201
|
|
202
|
Knight GT, Lundin BF, Iyer N, Ashton LM, Sethares WA, Willett RM, Ashton RS. Engineering induction of singular neural rosette emergence within hPSC-derived tissues. eLife 2018; 7:37549. [PMID: 30371350 PMCID: PMC6205811 DOI: 10.7554/elife.37549] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived neural organoids display unprecedented emergent properties. Yet in contrast to the singular neuroepithelial tube from which the entire central nervous system (CNS) develops in vivo, current organoid protocols yield tissues with multiple neuroepithelial units, a.k.a. neural rosettes, each acting as independent morphogenesis centers and thereby confounding coordinated, reproducible tissue development. Here, we discover that controlling initial tissue morphology can effectively (>80%) induce single neural rosette emergence within hPSC-derived forebrain and spinal tissues. Notably, the optimal tissue morphology for observing singular rosette emergence was distinct for forebrain versus spinal tissues due to previously unknown differences in ROCK-mediated cell contractility. Following release of geometric confinement, the tissues displayed radial outgrowth with maintenance of a singular neuroepithelium and peripheral neuronal differentiation. Thus, we have identified neural tissue morphology as a critical biophysical parameter for controlling in vitro neural tissue morphogenesis furthering advancement towards biomanufacture of CNS tissues with biomimetic anatomy and physiology.
Collapse
Affiliation(s)
- Gavin T Knight
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, United States
| | - Brady F Lundin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, United States
| | - Nisha Iyer
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, United States
| | - Lydia Mt Ashton
- Department of Consumer Science, University of Wisconsin-Madison, Madison, United States
| | - William A Sethares
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, United States
| | - Rebecca M Willett
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, United States.,Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, United States
| | - Randolph Scott Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
203
|
Yoney A, Etoc F, Ruzo A, Carroll T, Metzger JJ, Martyn I, Li S, Kirst C, Siggia ED, Brivanlou AH. WNT signaling memory is required for ACTIVIN to function as a morphogen in human gastruloids. eLife 2018; 7:38279. [PMID: 30311909 PMCID: PMC6234031 DOI: 10.7554/elife.38279] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/11/2018] [Indexed: 01/10/2023] Open
Abstract
Self-organization of discrete fates in human gastruloids is mediated by a hierarchy of signaling pathways. How these pathways are integrated in time, and whether cells maintain a memory of their signaling history remains obscure. Here, we dissect the temporal integration of two key pathways, WNT and ACTIVIN, which along with BMP control gastrulation. CRISPR/Cas9-engineered live reporters of SMAD1, 2 and 4 demonstrate that in contrast to the stable signaling by SMAD1, signaling and transcriptional response by SMAD2 is transient, and while necessary for pluripotency, it is insufficient for differentiation. Pre-exposure to WNT, however, endows cells with the competence to respond to graded levels of ACTIVIN, which induces differentiation without changing SMAD2 dynamics. This cellular memory of WNT signaling is necessary for ACTIVIN morphogen activity. A re-evaluation of the evidence gathered over decades in model systems, re-enforces our conclusions and points to an evolutionarily conserved mechanism.
Collapse
Affiliation(s)
- Anna Yoney
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, United States
| | - Jakob J Metzger
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Iain Martyn
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States.,Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Shu Li
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States
| | - Christoph Kirst
- Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, United States
| |
Collapse
|
204
|
Libby AR, Joy DA, So PL, Mandegar MA, Muncie JM, Mendoza-Camacho FN, Weaver VM, Conklin BR, McDevitt TC. Spatiotemporal mosaic self-patterning of pluripotent stem cells using CRISPR interference. eLife 2018; 7:36045. [PMID: 30298816 PMCID: PMC6177255 DOI: 10.7554/elife.36045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/09/2018] [Indexed: 12/22/2022] Open
Abstract
Morphogenesis involves interactions of asymmetric cell populations to form complex multicellular patterns and structures comprised of distinct cell types. However, current methods to model morphogenic events lack control over cell-type co-emergence and offer little capability to selectively perturb specific cell subpopulations. Our in vitro system interrogates cell-cell interactions and multicellular organization within human induced pluripotent stem cell (hiPSC) colonies. We examined effects of induced mosaic knockdown of molecular regulators of cortical tension (ROCK1) and cell-cell adhesion (CDH1) with CRISPR interference. Mosaic knockdown of ROCK1 or CDH1 resulted in differential patterning within hiPSC colonies due to cellular self-organization, while retaining an epithelial pluripotent phenotype. Knockdown induction stimulates a transient wave of differential gene expression within the mixed populations that stabilized in coordination with observed self-organization. Mosaic patterning enables genetic interrogation of emergent multicellular properties, which can facilitate better understanding of the molecular pathways that regulate symmetry-breaking during morphogenesis. Embryos begin as a collection of similar cells, which progress in stages to form a huge variety of cell types in particular arrangements. These patterns of cells give rise to the different tissues and organs that make up the body. Although we often use ‘model’ organisms such as mice and frogs to study how embryos develop, our species has evolved unique ways to control organ development. Investigating these processes is difficult: we cannot experiment on human embryos, and our development is hard to recreate in test tubes. As a result, we do not fully understand how developing human cells specialize and organize. Libby et al. have now created a new system to study how different genes control cell organization. The system uses human pluripotent stem cells – cells that have the ability to specialize into any type of cell. Some of the stem cells are modified using a technique called inducible CRISPR interference, which makes it possible to reduce the activity of certain genes in these cells. Libby et al. used this technique to investigate how changes to the activity of two genes – called ROCK1 and CDH1 – affect how a mixed group of stem cells organized themselves. Cells that lacked ROCK1 formed bands near the edges of the group. Cells that lacked CDH1 segregated themselves from other cells, forming ‘islands’ inside the main group. The cells retained their ability to specialize into any type of cell after forming these patterns. However, specific groups of cells were more likely to become certain cell types. The method developed by Libby et al. can be used to study a range of complex tissue development and cell organization processes. Future work could create human tissue model systems for research into human disease or drug development.
