201
|
Ferreira FDR, Ferreira SB, Araújo AJ, Marinho Filho JDB, Pessoa C, Moraes MO, Costa-Lotufo LV, Montenegro RC, da Silva FDC, Ferreira VF, da Costa JG, de Abreu FC, Goulart MOF. Arylated α- and β-dihydrofuran naphthoquinones: Electrochemical parameters, evaluation of antitumor activity and their correlation. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.04.148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
202
|
Genomic phenotyping by barcode sequencing broadly distinguishes between alkylating agents, oxidizing agents, and non-genotoxic agents, and reveals a role for aromatic amino acids in cellular recovery after quinone exposure. PLoS One 2013; 8:e73736. [PMID: 24040048 PMCID: PMC3767620 DOI: 10.1371/journal.pone.0073736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/21/2013] [Indexed: 12/22/2022] Open
Abstract
Toxicity screening of compounds provides a means to identify compounds harmful for human health and the environment. Here, we further develop the technique of genomic phenotyping to improve throughput while maintaining specificity. We exposed cells to eight different compounds that rely on different modes of action: four genotoxic alkylating (methyl methanesulfonate (MMS), N-Methyl-N-nitrosourea (MNU), N,N′-bis(2-chloroethyl)-N-nitroso-urea (BCNU), N-ethylnitrosourea (ENU)), two oxidizing (2-methylnaphthalene-1,4-dione (menadione, MEN), benzene-1,4-diol (hydroquinone, HYQ)), and two non-genotoxic (methyl carbamate (MC) and dimethyl sulfoxide (DMSO)) compounds. A library of S. cerevisiae 4,852 deletion strains, each identifiable by a unique genetic ‘barcode’, were grown in competition; at different time points the ratio between the strains was assessed by quantitative high throughput ‘barcode’ sequencing. The method was validated by comparison to previous genomic phenotyping studies and 90% of the strains identified as MMS-sensitive here were also identified as MMS-sensitive in a much lower throughput solid agar screen. The data provide profiles of proteins and pathways needed for recovery after both genotoxic and non-genotoxic compounds. In addition, a novel role for aromatic amino acids in the recovery after treatment with oxidizing agents was suggested. The role of aromatic acids was further validated; the quinone subgroup of oxidizing agents were extremely toxic in cells where tryptophan biosynthesis was compromised.
Collapse
|
203
|
Diogo EBT, Dias GG, Rodrigues BL, Guimarães TT, Valença WO, Camara CA, de Oliveira RN, da Silva MG, Ferreira VF, de Paiva YG, Goulart MOF, Menna-Barreto RFS, de Castro SL, da Silva Júnior EN. Synthesis and anti-Trypanosoma cruzi activity of naphthoquinone-containing triazoles: electrochemical studies on the effects of the quinoidal moiety. Bioorg Med Chem 2013; 21:6337-48. [PMID: 24074878 DOI: 10.1016/j.bmc.2013.08.055] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 08/18/2013] [Accepted: 08/26/2013] [Indexed: 01/16/2023]
Abstract
In our continued search for novel trypanocidal compounds, twenty-six derivatives of para- and ortho-naphthoquinones coupled to 1,2,3-triazoles were synthesized. These compounds were evaluated against the infective bloodstream form of Trypanosoma cruzi, the etiological agent of Chagas disease. Compounds 17-24, 28-30 and 36-38 are described herein for the first time. Three of these novel compounds (28-30) were found to be more potent than the standard drug benznidazole, with IC50/24h values between 6.8 and 80.8μM. Analysis of the toxicity to heart muscle cells led to LC50/24h of <125, 63.1 and 281.6μM for 28, 29 and 30, respectively. Displaying a selectivity index of 34.3, compound 30 will be further evaluated in vivo. The electrochemical properties of selected compounds were evaluated in an attempt to find correlations with trypanocidal activity, and it was observed that more electrophilic quinones were generally more potent.
Collapse
Affiliation(s)
- Emilay B T Diogo
- Instituto de Ciências Exatas, Departamento de Química, UFMG, 31270-901 Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Yuan X, Pham AN, Miller CJ, Waite TD. Copper-catalyzed hydroquinone oxidation and associated redox cycling of copper under conditions typical of natural saline waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8355-8364. [PMID: 23796190 DOI: 10.1021/es4014344] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A detailed kinetic model has been developed to describe the oxidation of Cu(I) by O2 and the reduction of Cu(II) by 1,4-hydroquinone (H2Q) in the presence of O2 in 0.7 M NaCl solution over a pH range of 6.5-8.0. The reaction between Cu(I) and O2 is shown to be the most important pathway in the overall oxidation of Cu(I), with the rate constant for this oxidation process increasing with an increasing pH. In 0.7 M NaCl solutions, Cu(II) is capable of catalyzing the oxidation of H2Q in the presence of O2 with the monoanion, HQ(-), the kinetically active hydroquinone form, reducing Cu(II) with an intrinsic rate constant of (5.0 ± 0.4) × 10(7) M(-1) s(-1). Acting as a chain-propagating species, the deprotonated semiquinone radical (SQ(•) (-)) generated from both the one-electron oxidation of H2Q and the one-electron reduction of 1,4-benzoquinone (BQ) also reacts rapidly with Cu(II) and Cu(I), with the same rate constant of (2.0 ± 0.5) × 10(7) M(-1) s(-1). In addition to its role in reformation of Cu(II) via continuous oxidation of Cu(I), O2 rapidly removes SQ(•) (-), resulting in the generation of O2(•) (-). Agreement between half-cell reduction potentials of different redox couples provides confirmation of the veracity of the proposed model describing the interactions of copper and quinone species in circumneutral pH saline solutions.
