against steel decontamination instruments, which could be attributed to the specific micro-structure, including the densely packed nanocrystals and good metallurgical combination. Moreover, the in vitro response of MG63 cells confirmed that the coating had comparable biocompatibility and osteoconductivity to untreated titanium substrates. This study provides a unique coating technique as well as a photocatalytic cleaning strategy to enhance decontamination of titanium dental implants, which will favour the development of peri-implantitis treatments. STATEMENT OF SIGNIFICANCE: The treatment of peri-implantitis is based on the complete removal of bacterial deposits, especially the organic residues, but conventional decontamination treatments are hard to achieve it. The photocatalytic activity of TiO2 coating on titanium implants to degrade organic contaminants provides a promising strategy for deeper decontamination, but its nonactivation to visible light and poor mechanical properties have limited its application. To address these issues, a unique TiO2 nanoceramic coating was fabricated on titanium substrates based on plasma electrolytic oxidation. The coating showed enhanced visible-light photocatalytic activity, excellent wear resistance and satisfied biocompatibility. Based on this functional coating, it is promising to develop a more efficient strategy for deep decontamination of implant surface, which will favour the development of peri-implantitis treatments.
Collapse
|
235
|
Becker K, Schwarz F, Rauch NJ, Khalaph S, Mihatovic I, Drescher D. Can implants move in bone? A longitudinal in vivo micro-CT analysis of implants under constant forces in rat vertebrae. Clin Oral Implants Res 2019; 30:1179-1189. [PMID: 31494964 DOI: 10.1111/clr.13531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/24/2019] [Accepted: 08/22/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Whereas stationary stability of implants has been postulated for decades, recent studies suggested a phenomenon termed implant migration. This describes a change in position of implants as a reaction to applied forces. The present study aims at employing image registration of in vivo micro-CT scans from different time points and to assess (a) if migration of continuously loaded implants is possible and (b) migration correlates with the force magnitude. MATERIAL AND METHODS Two customized machined implants were placed in the dorsal portion of caudal vertebrae in n = 61 rats and exposed to standardized forces (0.5 N, 1.0 N, and 1.5 N) applied through a flat nickel-titanium contraction spring, or no forces (control). Micro-CT scans were performed at 0, 1, 2, 4, 6, and 8 weeks after surgery. The baseline image was registered with the forthcoming scans. Implant migration was measured as the Euclidean distance between implant tips. Bone remodeling was assessed between the baseline and the forthcoming scans. RESULTS The findings confirmed a positional change of the implants at 2 and 8 weeks of healing, and a linear association between applied force and velocity of movement (anterior implant: χ2 = 12.12, df = 3, and p = .007 and posterior implant: χ2 = 20.35, df = 3, and p < .001). Bone apposition was observed around the implants and accompanied by formation of load-bearing trabeculae and a general cortical thickening close and also distant to the implants. CONCLUSION The present analysis confirmed that implants can migrate in bone. The applied forces seemed to stimulate bone thickening, which could explain why implants migrate without affecting stability.