Collapse
Affiliation(s)
- Ashley Rg Libby
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States.,Developmental and Stem Cell Biology Graduate Program, University of California San Francisco, San Francisco, United States
| | - David A Joy
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States.,Graduate Program in Bioengineering, University of California Berkeley, University of California San Francisco, San Francisco, United States
| | - Po-Lin So
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States
| | | | - Jonathon M Muncie
- Graduate Program in Bioengineering, University of California Berkeley, University of California San Francisco, San Francisco, United States.,Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, United States
| | | | - Valerie M Weaver
- Department of Surgery, Center for Bioengineering and Tissue Regeneration, University of California, San Francisco, United States
| | - Bruce R Conklin
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States.,Department of Medicine, Division of Genomic Medicine, University of California, San Francisco, United States
| | - Todd C McDevitt
- Gladstone Institute of Cardiovascular Disease, San Francisco, United States.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, United States
| |
Collapse
|
205
|
Metzger JJ, Simunovic M, Brivanlou AH. Synthetic embryology: controlling geometry to model early mammalian development. Curr Opin Genet Dev 2018; 52:86-91. [PMID: 29957587 PMCID: PMC6911727 DOI: 10.1016/j.gde.2018.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/30/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
Differentiation of embryonic stem cells in vitro is an important tool in dissecting and understanding the mechanisms that govern early embryologic development. In recent years, there has been considerable progress in creating organoids that model gastrulation, neurulation or organogenesis. However, one of the key challenges is reproducibility. Geometrically confining stem cell colonies considerably improves reproducibility and provides quantitative control over differentiation and tissue shape. Here, we review recent advances in controlling the two-dimensional or three-dimensional organization of cells and the effect on differentiation phenotypes. Improved methods of geometrical control will allow for an even more detailed understanding of the mechanisms underlying embryologic development and will eventually pave the way for the highly reproducible generation of specific tissue types.
Collapse
Affiliation(s)
- Jakob J Metzger
- Center for Studies in Physics and Biology, The Rockefeller University, USA; Laboratory for Stem Cell Biology and Molecular Embryology, The Rockefeller University, USA
| | - Mijo Simunovic
- Center for Studies in Physics and Biology, The Rockefeller University, USA; Laboratory for Stem Cell Biology and Molecular Embryology, The Rockefeller University, USA
| | - Ali H Brivanlou
- Laboratory for Stem Cell Biology and Molecular Embryology, The Rockefeller University, USA.
| |
Collapse
|
206
|
|
207
|
Blin G, Wisniewski D, Picart C, Thery M, Puceat M, Lowell S. Geometrical confinement controls the asymmetric patterning of brachyury in cultures of pluripotent cells. Development 2018; 145:dev166025. [PMID: 30115626 PMCID: PMC6176930 DOI: 10.1242/dev.166025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 01/02/2023]
Abstract
Diffusible signals are known to orchestrate patterning during embryogenesis, yet diffusion is sensitive to noise. The fact that embryogenesis is remarkably robust suggests that additional layers of regulation reinforce patterning. Here, we demonstrate that geometrical confinement orchestrates the spatial organisation of initially randomly positioned subpopulations of spontaneously differentiating mouse embryonic stem cells. We use micropatterning in combination with pharmacological manipulations and quantitative imaging to dissociate the multiple effects of geometry. We show that the positioning of a pre-streak-like population marked by brachyury (T) is decoupled from the size of its population, and that breaking radial symmetry of patterns imposes polarised patterning. We provide evidence for a model in which the overall level of diffusible signals together with the history of the cell culture define the number of T+ cells, whereas geometrical constraints guide patterning in a multi-step process involving a differential response of the cells to multicellular spatial organisation. Our work provides a framework for investigating robustness of patterning and provides insights into how to guide symmetry-breaking events in aggregates of pluripotent cells.
Collapse
Affiliation(s)
- Guillaume Blin
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Darren Wisniewski
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Catherine Picart
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Manuel Thery
- Univ. Grenoble-Alpes, CEA, CNRS, INRA, Biosciences and Biotechnology Institute of Grenoble, Laboratoire de Physiologie Cellulaire and Végétale, UMR5168, CytoMorpho Lab, 38054 Grenoble, France
- Univ. Paris Diderot, CEA, INSERM, Hôpital Saint Louis, Institut Universitaire d'Hematologie, UMRS1160, CytoMorpho Lab, 75010 Paris, France
| | - Michel Puceat
- INSERM U1251, Université Aix-Marseille, MMG, 13885 Marseille, France
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH16 4UU, UK
| |
Collapse
|
208
|
|
209
|
Wolff SC, Kedziora KM, Dumitru R, Dungee CD, Zikry TM, Beltran AS, Haggerty RA, Cheng J, Redick MA, Purvis JE. Inheritance of OCT4 predetermines fate choice in human embryonic stem cells. Mol Syst Biol 2018; 14:e8140. [PMID: 30177503 PMCID: PMC6120590 DOI: 10.15252/msb.20178140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 01/21/2023] Open
Abstract
It is well known that clonal cells can make different fate decisions, but it is unclear whether these decisions are determined during, or before, a cell's own lifetime. Here, we engineered an endogenous fluorescent reporter for the pluripotency factor OCT4 to study the timing of differentiation decisions in human embryonic stem cells. By tracking single-cell OCT4 levels over multiple cell cycle generations, we found that the decision to differentiate is largely determined before the differentiation stimulus is presented and can be predicted by a cell's preexisting OCT4 signaling patterns. We further quantified how maternal OCT4 levels were transmitted to, and distributed between, daughter cells. As mother cells underwent division, newly established OCT4 levels in daughter cells rapidly became more predictive of final OCT4 expression status. These results imply that the choice between developmental cell fates can be largely predetermined at the time of cell birth through inheritance of a pluripotency factor.