Collapse
Affiliation(s)
- Xiu Yuan
- School of Civil and Environmental Engineering, The University of New South Wales , Sydney, New South Wales 2052, Australia
| | | | | | | |
Collapse
|
205
|
Ludewig G, Robertson LW. Polychlorinated biphenyls (PCBs) as initiating agents in hepatocellular carcinoma. Cancer Lett 2013; 334:46-55. [PMID: 23211541 PMCID: PMC3648605 DOI: 10.1016/j.canlet.2012.11.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/20/2012] [Accepted: 11/25/2012] [Indexed: 12/11/2022]
Abstract
PCBs are carcinogens, but for many decades it was assumed that PCBs may not possess initiating activity. Initiation is a process that involves changes in the DNA sequence, often, but not exclusively produced through DNA adduction by a reactive compound or reactive oxygen species (ROS). DNA adducts can be detected by (32)P-postlabeling, a method that Dr. Ramesh Gupta co-developed and refined. Today these types of assays together with other mechanistic studies provide convincing evidence that specific PCB congeners can be biotransformed to genotoxic and therefore potentially initiating metabolites. This review will provide an overview of our current knowledge of PCBs' genotoxic potential and mechanism of action, emphasizing the contributions of Dr. Ramesh Gupta during his tenures at the Universities of Kentucky and Louisville.
Collapse
Affiliation(s)
- Gabriele Ludewig
- The University of Iowa, 100 Oakdale Campus, IREH, Iowa City, IA 52242-5000, United States.
| | - Larry W Robertson
- The University of Iowa, 100 Oakdale Campus, IREH, Iowa City, IA 52242-5000, United States
| |
Collapse
|
206
|
Rawal M, Schroeder SR, Wagner BA, Cushing CM, Welsh JL, Button AM, Du J, Sibenaller ZA, Buettner GR, Cullen JJ. Manganoporphyrins increase ascorbate-induced cytotoxicity by enhancing H2O2 generation. Cancer Res 2013; 73:5232-41. [PMID: 23764544 DOI: 10.1158/0008-5472.can-13-0470] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Renewed interest in using pharmacological ascorbate (AscH-) to treat cancer has prompted interest in leveraging its cytotoxic mechanism of action. A central feature of AscH- action in cancer cells is its ability to act as an electron donor to O2 for generating H2O2. We hypothesized that catalytic manganoporphyrins (MnP) would increase AscH- oxidation rates, thereby increasing H2O2 fluxes and cytotoxicity. Three different MnPs were tested (MnTBAP, MnT2EPyP, and MnT4MPyP), exhibiting a range of physicochemical and thermodynamic properties. Of the MnPs tested, MnT4MPyP exerted the greatest effect on increasing the rate of AscH- oxidation as determined by the concentration of ascorbate radical [Asc•-] and the rate of oxygen consumption. At concentrations that had minimal effects alone, combining MnPs and AscH- synergized to decrease clonogenic survival in human pancreatic cancer cells. This cytotoxic effect was reversed by catalase, but not superoxide dismutase, consistent with a mechanism mediated by H2O2. MnPs increased steady-state concentrations of Asc•- upon ex vivo addition to whole blood obtained either from mice infused with AscH- or patients treated with pharmacologic AscH-. Finally, tumor growth in vivo was inhibited more effectively by combining MnT4MPyP with AscH-. We concluded that MnPs increase the rate of oxidation of AscH- to leverage H2O2 flux and ascorbate-induced cytotoxicity.
Collapse
Affiliation(s)
- Malvika Rawal
- Department of Radiation Oncology, The University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Fang G, Gao J, Dionysiou DD, Liu C, Zhou D. Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4605-4611. [PMID: 23586773 DOI: 10.1021/es400262n] [Citation(s) in RCA: 351] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There has been considerable interest in the use of persulfate for in situ chemical oxidation of organic contaminants in soils, sediments, and groundwater. Since humic acid (HA) exists ubiquitously in these environmental compartments, its redox active functional moieties, such as quinones, may play an important role in the oxidation processes of persulfate treatments. Understanding the effects of HA, especially the quinone functional groups on the degradation of pollutants by persulfate and the production of sulfate radicals (SO4(•-)) from persulfate, is beneficial for devising effective and economically feasible remediation strategies. In this study, the effects of model quinone compounds and HA on the degradation of 2,4,4'-trichlorobiphenyl (PCB28) by persulfate and the production of SO4(•-) from persulfate were investigated. It was found that quinones and HA can efficiently activate persulfate for the degradation of PCB28. The mechanism of persulfate activation was elucidated by quenching and electron paramagnetic resonance (EPR) studies. The results indicated that production of SO4(•-) from persulfate and quinones was semiquinone radical-dependent. The effects of quinone concentrations were also studied. The findings of this study elucidated a new pathway of persulfate activation, which could degrade environmental contaminants efficiently and provide useful information for the remediation of contaminated soil and water by persulfate.
Collapse
Affiliation(s)
- Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | | | | | | | | |
Collapse
|
208
|
Newsome JJ, Hassani M, Swann E, Bibby JM, Beall HD, Moody CJ. Benzofuran-, benzothiophene-, indazole- and benzisoxazole-quinones: excellent substrates for NAD(P)H:quinone oxidoreductase 1. Bioorg Med Chem 2013; 21:2999-3009. [PMID: 23635904 DOI: 10.1016/j.bmc.2013.03.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/14/2013] [Accepted: 03/22/2013] [Indexed: 11/19/2022]
Abstract
A series of heterocyclic quinones based on benzofuran, benzothiophene, indazole and benzisoxazole has been synthesized, and evaluated for their ability to function as substrates for recombinant human NAD(P)H:quinone oxidoreductase (NQO1), a two-electron reductase upregulated in tumor cells. Overall, the quinones are excellent substrates for NQO1, approaching the reduction rates observed for menadione.