Collapse
Affiliation(s)
- Kathrin Becker
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany.,Department of Oral Surgery and Implantology, Carolinum, Goethe University, Frankfurt, Germany
| | - Frank Schwarz
- Department of Oral Surgery and Implantology, Carolinum, Goethe University, Frankfurt, Germany
| | - Nicole Jasmin Rauch
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Silava Khalaph
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Ilja Mihatovic
- Department of Oral Surgery, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Dieter Drescher
- Department of Orthodontics, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
236
|
Krisam J, Ott L, Schmitz S, Klotz AL, Seyidaliyeva A, Rammelsberg P, Zenthöfer A. Factors affecting the early failure of implants placed in a dental practice with a specialization in implantology - a retrospective study. BMC Oral Health 2019; 19:208. [PMID: 31488110 PMCID: PMC6727348 DOI: 10.1186/s12903-019-0900-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
Background To evaluate early failure and possible risk factors for failure of dental implants placed under practice-based conditions. Methods To clarify the research question, anonymized data from 106 patients with 186 dental implants were analyzed. The presence of sucessful healing (yes/no) at the time of incorporation of the final prosthesis was assessed. Mixed models were compiled for each target variable to enable estimation of the effects of patient-related and implant-related conditions on the risk of early implant failure. Results Nine out of 186 implants (4.8%) placed in 106 participants failed before incorporation of the final prosthesis. The use of shorter implants (< 10 mm) and the need for augmentation procedures were associated with a greater risk of early implant failure. For shorter implants, the risk was 5.8 times greater than that for longer implants (p = 0.0230). Use of augmentation procedures increased the risk by a factor of 5.5 (p = 0.0174). Conclusions Implants placed in the dental practice with a specialization in implantology heal successfully. The use of augmentation procedures and of implants shorter than 10 mm seems to be associated with a greater risk of early implant failure.
Collapse
Affiliation(s)
- Johannes Krisam
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130, 69120, Heidelberg, Germany
| | - Larissa Ott
- Dental School, Department of Prosthodontics, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Stephanie Schmitz
- Praxis für Zahnmedizin Dr. Schmitz, Hauptstraße 13, 69434, Hirschhorn, Germany
| | - Anna-Luisa Klotz
- Dental School, Department of Prosthodontics, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Aida Seyidaliyeva
- Dental School, Department of Prosthodontics, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Peter Rammelsberg
- Dental School, Department of Prosthodontics, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Andreas Zenthöfer
- Dental School, Department of Prosthodontics, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
237
|
Titanium surface modifications and their soft-tissue interface on nonkeratinized soft tissues-A systematic review (Review). Biointerphases 2019; 14:040802. [PMID: 31419910 DOI: 10.1116/1.5113607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Abstract
In this systematic review, the authors explored the surface aspects of various titanium (Ti) or Ti alloy medical implants, examining the interface formed between the implant and surrounding nonkeratinized soft tissues (periosteum, muscles, tendons, fat, cicatrix, or dura mater). A comprehensive search undertaken in July 2019 used strict keywords in relevant electronic databases to identify relevant studies. Based on the authors' inclusion criteria (restricted to in vivo studies), 19 of 651 publications qualified, all pertaining to animal models. The syrcle's risk of bias tool for animal studies was applied at study level. Given the broad nature of the reported results and the many different parameters measured, the articles under scrutiny were assigned to five research subgroups according to their surface modification types: mechanical surface modifications, oxidative processes (e.g., acid etching, anodization, microarc oxidation), sol-gel derived titania (TiO2) coatings, biofunctionalized surfaces, and a subgroup for other modifications. The primary outcome was a liquid space at the interface (e.g., seroma formation) that was reported in six studies. Machining Ti implants to a roughness between Ra = 0.5 and 1.0 μm was shown to induce soft-tissue adhesion. Smoother surfaces, with the exception of acid polished and anodized Ti (Ra = 0.2 μm), prevented soft-tissue adhesion. A fibroblast growth factor 2 apatite composite coating promoted soft-tissue attachment via Sharpey-like fibers. In theory, this implant-soft tissue interface could be nearly perfect.