Collapse
Affiliation(s)
- Samuel C Wolff
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Raluca Dumitru
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Cierra D Dungee
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Tarek M Zikry
- Department of Biostatistics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Adriana S Beltran
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Rachel A Haggerty
- Curriculum for Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - JrGang Cheng
- UNC Neuroscience Center, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Margaret A Redick
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy E Purvis
- Department of Genetics, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
- Curriculum for Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
210
|
Smith Q, Rochman N, Carmo AM, Vig D, Chan XY, Sun S, Gerecht S. Cytoskeletal tension regulates mesodermal spatial organization and subsequent vascular fate. Proc Natl Acad Sci U S A 2018; 115:8167-8172. [PMID: 30038020 PMCID: PMC6094121 DOI: 10.1073/pnas.1808021115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Morphogenesis during human development relies on the interplay between physiochemical cues that are mediated in part by cellular density and cytoskeletal tension. Here, we interrogated these factors on vascular lineage specification during human-induced pluripotent stem-cell (hiPSC) fate decision. We found that independent of chemical cues, spatially presented physical cues induce the self-organization of Brachyury-positive mesodermal cells, in a RhoA/Rho-associated kinase (ROCK)-dependent manner. Using unbiased support vector machine (SVM) learning, we found that density alone is sufficient to predict mesodermal fate. Furthermore, the long-withstanding presentation of spatial confinement during hiPSC differentiation led to an organized vascular tissue, reminiscent of native blood vessels, a process dependent on cell density as found by SVM analysis. Collectively, these results show how tension and density relate to vascular identity mirroring early morphogenesis. We propose that such a system can be applied to study other aspects of the stem-cell niche and its role in embryonic patterning.
Collapse
Affiliation(s)
- Quinton Smith
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Nash Rochman
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Ana Maria Carmo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Dhruv Vig
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Xin Yi Chan
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
| | - Sean Sun
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218;
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218;
- Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, MD 21218
- The Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
211
|
Bornens M. Cell polarity: having and making sense of direction-on the evolutionary significance of the primary cilium/centrosome organ in Metazoa. Open Biol 2018; 8:180052. [PMID: 30068565 PMCID: PMC6119866 DOI: 10.1098/rsob.180052] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Cell-autonomous polarity in Metazoans is evolutionarily conserved. I assume that permanent polarity in unicellular eukaryotes is required for cell motion and sensory reception, integration of these two activities being an evolutionarily constrained function. Metazoans are unique in making cohesive multicellular organisms through complete cell divisions. They evolved a primary cilium/centrosome (PC/C) organ, ensuring similar functions to the basal body/flagellum of unicellular eukaryotes, but in different cells, or in the same cell at different moments. The possibility that this innovation contributed to the evolution of individuality, in being instrumental in the early specification of the germ line during development, is further discussed. Then, using the example of highly regenerative organisms like planarians, which have lost PC/C organ in dividing cells, I discuss the possibility that part of the remodelling necessary to reach a new higher-level unit of selection in multi-cellular organisms has been triggered by conflicts among individual cell polarities to reach an organismic polarity. Finally, I briefly consider organisms with a sensorimotor organ like the brain that requires exceedingly elongated polarized cells for its activity. I conclude that beyond critical consequences for embryo development, the conservation of cell-autonomous polarity in Metazoans had far-reaching implications for the evolution of individuality.
Collapse
Affiliation(s)
- Michel Bornens
- Institut Curie, PSL Research University, CNRS - UMR 144, 75005 Paris, France
| |
Collapse
|
212
|
Chan CJ, Heisenberg CP, Hiiragi T. Coordination of Morphogenesis and Cell-Fate Specification in Development. Curr Biol 2018; 27:R1024-R1035. [PMID: 28950087 DOI: 10.1016/j.cub.2017.07.010] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During animal development, cell-fate-specific changes in gene expression can modify the material properties of a tissue and drive tissue morphogenesis. While mechanistic insights into the genetic control of tissue-shaping events are beginning to emerge, how tissue morphogenesis and mechanics can reciprocally impact cell-fate specification remains relatively unexplored. Here we review recent findings reporting how multicellular morphogenetic events and their underlying mechanical forces can feed back into gene regulatory pathways to specify cell fate. We further discuss emerging techniques that allow for the direct measurement and manipulation of mechanical signals in vivo, offering unprecedented access to study mechanotransduction during development. Examination of the mechanical control of cell fate during tissue morphogenesis will pave the way to an integrated understanding of the design principles that underlie robust tissue patterning in embryonic development.
Collapse
Affiliation(s)
- Chii J Chan
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | - Takashi Hiiragi
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| |
Collapse
|
213
|
Shahbazi MN, Zernicka-Goetz M. Deconstructing and reconstructing the mouse and human early embryo. Nat Cell Biol 2018; 20:878-887. [PMID: 30038253 DOI: 10.1038/s41556-018-0144-x] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023]
Abstract
The emergence of form and function during mammalian embryogenesis is a complex process that involves multiple regulatory levels. The foundations of the body plan are laid throughout the first days of post-implantation development as embryonic stem cells undergo symmetry breaking and initiate lineage specification, in a process that coincides with a global morphological reorganization of the embryo. Here, we review experimental models and how they have shaped our current understanding of the post-implantation mammalian embryo.