Collapse
Affiliation(s)
- Jeffery J Newsome
- Department of Chemistry, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | | | | | | | | | | |
Collapse
|
209
|
Hayes RP, Green AR, Nissen MS, Lewis KM, Xun L, Kang C. Structural characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) from Sphingobium chlorophenolicum, a new type of aromatic ring-cleavage enzyme. Mol Microbiol 2013; 88:523-36. [PMID: 23489289 DOI: 10.1111/mmi.12204] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 11/28/2022]
Abstract
PcpA (2,6-dichloro-p-hydroquinone 1,2-dioxygenase) from Sphingobium chlorophenolicum, a non-haem Fe(II) dioxygenase capable of cleaving the aromatic ring of p-hydroquinone and its substituted variants, is a member of the recently discovered p-hydroquinone 1,2-dioxygenases. Here we report the 2.6 Å structure of PcpA, which consists of four βαβββ motifs, a hallmark of the vicinal oxygen chelate superfamily. The secondary co-ordination sphere of the Fe(II) centre forms an extensive hydrogen-bonding network with three solvent exposed residues, linking the catalytic Fe(II) to solvent. A tight hydrophobic pocket provides p-hydroquinones access to the Fe(II) centre. The p-hydroxyl group is essential for the substrate-binding, thus phenols and catechols, lacking a p-hydroxyl group, do not bind to PcpA. Site-directed mutagenesis and kinetic analysis confirm the critical catalytic role played by the highly conserved His10, Thr13, His226 and Arg259. Based on these results, we propose a general reaction mechanism for p-hydroquinone 1,2-dioxygenases.
Collapse
Affiliation(s)
- Robert P Hayes
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | | | | | | | | | | |
Collapse
|
210
|
Kohonen P, Benfenati E, Bower D, Ceder R, Crump M, Cross K, Grafström RC, Healy L, Helma C, Jeliazkova N, Jeliazkov V, Maggioni S, Miller S, Myatt G, Rautenberg M, Stacey G, Willighagen E, Wiseman J, Hardy B. The ToxBank Data Warehouse: Supporting the Replacement of In Vivo Repeated Dose Systemic Toxicity Testing. Mol Inform 2013; 32:47-63. [PMID: 27481023 DOI: 10.1002/minf.201200114] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022]
Abstract
The aim of the SEURAT-1 (Safety Evaluation Ultimately Replacing Animal Testing-1) research cluster, comprised of seven EU FP7 Health projects co-financed by Cosmetics Europe, is to generate a proof-of-concept to show how the latest technologies, systems toxicology and toxicogenomics can be combined to deliver a test replacement for repeated dose systemic toxicity testing on animals. The SEURAT-1 strategy is to adopt a mode-of-action framework to describe repeated dose toxicity, combining in vitro and in silico methods to derive predictions of in vivo toxicity responses. ToxBank is the cross-cluster infrastructure project whose activities include the development of a data warehouse to provide a web-accessible shared repository of research data and protocols, a physical compounds repository, reference or "gold compounds" for use across the cluster (available via wiki.toxbank.net), and a reference resource for biomaterials. Core technologies used in the data warehouse include the ISA-Tab universal data exchange format, REpresentational State Transfer (REST) web services, the W3C Resource Description Framework (RDF) and the OpenTox standards. We describe the design of the data warehouse based on cluster requirements, the implementation based on open standards, and finally the underlying concepts and initial results of a data analysis utilizing public data related to the gold compounds.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lyn Healy
- National Institute for Biological Standards and Control, Potters Bar, UK
| | | | | | | | - Silvia Maggioni
- Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | - Glyn Stacey
- National Institute for Biological Standards and Control, Potters Bar, UK
| | | | | | | |
Collapse
|
211
|
Lallana E, Tirelli N. Oxidation-Responsive Polymers: Which Groups to Use, How to Make Them, What to Expect From Them (Biomedical Applications). MACROMOL CHEM PHYS 2012. [DOI: 10.1002/macp.201200502] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
212
|
Du J, Cullen JJ, Buettner GR. Ascorbic acid: chemistry, biology and the treatment of cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:443-57. [PMID: 22728050 PMCID: PMC3608474 DOI: 10.1016/j.bbcan.2012.06.003] [Citation(s) in RCA: 490] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/11/2012] [Accepted: 06/13/2012] [Indexed: 12/14/2022]
Abstract
Since the discovery of vitamin C, the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes, for example via the HIF system, as well as via the epigenetic landscape of cells and tissues. In fact, all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH(-) an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H(2)O(2)). In the presence of catalytic metals this oxidation is accelerated. In this review, we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H(2)O(2) to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer.