Collapse
|
238
|
Li X, Qi M, Sun X, Weir MD, Tay FR, Oates TW, Dong B, Zhou Y, Wang L, Xu HH. Surface treatments on titanium implants via nanostructured ceria for antibacterial and anti-inflammatory capabilities. Acta Biomater 2019; 94:627-643. [PMID: 31212111 DOI: 10.1016/j.actbio.2019.06.023] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/13/2019] [Accepted: 06/14/2019] [Indexed: 01/05/2023]
Abstract
Peri-implantitis is the most common risk factor for dental implant failure. Nanostructured ceria (nano-CeO2) has anti-inflammatory and antibacterial functions, and different shapes of ceria enclosed by specific crystal planes could be an effective approach to enhance intrinsic catalysis. In the present study, the authors developed a novel implant surface-modification strategy by coating different shapes of nano-CeO2 onto titanium (Ti) surfaces to enhance their antibacterial and anti-inflammatory properties. The objectives of the study were to: (1) develop novel Ti surfaces modified with different shapes of nano-CeO2 (nanorod, nanocube and nano-octahedron) for peri-implantitis prevention; (2) investigate and compare the inhibition efficacy of different shapes of CeO2-modified surfaces against biofilms of peri-implantitis-related pathogens; and (3) evaluate the different CeO2-modified surfaces on cell inflammatory response in vitro and in vivo. The results showed that nanorod CeO2-modified Ti had more bacteria attachment of Streptococcus sanguinis in the early stage, compared with other CeO2-modified Ti (p < 0.05). They all exhibited similarly substantial CFU reductions against peri-implantitis-related biofilms (p > 0.1). Nanocube and nano-octahedron CeO2-modified Ti exerted much better anti-inflammatory effects and ROS-scavenging ability than nanorod CeO2in vitro (p < 0.05). In vivo, the mean mRNA expression of TNF-α, IL-6 and IL-1β in the tissues around Ti was decreased by the three shapes of nano-CeO2; nano-octahedron CeO2 showed the strongest anti-inflammatory effect among all groups (p < 0.05). In conclusion, all three types of CeO2-modified Ti exerted equally strong antibacterial properties; nano-octahedron CeO2-modified Ti had the best anti-inflammatory effect. Therefore, CeO2-modified Ti surfaces are highly promising for enhancing antimicrobial functions for dental implants. Novel nano-octahedron CeO2 coating on Ti had great therapeutic potential for alleviating and eliminating peri-implantitis. STATEMENT OF SIGNIFICANCE: Peri-implantitis is the most common risk factor for dental implant failure. Nanostructured ceria (nano-CeO2) has anti-inflammatory and antibacterial functions, and different shapes of ceria enclosed by specific crystal planes could be an effective approach to enhance intrinsic catalysis. In the present study, we developed a novel implant surface-modification strategy by coating different shapes of nano-CeO2 onto titanium surfaces to enhance their antibacterial and anti-inflammatory properties for dental implants. In addition, we found that the nano-octahedron CeO2 coating on titanium would have great therapeutic potential for alleviating and eliminating peri-implantitis.
Collapse
|
239
|
Hanawa T. Titanium-Tissue Interface Reaction and Its Control With Surface Treatment. Front Bioeng Biotechnol 2019; 7:170. [PMID: 31380361 PMCID: PMC6650641 DOI: 10.3389/fbioe.2019.00170] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Titanium (Ti) and its alloys are widely used for medical and dental implant devices-artificial joints, bone fixators, spinal fixators, dental implant, etc. -because they show excellent corrosion resistance and good hard-tissue compatibility (bone formation and bone bonding ability). Osseointegration is the first requirement of the interface structure between titanium and bone tissue. This concept of osseointegration was immediately spread to dental-materials researchers worldwide to show the advantages of titanium as an implant material compared with other metals. Since the concept of osseointegration was developed, the cause of osseointegration has been actively investigated. The surface chemical state, adsorption characteristics of protein, and bone tissue formation process have also been evaluated. To accelerate osseointegration, roughened and porous surfaces are effective. HA and TiO2 coatings prepared by plasma spray and an electrochemical technique, as well as alkalinization of the surface, are also effective to improve hard-tissue compatibility. Various immobilization techniques for biofunctional molecules have been developed for bone formation and prevention of platelet and bacteria adhesion. These techniques make it possible to apply Ti to a scaffold of tissue engineering. The elucidation of the mechanism of the excellent biocompatibility of Ti can provide a shorter way to develop optimal surfaces. This review should enhance the understanding of the properties and biocompatibility of Ti and highlight the significance of surface treatment.