Collapse
Affiliation(s)
- Marta N Shahbazi
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, Mammalian Embryo and Stem Cell Group, University of Cambridge, Cambridge, UK.
| |
Collapse
|
214
|
Xue X, Sun Y, Resto-Irizarry AM, Yuan Y, Aw Yong KM, Zheng Y, Weng S, Shao Y, Chai Y, Studer L, Fu J. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. NATURE MATERIALS 2018; 17:633-641. [PMID: 29784997 PMCID: PMC6622450 DOI: 10.1038/s41563-018-0082-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 04/16/2018] [Indexed: 05/12/2023]
Abstract
Classic embryological studies have successfully applied genetics and cell biology principles to understand embryonic development. However, it remains unresolved how mechanics, as an integral driver of development, is involved in controlling tissue-scale cell fate patterning. Here we report a micropatterned human pluripotent stem (hPS)-cell-based neuroectoderm developmental model, in which pre-patterned geometrical confinement induces emergent patterning of neuroepithelial and neural plate border cells, mimicking neuroectoderm regionalization during early neurulation in vivo. In this hPS-cell-based neuroectoderm patterning model, two tissue-scale morphogenetic signals-cell shape and cytoskeletal contractile force-instruct neuroepithelial/neural plate border patterning via BMP-SMAD signalling. We further show that ectopic mechanical activation and exogenous BMP signalling modulation are sufficient to perturb neuroepithelial/neural plate border patterning. This study provides a useful microengineered, hPS-cell-based model with which to understand the biomechanical principles that guide neuroectoderm patterning and hence to study neural development and disease.
Collapse
Affiliation(s)
- Xufeng Xue
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yubing Sun
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, MA, USA.
| | | | - Ye Yuan
- School of the Gifted Young, University of Science and Technology of China, Hefei, China
| | - Koh Meng Aw Yong
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yi Zheng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shinuo Weng
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yue Shao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lorenz Studer
- Developmental Biology Program, Memorial Sloan-Kettering Institute, New York, NY, USA
- Center of Stem Cell Biology, Memorial Sloan-Kettering Institute, New York, NY, USA
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
215
|
Towards Multi-Organoid Systems for Drug Screening Applications. Bioengineering (Basel) 2018; 5:bioengineering5030049. [PMID: 29933623 PMCID: PMC6163436 DOI: 10.3390/bioengineering5030049] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022] Open
Abstract
A low percentage of novel drug candidates succeed and reach the end of the drug discovery pipeline, mainly due to poor initial screening and assessment of the effects of the drug and its metabolites over various tissues in the human body. For that, emerging technologies involving the production of organoids from human pluripotent stem cells (hPSCs) and the use of organ-on-a-chip devices are showing great promise for developing a more reliable, rapid and cost-effective drug discovery process when compared with the current use of animal models. In particular, the possibility of virtually obtaining any type of cell within the human body, in combination with the ability to create patient-specific tissues using human induced pluripotent stem cells (hiPSCs), broadens the horizons in the fields of drug discovery and personalized medicine. In this review, we address the current progress and challenges related to the process of obtaining organoids from different cell lineages emerging from hPSCs, as well as how to create devices that will allow a precise examination of the in vitro effects generated by potential drugs in different organ systems.
Collapse
|
216
|
Martyn I, Kanno TY, Ruzo A, Siggia ED, Brivanlou AH. Self-organization of a human organizer by combined Wnt and Nodal signalling. Nature 2018; 558:132-135. [PMID: 29795348 PMCID: PMC6077985 DOI: 10.1038/s41586-018-0150-y] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 04/16/2018] [Indexed: 11/09/2022]
Abstract
In amniotes, the development of the primitive streak (PS) and its accompanying “organizer” define the first stages of gastrulation. Despite detailed characterization in model organisms, the analogous human structures remain a mystery. We have previously shown that when stimulated with BMP4, micropatterned colonies of human embryonic stem cells (hESCs) self-organize to generate early embryonic germ layers1. Here we show that in the same type of colonies WNT signalling is sufficient to induce a PS, and WNT with ACTIVIN is sufficient to induce an organizer, as characterized by embryo-like sharp boundary formation, epithelial-to-mesenchymal transition (EMT) markers, and expression of the organizer specific transcription factor GSC. Moreover, when grafted into chick embryos, WNT and ACTIVIN treated human cells induce and contribute autonomously to a secondary axis while inducing neural fate in the host. This fulfills the most stringent functional criteria for an organizer, and its discovery represents a major milestone in human embryology.
Collapse
Affiliation(s)
- I Martyn
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA.,Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | - T Y Kanno
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | - A Ruzo
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | - E D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA.