Collapse
Affiliation(s)
- Juan Du
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
| | - Joseph J. Cullen
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
- Department of Surgery, University of Iowa College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, USA
- Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Garry R. Buettner
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, USA
| |
Collapse
|
213
|
Reichstein A, Vortherms S, Bannwitz S, Tentrop J, Prinz H, Müller K. Synthesis and Structure–Activity Relationships of Lapacho Analogues. 1. Suppression of Human Keratinocyte Hyperproliferation by 2-Substituted Naphtho[2,3-b]furan-4,9-diones, Activation by Enzymatic One- and Two-Electron Reduction, and Intracellular Generation of Superoxide. J Med Chem 2012; 55:7273-84. [DOI: 10.1021/jm3009597] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alexandra Reichstein
- Institute of Pharmaceutical and Medicinal
Chemistry,
Westphalian Wilhelms-University, Hittorfstraße 58−62,
D-48149 Münster, Germany
| | - Silke Vortherms
- Institute of Pharmaceutical and Medicinal
Chemistry,
Westphalian Wilhelms-University, Hittorfstraße 58−62,
D-48149 Münster, Germany
| | - Sven Bannwitz
- Institute of Pharmaceutical and Medicinal
Chemistry,
Westphalian Wilhelms-University, Hittorfstraße 58−62,
D-48149 Münster, Germany
| | - Jan Tentrop
- Institute of Pharmaceutical and Medicinal
Chemistry,
Westphalian Wilhelms-University, Hittorfstraße 58−62,
D-48149 Münster, Germany
| | - Helge Prinz
- Institute of Pharmaceutical and Medicinal
Chemistry,
Westphalian Wilhelms-University, Hittorfstraße 58−62,
D-48149 Münster, Germany
| | - Klaus Müller
- Institute of Pharmaceutical and Medicinal
Chemistry,
Westphalian Wilhelms-University, Hittorfstraße 58−62,
D-48149 Münster, Germany
| |
Collapse
|
214
|
Abstract
Mitochondrial energy metabolism depends upon high-flux and low-flux electron transfer pathways. The former provide the energy to support chemiosmotic coupling for oxidative phosphorylation. The latter provide mechanisms for signaling and control of mitochondrial functions. Few practical methods are available to measure rates of individual mitochondrial electron transfer reactions; however, a number of approaches are available to measure steady-state redox potentials (E (h)) of donor/acceptor couples, and these can be used to gain insight into rate-controlling reactions as well as mitochondrial bioenergetics. Redox changes within the respiratory electron transfer pathway are quantified by optical spectroscopy and measurement of changes in autofluorescence. Low-flux pathways involving thiol/disulfide redox couples are measured by redox western blot and mass spectrometry-based redox proteomics. Together, the approaches provide the opportunity to develop integrated systems biology descriptions of mitochondrial redox signaling and control mechanisms.
Collapse
Affiliation(s)
- James R Roede
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Emory University, 201 Dowman Drive, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
215
|
Polychlorinated biphenyls and their different level metabolites as inhibitors of glutathione S-transferase isoenzymes. Chem Biol Interact 2012; 198:1-8. [DOI: 10.1016/j.cbi.2012.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/06/2012] [Accepted: 04/07/2012] [Indexed: 11/21/2022]
|
216
|
Cardoso AR, Chausse B, da Cunha FM, Luévano-Martínez LA, Marazzi TBM, Pessoa PS, Queliconi BB, Kowaltowski AJ. Mitochondrial compartmentalization of redox processes. Free Radic Biol Med 2012; 52:2201-8. [PMID: 22564526 DOI: 10.1016/j.freeradbiomed.2012.03.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 12/25/2022]
Abstract
Knowledge of location and intracellular subcompartmentalization is essential for the understanding of redox processes, because oxidants, owing to their reactive nature, must be generated close to the molecules modified in both signaling and damaging processes. Here we discuss known redox characteristics of various mitochondrial microenvironments. Points covered are the locations of mitochondrial oxidant generation, characteristics of antioxidant systems in various mitochondrial compartments, and diffusion characteristics of oxidants in mitochondria. We also review techniques used to measure redox state in mitochondrial subcompartments, antioxidants targeted to mitochondrial subcompartments, and methodological concerns that must be addressed when using these tools.
Collapse
|
217
|
Samuni A, Goldstein S. Redox properties and thiol reactivity of geldanamycin and its analogues in aqueous solutions. J Phys Chem B 2012; 116:6404-10. [PMID: 22591491 DOI: 10.1021/jp304206n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Geldanamycin (GM), a benzoquinone ansamycin antibiotic, is a natural product inhibitor of Hsp90 with potent and broad anticancer properties, but with unacceptable levels of hepatotoxicity. Less toxic C17-substituted analogues have been synthesizedincluding 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) and the water-soluble 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG). Redox properties and thiol reactivity are central to the therapeutic and toxicologic effects of quinones, and the question arises as whether the extent of toxicity of GM, 17-AAG, and 17-DMAG is related to their redox potentials. Using pulse radiolysis, the one-electron redox potentials (vs NHE) at pH 7.0 of GM and 17-AAG have been determined to be -62 ± 7 mV and -273 ± 8 mV, respectively, whereas a value of -194 ± 6 mV has been previously published for 17-DMAG. The rate constants of the reaction of GM and its analogues with glutathione, cysteine, or dithiothreitol under anoxia at pH 7.4 followed the order GM > 17-DMAG > 17-AAG, which correlates with the order of the redox potential of the quinone/semiquinone couple. Thus, GM reacts much faster with thiols compared to the less toxic 17-DMAG and 17-AAG, and is also expected to be more readily reduced by reductases to the respective semiquinone radical, which either decomposes to yield the respective hydroquinone or reduces oxygen to superoxide. Because both redox cycling and thiol reactivity have been associated with quinone toxicity, it is concluded that the toxicity of benzoquinone ansamycins is directly related to the redox potential of the quinone/semiquinone couple.
Collapse
Affiliation(s)
- Amram Samuni
- Department of Molecular Biology, Medical School, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
218
|
Charisiadis P, Tsiafoulis CG, Exarchou V, Tzakos AG, Gerothanassis IP. Rapid and direct low micromolar NMR method for the simultaneous detection of hydrogen peroxide and phenolics in plant extracts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:4508-4513. [PMID: 22524670 DOI: 10.1021/jf205003e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A rapid and direct low micromolar ¹H NMR method for the simultaneous identification and quantification of hydrogen peroxide and phenolic compounds in plant extracts was developed. The method is based on the highly deshielded ¹H NMR signal of H₂O₂ at ∼10.30 ppm in DMSO-d₆ and the combined use of picric acid and low temperature, near the freezing point of the solution, in order to achieve the minimum proton exchange rate. Line widths of H₂O₂ below 3.8 Hz were obtained for several Greek oregano extracts which resulted in a detection limit of 0.7 μmol L⁻¹. Application of an array of NMR experiments, including 2D ¹H-¹³C HMBC, spiking of the samples with H₂O₂, and variable temperature experiments, resulted in the unequivocal assignment of H₂O₂ precluding any confusion with interferences from intrinsic phenolics in the extract.
