201
|
Dupont N, Codogno P. Non-canonical Autophagy: Facts and Prospects. CURRENT PATHOBIOLOGY REPORTS 2013. [DOI: 10.1007/s40139-013-0030-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
202
|
Macintosh RL, Ryan KM. Autophagy in tumour cell death. Semin Cancer Biol 2013; 23:344-51. [PMID: 23774296 DOI: 10.1016/j.semcancer.2013.05.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/23/2013] [Accepted: 05/21/2013] [Indexed: 02/08/2023]
Abstract
In every moment of a cell's existence one key question is always asked, "To be or not to be"? Cells constantly weigh up signals from their environment against their own integrity and metabolic status and decide whether to live or die. Such cell death decisions are central to the progression and treatment of cancer. The term autophagy describes three processes that deliver cytoplasmic macromolecules and organelles to lysosomes for degradation, the difference between each form being the method of delivery. The most extensively studied form is macroautophagy (hereafter referred to as autophagy) where cytosolic components are engulfed by double membraned autophagosomes. Autophagosomes fuse with lysosomes to form structures called autolysosomes, within which organelles, proteins and other macromolecules are degraded by catabolic enzymes in the acidic lysosome environment. Autophagy, which normally occurs at low levels in unstressed cells, is widely regarded as having a positive effect on cell health as potentially harmful protein aggregates and damaged organelles can be recycled. During periods of nutrient shortage autophagy is enhanced to provide, albeit temporarily, an internal energy source. Autophagy is also enhanced by other stresses encountered by tumour cells and this may protect the cell or aid its demise. In this review we examine the effect of autophagy on cell death decisions in tumour cells.
Collapse
Affiliation(s)
- Robin L Macintosh
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | | |
Collapse
|
203
|
Abstract
Autophagy maintains cell, tissue and organism homeostasis through degradation. Codogno, Boya and Reggiori review recent data that have uncovered unexpected functions of autophagy, such as regulation of metabolism, membrane transport and modulation of host defenses. Autophagy maintains cell, tissue and organism homeostasis through degradation. Complex post-translational modulation of the Atg (autophagy-related) proteins adds additional entry points for crosstalk with other cellular processes and helps define cell-type-specific regulations of autophagy. Beyond the simplistic view of a process exclusively dedicated to the turnover of cellular components, recent data have uncovered unexpected functions for autophagy and the autophagy-related genes, such as regulation of metabolism, membrane transport and modulation of host defenses — indicating the novel frontiers lying ahead.
Collapse
|
204
|
Engedal N, Torgersen ML, Guldvik IJ, Barfeld SJ, Bakula D, Sætre F, Hagen LK, Patterson JB, Proikas-Cezanne T, Seglen PO, Simonsen A, Mills IG. Modulation of intracellular calcium homeostasis blocks autophagosome formation. Autophagy 2013; 9:1475-90. [PMID: 23970164 DOI: 10.4161/auto.25900] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular stress responses often involve elevation of cytosolic calcium levels, and this has been suggested to stimulate autophagy. Here, however, we demonstrated that agents that alter intracellular calcium ion homeostasis and induce ER stress-the calcium ionophore A23187 and the sarco/endoplasmic reticulum Ca (2+)-ATPase inhibitor thapsigargin (TG)-potently inhibit autophagy. This anti-autophagic effect occurred under both nutrient-rich and amino acid starvation conditions, and was reflected by a strong reduction in autophagic degradation of long-lived proteins. Furthermore, we found that the calcium-modulating agents inhibited autophagosome biogenesis at a step after the acquisition of WIPI1, but prior to the closure of the autophagosome. The latter was evident from the virtually complete inability of A23187- or TG-treated cells to sequester cytosolic lactate dehydrogenase. Moreover, we observed a decrease in both the number and size of starvation-induced EGFP-LC3 puncta as well as reduced numbers of mRFP-LC3 puncta in a tandem fluorescent mRFP-EGFP-LC3 cell line. The anti-autophagic effect of A23187 and TG was independent of ER stress, as chemical or siRNA-mediated inhibition of the unfolded protein response did not alter the ability of the calcium modulators to block autophagy. Finally, and remarkably, we found that the anti-autophagic activity of the calcium modulators did not require sustained or bulk changes in cytosolic calcium levels. In conclusion, we propose that local perturbations in intracellular calcium levels can exert inhibitory effects on autophagy at the stage of autophagosome expansion and closure.
Collapse
Affiliation(s)
- Nikolai Engedal
- Centre for Molecular Medicine Norway (NCMM); Nordic EMBL Partnership; University of Oslo, Norway
| | - Maria L Torgersen
- Department of Biochemistry; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo, Norway
| | - Ingrid J Guldvik
- Centre for Molecular Medicine Norway (NCMM); Nordic EMBL Partnership; University of Oslo, Norway
| | - Stefan J Barfeld
- Centre for Molecular Medicine Norway (NCMM); Nordic EMBL Partnership; University of Oslo, Norway
| | - Daniela Bakula
- Autophagy Laboratory; Department of Molecular Biology; Interfaculty Institute for Cell Biology; Faculty of Science; Eberhard Karls University; Tuebingen, Germany
| | - Frank Sætre
- Department of Cell Biology; Institute for Cancer Research; Norwegian Radium Hospital; Oslo University Hospital; Nydalen, Oslo Norway
| | - Linda K Hagen
- Department of Cell Biology; Institute for Cancer Research; Norwegian Radium Hospital; Oslo University Hospital; Nydalen, Oslo Norway
| | | | - Tassula Proikas-Cezanne
- Autophagy Laboratory; Department of Molecular Biology; Interfaculty Institute for Cell Biology; Faculty of Science; Eberhard Karls University; Tuebingen, Germany
| | - Per O Seglen
- Department of Cell Biology; Institute for Cancer Research; Norwegian Radium Hospital; Oslo University Hospital; Nydalen, Oslo Norway
| | - Anne Simonsen
- Department of Biochemistry; Institute of Basic Medical Sciences; Faculty of Medicine; University of Oslo, Norway
| | - Ian G Mills
- Centre for Molecular Medicine Norway (NCMM); Nordic EMBL Partnership; University of Oslo, Norway; Department of Cancer Prevention and Department of Urology; Oslo University Hospitals; Oslo, Norway
| |
Collapse
|
205
|
Wang J, Ptacek JB, Kirkegaard K, Bullitt E. Double-membraned liposomes sculpted by poliovirus 3AB protein. J Biol Chem 2013; 288:27287-27298. [PMID: 23908350 DOI: 10.1074/jbc.m113.498899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Infection with many positive-strand RNA viruses dramatically remodels cellular membranes, resulting in the accumulation of double-membraned vesicles that resemble cellular autophagosomes. In this study, a single protein encoded by poliovirus, 3AB, is shown to be sufficient to induce the formation of double-membraned liposomes via the invagination of single-membraned liposomes. Poliovirus 3AB is a 109-amino acid protein with a natively unstructured N-terminal domain. HeLa cells transduced with 3AB protein displayed intracellular membrane disruption; specifically, the formation of cytoplasmic invaginations. The ability of a single viral protein to produce structures of similar topology to cellular autophagosomes should facilitate the understanding of both cellular and viral mechanisms for membrane remodeling.
