201
|
Wang T, Si M, Song Y, Zhu W, Gao F, Wang Y, Zhang L, Zhang W, Wei G, Luo ZQ, Shen X. Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathog 2015; 11:e1005020. [PMID: 26134274 PMCID: PMC4489752 DOI: 10.1371/journal.ppat.1005020] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
Type VI secretion systems (T6SSs) are widespread multi-component machineries that translocate effectors into either eukaryotic or prokaryotic cells, for virulence or for interbacterial competition. Herein, we report that the T6SS-4 from Yersinia pseudotuberculosis displays an unexpected function in the transportation of Zn2+ to combat diverse stresses and host immunity. Environmental insults such as oxidative stress induce the expression of T6SS-4 via OxyR, the transcriptional factor that also regulates many oxidative response genes. Zinc transportation is achieved by T6SS-4-mediated translocation of a novel Zn2+-binding protein substrate YezP (YPK_3549), which has the capacity to rescue the sensitivity to oxidative stress exhibited by T6SS-4 mutants when added to extracellular milieu. Disruption of the classic zinc transporter ZnuABC together with T6SS-4 or yezP results in mutants that almost completely lost virulence against mice, further highlighting the importance of T6SS-4 in resistance to host immunity. These results assigned an unconventional role to T6SSs, which will lay the foundation for studying novel mechanisms of metal ion uptake by bacteria and the role of this process in their resistance to host immunity and survival in harmful environments. One unique feature of type VI secretion system is the presence of multiple distinct systems in certain bacterial species. It is well established that some of these systems function to compete for their living niches among diverse bacterial species, whilst the activity of many such transporters remains unknown. Because metal ions are essential components to virtually all forms of life including bacteria, eukaryotic hosts have evolved complicated strategies to sequester metal ions, which constitute a major branch of their nutritional immunity. Therefore the ability to acquire metal ions is critical for bacterial virulence. This study reveals that the T6SS-4 of Yersinia pseudotuberculosis (Yptb) functions to import Zn2+ from the environment to mitigate the detrimental effects such as hydroxyl radicals induced by diverse stresses. Expression of the transporter is activated by multiple regulatory proteins, including OxyR and OmpR that sense diverse environmental cues. Zinc ion acquisition is achieved by translocating a Zn2+-binding substrate YezP, which is co-regulated with T6SS-4 by OxyR. Our results reveal a novel role for type VI secretion system, which is important in the study of the mechanism of metal ion acquisition by bacteria and the role of this process in bacterial pathogenesis and survival in detrimental environments.
Collapse
Affiliation(s)
- Tietao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Meiru Si
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunhong Song
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhan Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Fen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Weipeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
202
|
Abstract
Neurohormonal activation with attendant aldosteronism contributes to the clinical appearance of congestive heart failure (CHF). Aldosteronism is intrinsically coupled to Zn and Ca dyshomeostasis, in which consequent hypozincemia compromises Zn homeostasis and Zn-based antioxidant defenses that contribute to the CHF prooxidant phenotype. Ionized hypocalcemia leads to secondary hyperparathyroidism with parathyroid hormone-mediated Ca overloading of diverse cells, including cardiomyocytes. When mitochondrial Ca overload exceeds a threshold, myocyte necrosis follows. The reciprocal regulation involving cytosolic free [Zn]i as antioxidant and [Ca]i as prooxidant can be uncoupled in favor of Zn-based antioxidant defenses. Increased [Zn]i acts as a multifaceted antioxidant by: (1) inhibiting Ca entry through L-type channels and hence cardioprotectant from the Ca-driven mitochondriocentric signal-transducer effector pathway to nonischemic necrosis, (2) serving as catalytic regulator of Cu/Zn-superoxide dismutase, and (3) activating its cytosolic sensor, metal-responsive transcription factor that regulates the expression of relevant antioxidant defense genes. Albeit present in subnanomolar range, increased cytosolic free [Zn]i enhances antioxidant capacity that confers cardioprotection. It can be achieved exogenously by ZnSO4 supplementation or endogenously using a β3-receptor agonist (eg, nebivolol) that enhances NO generation to release inactive cytosolic Zn bound to metallothionein. By recognizing the pathophysiologic relevance of Zn dyshomeostasis in the prooxidant CHF phenotype and by exploiting the pharmacophysiologic potential of [Zn]i as antioxidant, vulnerable cardiomyocytes under assault from neurohormonal activation can be protected and the myocardium spared from adverse structural remodeling.
Collapse
|
203
|
Zhou X, Cooper KL, Sun X, Liu KJ, Hudson LG. Selective Sensitization of Zinc Finger Protein Oxidation by Reactive Oxygen Species through Arsenic Binding. J Biol Chem 2015; 290:18361-9. [PMID: 26063799 DOI: 10.1074/jbc.m115.663906] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Indexed: 12/22/2022] Open
Abstract
Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation.