| | - A H Brivanlou
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
217
|
Molecular mechanisms underlying TGF-ß/Hippo signaling crosstalks – Role of baso-apical epithelial cell polarity. Int J Biochem Cell Biol 2018; 98:75-81. [DOI: 10.1016/j.biocel.2018.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/31/2022]
|
218
|
Tashiro S, Le MNT, Kusama Y, Nakatani E, Suga M, Furue MK, Satoh T, Sugiura S, Kanamori T, Ohnuma K. High cell density suppresses BMP4-induced differentiation of human pluripotent stem cells to produce macroscopic spatial patterning in a unidirectional perfusion culture chamber. J Biosci Bioeng 2018; 126:379-388. [PMID: 29681444 DOI: 10.1016/j.jbiosc.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 11/25/2022]
Abstract
Spatial pattern formation is a critical step in embryogenesis. Bone morphogenetic protein 4 (BMP4) and its inhibitors are major factors for the formation of spatial patterns during embryogenesis. However, spatial patterning of the human embryo is unclear because of ethical issues and isotropic culture environments resulting from conventional culture dishes. Here, we utilized human pluripotent stem cells (hiPSCs) and a simple anisotropic (unidirectional perfusion) culture chamber, which creates unidirectional conditions, to measure the cell community effect. The influence of cell density on BMP4-induced differentiation was explored during static culture using a conventional culture dish. Immunostaining of the early differentiation marker SSEA-1 and the mesendoderm marker BRACHYURY revealed that high cell density suppressed differentiation, with small clusters of differentiated and undifferentiated cells formed. Addition of five-fold higher concentration of BMP4 showed similar results, suggesting that suppression was not caused by depletion of BMP4 but rather by high cell density. Quantitative RT-PCR array analysis showed that BMP4 induced multi-lineage differentiation, which was also suppressed under high-density conditions. We fabricated an elongated perfusion culture chamber, in which proteins were transported unidirectionally, and hiPSCs were cultured with BMP4. At low density, the expression was the same throughout the chamber. However, at high density, SSEA-1 and BRACHYURY were expressed only in upstream cells, suggesting that some autocrine/paracrine factors inhibited the action of BMP4 in downstream cells to form the spatial pattern. Human iPSCs cultured in a perfusion culture chamber might be useful for studying in vitro macroscopic pattern formation in human embryogenesis.
Collapse
Affiliation(s)
- Shota Tashiro
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Minh Nguyen Tuyet Le
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Yuta Kusama
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Eri Nakatani
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| | - Mika Suga
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| | - Miho K Furue
- Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan.
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5th, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kiyoshi Ohnuma
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan; Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.
| |
Collapse
|
219
|
Abstract
Understanding cell fate patterning and morphogenesis in the mammalian embryo remains a formidable challenge. Recently, in vivo models based on embryonic stem cells (ESCs) have emerged as complementary methods to quantitatively dissect the physical and molecular processes that shape the embryo. Here we review recent developments in using ESCs to create both two- and three-dimensional culture models that shed light on mammalian gastrulation.
Collapse
Affiliation(s)
- Eric D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, United States.
| | - Aryeh Warmflash
- Departments of Biosciences and Bioengineering, Rice University, Houston, TX, United States.
| |
Collapse
|
220
|
Hill CS. Spatial and temporal control of NODAL signaling. Curr Opin Cell Biol 2018; 51:50-57. [PMID: 29153705 DOI: 10.1016/j.ceb.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 12/21/2022]
Abstract
Embryonic development is orchestrated by the activity of signal transduction pathways, amongst which are those downstream of the transforming growth factor β (TGF-β) family. Here I focus on signalling by one of these ligands, NODAL, which is essential for early embryonic axis patterning. I review recent advances in our understanding of how NODAL signalling is transduced from the plasma membrane to the nucleus to regulate the transcription of target genes, and how domains of NODAL activity are established and refined during embryonic development. The duration of signalling is emerging as a key determinant of the specificity of downstream responses in terms of cell fate decisions and I will discuss what is currently known about the underlying mechanisms.
Collapse
Affiliation(s)
- Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
221
|
Bozorgui B, Kolomeisky AB, Teimouri H. Physical-chemical mechanisms of pattern formation during gastrulation. J Chem Phys 2018; 148:123302. [DOI: 10.1063/1.4993879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Behnaz Bozorgui
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | - Anatoly B. Kolomeisky
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | - Hamid Teimouri
- Department of Physics and FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
222
|
Dasbiswas K, Hannezo E, Gov NS. Theory of Epithelial Cell Shape Transitions Induced by Mechanoactive Chemical Gradients. Biophys J 2018; 114:968-977. [PMID: 29490256 PMCID: PMC5984993 DOI: 10.1016/j.bpj.2017.12.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/08/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Cell shape is determined by a balance of intrinsic properties of the cell as well as its mechanochemical environment. Inhomogeneous shape changes underlie many morphogenetic events and involve spatial gradients in active cellular forces induced by complex chemical signaling. Here, we introduce a mechanochemical model based on the notion that cell shape changes may be induced by external diffusible biomolecules that influence cellular contractility (or equivalently, adhesions) in a concentration-dependent manner-and whose spatial profile in turn is affected by cell shape. We map out theoretically the possible interplay between chemical concentration and cellular structure. Besides providing a direct route to spatial gradients in cell shape profiles in tissues, we show that the dependence on cell shape helps create robust mechanochemical gradients.
Collapse
Affiliation(s)
- Kinjal Dasbiswas
- James Franck Institute, University of Chicago, Chicago, Illinois
| | - Edouard Hannezo
- Institute of Science and Technology, Austria, Klosterneuburg, Austria; The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, United Kingdom
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
223
|
Morgani SM, Metzger JJ, Nichols J, Siggia ED, Hadjantonakis AK. Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning. eLife 2018; 7:e32839. [PMID: 29412136 PMCID: PMC5807051 DOI: 10.7554/elife.32839] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Wellcome Trust-Medical Research Council Centre for Stem Cell ResearchUniversity of CambridgeCambridgeUnited Kingdom
| | - Jakob J Metzger
- Center for Studies in Physics and BiologyThe Rockefeller UniversityNew YorkUnited States
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell ResearchUniversity of CambridgeCambridgeUnited Kingdom
| | - Eric D Siggia
- Center for Studies in Physics and BiologyThe Rockefeller UniversityNew YorkUnited States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
224
|
Christian JL, Heldin CH. The TGFβ superfamily in Lisbon: navigating through development and disease. Development 2018; 144:4476-4480. [PMID: 29254990 DOI: 10.1242/dev.159756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 10th FASEB meeting 'The TGFβ Superfamily: Signaling in Development and Disease' took place in Lisbon, Portugal, in July 2017. As we review here, the findings presented at the meeting highlighted the important contributions of TGFβ family signaling to normal development, adult homeostasis and disease, and also revealed novel mechanisms by which TGFβ signals are transduced.