Collapse
Affiliation(s)
- Jing Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jennifer B Ptacek
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94301
| | - Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94301.
| | - Esther Bullitt
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118.
| |
Collapse
|
206
|
Bestebroer J, V'kovski P, Mauthe M, Reggiori F. Hidden behind autophagy: the unconventional roles of ATG proteins. Traffic 2013; 14:1029-41. [PMID: 23837619 PMCID: PMC7169877 DOI: 10.1111/tra.12091] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/03/2013] [Accepted: 07/09/2013] [Indexed: 12/27/2022]
Abstract
Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular catabolic transport route that generally allows the lysosomal degradation of cytoplasmic components, including bulk cytosol, protein aggregates, damaged or superfluous organelles and invading microbes. Target structures are sequestered by double‐membrane vesicles called autophagosomes, which are formed through the concerted action of the autophagy (ATG)‐related proteins. Until recently it was assumed that ATG proteins were exclusively involved in autophagy. A growing number of studies, however, have attributed functions to some of them that are distinct from their classical role in autophagosome biogenesis. Autophagy‐independent roles of the ATG proteins include the maintenance of cellular homeostasis and resistance to pathogens. For example, they assist and enhance the turnover of dead cells and microbes upon their phagocytic engulfment, and inhibit murine norovirus replication. Moreover, bone resorption by osteoclasts, innate immune regulation triggered by cytoplasmic DNA and the ER‐associated degradation regulation all have in common the requirement of a subset of ATG proteins. Microorganisms such as coronaviruses, Chlamydia trachomatis or Brucella abortus have even evolved ways to manipulate autophagy‐independent functions of ATG proteins in order to ensure the completion of their intracellular life cycle. Taken together these novel mechanisms add to the repertoire of functions and extend the number of cellular processes involving the ATG proteins.
Collapse
Affiliation(s)
- Jovanka Bestebroer
- Department of Medical Microbiology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands; Department of Cell Biology and Institute of Biomembranes, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
207
|
Yang A, Li Y, Pantoom S, Triola G, Wu YW. Semisynthetic lipidated LC3 protein mediates membrane fusion. Chembiochem 2013; 14:1296-300. [PMID: 23836674 DOI: 10.1002/cbic.201300344] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Indexed: 01/20/2023]
Abstract
All together: Lipidated LC3 has been synthesized by expressed protein ligation. A TEV-cleavable MBP tag was employed to facilitate ligation under folding conditions and to solubilize the lipidated protein. The synthetic LC3-phosphatidylethanolamine (PE) mediates membrane tethering and fusion at the physiological concentration of PE, and could be a useful tool for autophagy studies.
Collapse
Affiliation(s)
- Aimin Yang
- Department of Chemical Biology, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
208
|
Betin VM, Singleton BK, Parsons SF, Anstee DJ, Lane JD. Autophagy facilitates organelle clearance during differentiation of human erythroblasts: evidence for a role for ATG4 paralogs during autophagosome maturation. Autophagy 2013; 9:881-93. [PMID: 23508006 PMCID: PMC3672297 DOI: 10.4161/auto.24172] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 12/19/2022] Open
Abstract
Wholesale depletion of membrane organelles and extrusion of the nucleus are hallmarks of mammalian erythropoiesis. Using quantitative EM and fluorescence imaging we have investigated how autophagy contributes to organelle removal in an ex vivo model of human erythroid differentiation. We found that autophagy is induced at the polychromatic erythroid stage, and that autophagosomes remain abundant until enucleation. This stimulation of autophagy was concomitant with the transcriptional upregulation of many autophagy genes: of note, expression of all ATG8 mammalian paralog family members was stimulated, and increased expression of a subset of ATG4 family members (ATG4A and ATG4D) was also observed. Stable expression of dominant-negative ATG4 cysteine mutants (ATG4B (C74A) ; ATG4D (C144A) ) did not markedly delay or accelerate differentiation of human erythroid cells; however, quantitative EM demonstrated that autophagosomes are assembled less efficiently in ATG4B (C74A) -expressing progenitor cells, and that cells expressing either mutant accumulate enlarged amphisomes that cannot be degraded. The appearance of these hybrid autophagosome/endosome structures correlated with the contraction of the lysosomal compartment, suggesting that the actions of ATG4 family members (particularly ATG4B) are required for the control of autophagosome fusion with late, degradative compartments in differentiating human erythroblasts.
Collapse
Affiliation(s)
- Virginie M.S. Betin
- Cell Biology Laboratories; School of Biochemistry; University of Bristol; Bristol, UK
| | - Belinda K. Singleton
- Bristol Institute for Transfusion Sciences; National Health Service Blood and Transplant; Filton, Bristol UK
| | - Stephen F. Parsons
- Bristol Institute for Transfusion Sciences; National Health Service Blood and Transplant; Filton, Bristol UK
| | - David J. Anstee
- Bristol Institute for Transfusion Sciences; National Health Service Blood and Transplant; Filton, Bristol UK
| | - Jon D. Lane
- Cell Biology Laboratories; School of Biochemistry; University of Bristol; Bristol, UK
| |
Collapse
|
209
|
Kim SE, Overholtzer M. Autophagy proteins regulate cell engulfment mechanisms that participate in cancer. Semin Cancer Biol 2013; 23:329-36. [PMID: 23726896 DOI: 10.1016/j.semcancer.2013.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/09/2013] [Accepted: 05/21/2013] [Indexed: 12/21/2022]
Abstract
Recent evidence has uncovered cross-regulation of mechanisms of cell engulfment by proteins of the autophagy pathway, in what is called LC3-Associated Phagocytosis, or LAP. By LAP, lysosome fusion to phagosomes and the degradation of engulfed extracellular cargo are facilitated by autophagy proteins that lipidate LC3 onto phagosome membranes. Here we discuss the contexts where LAP is known to occur by focusing on potential roles in tumorigenesis, including predicted consequences of LAP inhibition.
Collapse
Affiliation(s)
- Sung Eun Kim
- BCMB Allied Program, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
210
|
Carroll B, Mohd-Naim N, Maximiano F, Frasa MA, McCormack J, Finelli M, Thoresen SB, Perdios L, Daigaku R, Francis RE, Futter C, Dikic I, Braga VMM. The TBC/RabGAP Armus coordinates Rac1 and Rab7 functions during autophagy. Dev Cell 2013; 25:15-28. [PMID: 23562278 PMCID: PMC3898768 DOI: 10.1016/j.devcel.2013.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 02/11/2013] [Accepted: 03/06/2013] [Indexed: 12/31/2022]
Abstract
Autophagy is an evolutionarily conserved process that enables catabolic and degradative pathways. These pathways commonly depend on vesicular transport controlled by Rabs, small GTPases inactivated by TBC/RabGAPs. The Rac1 effector TBC/RabGAP Armus (TBC1D2A) is known to inhibit Rab7, a key regulator of lysosomal function. However, the precise coordination of signaling and intracellular trafficking that regulates autophagy is poorly understood. We find that overexpression of Armus induces the accumulation of enlarged autophagosomes, while Armus depletion significantly delays autophagic flux. Upon starvation-induced autophagy, Rab7 is transiently activated. This spatiotemporal regulation of Rab7 guanosine triphosphate/guanosine diphosphate cycling occurs by Armus recruitment to autophagosomes via interaction with LC3, a core autophagy regulator. Interestingly, autophagy potently inactivates Rac1. Active Rac1 competes with LC3 for interaction with Armus and thus prevents its appropriate recruitment to autophagosomes. The precise coordination between Rac1 and Rab7 activities during starvation suggests that Armus integrates autophagy with signaling and endocytic trafficking.