Collapse
Affiliation(s)
- Xixi Zhou
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Karen L Cooper
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Xi Sun
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Ke J Liu
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| | - Laurie G Hudson
- From the Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
204
|
Soliman MF, El-Shenawy NS, Tadros MM, Abd El-Azeez AA. Impaired behavior and changes in some biochemical markers of bivalve ( Ruditapes decussatus) due to zinc toxicity. TOXICOLOGICAL & ENVIRONMENTAL CHEMISTRY 2015; 97:674-686. [DOI: 10.1080/02772248.2015.1058381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
205
|
How is the inner circadian clock controlled by interactive clock proteins?: Structural analysis of clock proteins elucidates their physiological role. FEBS Lett 2015; 589:1516-29. [PMID: 25999309 DOI: 10.1016/j.febslet.2015.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022]
Abstract
Most internationally travelled researchers will have encountered jetlag. If not, working odd hours makes most of us feel somehow dysfunctional. How can all this be linked to circadian rhythms and circadian clocks? In this review, we define circadian clocks, their composition and underlying molecular mechanisms. We describe and discuss recent crystal structures of Drosophila and mammalian core clock components and the enormous impact they had on the understanding of circadian clock mechanisms. Finally, we highlight the importance of circadian clocks for the daily regulation of human/mammalian physiology and show connections to overall fitness, health and disease.
Collapse
|
206
|
Liu Y, Batchuluun B, Ho L, Zhu D, Prentice KJ, Bhattacharjee A, Zhang M, Pourasgari F, Hardy AB, Taylor KM, Gaisano H, Dai FF, Wheeler MB. Characterization of Zinc Influx Transporters (ZIPs) in Pancreatic β Cells: ROLES IN REGULATING CYTOSOLIC ZINC HOMEOSTASIS AND INSULIN SECRETION. J Biol Chem 2015; 290:18757-69. [PMID: 25969539 PMCID: PMC4513131 DOI: 10.1074/jbc.m115.640524] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
Zinc plays an essential role in the regulation of pancreatic β cell function, affecting important processes including insulin biosynthesis, glucose-stimulated insulin secretion, and cell viability. Mutations in the zinc efflux transport protein ZnT8 have been linked with both type 1 and type 2 diabetes, further supporting an important role for zinc in glucose homeostasis. However, very little is known about how cytosolic zinc is controlled by zinc influx transporters (ZIPs). In this study, we examined the β cell and islet ZIP transcriptome and show consistent high expression of ZIP6 (Slc39a6) and ZIP7 (Slc39a7) genes across human and mouse islets and MIN6 β cells. Modulation of ZIP6 and ZIP7 expression significantly altered cytosolic zinc influx in pancreatic β cells, indicating an important role for ZIP6 and ZIP7 in regulating cellular zinc homeostasis. Functionally, this dysregulated cytosolic zinc homeostasis led to impaired insulin secretion. In parallel studies, we identified both ZIP6 and ZIP7 as potential interacting proteins with GLP-1R by a membrane yeast two-hybrid assay. Knock-down of ZIP6 but not ZIP7 in MIN6 β cells impaired the protective effects of GLP-1 on fatty acid-induced cell apoptosis, possibly via reduced activation of the p-ERK pathway. Therefore, our data suggest that ZIP6 and ZIP7 function as two important zinc influx transporters to regulate cytosolic zinc concentrations and insulin secretion in β cells. In particular, ZIP6 is also capable of directly interacting with GLP-1R to facilitate the protective effect of GLP-1 on β cell survival.
Collapse
Affiliation(s)
- Ying Liu
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Battsetseg Batchuluun
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Louisa Ho
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Dan Zhu
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Kacey J Prentice
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Alpana Bhattacharjee
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Ming Zhang
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Farzaneh Pourasgari
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Alexandre B Hardy
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Kathryn M Taylor
- the Breast Cancer Molecular Pharmacology Unit, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VIIth Avenue, Cardiff CF10 3NB United Kingdom
| | - Herbert Gaisano
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Feihan F Dai
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| | - Michael B Wheeler
- From the Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada and
| |
Collapse
|
207
|
Cruz KJC, Oliveira ARSD, Marreiro DDN. Antioxidant role of zinc in diabetes mellitus. World J Diabetes 2015; 6:333-337. [PMID: 25789115 PMCID: PMC4360427 DOI: 10.4239/wjd.v6.i2.333] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/02/2014] [Accepted: 12/19/2014] [Indexed: 02/05/2023] Open
Abstract
Chronic hyperglycemia statue noticed in diabetes mellitus favors the manifestation of oxidative stress by increasing the production of reactive oxygen species and/or by reducing the antioxidant defense system activity. Zinc plays an important role in antioxidant defense in type 2 diabetic patients by notably acting as a cofactor of the superoxide dismutase enzyme, by modulating the glutathione metabolism and metallothionein expression, by competing with iron and copper in the cell membrane and by inhibiting nicotinamide adenine dinucleotide phosphate-oxidase enzyme. Zinc also improves the oxidative stress in these patients by reducing chronic hyperglycemia. It indeed promotes phosphorylation of insulin receptors by enhancing transport of glucose into cells. However, several studies reveal changes in zinc metabolism in individuals with type 2 diabetes mellitus and controversies remain regarding the effect of zinc supplementation in the improvement of oxidative stress in these patients. Faced with the serious challenge of the metabolic disorders related to oxidative stress in diabetes along with the importance of antioxidant nutrients in the control of this disease, new studies may contribute to improve our understanding of the role played by zinc against oxidative stress and its connection with type 2 diabetes mellitus prognosis. This could serve as a prelude to the development of prevention strategies and treatment of disorders associated with this chronic disease.