Collapse
Affiliation(s)
- Takao Hanawa
- Department of Metallic Biomaterials, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
240
|
A Study of Laser Micromachining of PM Processed Ti Compact for Dental Implants Applications. MATERIALS 2019; 12:ma12142246. [PMID: 31336851 PMCID: PMC6678598 DOI: 10.3390/ma12142246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 01/28/2023]
Abstract
The paper deals with the experimental study of laser beam micromachining of the powder metallurgy processed Ti compacts applying the industrial grade fibre nanosecond laser operating at the wavelength of 1064 nm. The influence of the laser energy density on the surface roughness, surface morphology and surface elements composition was investigated and evaluated by means of surface roughness measurement, scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. The different laser treatment parameters resulted in the surfaces of very different characteristics of the newly developed biocompatible material prepared by advanced low temperature technology of hydride dehydride (HDH) titanium powder compactation. The results indicate that the laser pulse energy has remarkable effects on the machined surface characteristics which are discussed from the point of view of application in dental implantology.
Collapse
|
241
|
Pang S, Sun M, Huang Z, He Y, Luo X, Guo Z, Li H. Bioadaptive nanorod array topography of hydroxyapatite and TiO 2 on Ti substrate to preosteoblast cell behaviors. J Biomed Mater Res A 2019; 107:2272-2281. [PMID: 31148352 DOI: 10.1002/jbm.a.36735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 11/12/2022]
Abstract
Bioadaptive nanostructure coatings of hydroxyapatite (HAP) and TiO2 on titanium (Ti) implants are essential for biomaterial-tissue osteointegration. However, there is no specific report, so far, that focuses on the different influences of the two bioadaptive coatings on preosteoblast behaviors. Herein, adhesion, proliferation, and osteogenic potential of preosteoblast on HAP and TiO2 coatings with nanorod array topography were studied. XRD, TEM, and SAED analysis indicated that rod-like HAP nanoarray and anatase TiO2 nanoarray coatings were fabricated successfully, and there was insignificant difference in roughness and fibronectin adsorption of the two coatings. Adhesion and proliferation of MC3T3-E1 cells on the two coatings were of no significant difference, besides a larger projected area of the cells on HAP coating. MC3T3-E1 cells cultured on the HAP coating displayed significantly higher expression of runt-related transcription factor-2 (Runx2), osteocalcin (OCN) and collagen type-1 (Col I) after culture for 21 days compared with those on TiO2 coating, except alkaline phosphatase (ALP). This study provides beneficial suggestion for intelligent selection of biocoatings.
Collapse
Affiliation(s)
- Shumin Pang
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| | - Manman Sun
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| | - Zhiqiang Huang
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| | - Yuan He
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| | - Xueshi Luo
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| | - Zhenzhao Guo
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China.,The first affiliated hospital of Jinan University, Jinan University, Guangzhou, China
| | - Hong Li
- Department of Materials Science and Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
242
|
Arany P, Róka E, Mollet L, Coleman AW, Perret F, Kim B, Kovács R, Kazsoki A, Zelkó R, Gesztelyi R, Ujhelyi Z, Fehér P, Váradi J, Fenyvesi F, Vecsernyés M, Bácskay I. Fused Deposition Modeling 3D Printing: Test Platforms for Evaluating Post-Fabrication Chemical Modifications and In-Vitro Biological Properties. Pharmaceutics 2019; 11:E277. [PMID: 31200501 PMCID: PMC6630791 DOI: 10.3390/pharmaceutics11060277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022] Open
Abstract
3D printing is attracting considerable interest for its capacity to produce prototypes and small production runs rapidly. Fused deposit modeling (FDM) was used to produce polyvalent test plates for investigation of the physical, chemical, and in-vitro biological properties of printed materials. The polyvalent test plates (PVTPs) are poly-lactic acid cylinders, 14 mm in diameter and 3 mm in height. The polymer ester backbone was surface modified by a series of ramified and linear oligoamines to increase its hydrophilicity and introduce a positive charge. The chemical modification was verified by FT-IR spectroscopy, showing the introduction of amide and amine functions, and contact angle measurements confirmed increased hydrophilicity. Morphology studies (SEM, optical microscopy) indicated that the modification of PVTP possessed a planar morphology with small pits. Positron annihilation lifetime spectroscopy demonstrated that the polymeric free volume decreased on modification. An MTT-based prolonged cytotoxicity test using Caco-2 cells showed that the PVTPs are non-toxic at the cellular level. The presence of surface oligoamines on the PVTPs reduced biofilm formation by Candida albicans SC5314 significantly. The results demonstrate that 3D printed objects may be modified at their surface by a simple amidation reaction, resulting in a reduced propensity for biofilm colonization and cellular toxicity.