Collapse
Affiliation(s)
- Bernadette Carroll
- Molecular Medicine, NHLI, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Mashoof S, Goodroe A, Du CC, Eubanks JO, Jacobs N, Steiner JM, Tizard I, Suchodolski JS, Criscitiello MF. Ancient T-independence of mucosal IgX/A: gut microbiota unaffected by larval thymectomy in Xenopus laevis. Mucosal Immunol 2013; 6:358-68. [PMID: 22929561 PMCID: PMC3514589 DOI: 10.1038/mi.2012.78] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many studies address the influence of the gut microbiome on the immune system, but few dissect the effect of T cells on gut microbiota and mucosal responses. We have employed larval thymectomy in Xenopus to study the gut microbiota with and without the influence of T lymphocytes. Pyrosequencing of 16S ribosomal RNA genes was used to assess the relative abundance of bacterial groups present in the stomach, small and large intestine. Clostridiaceae was the most abundant family throughout the gut, while Bacteroidaceae, Enterobacteriaceae, and Flavobacteriaceae also were well represented. Unifrac analysis revealed no differences in microbiota distribution between thymectomized and unoperated frogs. This is consistent with immunization data showing that levels of the mucosal immunoglobulin IgX are not altered significantly by thymectomy. This study in Xenopus represents the oldest organisms that exhibit class switch to a mucosal isotype and is relevant to mammalian immunology, as IgA appears to have evolved from IgX based upon phylogeny, genomic synteny, and function.
Collapse
Affiliation(s)
- Sara Mashoof
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Anna Goodroe
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Christina C. Du
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Jeannine O. Eubanks
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Natalie Jacobs
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Ian Tizard
- Schubot Exotic Bird Health Center, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Jan S. Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
212
|
Jiang S, Dupont N, Castillo EF, Deretic V. Secretory versus degradative autophagy: unconventional secretion of inflammatory mediators. J Innate Immun 2013; 5:471-9. [PMID: 23445716 DOI: 10.1159/000346707] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/27/2012] [Indexed: 12/29/2022] Open
Abstract
Autophagy (macroautophagy) is often defined as a degradative process and a tributary of the lysosomal pathway. In this context, autophagy carries out cytoplasmic quality control and nutritional functions by removing defunct or disused organelles, particulate targets and invading microbes, and by bulk digestion of the cytoplasm. However, recent studies indicate that autophagy surprisingly affects multiple secretory pathways. Autophagy participates in extracellular delivery of a number of cytosolic proteins that do not enter the conventional secretory pathway via the Golgi apparatus but are instead unconventionally secreted directly from the cytosol. In mammalian cells, a prototypical example of this manifestation of autophagy is the unconventional secretion of a major proinflammatory cytokine, IL-1β. This review examines the concept of secretory autophagy and compares and contrasts the role of autophagy in the secretion of IL-1α and IL-1β. Although IL-1α and IL-1β have closely related extracellular inflammatory functions, they differ in intracellular activation, secretory mechanisms and how they are affected by autophagy. This example indicates that the role of autophagy in secretion is more complex, at least in mammalian cells, than the simplistic view that autophagosomes provide carriers for unconventional secretion of cytosolic proteins.
Collapse
Affiliation(s)
- Shanya Jiang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
213
|
Chen D, Chen X, Li M, Zhang H, Ding WX, Yin XM. CCCP-Induced LC3 lipidation depends on Atg9 whereas FIP200/Atg13 and Beclin 1/Atg14 are dispensable. Biochem Biophys Res Commun 2013; 432:226-30. [PMID: 23402761 DOI: 10.1016/j.bbrc.2013.02.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
Abstract
Treatment of cells with carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial proton gradient uncoupler, can result in mitochondrial damage and autophagy activation, which in turn eliminates the injured mitochondria in a Parkin-dependent way. How CCCP mobilizes the autophagy machinery is not fully understood. By analyzing a key autophagy step, LC3 lipidation, we examined the roles of two kinase complexes typically involved in the initiation and nucleation phases of autophagy, namely the ULK kinase complex (UKC) and the Beclin 1/Atg14 complex. We found that CCCP-induced LC3 lipidation could be independent of Beclin 1 and Atg14. In addition, deletion or knockdown of the UKC component FIP200 or Atg13 only led to a partial reduction in LC3 lipidation, indicating that UKC could be also dispensable for this step during CCCP treatment. In contrast, Atg9, which is important for transporting vesicles to early autophagosomal structure, was required for CCCP-induced LC3 lipidation. Taken together, these data suggest that CCCP-induced autophagy and mitophagy depends more critically on Atg9 vesicles than on UKC and Beclin 1/Atg14 complex.
Collapse
Affiliation(s)
- Daohong Chen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | | | | | | | | | | |
Collapse
|
214
|
Reggiori F. Autophagy: New Questions from Recent Answers. ISRN MOLECULAR BIOLOGY 2012; 2012:738718. [PMID: 27335669 PMCID: PMC4890908 DOI: 10.5402/2012/738718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 11/27/2012] [Indexed: 12/11/2022]
Abstract
Macroautophagy (hereafter autophagy) is currently one of the areas of medical life sciences attracting a great interest because of its pathological implications and therapy potentials. The discovery of the autophagy-related genes (ATGs) has been the key event in this research field because their study has led to the acquisition of new knowledge about the mechanism of this transport pathway. In addition, the investigation of these genes in numerous model systems has revealed the central role that autophagy plays in maintaining the cell homeostasis. This process carries out numerous physiological functions, some of which were unpredicted and thus surprising. Here, we will review some of the questions about the mechanism and function of autophagy that still remain unanswered, and new ones that have emerged from the recent discoveries.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Cell Biology and Institute of Biomembranes, University Medical Centre Utrecht, Heidelberglaan 100, Utrecht, The Netherlands
| |
Collapse
|
215
|
Oz-Levi D, Ben-Zeev B, Ruzzo EK, Hitomi Y, Gelman A, Pelak K, Anikster Y, Reznik-Wolf H, Bar-Joseph I, Olender T, Alkelai A, Weiss M, Ben-Asher E, Ge D, Shianna KV, Elazar Z, Goldstein DB, Pras E, Lancet D. Mutation in TECPR2 reveals a role for autophagy in hereditary spastic paraparesis. Am J Hum Genet 2012. [PMID: 23176824 DOI: 10.1016/j.ajhg.2012.09.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We studied five individuals from three Jewish Bukharian families affected by an apparently autosomal-recessive form of hereditary spastic paraparesis accompanied by severe intellectual disability, fluctuating central hypoventilation, gastresophageal reflux disease, wake apnea, areflexia, and unique dysmorphic features. Exome sequencing identified one homozygous variant shared among all affected individuals and absent in controls: a 1 bp frameshift TECPR2 deletion leading to a premature stop codon and predicting significant degradation of the protein. TECPR2 has been reported as a positive regulator of autophagy. We thus examined the autophagy-related fate of two key autophagic proteins, SQSTM1 (p62) and MAP1LC3B (LC3), in skin fibroblasts of an affected individual, as compared to a healthy control, and found that both protein levels were decreased and that there was a more pronounced decrease in the lipidated form of LC3 (LC3II). siRNA knockdown of TECPR2 showed similar changes, consistent with aberrant autophagy. Our results are strengthened by the fact that autophagy dysfunction has been implicated in a number of other neurodegenerative diseases. The discovered TECPR2 mutation implicates autophagy, a central intracellular mechanism, in spastic paraparesis.