Collapse
Affiliation(s)
- Pantelis Charisiadis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina GR-45110, Greece
| | | | | | | | | |
Collapse
|
219
|
Gawlik M, Gawlik MB, Brandys J. The impact of Triton WR-1339 induced hyperlipidemia on the effects of benzo(a)pyrene or guaiacol on α- and γ-tocopherol pools and selected markers of pro-/antioxidative balance in rat plasma and erythrocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:386-393. [PMID: 22387351 DOI: 10.1016/j.etap.2012.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/05/2012] [Accepted: 01/22/2012] [Indexed: 05/31/2023]
Abstract
The toxicity of carcinogenic benzo(a)pyrene (BaP) can be intensified by the pro-oxidative effects of metabolic activation. The oxidatively active products can be formed during enzymatic biotransformation or in the process of co-oxygenation with lipid peroxidation. This study assesses if the acute hyperlipidemia can increase pro-oxidative effects of BaP as a factor intensifying processes of lipid peroxidation and co-oxygenation. After three days of i.p. administration of BaP or guaiacol (equimolar dose 10mg/kg b.w.) without or with the hyperlipidemia inducer-Triton WR-1339 to male Wistar rats, the levels of α- and γ-tocopherol were measured in erythrocytes and plasma together with the level of lipid peroxidation as malonyldialdehyde (MDA) concentration. Guaiacol was chosen as a reference substance due to its high ability to co-oxygenate. Additionally, the activity of superoxide dismutase (Cu,ZnSOD) in erythrocytes and plasma was monitored. In normolipaemic groups the significant decrease in erythrocyte α-tocopherol pool and the increase in lipid peroxidation level were observed after BaP or guaiacol administration. In hyperlipaemic groups, despite the increase in the level of lipid peroxidation, there were no additional effects in tocopherol pools compared to the normolipaemic groups which could be attributed to co-oxygenation. Decrease of α-tocopherol in erythrocytes was proportional to the reduction in normolipemic subjects when accounting for the migration to hyperlipemic plasma. There was no co-oxygenation effect on the activity of superoxide dismutase (Cu,ZnSOD) in blood.
Collapse
Affiliation(s)
- Maciej Gawlik
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland.
| | | | | |
Collapse
|
220
|
Sarsour EH, Kumar MG, Kalen AL, Goswami M, Buettner GR, Goswami PC. MnSOD activity regulates hydroxytyrosol-induced extension of chronological lifespan. AGE (DORDRECHT, NETHERLANDS) 2012; 34:95-109. [PMID: 21384152 PMCID: PMC3260369 DOI: 10.1007/s11357-011-9223-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/15/2011] [Indexed: 05/30/2023]
Abstract
Chronological lifespan (CLS) is defined as the duration of quiescence in which normal cells retain the capacity to reenter the proliferative cycle. This study investigates whether hydroxytyrosol (HT), a naturally occurring polyphenol found in olives, extends CLS in normal human fibroblasts (NHFs). Quiescent NHFs cultured for a long duration (30-60 days) lose their capacity to repopulate. Approximately 60% of these cells exit the cell cycle permanently; a significant increase in the doubling time of the cell population was observed. CLS was extended in quiescent NHFs that were cultured in the presence of HT for 30-60 days. HT-induced extension of CLS was associated with an approximately 3-fold increase in manganese superoxide dismutase (MnSOD) activity while there was no change in copper-zinc superoxide dismutase, catalase, or glutathione peroxidase protein levels. Quiescent NHFs overexpressing a dominant-negative mutant form of MnSOD failed to extend CLS. HT suppressed age-associated increase in mitochondrial ROS levels. Results from spectroscopy assays indicate that HT in the presence of peroxidases can undergo catechol-semiquinone-quinone redox cycling generating superoxide, which in a cellular context can activate the antioxidant system, e.g., MnSOD expression. These results demonstrate that HT extends CLS by increasing MnSOD activity and decreasing age-associated mitochondrial reactive oxygen species accumulation.
Collapse
Affiliation(s)
- Ehab H. Sarsour
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242-1181 USA
| | - Maneesh G. Kumar
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242-1181 USA
| | - Amanda L. Kalen
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242-1181 USA
| | - Monali Goswami
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242-1181 USA
| | - Garry R. Buettner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242-1181 USA
| | - Prabhat C. Goswami
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242-1181 USA
| |
Collapse
|
221
|
Ieda N, Nakagawa H, Peng T, Yang D, Suzuki T, Miyata N. Photocontrollable Peroxynitrite Generator Based on N-Methyl-N-nitrosoaminophenol for Cellular Application. J Am Chem Soc 2012; 134:2563-8. [DOI: 10.1021/ja206744z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Naoya Ieda
- Graduate School of Pharmaceutical
Science, Nagoya City University, 3-1, Tanabe-dori,
Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical
Science, Nagoya City University, 3-1, Tanabe-dori,
Mizuho-ku, Nagoya, Aichi 467-8603, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama
332-0012, Japan
| | - Tao Peng
- Morningside Laboratory for Chemical
Biology and Department Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic
of China
| | - Dan Yang
- Morningside Laboratory for Chemical
Biology and Department Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic
of China
| | - Takayoshi Suzuki
- Graduate School of Pharmaceutical
Science, Nagoya City University, 3-1, Tanabe-dori,
Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| | - Naoki Miyata
- Graduate School of Pharmaceutical
Science, Nagoya City University, 3-1, Tanabe-dori,
Mizuho-ku, Nagoya, Aichi 467-8603, Japan
| |
Collapse
|
222
|