Collapse
Affiliation(s)
- Jan L Christian
- Department of Neurobiology and Anatomy and Internal Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, School of Medicine, Salt Lake City, UT 94132, USA
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
225
|
Laurent J, Blin G, Chatelain F, Vanneaux V, Fuchs A, Larghero J, Théry M. Convergence of microengineering and cellular self-organization towards functional tissue manufacturing. Nat Biomed Eng 2017; 1:939-956. [DOI: 10.1038/s41551-017-0166-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/07/2017] [Indexed: 12/18/2022]
|
226
|
Tewary M, Ostblom J, Prochazka L, Zulueta-Coarasa T, Shakiba N, Fernandez-Gonzalez R, Zandstra PW. A stepwise model of reaction-diffusion and positional information governs self-organized human peri-gastrulation-like patterning. Development 2017; 144:4298-4312. [PMID: 28870989 PMCID: PMC5769627 DOI: 10.1242/dev.149658] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022]
Abstract
How position-dependent cell fate acquisition occurs during embryogenesis is a central question in developmental biology. To study this process, we developed a defined, high-throughput assay to induce peri-gastrulation-associated patterning in geometrically confined human pluripotent stem cell (hPSC) colonies. We observed that, upon BMP4 treatment, phosphorylated SMAD1 (pSMAD1) activity in the colonies organized into a radial gradient. We developed a reaction-diffusion (RD)-based computational model and observed that the self-organization of pSMAD1 signaling was consistent with the RD principle. Consequent fate acquisition occurred as a function of both pSMAD1 signaling strength and duration of induction, consistent with the positional-information (PI) paradigm. We propose that the self-organized peri-gastrulation-like fate patterning in BMP4-treated geometrically confined hPSC colonies arises via a stepwise model of RD followed by PI. This two-step model predicted experimental responses to perturbations of key parameters such as colony size and BMP4 dose. Furthermore, it also predicted experimental conditions that resulted in RD-like periodic patterning in large hPSC colonies, and rescued peri-gastrulation-like patterning in colony sizes previously thought to be reticent to this behavior.
Collapse
Affiliation(s)
- Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Joel Ostblom
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Laura Prochazka
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Teresa Zulueta-Coarasa
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nika Shakiba
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3ES, Canada
- Medicine by Design: A Canada First Research Excellence Fund Program, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| |
Collapse
|
227
|
Arias CF, Herrero MA, Stern CD, Bertocchini F. A molecular mechanism of symmetry breaking in the early chick embryo. Sci Rep 2017; 7:15776. [PMID: 29150667 PMCID: PMC5694015 DOI: 10.1038/s41598-017-15883-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/31/2017] [Indexed: 12/02/2022] Open
Abstract
The first obvious sign of bilateral symmetry in mammalian and avian embryos is the appearance of the primitive streak in the future posterior region of a radially symmetric disc. The primitive streak marks the midline of the future embryo. The mechanisms responsible for positioning the primitive streak remain largely unknown. Here we combine experimental embryology and mathematical modelling to analyse the role of the TGFβ-related molecules BMP4 and Vg1/GDF1 in positioning the primitive streak. Bmp4 and Vg1 are first expressed throughout the embryo, and then become localised to the future anterior and posterior regions of the embryo, where they will, respectively, inhibit or induce formation of the primitive streak. We propose a model based on paracrine signalling to account for the separation of the two domains starting from a homogeneous array of cells, and thus for the topological transformation of a radially symmetric disc to a bilaterally symmetric embryo.
Collapse
Affiliation(s)
- Clemente F Arias
- Departamento de Matemática Aplicada, Facultad de Matemáticas, and Universidad Complútense de Madrid, Madrid, Spain. .,Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Complútense de Madrid, Madrid, Spain.
| | - Miguel A Herrero
- Departamento de Matemática Aplicada, Facultad de Matemáticas, and Universidad Complútense de Madrid, Madrid, Spain
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Federica Bertocchini
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC)-CSIC-Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
228
|
Turner DA, Girgin M, Alonso-Crisostomo L, Trivedi V, Baillie-Johnson P, Glodowski CR, Hayward PC, Collignon J, Gustavsen C, Serup P, Steventon B, P Lutolf M, Arias AM. Anteroposterior polarity and elongation in the absence of extra-embryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids. Development 2017; 144:3894-3906. [PMID: 28951435 PMCID: PMC5702072 DOI: 10.1242/dev.150391] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
The establishment of the anteroposterior (AP) axis is a crucial step during animal embryo development. In mammals, genetic studies have shown that this process relies on signals spatiotemporally deployed in the extra-embryonic tissues that locate the position of the head and the onset of gastrulation, marked by T/Brachyury (T/Bra) at the posterior of the embryo. Here, we use gastruloids, mESC-based organoids, as a model system with which to study this process. We find that gastruloids localise T/Bra expression to one end and undergo elongation similar to the posterior region of the embryo, suggesting that they develop an AP axis. This process relies on precisely timed interactions between Wnt/β-catenin and Nodal signalling, whereas BMP signalling is dispensable. Additionally, polarised T/Bra expression occurs in the absence of extra-embryonic tissues or localised sources of signals. We suggest that the role of extra-embryonic tissues in the mammalian embryo might not be to induce the axes but to bias an intrinsic ability of the embryo to initially break symmetry. Furthermore, we suggest that Wnt signalling has a separable activity involved in the elongation of the axis.