Collapse
Affiliation(s)
- Danit Oz-Levi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
McLeod IX, He YW. Editorial: TRPV1: how thymocytes sense stress and respond with autophagy. J Leukoc Biol 2012; 92:409-11. [PMID: 22936836 DOI: 10.1189/jlb.0612269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
217
|
Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J 2012; 31:4304-17. [PMID: 23064152 DOI: 10.1038/emboj.2012.278] [Citation(s) in RCA: 371] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/18/2012] [Indexed: 11/09/2022] Open
Abstract
Autophagy is a conserved process for the bulk degradation of cytoplasmic material. Triggering of autophagy results in the formation of double membrane-bound vesicles termed autophagosomes. The conserved Atg5-Atg12/Atg16 complex is essential for autophagosome formation. Here, we show that the yeast Atg5-Atg12/Atg16 complex directly binds membranes. Membrane binding is mediated by Atg5, inhibited by Atg12 and activated by Atg16. In a fully reconstituted system using giant unilamellar vesicles and recombinant proteins, we reveal that all components of the complex are required for efficient promotion of Atg8 conjugation to phosphatidylethanolamine and are able to assign precise functions to all of its components during this process. In addition, we report that in vitro the Atg5-Atg12/Atg16 complex is able to tether membranes independently of Atg8. Furthermore, we show that membrane binding by Atg5 is downstream of its recruitment to the pre-autophagosomal structure but is essential for autophagy and cytoplasm-to-vacuole transport at a stage preceding Atg8 conjugation and vesicle closure. Our findings provide important insights into the mechanism of action of the Atg5-Atg12/Atg16 complex during autophagosome formation.
Collapse
|
218
|
von Muhlinen N, Akutsu M, Ravenhill B, Foeglein Á, Bloor S, Rutherford T, Freund S, Komander D, Randow F. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol Cell 2012; 48:329-42. [PMID: 23022382 PMCID: PMC3510444 DOI: 10.1016/j.molcel.2012.08.024] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/21/2012] [Accepted: 08/16/2012] [Indexed: 12/02/2022]
Abstract
Autophagy protects cellular homeostasis by capturing cytosolic components and invading pathogens for lysosomal degradation. Autophagy receptors target cargo to autophagy by binding ATG8 on autophagosomal membranes. The expansion of the ATG8 family in higher eukaryotes suggests that specific interactions with autophagy receptors facilitate differential cargo handling. However, selective interactors of ATG8 orthologs are unknown. Here we show that the selectivity of the autophagy receptor NDP52 for LC3C is crucial for innate immunity since cells lacking either protein cannot protect their cytoplasm against Salmonella. LC3C is required for antibacterial autophagy because in its absence the remaining ATG8 orthologs do not support efficient antibacterial autophagy. Structural analysis revealed that the selectivity of NDP52 for LC3C is conferred by a noncanonical LIR, in which lack of an aromatic residue is balanced by LC3C-specific interactions. Our report illustrates that specificity in the interaction between autophagy receptors and autophagy machinery is of functional importance to execute selective autophagy.
Collapse
Affiliation(s)
- Natalia von Muhlinen
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK
| | - Masato Akutsu
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK
| | - Benjamin J. Ravenhill
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK
| | - Ágnes Foeglein
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK
| | - Stuart Bloor
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK
| | - Trevor J. Rutherford
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK
| | - Stefan M.V. Freund
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK
| | - David Komander
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK
- Corresponding author
| | - Felix Randow
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK
- Corresponding author
| |
Collapse
|
219
|
Abutbul-Ionita I, Rujiviphat J, Nir I, McQuibban GA, Danino D. Membrane tethering and nucleotide-dependent conformational changes drive mitochondrial genome maintenance (Mgm1) protein-mediated membrane fusion. J Biol Chem 2012; 287:36634-8. [PMID: 22977249 DOI: 10.1074/jbc.c112.406769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cellular membrane remodeling events such as mitochondrial dynamics, vesicle budding, and cell division rely on the large GTPases of the dynamin superfamily. Dynamins have long been characterized as fission molecules; however, how they mediate membrane fusion is largely unknown. Here we have characterized by cryo-electron microscopy and in vitro liposome fusion assays how the mitochondrial dynamin Mgm1 may mediate membrane fusion. Using cryo-EM, we first demonstrate that the Mgm1 complex is able to tether opposing membranes to a gap of ∼15 nm, the size of mitochondrial cristae folds. We further show that the Mgm1 oligomer undergoes a dramatic GTP-dependent conformational change suggesting that s-Mgm1 interactions could overcome repelling forces at fusion sites and that ultrastructural changes could promote the fusion of opposing membranes. Together our findings provide mechanistic details of the two known in vivo functions of Mgm1, membrane fusion and cristae maintenance, and more generally shed light onto how dynamins may function as fusion proteins.
Collapse
Affiliation(s)
- Inbal Abutbul-Ionita
- Department of Biotechnology and Food Engineering Technion, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | |
Collapse
|
220
|
Kraft C, Kijanska M, Kalie E, Siergiejuk E, Lee SS, Semplicio G, Stoffel I, Brezovich A, Verma M, Hansmann I, Ammerer G, Hofmann K, Tooze S, Peter M. Binding of the Atg1/ULK1 kinase to the ubiquitin-like protein Atg8 regulates autophagy. EMBO J 2012; 31:3691-703. [PMID: 22885598 PMCID: PMC3442273 DOI: 10.1038/emboj.2012.225] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/17/2012] [Indexed: 01/19/2023] Open
Abstract
Autophagy is an intracellular trafficking pathway sequestering cytoplasm and delivering excess and damaged cargo to the vacuole for degradation. The Atg1/ULK1 kinase is an essential component of the core autophagy machinery possibly activated by binding to Atg13 upon starvation. Indeed, we found that Atg13 directly binds Atg1, and specific Atg13 mutations abolishing this interaction interfere with Atg1 function in vivo. Surprisingly, Atg13 binding to Atg1 is constitutive and not altered by nutrient conditions or treatment with the Target of rapamycin complex 1 (TORC1)-inhibitor rapamycin. We identify Atg8 as a novel regulator of Atg1/ULK1, which directly binds Atg1/ULK1 in a LC3-interaction region (LIR)-dependent manner. Molecular analysis revealed that Atg13 and Atg8 cooperate at different steps to regulate Atg1 function. Atg8 targets Atg1/ULK1 to autophagosomes, where it may promote autophagosome maturation and/or fusion with vacuoles/lysosomes. Moreover, Atg8 binding triggers vacuolar degradation of the Atg1-Atg13 complex in yeast, thereby coupling Atg1 activity to autophagic flux. Together, these findings define a conserved step in autophagy regulation in yeast and mammals and expand the known functions of LIR-dependent Atg8 targets to include spatial regulation of the Atg1/ULK1 kinase.
Collapse
Affiliation(s)
- Claudine Kraft
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | - Eyal Kalie
- London Research Institute, Cancer Research UK, London, UK
| | | | - Sung Sik Lee
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | | | - Ingrid Stoffel
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | - Andrea Brezovich
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mayanka Verma
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | | | - Gustav Ammerer
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Sharon Tooze
- London Research Institute, Cancer Research UK, London, UK
| | - Matthias Peter
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
221
|
Abstract
SIGNIFICANCE Study over the past decade has revealed the critical role of autophagy in homeostatic and stress cell signaling. Autophagy is an intracellular process whereby double-membrane structures termed autophagosomes deliver cellular components to lysosomes for their degradation. RECENT ADVANCES Targets of specific autophagy range from proteins to protein aggregates to organelles and intracellular pathogens. Accordingly, autophagy fulfills numerous physiological roles and its deregulation can underlie disease. CRITICAL ISSUES Although autophagy is orchestrated by common core machinery, the discovery of distinct and highly varied autophagic programs reveals autophagy as a heterogeneous phenomenon, capable of specificity. FUTURE DIRECTIONS Here the molecular mechanisms of mammalian autophagy are reviewed, including recent advances in unraveling of its machinery, specificity, and regulation. With our increasing knowledge of autophagy mechanisms and signaling roles, we begin to work towards a systems understanding of autophagy.