Franzen S, Sasan K, Sturgeon BE, Lyon BJ, Battenburg BJ, Gracz H, Dumariah R, Ghiladi R. Nonphotochemical Base-Catalyzed Hydroxylation of 2,6-Dichloroquinone by H2O2 Occurs by a Radical Mechanism. J Phys Chem B 2012; 116:1666-76. [DOI: 10.1021/jp208536x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Bradley E. Sturgeon
- Department of Chemistry, Monmouth College, Monmouth, Illinois 61462, United States
| | - Blake J. Lyon
- Department of Chemistry, Monmouth College, Monmouth, Illinois 61462, United States
| | | | | | | | | |
Collapse
|
223
|
Shendrik AN, Odaryuk ID, Kanibolotska LV, Kalinichenko EA, Tsyapalo AS, Beznos VV, Kanibolotsky AL. Radical formation during phenol oxidation in aqueous media. INT J CHEM KINET 2012. [DOI: 10.1002/kin.20592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
224
|
Madeo J, Mihajlovic M, Lazaridis T, Gunner MR. Slow dissociation of a charged ligand: analysis of the primary quinone Q(A) site of photosynthetic bacterial reaction centers. J Am Chem Soc 2011; 133:17375-85. [PMID: 21863833 PMCID: PMC3202297 DOI: 10.1021/ja205811f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Indexed: 12/14/2022]
Abstract
Reaction centers (RCs) are integral membrane proteins that undergo a series of electron transfer reactions during the process of photosynthesis. In the Q(A) site of RCs from Rhodobacter sphaeroides, ubiquinone-10 is reduced, by a single electron transfer, to its semiquinone. The neutral quinone and anionic semiquinone have similar affinities, which is required for correct in situ reaction thermodynamics. A previous study showed that despite similar affinities, anionic quinones associate and dissociate from the Q(A) site at rates ≈10(4) times slower than neutral quinones indicating that anionic quinones encounter larger binding barriers (Madeo, J.; Gunner, M. R. Modeling binding kinetics at the Q(A) site in bacterial reaction centers. Biochemistry 2005, 44, 10994-11004). The present study investigates these barriers computationally, using steered molecular dynamics (SMD) to model the unbinding of neutral ground state ubiquinone (UQ) and its reduced anionic semiquinone (SQ(-)) from the Q(A) site. In agreement with experiment, the SMD unbinding barrier for SQ(-) is larger than for UQ. Multi Conformational Continuum Electrostatics (MCCE), used here to calculate the binding energy, shows that SQ(-) and UQ have comparable affinities. In the Q(A) site, there are stronger binding interactions for SQ(-) compared to UQ, especially electrostatic attraction to a bound non-heme Fe(2+). These interactions compensate for the higher SQ(-) desolvation penalty, allowing both redox states to have similar affinities. These additional interactions also increase the dissociation barrier for SQ(-) relative to UQ. Thus, the slower SQ(-) dissociation rate is a direct physical consequence of the additional binding interactions required to achieve a Q(A) site affinity similar to that of UQ. By a similar mechanism, the slower association rate is caused by stronger interactions between SQ(-) and the polar solvent. Thus, stronger interactions for both the unbound and bound states of charged and highly polar ligands can slow their binding kinetics without a conformational gate. Implications of this for other systems are discussed.
Collapse
Affiliation(s)
- Jennifer Madeo
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - Maja Mihajlovic
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - Themis Lazaridis
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - M. R. Gunner
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| |
Collapse
|
225
|
Goldstein S. One-Electron Reduction of 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin: A Pulse Radiolysis Study. J Phys Chem A 2011; 115:8928-32. [DOI: 10.1021/jp205161v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sara Goldstein
- Chemistry Institute, The Accelerator Laboratory, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
226
|
Cullen JJ, Spitz DR, Buettner GR. Comment on "Pharmacologic ascorbate synergizes with gemcitabine in preclinical models of pancreatic cancer," i.e., all we are saying is, give C a chance. Free Radic Biol Med 2011; 50:1726-7. [PMID: 21459141 PMCID: PMC3128375 DOI: 10.1016/j.freeradbiomed.2011.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 12/27/2022]
Affiliation(s)
- Joseph J Cullen
- Free Radical and Radiation Biology Graduate Program, Department of Surgery, The University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
227
|
Anderson DG, Mariappan SVS, Buettner GR, Doorn JA. Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone. J Biol Chem 2011; 286:26978-86. [PMID: 21642436 DOI: 10.1074/jbc.m111.249532] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The oxidation and toxicity of dopamine is believed to contribute to the selective neurodegeneration associated with Parkinson disease. The formation of reactive radicals and quinones greatly contributes to dopaminergic toxicity through a variety of mechanisms. The physiological metabolism of dopamine to 3,4-dihydroxyphenylacetaldehyde (DOPAL) via monoamine oxidase significantly increases its toxicity. To more adequately explain this enhanced toxicity, we hypothesized that DOPAL is capable of forming radical and quinone species upon oxidation. Here, two unique oxidation products of DOPAL are identified. Several different oxidation methods gave rise to a transient DOPAL semiquinone radical, which was characterized by electron paramagnetic resonance spectroscopy. NMR identified the second oxidation product of DOPAL as the ortho-quinone. Also, carbonyl hydration of DOPAL in aqueous media was evident via NMR. Interestingly, the DOPAL quinone exists exclusively in the hydrated form. Furthermore, the enzymatic and chemical oxidation of DOPAL greatly enhance protein cross-linking, whereas auto-oxidation results in the production of superoxide. Also, DOPAL was shown to be susceptible to oxidation by cyclooxygenase-2 (COX-2). The involvement of this physiologically relevant enzyme in both oxidative stress and Parkinson disease underscores the potential importance of DOPAL in the pathogenesis of this condition.