Collapse
Affiliation(s)
- Petra Arany
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary.
| | - Eszter Róka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary.
- ICBMS, UMR 5246, Université Lyon 1, F69622 Villeurbanne, France.
| | - Laurent Mollet
- LMI CNRS UMR 5615, Université Lyon 1, 69622 Villeurbanne, France.
| | | | - Florent Perret
- ICBMS, UMR 5246, Université Lyon 1, F69622 Villeurbanne, France.
| | - Beomjoon Kim
- LIMMS/CNRS-IIS UMI 2820, Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505, Japan.
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine and Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary.
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Faculty of Pharmacy, University of Semmelweis, Hőgyes Endre utca 7-9, H-1092 Budapest, Hungary.
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Faculty of Pharmacy, University of Semmelweis, Hőgyes Endre utca 7-9, H-1092 Budapest, Hungary.
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary.
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary.
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary.
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary.
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary.
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary.
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, H-4032 Debrecen, Hungary.
| |
Collapse
|
243
|
Naauman Z, Rajion ZAB, Maliha S, Hariy P, Muhammad QS, Noor HAR. Ultraviolet A and Ultraviolet C Light-Induced Reduction of Surface Hydrocarbons on Titanium Implants. Eur J Dent 2019; 13:114-118. [PMID: 31170762 PMCID: PMC6635973 DOI: 10.1055/s-0039-1688741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective
The carbon, titanium, and oxygen levels on titanium implant surfaces with or without ultraviolet (UV) pretreatment were evaluated at different wavelengths through X-ray photoelectron spectroscopy (XPS).
Materials and Methods
This interventional experimental study was conducted on nine Dio UFII implants with hybrid sandblasted and acid-etched (SLA) surface treatments, divided equally into three groups. Control group A samples were not given UV irradiation, while groups B and C samples were given UVA (382 nm, 25 mWcm
2
) and UVC (260 nm, 15 mWcm
2
) irradiation, respectively. The atomic ratio of carbon, titanium, and oxygen was compared through XPS.
Results
Mean carbon-to-titanium ratio and C1 peaks considerably increased in Group A compared to those in experimental Groups B and C. The intensity of Ti2p and O1s peaks was more pronounced for group C compared to that for groups A and B.
Conclusions
Although the decrease in surface hydrocarbons was the same in both UV-treated groups, the peak intensity of oxygen increased in the UVC-treated group. Thus, it can be concluded that compared with UVA irradiation, UVC irradiation has the potential to induce more hydrophilicity on SLA-coated implants.