Collapse
Affiliation(s)
- Anne Hamacher-Brady
- Division of Theoretical Bioinformatics, German Cancer Research Center and BioQuant, Heidelberg, Germany.
| |
Collapse
|
222
|
Abstract
Autophagy is a unique membrane trafficking process whereby newly formed membranes, termed phagophores, engulf parts of the cytoplasm leading to the production of double-membraned autophagosomes that get delivered to lysosomes for degradation. This catabolic pathway has been linked to numerous physiological and pathological conditions, such as development, programmed cell death, cancer, pathogen infection, neurodegenerative disorders, and myopathies. In this review, we will focus on recent studies in yeast and mammalian systems that have provided insights into two critical areas of autophagosome biogenesis - the source of the autophagosomal membranes, and the mechanisms regulating the fusion of the edges of the double-membraned phagophores to form autophagosomes.
Collapse
Affiliation(s)
- David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Wellcome/MRC Building, Addenbrooke's Hospital, Cambridge CB2 0XY, UK.
| | | | | |
Collapse
|
223
|
Kraft C, Martens S. Mechanisms and regulation of autophagosome formation. Curr Opin Cell Biol 2012; 24:496-501. [DOI: 10.1016/j.ceb.2012.05.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/14/2012] [Indexed: 12/20/2022]
|
224
|
Abstract
Stressors ranging from nutrient deprivation to immune signaling can induce the degradation of cytoplasmic material by a process known as autophagy. Increasingly, research on autophagy has begun to focus on its role in inflammation and the immune response. Autophagy acts as an immune effector that mediates pathogen clearance. The roles of autophagy bridge both the innate and adaptive immune systems and include functions in thymic selection, antigen presentation, promotion of lymphocyte homeostasis and survival, and regulation of cytokine production. In this review, we discuss the mechanisms by which autophagy is regulated, as well as the functions of autophagy and autophagy proteins in immunity and inflammation.
Collapse
Affiliation(s)
- Petric Kuballa
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA.
| | | | | | | |
Collapse
|
225
|
Randow F, Münz C. Autophagy in the regulation of pathogen replication and adaptive immunity. Trends Immunol 2012; 33:475-87. [PMID: 22796170 PMCID: PMC3461100 DOI: 10.1016/j.it.2012.06.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/16/2012] [Accepted: 06/16/2012] [Indexed: 12/18/2022]
Abstract
Autophagy is an evolutionarily conserved homeostatic process by which cells deliver cytoplasmic material for degradation into lysosomes. Autophagy may have evolved as a nutrient-providing homeostatic pathway induced upon starvation, but with the acquisition of cargo receptors, autophagy has become an important cellular defence mechanism as well as a generator of antigenic peptides for major histocompatibility complex (MHC) presentation. We propose that autophagy efficiently protects against microbes encountering the cytosolic environment accidentally, for example, upon phagosomal damage, whereas pathogens routinely accessing the host cytosol have evolved to avoid or even benefit from autophagy.
Collapse
Affiliation(s)
- Felix Randow
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Hills Road, Cambridge CB2 0QH, UK.
| | | |
Collapse
|
226
|
Backues SK, Klionsky DJ. Atg11: a Rab-dependent, coiled-coil membrane protein that acts as a tether for autophagy. Autophagy 2012; 8:1275-8. [PMID: 22717525 DOI: 10.4161/auto.21153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Selective macroautophagy uses double-membrane vesicles, termed autophagosomes, to transport cytoplasmic pathogens, organelles and protein complexes to the vacuole for degradation. Autophagosomes are formed de novo by membrane fusion events at the phagophore assembly site (PAS). Therefore, precursor membrane material must be targeted and transported to the PAS. While some autophagy-related (Atg) proteins, such as Atg9 and Atg11, are known to be involved in this process, most of the mechanistic details are not understood. Previous work has also implicated the small Rab-family GTPase Ypt1 in the process, identifying Trs85 as a unique subunit of the TRAPPIII targeting complex and showing that it plays a macroautophagy-specific role; however, the relationship between Ypt1, Atg9 and Atg11 was not clear. Now, a recent report shows that Atg11 is a Trs85-specific effector of the Rab Ypt1, and may act as a classic coiled-coil membrane tether that targets Atg9-containing membranes to the PAS. Here, we review this finding in the context of what is known about Atg11, other Rab-dependent coiled-coil tethers, and other tethering complexes involved in autophagosome formation.
Collapse
Affiliation(s)
- Steven K Backues
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
227
|
Deretic V, Jiang S, Dupont N. Autophagy intersections with conventional and unconventional secretion in tissue development, remodeling and inflammation. Trends Cell Biol 2012; 22:397-406. [PMID: 22677446 DOI: 10.1016/j.tcb.2012.04.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 11/28/2022]
Abstract
Autophagy is a cell biological process ubiquitous to all eukaryotic cells, often referred to as a catabolic, lysosomal degradative pathway. However, current studies in mammalian systems suggest that autophagy plays an unexpectedly broad biogenesis role in protein trafficking and secretion. Autophagy supports alternative trafficking pathways for delivery of integral membrane proteins to the plasma membrane and affects secretion, including the constitutive, regulated and unconventional secretion pathways. Autophagy-based unconventional secretion, termed here 'autosecretion', is one of the pathways enabling leaderless cytosolic proteins to exit the cell without entering the endoplasmic reticulum (ER)-to-Golgi secretory pathway. In this review, we discuss the emerging underlying mechanisms of how autophagy affects different facets of secretion. We also describe the physiological roles of autosecretory cargos that are often associated with inflammatory processes and also play a role in the formation of specialized tissues and in tissue remodeling, expanding the immediate sphere of influence of autophagy from the intracellular to the extracellular space.
Collapse
Affiliation(s)
- Vojo Deretic
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
228
|
Florey O, Overholtzer M. Autophagy proteins in macroendocytic engulfment. Trends Cell Biol 2012; 22:374-80. [PMID: 22608991 DOI: 10.1016/j.tcb.2012.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
Eukaryotic cells must constantly degrade both intracellular and extracellular material to maintain cellular and organismal homeostasis. Two engulfment pathways, autophagy and phagocytosis, contribute to the turnover of intracellular and extracellular substrates by delivering material to the lysosome. Historically these are thought to be separate pathways, but recent studies have revealed the direct participation of autophagy proteins in phagocytosis. Autophagy proteins lipidate LC3 onto phagosomes and other macroendocytic vacuole membranes, and are required for lysosomal degradation of engulfed cargo, demonstrating an autophagosome-independent role for autophagy proteins in mediating the turnover of extracellular substrates. This review discusses the biological systems in which autophagy proteins have been found to regulate lysosome fusion to non-autophagic membranes.
Collapse
Affiliation(s)
- Oliver Florey
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
229
|
Autophagy: more than a nonselective pathway. Int J Cell Biol 2012; 2012:219625. [PMID: 22666256 PMCID: PMC3362037 DOI: 10.1155/2012/219625] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/07/2012] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a catabolic pathway conserved among eukaryotes that allows cells to rapidly eliminate large unwanted structures such as aberrant protein aggregates, superfluous or damaged organelles, and invading pathogens. The hallmark of this transport pathway is the sequestration of the cargoes that have to be degraded in the lysosomes by double-membrane vesicles called autophagosomes. The key actors mediating the biogenesis of these carriers are the autophagy-related genes (ATGs). For a long time, it was assumed that autophagy is a bulk process. Recent studies, however, have highlighted the capacity of this pathway to exclusively eliminate specific structures and thus better fulfil the catabolic necessities of the cell. We are just starting to unveil the regulation and mechanism of these selective types of autophagy, but what it is already clearly emerging is that structures targeted to destruction are accurately enwrapped by autophagosomes through the action of specific receptors and adaptors. In this paper, we will briefly discuss the impact that the selective types of autophagy have had on our understanding of autophagy.