Collapse
Affiliation(s)
- David G Anderson
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242-1112, USA
| | | | | | | |
Collapse
|
228
|
Bogurcu N, Sevimli-Gur C, Ozmen B, Bedir E, Korkmaz KS. ALCAPs induce mitochondrial apoptosis and activate DNA damage response by generating ROS and inhibiting topoisomerase I enzyme activity in K562 leukemia cell line. Biochem Biophys Res Commun 2011; 409:738-44. [PMID: 21624350 DOI: 10.1016/j.bbrc.2011.05.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/16/2011] [Indexed: 11/18/2022]
Abstract
Endemic Alkanna cappadocica was used to isolate novel antitumor molecules from Turkish landscapes in our previous studies. In this study, deoxyalkannin (ALCAP1), β,β-dimethylacrylalkannin (ALCAP2), acetylalkannin (ALCAP3), and alkannin (ALCAP4) as well as the novel isolated compounds 5-methoxydeoxyalkannin (ALCAP5), 8-methoxydeoxyalkannin (ALCAP6), 5-methoxyacetylalkannin (ALCAP7), 5-methoxy-β,β-dimethylacrylalkannin (ALCAP8) were characterized. The topoisomerase I (topo I) inhibitory activity of ALCAPs was investigated using in vitro plasmid relaxation assay and found that ALCAP2, 3, 4 and 7 were potent inhibitors at 2-6μM concentrations. Further, DNA damage response to ALCAP treatments was also studied by measuring the H2AX((S139)) and ATM((S1981)) phosphorylations. ALCAP2, 7 and 8 induced the DNA damage and apoptosis, consistently resulted in PARP cleavage at nanomolar concentrations in K562 leukemia cells. Moreover, when the free radical (ROS) generating capacity of the compounds was studied by 2',7'-dichlorofluorescein-diacetate assay using flow cytometry, we found that a known antioxidant N-acetyl-cysteine almost completely abrogated the H2AX((S139)) phosphorylations and the caspase 3 cleavage and activation. Thus, γH2AX((S139)) foci formation remained higher than the control, and an increase in CHK2((T68)) phosphorylation was observed by ALCAP2 and 7 treatments suggested that, these compounds can be potential therapeutics against tumor cell growth because of their unique DNA damaging abilities additional to enzyme inhibition similar to those of doxorubicin.
Collapse
Affiliation(s)
- Nuray Bogurcu
- Ege University, Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, 35100 Bornova, Izmir, Turkey
| | | | | | | | | |
Collapse
|
229
|
Ieda N, Nakagawa H, Horinouchi T, Peng T, Yang D, Tsumoto H, Suzuki T, Fukuhara K, Miyata N. Peroxynitrite generation from a NO-releasing nitrobenzene derivative in response to photoirradiation. Chem Commun (Camb) 2011; 47:6449-51. [PMID: 21547304 DOI: 10.1039/c1cc11681a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photocontrollable ONOO(-) generation from a nitrobenzene derivative was demonstrated. The designed compound released NO in response to photoirradiation, and the resulting semiquinone reduced molecular oxygen to generate O(2)˙(-); reaction of the two generated ONOO(-), as confirmed with an ONOO(-) fluorescent probe, HKGreen-3.
Collapse
Affiliation(s)
- Naoya Ieda
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Nagoya, Aichi 467-8603, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Perron NR, García CR, Pinzón JR, Chaur MN, Brumaghim JL. Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage. J Inorg Biochem 2011; 105:745-53. [PMID: 21481816 DOI: 10.1016/j.jinorgbio.2011.02.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 02/16/2011] [Accepted: 02/17/2011] [Indexed: 12/18/2022]
Abstract
Inhibition of copper-mediated DNA damage has been determined for several polyphenol compounds. The 50% inhibition concentration values (IC(50)) for most of the tested polyphenols are between 8 and 480 μM for copper-mediated DNA damage prevention. Although most tested polyphenols were antioxidants under these conditions, they generally inhibited Cu(I)-mediated DNA damage less effectively than Fe(II)-mediated damage, and some polyphenols also displayed prooxidant activity. Because semiquinone radicals and hydroxyl radical adducts were detected by EPR spectroscopy in solutions of polyphenols, Cu(I), and H(2)O(2), it is likely that weak polyphenol-Cu(I) interactions permit a redox-cycling mechanism, whereby the necessary reactants to cause DNA damage (Cu(I), H(2)O(2), and reducing agents) are regenerated. The polyphenol compounds that prevent copper-mediated DNA damage likely follow a radical scavenging pathway as determined by EPR spectroscopy.
Collapse
Affiliation(s)
- Nathan R Perron
- Department of Chemistry, Clemson University, Clemson, SC 29634-0973, United States
| | | | | | | | | |
Collapse
|
231
|
Wangpradit O, Moman E, Nolan KB, Buettner GR, Robertson LW, Luthe G. Observation of an unusual electronically distorted semiquinone radical of PCB metabolites in the active site of prostaglandin H synthase-2. CHEMOSPHERE 2010; 81:1501-1508. [PMID: 20843536 PMCID: PMC3622869 DOI: 10.1016/j.chemosphere.2010.08.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 05/29/2023]
Abstract
The activation of the metabolites of airborne polychlorinated biphenyls (PCBs) into highly reactive radicals is of fundamental importance. We found that human recombinant prostaglandin H synthase-2 (hPGHS-2) biotransforms dihydroxy-PCBs, such as 4-chlorobiphenyl-2',5'-hydroquinone (4-CB-2',5'-H(2)Q), into semiquinone radicals via one-electron oxidation. Using electron paramagnetic resonance (EPR) spectroscopy, we observed the formation of the symmetric quartet spectrum (1:3:3:1 by area) of 4-chlorobiphenyl-2',5'-semiquinone radical (4-CB-2',5'-SQ()(-)) from 4-CB-2',5'-H(2)Q. This spectrum changed to an asymmetric spectrum with time: the change can be explained as the overlap of two different semiquinone radical species. Hindered rotation of the 4-CB-2',5'-SQ()(-) appears not to be a major factor for the change in lineshape because increasing the viscosity of the medium with glycerol produced no significant change in lineshape. Introduction of a fluorine, which increases the steric hindrance for rotation of the dihydroxy-PCB studied, also produced no significant changes. An in silico molecular docking model of 4-CB-2',5'-H(2)Q in the peroxidase site of hPGHS-2 together with ab initio quantum mechanical studies indicate that the close proximity of a negatively charged carboxylic acid in the peroxidase active site may be responsible for the observed perturbation in the spectrum. This study provides new insights into the formation of semiquinones from PCB metabolites and underscores the potential role of PGHS-2 in the metabolic activation of PCBs.