Collapse
Affiliation(s)
- Zaheer Naauman
- School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia.,Department of Oral Biology, Institute of Dentistry, CMH Lahore Medical College, Lahore, Pakistan.,National University of Medical Sciences, Lahore, Pakistan
| | - Zainul Ahmad Bin Rajion
- Department of Oral Maxillofacial Imaging, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Shahbaz Maliha
- Department of Oral Biology, Rashid Latif Dental College, Lahore, Pakistan
| | - Pauzi Hariy
- Universiti Sains Malaysia's Science Officer Society, Science and Engineering Research Centre, Engineering Campus, Universiti Sains Malaysia, Penang, Malaysia
| | - Q Saeed Muhammad
- Department of Oral Biology, Institute of Dentistry, CMH Lahore Medical College, Lahore, Pakistan.,National University of Medical Sciences, Lahore, Pakistan
| | - H A Razak Noor
- Department in Oral and Maxillofacial Surgery, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
244
|
Tallarico M, Baldini N, Martinolli M, Xhanari E, Kim YJ, Cervino G, Meloni SM. Do the New Hydrophilic Surface Have Any Influence on Early Success Rate and Implant Stability during Osseointegration Period? Four-Month Preliminary Results from a Split-Mouth, Randomized Controlled Trial. Eur J Dent 2019; 13:95-101. [PMID: 31170768 PMCID: PMC6635964 DOI: 10.1055/s-0039-1688737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVE The objective of this study is to compare the implant stability of Hiossen ET III implants with its new hydrophilic (NH) surface and Hiossen ET III implants with the sandblasted and acid-etched (SA) surface. MATERIALS AND METHODS Patients required at least two teeth to be rehabilitated with a fixed, implant-supported restoration, consecutively enrolled. Patients randomly received SA surface implants (SA group) or SA implants with a newly developed bioabsorbable apatite nanocoating (NH group). Outcome measures were implant and prosthetic survival rate, complications, insertion torque, and implant stability quotient (ISQ) measured at implant placement and every week up to 8 weeks after implant placement. Comparison between groups was made by unpaired t-test, while the comparison between each follow-up will be made by paired t-tests to detect any change during the follow-up. Complications and failures were compared using Fisher's exact test. RESULTS A total of 14 patients were treated with 28 implants (14 SA and 14 NH). No implant and prosthesis failed 4 months after implant placement. No complications were experienced. At the 2nd week after implants placement, two implants in the SA group showed discontinuous measurements versus none in the NH group (p = 0.4815). Implants unscrewed during ISQ measurements and were rescrewed. Data recording stopped for 6 weeks. Both implants osseointegrated without any further complication. The NH implants did not show physiological ISQ decrease between 2nd and 4th week after implant placement, showing a more even pattern of ISQ values compared with SA implants (77.1 ± 4.6 vs. 72.9 ± 11.5; difference: 4.2 ± 12.1; p = 0.258). High ISQ values were found in both groups at each time point. CONCLUSIONS NH implants are a viable alternative to SA surface, as they seem to avoid the ISQ drop during the remodeling phase.
Collapse
Affiliation(s)
- Marco Tallarico
- Implantology and Prosthetic Aspects, Master of Science in Dentistry Program, Aldent University, Tirana, Albania
| | - Nicola Baldini
- Department of Periodontics and Implantology, University of Siena, Siena, Italy
| | | | - Erta Xhanari
- Implantology and Prosthetic Aspects, Master of Science in Dentistry Program, Aldent University, Tirana, Albania
| | - Yong-Jin Kim
- Department of Oral and Maxillofacial Surgery, Insan Apsun Dental Clinic, South Korea
| | - Gabriele Cervino
- Department BIOMORF, School of Dentistry, University of Messina, Messina, Italy
| | - Silvio Mario Meloni
- Department of Surgical, Microsurgical and Medical Science, University of Sassari, Sassari, Italy
| |
Collapse
|
245
|
Shbahangfar MR, Jafari E, Tarashohi A, Olyaee P, Bitaraf T. Effect of UV-Photofunctionalization on Bioactivity of Titanium to Promote Human Mesenchymal Stem Cells. JOURNAL OF RESEARCH IN DENTAL AND MAXILLOFACIAL SCIENCES 2019. [DOI: 10.29252/jrdms.4.2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
246
|
Baghdan E, Raschpichler M, Lutfi W, Pinnapireddy SR, Pourasghar M, Schäfer J, Schneider M, Bakowsky U. Nano spray dried antibacterial coatings for dental implants. Eur J Pharm Biopharm 2019; 139:59-67. [DOI: 10.1016/j.ejpb.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