Collapse
|
230
|
Shpilka T, Mizushima N, Elazar Z. Ubiquitin-like proteins and autophagy at a glance. J Cell Sci 2012; 125:2343-8. [DOI: 10.1242/jcs.093757] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Tomer Shpilka
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Noboru Mizushima
- Department of Physiology and Cell Biology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Zvulun Elazar
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
231
|
Erdi B, Nagy P, Zvara A, Varga A, Pircs K, Ménesi D, Puskás LG, Juhász G. Loss of the starvation-induced gene Rack1 leads to glycogen deficiency and impaired autophagic responses in Drosophila. Autophagy 2012; 8:1124-35. [PMID: 22562043 PMCID: PMC3429548 DOI: 10.4161/auto.20069] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy delivers cytoplasmic material for lysosomal degradation in eukaryotic cells. Starvation induces high levels of autophagy to promote survival in the lack of nutrients. We compared genome-wide transcriptional profiles of fed and starved control, autophagy-deficient Atg7 and Atg1 null mutant Drosophila larvae to search for novel regulators of autophagy. Genes involved in catabolic processes including autophagy were transcriptionally upregulated in all cases. We also detected repression of genes involved in DNA replication in autophagy mutants compared with control animals. The expression of Rack1 (receptor of activated protein kinase C 1) increased 4.1- to 5.5-fold during nutrient deprivation in all three genotypes. The scaffold protein Rack1 plays a role in a wide range of processes including translation, cell adhesion and migration, cell survival and cancer. Loss of Rack1 led to attenuated autophagic response to starvation, and glycogen stores were decreased 11.8-fold in Rack1 mutant cells. Endogenous Rack1 partially colocalized with GFP-Atg8a and early autophagic structures on the ultrastructural level, suggesting its involvement in autophagosome formation. Endogenous Rack1 also showed a high degree of colocalization with glycogen particles in the larval fat body, and with Shaggy, the Drosophila homolog of glycogen synthase kinase 3B (GSK-3B). Our results, for the first time, demonstrated the fundamental role of Rack1 in autophagy and glycogen synthesis.
Collapse
Affiliation(s)
- Balázs Erdi
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
232
|
|
233
|
Juenemann K, Reits EA. Alternative macroautophagic pathways. Int J Cell Biol 2012; 2012:189794. [PMID: 22536246 PMCID: PMC3320029 DOI: 10.1155/2012/189794] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/19/2012] [Indexed: 12/16/2022] Open
Abstract
Macroautophagy is a bulk degradation process that mediates the clearance of long-lived proteins, aggregates, or even whole organelles. This process includes the formation of autophagosomes, double-membrane structures responsible for delivering cargo to lysosomes for degradation. Currently, other alternative autophagy pathways have been described, which are independent of macroautophagic key players like Atg5 and Beclin 1 or the lipidation of LC3. In this review, we highlight recent insights in indentifying and understanding the molecular mechanism responsible for alternative autophagic pathways.
Collapse
Affiliation(s)
- Katrin Juenemann
- Department of Cell Biology and Histology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Eric A. Reits
- Department of Cell Biology and Histology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
234
|
Dumit VI, Dengjel J. Autophagosomal protein dynamics and influenza virus infection. Front Immunol 2012; 3:43. [PMID: 22566925 PMCID: PMC3342335 DOI: 10.3389/fimmu.2012.00043] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/23/2012] [Indexed: 01/08/2023] Open
Abstract
Autophagy is a constitutive, catabolic process leading to the lysosomal degradation of cytosolic proteins and organelles. However, it is also induced under stress conditions, remodeling the eukaryotic cell by regulating energy, protein, and lipid homeostasis. It is likely that the autophagosomal/lysosomal pathway evolved primordially to recycle cell components, but further functionally developed as to become part of the immune system to defend against invading pathogens. Likewise, pathogenic, foreign agents developed strategies to fight back and even to employ the autophagy machinery to their own benefit. Hence, the regulation of autophagy has many implications on human health and disease. This review summarizes the molecular dynamics of autophagosome formation, maturation, and target selection. Membrane dynamics, as well as protein–protein and protein–membrane interactions are particularly addressed. In addition, it recapitulates current knowledge of the influences of influenza virus infection on the process.
Collapse
Affiliation(s)
- Verónica I Dumit
- School of Life Sciences - LifeNet, Freiburg Institute for Advanced Studies, University of Freiburg Freiburg, Germany
| | | |
Collapse
|
235
|
Abstract
The eukaryotic ubiquitin family encompasses nearly 20 proteins that are involved in the posttranslational modification of various macromolecules. The ubiquitin-like proteins (UBLs) that are part of this family adopt the β-grasp fold that is characteristic of its founding member ubiquitin (Ub). Although structurally related, UBLs regulate a strikingly diverse set of cellular processes, including nuclear transport, proteolysis, translation, autophagy, and antiviral pathways. New UBL substrates continue to be identified and further expand the functional diversity of UBL pathways in cellular homeostasis and physiology. Here, we review recent findings on such novel substrates, mechanisms, and functions of UBLs.
Collapse
|
236
|
Lee JA. Neuronal autophagy: a housekeeper or a fighter in neuronal cell survival? Exp Neurobiol 2012; 21:1-8. [PMID: 22438673 PMCID: PMC3294068 DOI: 10.5607/en.2012.21.1.1] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/01/2012] [Indexed: 12/13/2022] Open
Abstract
Neurons have highly dynamic cellular processes for their proper functions such as cell growth, synaptic formation, or synaptic plasticity by regulating protein synthesis and degradation. Therefore, the quality control of proteins in neurons is essential for their physiology and pathology. Autophagy is a cellular degradation pathway by which cytosolic components are sequestered in autophagosomes and degraded upon their fusion with lysosomal components. Thus, the autophagic pathway may play important roles in neuronal cell survival and neuronal function under physiological condition and pathological conditions. Recent several findings suggest that the loss of basal autophagy or imbalance of autophagic flux leads to neurodegeneration. Autophagosomes accumulate abnormally in affected neurons of several neurodegenerative diseases such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), or Frontotemporal dementia (FTD). Thus, the understanding how autophagy is associated with several neurological diseases would be the first step for new therapeutic intervention in neurological disorders. In this review, I will discuss the molecular mechanism of autophagy in neurons and autophagy-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Jin-A Lee
- Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, Dajeon 305-811, Korea
| |
Collapse
|
237
|
Three-Axis Model for Atg Recruitment in Autophagy against Salmonella. Int J Cell Biol 2012; 2012:389562. [PMID: 22505927 PMCID: PMC3299270 DOI: 10.1155/2012/389562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/22/2011] [Indexed: 01/29/2023] Open
Abstract
Salmonella enterica serovar Typhimurium enter epithelial cells and take up residence there. Within epithelial cells, a portion of the bacteria are surrounded by an autophagosome-like double-membrane structure, and they are still residing within the Salmonella-containing vacuole (SCV). In this paper, we will discuss how the autophagy machinery is recruited in proximity to Salmonella. The formation of this double membrane requires Atg9L1 and FIP200; these proteins are important for autophagy-specific recruitment of the PI3-kinase complex. In the absence of Atg9L1, FIP200, and PI3-kinase activity, LC3 is still recruited to the vicinity of Salmonella. We propose a novel model in which the mechanism of LC3 recruitment is separate from the generation of the isolation membrane. There exist at least three axes in Atg recruitment: ULK1 complex, Atg9L1, and Atg16L complex.