Collapse
Affiliation(s)
- Orarat Wangpradit
- Department of Occupational and Environmental Health, The University of Iowa, 100 Oakdale Campus, Iowa City, IA 52242-5000, USA
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa City, IA 52242-5000, USA
| | - Edelmiro Moman
- ProSciens, Computing & Molecular Sciences, 2-4 rue du Palais de Justice, L-1841, Luxembourg
| | - Kevin B. Nolan
- Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland (RCSI), Dublin 2, Ireland
| | - Garry R. Buettner
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa City, IA 52242-5000, USA
- Free Radical and Radiation Biology Program, The University of Iowa, Iowa City, IA, 52242-1181, USA
| | - Larry W. Robertson
- Department of Occupational and Environmental Health, The University of Iowa, 100 Oakdale Campus, Iowa City, IA 52242-5000, USA
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa City, IA 52242-5000, USA
| | - Gregor Luthe
- Department of Occupational and Environmental Health, The University of Iowa, 100 Oakdale Campus, Iowa City, IA 52242-5000, USA
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, 100 Oakdale Campus, Iowa City, IA 52242-5000, USA
- Saxion University of Applied Sciences, Institute for Life Science and Technology, Enschede, The Netherlands
| |
Collapse
|
232
|
Cabello CM, Lamore SD, Bair WB, Davis AL, Azimian SM, Wondrak GT. DCPIP (2,6-dichlorophenolindophenol) as a genotype-directed redox chemotherapeutic targeting NQO1*2 breast carcinoma. Free Radic Res 2010; 45:276-92. [PMID: 21034357 DOI: 10.3109/10715762.2010.526766] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Accumulative experimental evidence suggests feasibility of chemotherapeutic intervention targeting human cancer cells by pharmacological modulation of cellular oxidative stress. Current efforts aim at personalization of redox chemotherapy through identification of predictive tumour genotypes and redox biomarkers. Based on earlier research demonstrating that anti-melanoma activity of the pro-oxidant 2,6-dichlorophenolindophenol (DCPIP) is antagonized by cellular NAD(P)H:quinone oxidoreductase (NQO1) expression, this study tested DCPIP as a genotype-directed redox chemotherapeutic targeting homozygous NQO1*2 breast carcinoma, a common missense genotype [rs1800566 polymorphism; NP_000894.1:p.Pro187Ser] encoding a functionally impaired NQO1 protein. In a panel of cultured breast carcinoma cell lines and NQO1-transfectants with differential NQO1 expression levels, homozygous NQO1*2 MDA-MB231 cells were hypersensitive to DCPIP-induced caspase-independent cell death that occurred after early onset of oxidative stress with glutathione depletion and loss of genomic integrity. Array analysis revealed upregulated expression of oxidative (GSTM3, HMOX1, EGR1), heat shock (HSPA6, HSPA1A, CRYAB) and genotoxic stress response (GADD45A, CDKN1A) genes confirmed by immunoblot detection of HO-1, Hsp70, Hsp70B', p21 and phospho-p53 (Ser15). In a murine xenograft model of human homozygous NQO1*2-breast carcinoma, systemic administration of DCPIP displayed significant anti-tumour activity, suggesting feasibility of redox chemotherapeutic intervention targeting the NQO1*2 genotype.
Collapse
Affiliation(s)
- Christopher M Cabello
- Department of Pharmacology and Toxicology, College of Pharmacy, Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
233
|
Eslami AC, Pasanphan W, Wagner BA, Buettner GR. Free radicals produced by the oxidation of gallic acid: An electron paramagnetic resonance study. Chem Cent J 2010; 4:15. [PMID: 20687941 PMCID: PMC2924338 DOI: 10.1186/1752-153x-4-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 08/05/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gallic acid (3,4,5-trihydroxybenzoic acid) is found in a wide variety of plants; it is extensively used in tanning, ink dyes, as well as in the manufacturing of paper. The gallate moiety is a key component of many functional phytochemicals. In this work electron paramagnetic spectroscopy (EPR) was used to detect the free radicals generated by the air-oxidation of gallic acid. RESULTS We found that gallic acid produces two different radicals as a function of pH. In the pH range between 7-10, the spectrum of the gallate free radical is a doublet of triplets (aH = 1.00 G, aH = 0.23 G, aH = 0.28 G). This is consistent with three hydrogens providing hyperfine splitting. However, in a more alkaline environment, pH >10, the hyperfine splitting pattern transforms into a 1:2:1 pattern (aH (2) = 1.07 G). Using D2O as a solvent, we demonstrate that the third hydrogen (i.e. aH = 0.28 G) at lower pH is a slowly exchanging hydron, participating in hydrogen bonding with two oxygens in ortho position on the gallate ring. The pKa of this proton has been determined to be 10. CONCLUSIONS This simple and novel approach permitted the understanding of the prototropic equilibrium of the semiquinone radicals generated by gallic acid, a ubiquitous compound, allowing new insights into its oxidation and subsequent reactions.
Collapse
Affiliation(s)
- Angelique C Eslami
- Free Radical and Radiation Biology, Med Labs B180, The University of Iowa, Iowa City, IA 52242-1181, USA.
| | | | | | | |
Collapse
|