Collapse
Affiliation(s)
- David A Turner
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Mehmet Girgin
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Luz Alonso-Crisostomo
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Vikas Trivedi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Peter Baillie-Johnson
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Cherise R Glodowski
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Penelope C Hayward
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Jérôme Collignon
- Université Paris-Diderot, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Carsten Gustavsen
- Danish Stem Cell Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Palle Serup
- Danish Stem Cell Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Benjamin Steventon
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
229
|
|
230
|
Abstract
In many jurisdictions, restrictions prohibit the culture of human embryos beyond 14 days of development. However, recent reports describing the successful maintenance of embryos in vitro to this stage have prompted many in the field to question whether the rule is still appropriate. This Spotlight article looks at the original rationale behind the 14-day rule and its relevance today in light of advances in human embryo culture and in the derivation of embryonic-like structures from human pluripotent stem cells.
Collapse
Affiliation(s)
- Martin F Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| |
Collapse
|
231
|
Kicheva A, Rivron NC. Creating to understand - developmental biology meets engineering in Paris. Development 2017; 144:733-736. [PMID: 28246208 DOI: 10.1242/dev.144915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In November 2016, developmental biologists, synthetic biologists and engineers gathered in Paris for a meeting called 'Engineering the embryo'. The participants shared an interest in exploring how synthetic systems can reveal new principles of embryonic development, and how the in vitro manipulation and modeling of development using stem cells can be used to integrate ideas and expertise from physics, developmental biology and tissue engineering. As we review here, the conference pinpointed some of the challenges arising at the intersection of these fields, along with great enthusiasm for finding new approaches and collaborations.
Collapse
Affiliation(s)
- Anna Kicheva
- Institute of Science and Technology IST Austria, Klosterneuburg 3400, Austria
| | - Nicolas C Rivron
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht 6200 MD, The Netherlands .,Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht 3584 CT, The Netherlands
| |
Collapse
|
232
|
Integrated Experimental and Theoretical Studies of Stem Cells. CURRENT STEM CELL REPORTS 2017; 3:248-252. [PMID: 28845388 PMCID: PMC5548823 DOI: 10.1007/s40778-017-0096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Purpose of Review Stem cells have to balance self-renewal and differentiation. The dynamic nature of these fate decisions has made stem cell study by traditional methods particularly challenging. Here we highlight recent advances in the field that draw on combining quantitative experiments and modeling to illuminate the biology of stem cells both in vitro and in vivo. Recent Findings Recent studies have shown that seemingly complex processes such as the fate decision-making of stem cells or the self-organization of developing tissues obey remarkably simple mathematical models. Negative feedback loops appear to stabilize cellular states hereby ensuring robust fate decision-making and reproducible outcomes. Stochastic fate decisions can account for the great variability observed in biological systems. Summary The study of stem cells is hampered by the necessity to track the fate of a cell’s progeny over time. Confronting experiments with simple predictive models has allowed to circumvent this problem and gain insights from stem cell heterogeneity in vitro to organ morphogenesis.
Collapse
|
233
|
Abstract
Morphogenesis requires tissues to sense and respond to their geometry. In this issue of Developmental Cell, Etoc et al. (2016) show that a confined colony of human embryonic stem cells can spontaneously sense its boundary, generating a self-organized TGF-β signaling gradient that patterns it into a tissue resembling a gastrulating embryo.
Collapse
Affiliation(s)
- Matthew Thomson
- Center for Systems and Synthetic Biology, University of California San Francisco, Genentech Hall Rm. S472, 600 16th St., San Francisco, CA 94158, USA; Department of Biology and Bioengineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
234
|
Loss of prion protein is associated with the development of insulin resistance and obesity. Biochem J 2017; 474:2981-2991. [PMID: 28739602 DOI: 10.1042/bcj20170137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/05/2023]
Abstract
Prion protein (PrPC) was initially described due to its involvement in transmissible spongiform encephalopathies. It was subsequently demonstrated to be a cell surface molecule involved in many physiological processes, such as vesicle trafficking. Here, we investigated the roles of PrPC in the response to insulin and obesity development. Two independent PrPC knockout (KO) and one PrPC overexpressing (TG20) mouse models were fed high-fat diets, and the development of insulin resistance and obesity was monitored. PrPC KO mice fed high-fat diets presented all of the symptoms associated with the development of insulin resistance: hyperglycemia, hyperinsulinemia, and obesity. Conversely, TG20 animals fed high-fat diets showed reduced weight and insulin resistance. Accordingly, the expression of peroxisome proliferator-activated receptor gamma (PPARγ) was reduced in PrPC KO mice and increased in TG20 animals. PrPC KO cells also presented reduced glucose uptake upon insulin stimulation, due to reduced translocation of the glucose transporter Glut4. Thus, our results suggest that PrPC reflects susceptibility to the development of insulin resistance and metabolic syndrome.
Collapse
|
235
|
Shao Y, Taniguchi K, Townshend RF, Miki T, Gumucio DL, Fu J. A pluripotent stem cell-based model for post-implantation human amniotic sac development. Nat Commun 2017; 8:208. [PMID: 28785084 PMCID: PMC5547056 DOI: 10.1038/s41467-017-00236-w] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/12/2017] [Indexed: 01/24/2023] Open
Abstract
Development of the asymmetric amniotic sac-with the embryonic disc and amniotic ectoderm occupying opposite poles-is a vital milestone during human embryo implantation. Although essential to embryogenesis and pregnancy, amniotic sac development in humans remains poorly understood. Here, we report a human pluripotent stem cell (hPSC)-based model, termed the post-implantation amniotic sac embryoid (PASE), that recapitulates multiple post-implantation embryogenic events centered around amniotic sac development. Without maternal or extraembryonic tissues, the PASE self-organizes into an epithelial cyst with an asymmetric amniotic ectoderm-epiblast pattern that resembles the human amniotic sac. Upon further development, the PASE initiates a process that resembles posterior primitive streak development in a SNAI1-dependent manner. Furthermore, we observe asymmetric BMP-SMAD signaling concurrent with PASE development, and establish that BMP-SMAD activation/inhibition modulates stable PASE development. This study reveals a previously unrecognized fate potential of human pluripotent stem cells and provides a platform for advancing human embryology.Early in human embryonic development, it is unclear how amniotic sac formation is regulated. Here, the authors use a human pluripotent stem cell-based model, termed the post-implantation amniotic sac embryoid, to recapitulate early embryogenic events of human amniotic sac development.