|
247
|
An In Vitro Study of Osteoblast Response on Fused-Filament Fabrication 3D Printed PEEK for Dental and Cranio-Maxillofacial Implants. J Clin Med 2019; 8:jcm8060771. [PMID: 31159171 PMCID: PMC6617077 DOI: 10.3390/jcm8060771] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 02/01/2023] Open
Abstract
Polyetheretherketone (PEEK) is a prime candidate to replace metallic implants and prostheses in orthopedic, spine and cranio-maxillofacial surgeries. Fused-filament fabrication (FFF) is an economical and efficient three-dimensional (3D) printing method to fabricate PEEK implants. However, studies pertaining to the bioactivity of FFF 3D printed PEEK are still lacking. In this study, FFF 3D printed PEEK samples were fabricated and modified with polishing and grit-blasting (three alumina sizes: 50, 120, and 250 µm) to achieve varying levels of surface roughness. In vitro cellular response of a human osteosarcoma cell line (SAOS-2 osteoblasts, cell adhesion, metabolic activity, and proliferation) on different sample surfaces of untreated, polished, and grit-blasted PEEK were evaluated. The results revealed that the initial cell adhesion on different sample surfaces was similar. However, after 5 days the untreated FFF 3D printed PEEK surfaces exhibited a significant increase in cell metabolic activity and proliferation with a higher density of osteoblasts compared with the polished and grit-blasted groups (p < 0.05). Therefore, untreated FFF 3D printed PEEK with high surface roughness and optimal printing structures might have great potential as an appropriate alloplastic biomaterial for reconstructive cranio-maxillofacial surgeries.
Collapse
|
248
|
Jain S, Williamson RS, Janorkar AV, Griggs JA, Roach MD. Osteoblast response to nanostructured and phosphorus-enhanced titanium anodization surfaces. J Biomater Appl 2019; 34:419-430. [PMID: 31126206 DOI: 10.1177/0885328219852741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sakshi Jain
- University of Mississippi Medical Center, Jackson, MS, USA
| | | | | | - Jason A Griggs
- University of Mississippi Medical Center, Jackson, MS, USA
| | | |
Collapse
|
249
|
Gehrke P, Smeets R, Gosau M, Friedrich RE, Madani E, Duddeck D, Fischer C, Tebbel F, Sader R, Hartjen P. The Influence of an Ultrasonic Cleaning Protocol for CAD/CAM Abutment Surfaces on Cell Viability and Inflammatory Response In Vitro. In Vivo 2019; 33:689-698. [PMID: 31028185 PMCID: PMC6559919 DOI: 10.21873/invivo.11527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/10/2019] [Accepted: 03/12/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIM To evaluate the effect of an ultrasonic cleaning and disinfection method for CAD/CAM abutment surfaces on cell viability and inflammatory response in vitro. MATERIALS AND METHODS Untreated and manually polished surfaces of CAD/CAM generated titanium and zirconia disks were randomly assigned, either to a 3-step ultrasonic cleaning and disinfection process (test: TiUF, TiPF, ZrUF, ZrPF) or to 30 sec steam cleaning (control: TiUS, TiPS, ZrUS, ZrPS). Pre-cleaning surface analyses using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and surface profilometry were performed. Human gingival fibroblasts (HGFs) were cultured on test and control specimens and subsequently examined for cell viability and inflammatory response. Expression of acute inflammatory cytokine interleukin (IL)-6 and vascular endothelial growth factor A (VEGFA) were assessed by means of RT-qPCR. RESULTS Cells on all specimens exhibited a satisfactory viability, indicating firm attachment. Cells on polished zirconia samples, cleaned by means of sonication (ZrPF), exhibited significantly higher viability than cells on the same material cleaned by steam (ZrPS), p=0.019. For all other three material/ surface treatment combinations (TiU, TiP, ZrU), no such difference was observed between the cleaning methods. The messenger ribonucleic acid (mRNA) levels of IL-6 and VEGFA were between 50 and 105% of that of the control cells on the non-toxic control surface. mRNA levels of IL-6 and VEGFA correlated well with each other. CONCLUSION Except for higher viability of cells cultured on polished zirconia specimens, no universally applicable advantage could be found for the ultrasonic cleaning procedure for zirconia and titanium abutment surfaces regarding cell viability, IL-6 expression or VEGFA expression. The cleaning procedures did not have any negative effect either.