Collapse
|
238
|
Münz C. Antigen Processing for MHC Class II Presentation via Autophagy. Front Immunol 2012; 3:9. [PMID: 22566895 PMCID: PMC3342365 DOI: 10.3389/fimmu.2012.00009] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/16/2012] [Indexed: 11/26/2022] Open
Abstract
T cells recognize proteolytic fragments of antigens that are presented to them on major histocompatibility complex (MHC) molecules. MHC class I molecules present primarily products of proteasomal proteolysis to CD8+ T cells, while MHC class II molecules display mainly degradation products of lysosomes for stimulation of CD4+ T cells. Macroautophagy delivers intracellular proteins to lysosomal degradation, and contributes in this fashion to the pool of MHC class II displayed peptides. Both self- and pathogen-derived MHC class II ligands are generated by this pathway. In addition, however, recent evidence points also to regulation of extracellular antigen processing by macroautophagy. In this review, I will discuss these two aspects of antigen processing for MHC class II presentation via macroautophagy, namely its influence on intracellular and extracellular antigen presentation to CD4+ T cells.
Collapse
Affiliation(s)
- Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich Zürich, Switzerland
| |
Collapse
|
239
|
Abstract
Autophagy is an intracellular membrane-trafficking pathway for the delivery of proteins and organelles to lysosomes for degradation and recycling. DeSelm and coworkers (2011) now describe an essential role for autophagic proteins in the trafficking and fusion of lysosomes at the site of bone resorption: the osteoclast ruffled border.
Collapse
Affiliation(s)
- Amir Gelman
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
240
|
Lebovitz CB, Bortnik SB, Gorski SM. Here, there be dragons: charting autophagy-related alterations in human tumors. Clin Cancer Res 2012; 18:1214-26. [PMID: 22253413 DOI: 10.1158/1078-0432.ccr-11-2465] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Macroautophagy (or autophagy) is a catabolic cellular process that is both homeostatic and stress adaptive. Normal cells rely on basal levels of autophagy to maintain cellular integrity (via turnover of long-lived proteins and damaged organelles) and increased levels of autophagy to buoy cell survival during various metabolic stresses (via nutrient and energy provision through lysosomal degradation of cytoplasmic components). Autophagy can function in both tumor suppression and tumor progression, and is under investigation in clinical trials as a novel target for anticancer therapy. However, its role in cancer pathogenesis has yet to be fully explored. In particular, it remains unknown whether in vitro observations will be applicable to human cancer patients. Another outstanding question is whether there exists tumor-specific selection for alterations in autophagy function. In this review, we survey reported mutations in autophagy genes and key autophagy regulators identified in human tumor samples and summarize the literature regarding expression levels of autophagy genes and proteins in various cancer tissues. Although it is too early to draw inferences from this collection of in vivo studies of autophagy-related alterations in human cancers, their results highlight the challenges that must be overcome before we can accurately assess the scope of autophagy's predicted role in tumorigenesis.
Collapse
Affiliation(s)
- Chandra B Lebovitz
- Genome Sciences Centre, BC Cancer Agency, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
241
|
Lipids in autophagy: constituents, signaling molecules and cargo with relevance to disease. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1133-45. [PMID: 22269166 DOI: 10.1016/j.bbalip.2012.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/29/2011] [Accepted: 01/02/2012] [Indexed: 01/12/2023]
Abstract
The balance between protein and lipid biosynthesis and their eventual degradation is a critical component of cellular health. Autophagy, the catabolic process by which cytoplasmic material becomes degraded in lysosomes, can be induced by various physiological stimuli to maintain cellular homeostasis. Autophagy was for a long time considered a non-selective bulk process, but recent data have shown that unwanted components such as aberrant protein aggregates, dysfunctional organelles and invading pathogens can be selectively eliminated by autophagy. Recently, also intracellular lipid droplets were described as specific autophagic cargo, indicating that autophagy plays a role in lipid metabolism and storage (Singh et al., 2009 [1]). Moreover, over the past several years, it has become increasingly evident that lipids and lipid-modifying enzymes play important roles in the autophagy process itself, both at the level of regulation of autophagy and as membrane constituents required for formation of autophagic vesicles. In this review, we will discuss the interplay between lipids and autophagy, as well as the role of lipid-binding proteins in autophagy. We also comment on the possible implications of this mutual interaction in the context of disease. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
|
242
|
Jotwani A, Richerson DN, Motta I, Julca-Zevallos O, Melia TJ. Approaches to the Study of Atg8-Mediated Membrane Dynamics In Vitro. Methods Cell Biol 2012; 108:93-116. [DOI: 10.1016/b978-0-12-386487-1.00005-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
243
|
Codogno P, Mehrpour M, Proikas-Cezanne T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat Rev Mol Cell Biol 2011; 13:7-12. [PMID: 22166994 DOI: 10.1038/nrm3249] [Citation(s) in RCA: 443] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The autophagosome is the central organelle in macroautophagy, a vacuolar lysosomal catabolic pathway that degrades cytoplasmic material to fuel starving cells and eliminates intracellular pathogens. Macroautophagy has important physiological roles during development, ageing and the immune response, and its cytoprotective function is compromised in various diseases. A set of autophagy-related (ATG) proteins is hierarchically recruited to the phagophore, the initial membrane template in the construction of the autophagosome. However, recent findings suggest that macroautophagy can also occur in the absence of some of these key autophagy proteins, through the unconventional biogenesis of canonical autophagosomes. Such alternatives to the evolutionarily conserved scheme might provide additional therapeutic opportunities.
Collapse
Affiliation(s)
- Patrice Codogno
- Institut National de la Santé et de la Recherche Médicale (INSERM), University Paris-Sud 11, Châtenay-Malabry, France
| | | | | |
Collapse
|
244
|
DeSelm CJ, Miller BC, Zou W, Beatty WL, van Meel E, Takahata Y, Klumperman J, Tooze SA, Teitelbaum SL, Virgin HW. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 2011; 21:966-74. [PMID: 22055344 DOI: 10.1016/j.devcel.2011.08.016] [Citation(s) in RCA: 382] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 07/01/2011] [Accepted: 08/19/2011] [Indexed: 01/13/2023]
Abstract
Osteoclasts resorb bone via the ruffled border, whose complex folds are generated by secretory lysosome fusion with bone-apposed plasma membrane. Lysosomal fusion with the plasmalemma results in acidification of the resorptive microenvironment and release of CatK to digest the organic matrix of bone. The means by which secretory lysosomes are directed to fuse with the ruffled border are enigmatic. We show that proteins essential for autophagy, including Atg5, Atg7, Atg4B, and LC3, are important for generating the osteoclast ruffled border, the secretory function of osteoclasts, and bone resorption in vitro and in vivo. Further, Rab7, which is required for osteoclast function, localizes to the ruffled border in an Atg5-dependent manner. Thus, autophagy proteins participate in polarized secretion of lysosomal contents into the extracellular space by directing lysosomes to fuse with the plasma membrane. These findings are in keeping with a putative link between autophagy genes and human skeletal homeostasis.