Collapse
Affiliation(s)
- Yue Shao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kenichiro Taniguchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ryan F Townshend
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Toshio Miki
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
236
|
Neijts R, Deschamps J. At the base of colinear Hox gene expression: cis -features and trans -factors orchestrating the initial phase of Hox cluster activation. Dev Biol 2017; 428:293-299. [DOI: 10.1016/j.ydbio.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/16/2017] [Indexed: 10/19/2022]
|
237
|
Nemashkalo A, Ruzo A, Heemskerk I, Warmflash A. Morphogen and community effects determine cell fates in response to BMP4 signaling in human embryonic stem cells. Development 2017; 144:3042-3053. [PMID: 28760810 DOI: 10.1242/dev.153239] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/20/2017] [Indexed: 01/09/2023]
Abstract
Paracrine signals maintain developmental states and create cell fate patterns in vivo and influence differentiation outcomes in human embryonic stem cells (hESCs) in vitro Systematic investigation of morphogen signaling is hampered by the difficulty of disentangling endogenous signaling from experimentally applied ligands. Here, we grow hESCs in micropatterned colonies of 1-8 cells ('µColonies') to quantitatively investigate paracrine signaling and the response to external stimuli. We examine BMP4-mediated differentiation in µColonies and standard culture conditions and find that in µColonies, above a threshold concentration, BMP4 gives rise to only a single cell fate, contrary to its role as a morphogen in other developmental systems. Under standard culture conditions BMP4 acts as a morphogen but this requires secondary signals and particular cell densities. We find that a 'community effect' enforces a common fate within µColonies, both in the state of pluripotency and when cells are differentiated, and that this effect allows a more precise response to external signals. Using live cell imaging to correlate signaling histories with cell fates, we demonstrate that interactions between neighbors result in sustained, homogenous signaling necessary for differentiation.
Collapse
Affiliation(s)
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Idse Heemskerk
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, TX 77005, USA .,Department of Bioengineering, Rice University, Houston, TX 77005, USA
| |
Collapse
|
238
|
Rossant J, Tam PPL. New Insights into Early Human Development: Lessons for Stem Cell Derivation and Differentiation. Cell Stem Cell 2017; 20:18-28. [PMID: 28061351 DOI: 10.1016/j.stem.2016.12.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pathways underlying mouse embryonic development have always informed efforts to derive, maintain, and drive differentiation of human pluripotent stem cells. However, direct application of mouse embryology to the human system has not always been successful because of fundamental developmental differences between species. The naive pluripotent state of mouse embryonic stem cells (ESCs), in particular, has been difficult to capture in human ESCs, and appears to be transitory in the human embryo itself. Further studies of human and non-human primate embryo development are needed to untangle the complexities of pluripotency networks across mammalian species.
Collapse
Affiliation(s)
- Janet Rossant
- Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children and Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada.
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute and School of Medical Sciences, Sydney Medical School, University of Sydney, Westmead, NSW 2145, Australia.
| |
Collapse
|
239
|
Abstract
Recent advances allow access to human cell-based intestinal organoids that recreate human physiology to levels not possible with conventional 2D cell cultures. Despite their huge potential, there are many challenges that remain. This review will cover recent bioengineering approaches to improve organoid maturation, scale up, reproducibility and analysis. The first section covers the advances in engineering the culture environment, followed by the section on tools for micro-manipulation and analysis of organoids. The last section reviews the computational models developed to guide the use of engineered materials and tools, and to interpret observed results as well. The ability to use organoids for discovery research, and the need to both exert exquisite experimental control and obtain quantitative measurements from organoid models means that the field is ripe for collaborative efforts between biologists, engineers, clinicians and industry.
Collapse
Affiliation(s)
- Ge-Ah Kim
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shuichi Takayama
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
240
|
Pera M. Embryogenesis in a dish. Science 2017; 356:137-138. [PMID: 28408561 DOI: 10.1126/science.aan1495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Martin Pera
- The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
241
|
Affiliation(s)
- Martin Pera
- School of Biomedical Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
242
|
Simunovic M, Brivanlou AH. Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development 2017; 144:976-985. [PMID: 28292844 PMCID: PMC5358114 DOI: 10.1242/dev.143529] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells have an intrinsic ability to self-assemble and self-organize into complex and functional tissues and organs. By taking advantage of this ability, embryoids, organoids and gastruloids have recently been generated in vitro, providing a unique opportunity to explore complex embryological events in a detailed and highly quantitative manner. Here, we examine how such approaches are being used to answer fundamental questions in embryology, such as how cells self-organize and assemble, how the embryo breaks symmetry, and what controls timing and size in development. We also highlight how further improvements to these exciting technologies, based on the development of quantitative platforms to precisely follow and measure subcellular and molecular events, are paving the way for a more complete understanding of the complex events that help build the human embryo.
Collapse
Affiliation(s)
- Mijo Simunovic
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
243
|
|
244
|
From morphogen to morphogenesis and back. Nature 2017; 541:311-320. [DOI: 10.1038/nature21348] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
|