Collapse
Affiliation(s)
- Peter Gehrke
- Private Practice for Oral Surgery, Ludwigshafen, Germany and Department of Postgraduate Education, Master of Oral Implantology, Oral and Dental Medicine, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elika Madani
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Dirk Duddeck
- Medical Materials Research Institute, Berlin, Germany
| | - Carsten Fischer
- Dental Laboratory, Sirius Ceramics, Frankfurt am Main, Germany
| | | | - Robert Sader
- Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Goethe University, Frankfurt, Germany
| | - Philip Hartjen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
250
|
Alsahhaf A, Alshiddi IF, Alshagroud RS, Al-Aali KA, Vohra F, Abduljabbar T. Clinical and radiographic indices around narrow diameter implants placed in different glycemic-level patients. Clin Implant Dent Relat Res 2019; 21:621-626. [PMID: 31037825 DOI: 10.1111/cid.12778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/07/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Studies assessing peri-implant clinical and marginal bone resorption (MBR) around narrow diameter implants (NDIs) placed in different glycemic levels are uninvestigated. OBJECTIVE The present 3-year retrospective follow-up investigation was designed to explore clinical and radiographic status of NDIs placed in individuals with different glycemic control levels. MATERIALS AND METHODS Patients with serum hemoglobin A1c (HbA1c) levels ≥6.5% (Group-1), 5.7%-6.4% (Group-2), and 4.0%-5.0% (Group-3) were included. Clinical indices evaluating bleeding on probing (BOP), plaque scores (PI), peri-implant probing depth (PD), and MBR were recorded around NDIs at 1-, 2-, and 3-year follow-up. Serum HbA1c test was carried out for all patients to assess the profile of glycosylated hemoglobin at 1 and 3 years of follow-up. RESULTS A significant reduction in mean HbA1c levels from year 1 to year 3 follow-up period was seen in Group-1 only. PI varied from 0.40 in Group 1 at 2 year and 0.42 at 3-year follow-up to 0.18 at 2-year (P = 0.032) and 0.17 at 3-year (P = 0.018) follow-up, respectively. Greater BOP was noted in Group 1 (0.53) as compared with Group 2 (0.42) and Group 3 (0.21) (P = 0.048) at 3-year follow-up. PD after 3 year ranged from 2.04 mm in Group 3 to 2.32 mm in Group 1 that showed statistically significant difference (P = 0.037). No statistical significant differences were observed in MBR at any time point between the groups. CONCLUSION The results of this short-term follow-up study indicate that NDIs show clinical and radiographic stability, provided oral cleanliness and glycemic levels are relatively maintained. Further long-term clinical studies are needed to evaluate implant stability over the period along with controlled glycemic status.
Collapse
Affiliation(s)
- Abdulaziz Alsahhaf
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Ibraheem F Alshiddi
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Rana Saud Alshagroud
- Department of Oral Medicine and Diagnostic Science, King Saud University, Riyadh, Saudi Arabia
| | - Khulud Abdulrahman Al-Aali
- Department of Clinical Dental Sciences, College Of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fahim Vohra
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|