Collapse
Affiliation(s)
- Carl J DeSelm
- Department of Pathology, Washington University Medical School, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Manipulation or capitulation: virus interactions with autophagy. Microbes Infect 2011; 14:126-39. [PMID: 22051604 PMCID: PMC3264745 DOI: 10.1016/j.micinf.2011.09.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022]
Abstract
Autophagy is a homeostatic process that functions to balance cellular metabolism and promote cell survival during stressful conditions by delivering cytoplasmic components for lysosomal degradation and subsequent recycling. During viral infection, autophagy can act as a surveillance mechanism that delivers viral antigens to the endosomal/lysosomal compartments that are enriched in immune sensors. Additionally, activated immune sensors can signal to activate autophagy. To evade this antiviral activity, many viruses elaborate functions to block the autophagy pathway at a variety of steps. Alternatively, some viruses actively subvert autophagy for their own benefit. Manipulated autophagy has been proposed to facilitate nearly every stage of the viral lifecycle in direct and indirect ways. In this review, we synthesize the extensive literature on virus–autophagy interactions, emphasizing the role of autophagy in antiviral immunity and the mechanisms by which viruses subvert autophagy for their own benefit.
Collapse
|
246
|
Florey O, Kim SE, Sandoval CP, Haynes CM, Overholtzer M. Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol 2011; 13:1335-43. [PMID: 22002674 PMCID: PMC3223412 DOI: 10.1038/ncb2363] [Citation(s) in RCA: 378] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 09/16/2011] [Indexed: 12/17/2022]
Abstract
Autophagy normally involves the formation of double-membrane autophagosomes that mediate bulk cytoplasmic and organelle degradation. Here we report the modification of single-membrane vacuoles in cells by autophagy proteins. LC3 (Light chain 3) a component of autophagosomes, is recruited to single-membrane entotic vacuoles, macropinosomes and phagosomes harbouring apoptotic cells, in a manner dependent on the lipidation machinery including ATG5 and ATG7, and the class III phosphatidylinositol-3-kinase VPS34. These downstream components of the autophagy machinery, but not the upstream mammalian Tor (mTor)-regulated ULK-ATG13-FIP200 complex, facilitate lysosome fusion to single membranes and the degradation of internalized cargo. For entosis, a live-cell-engulfment program, the autophagy-protein-dependent fusion of lysosomes to vacuolar membranes leads to the death of internalized cells. As pathogen-containing phagosomes can be targeted in a similar manner, the death of epithelial cells by this mechanism mimics pathogen destruction. These data demonstrate that proteins of the autophagy pathway can target single-membrane vacuoles in cells in the absence of pathogenic organisms.
Collapse
Affiliation(s)
- Oliver Florey
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | |
Collapse
|
247
|
Gillis JM, Benckhuijsen W, van Veen H, Sanz AS, Drijfhout JW, Reits EA. Aminopeptidase-Resistant Peptides Are Targeted to Lysosomes and Subsequently Degraded. Traffic 2011; 12:1897-910. [DOI: 10.1111/j.1600-0854.2011.01270.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
248
|
Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen WL, Griffith J, Nag S, Wang K, Moss T, Baba M, McNew JA, Jiang X, Reggiori F, Melia TJ, Klionsky DJ. SNARE proteins are required for macroautophagy. Cell 2011; 146:290-302. [PMID: 21784249 DOI: 10.1016/j.cell.2011.06.022] [Citation(s) in RCA: 357] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 03/18/2011] [Accepted: 06/13/2011] [Indexed: 01/18/2023]
Abstract
Macroautophagy mediates the degradation of long-lived proteins and organelles via the de novo formation of double-membrane autophagosomes that sequester cytoplasm and deliver it to the vacuole/lysosome; however, relatively little is known about autophagosome biogenesis. Atg8, a phosphatidylethanolamine-conjugated protein, was previously proposed to function in autophagosome membrane expansion, based on the observation that it mediates liposome tethering and hemifusion in vitro. We show here that with physiological concentrations of phosphatidylethanolamine, Atg8 does not act as a fusogen. Rather, we provide evidence for the involvement of exocytic Q/t-SNAREs in autophagosome formation, acting in the recruitment of key autophagy components to the site of autophagosome formation, and in regulating the organization of Atg9 into tubulovesicular clusters. Additionally, we found that the endosomal Q/t-SNARE Tlg2 and the R/v-SNAREs Sec22 and Ykt6 interact with Sso1-Sec9, and are required for normal Atg9 transport. Thus, multiple SNARE-mediated fusion events are likely to be involved in autophagosome biogenesis.
Collapse
Affiliation(s)
- Usha Nair
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Jimenez-Sanchez M, Thomson F, Zavodszky E, Rubinsztein DC. Autophagy and polyglutamine diseases. Prog Neurobiol 2011; 97:67-82. [PMID: 21930185 PMCID: PMC3712188 DOI: 10.1016/j.pneurobio.2011.08.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/25/2011] [Accepted: 08/30/2011] [Indexed: 01/16/2023]
Abstract
In polyglutamine diseases, an abnormally elongated polyglutamine tract results in protein misfolding and accumulation of intracellular aggregates. The length of the polyglutamine expansion correlates with the tendency of the mutant protein to aggregate, as well as with neuronal toxicity and earlier disease onset. Although currently there is no effective cure to prevent or slow down the progression of these neurodegenerative disorders, increasing the clearance of mutant proteins has been proposed as a potential therapeutic approach. The ubiquitin–proteasome system and autophagy are the two main degradative pathways responsible for eliminating misfolded and unnecessary proteins in the cell. We will review some of the studies that have proposed autophagy as a strategy to reduce the accumulation of polyglutamine-expanded protein aggregates and protect against mutant protein neurotoxicity. We will also discuss some of the currently known mechanisms that induce autophagy, which may be beneficial for the treatment of these and other neurodegenerative disorders.
Collapse
|
250
|
Shpilka T, Weidberg H, Pietrokovski S, Elazar Z. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 2011; 12:226. [PMID: 21867568 PMCID: PMC3218822 DOI: 10.1186/gb-2011-12-7-226] [Citation(s) in RCA: 424] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Autophagy-related (Atg) proteins are eukaryotic factors participating in various stages of the autophagic process. Thus far 34 Atgs have been identified in yeast, including the key autophagic protein Atg8. The Atg8 gene family encodes ubiquitin-like proteins that share a similar structure consisting of two amino-terminal α helices and a ubiquitin-like core. Atg8 family members are expressed in various tissues, where they participate in multiple cellular processes, such as intracellular membrane trafficking and autophagy. Their role in autophagy has been intensively studied. Atg8 proteins undergo a unique ubiquitin-like conjugation to phosphatidylethanolamine on the autophagic membrane, a process essential for autophagosome formation. Whereas yeast has a single Atg8 gene, many other eukaryotes contain multiple Atg8 orthologs. Atg8 genes of multicellular animals can be divided, by sequence similarities, into three subfamilies: microtubule-associated protein 1 light chain 3 (MAP1LC3 or LC3), γ-aminobutyric acid receptor-associated protein (GABARAP) and Golgi-associated ATPase enhancer of 16 kDa (GATE-16), which are present in sponges, cnidarians (such as sea anemones, corals and hydras) and bilateral animals. Although genes from all three subfamilies are found in vertebrates, some invertebrate lineages have lost the genes from one or two subfamilies. The amino terminus of Atg8 proteins varies between the subfamilies and has a regulatory role in their various functions. Here we discuss the evolution of Atg8 proteins and summarize the current view of their function in intracellular trafficking and autophagy from a structural perspective.
Collapse
Affiliation(s)
- Tomer Shpilka
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | |
Collapse
|