Collapse
|
208
|
Correlation of zinc with oxidative stress biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:3060-76. [PMID: 25774936 PMCID: PMC4377952 DOI: 10.3390/ijerph120303060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/27/2015] [Accepted: 03/09/2015] [Indexed: 12/31/2022]
Abstract
Hypertension and smoking are related with oxidative stress (OS), which in turn reports on cellular aging. Zinc is an essential element involved in an individual's physiology. The aim of this study was to evaluate the relation of zinc levels in serum and urine with OS and cellular aging and its effect on the development of hypertension. In a Spanish sample with 1500 individuals, subjects aged 20-59 years were selected, whose zinc intake levels fell within the recommended limits. These individuals were classified according to their smoking habits and hypertensive condition. A positive correlation was found (Pearson's C=0.639; p=0.01) between Zn serum/urine quotient and oxidized glutathione levels (GSSG). Finally, risk of hypertension significantly increased when the GSSG levels exceeded the 75 percentile; OR=2.80 (95%CI=1.09-7.18) and AOR=3.06 (95%CI=0.96-9.71). Low zinc levels in serum were related with OS and cellular aging and were, in turn, to be a risk factor for hypertension.
Collapse
|
209
|
Yang H, Keen CL, Lanoue L. Influence of intracellular zinc on cultures of rat cardiac neural crest cells. ACTA ACUST UNITED AC 2015; 104:11-22. [PMID: 25689142 DOI: 10.1002/bdrb.21135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/08/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Developmental zinc (Zn) deficiency increases the incidence of heart anomalies in rat fetuses, in regions and structures derived from the outflow tract. Given that the development of the outflow tract requires the presence of cardiac neural crest cells (cNCC), we speculated that Zn deficiency selectively kills cNCC and could lead to heart malformations. METHODS Cardiac NCC were isolated from E10.5 rat embryos and cultured in control media (CTRL), media containing 3 μM of the cell permeable metal chelator N, N, N', N'-tetrakis (2-pyridylmethyl) ethylene diamine (TPEN), or in TPEN-treated media supplemented with 3 μM Zn (TPEN + Zn). Cardiac NCC were collected after 6, 8, and 24 h of treatment to assess cell viability, proliferation, and apoptosis. RESULTS The addition of TPEN to the culture media reduced free intracellular Zn pools and cell viability as assessed by low ATP production, compared to cells grown in control or Zn-supplemented media. There was an accumulation of reactive oxygen species, a release of mitochondrial cytochrome c into the cytoplasm, and an increased cellular expression of active caspase-3 in TPEN-treated cNCC compared to cNCC cultured in CTRL or TPEN + Zn media. CONCLUSION Zn deficiency can result in oxidative stress in cNCC, and subsequent decreases in their population and metabolic activity. These data support the concept that Zn deficiency associated developmental heart defects may arise in part as a consequence of altered cNCC metabolism.
Collapse
Affiliation(s)
- Hsunhui Yang
- Department of Nutrition, University of California, Davis, California
| | | | | |
Collapse
|
210
|
Ooi TC, Mohammad NH, Sharif R. Zinc carnosine protects against hydrogen peroxide-induced DNA damage in WIL2-NS lymphoblastoid cell line independent of poly (ADP-Ribose) polymerase expression. Biol Trace Elem Res 2014; 162:8-17. [PMID: 25326781 DOI: 10.1007/s12011-014-0153-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022]
Abstract
The aim of this study is to investigate the ability of zinc carnosine to protect the human lymphoblastoid (WIL2-NS) cell line from hydrogen peroxide-induced DNA damage. Cells were cultured with medium containing zinc carnosine at the concentrations of 0.4, 4, 16 and 32 μM for 9 days prior to treatment with 30 μM of hydrogen peroxide (30 min). Zinc carnosine at the concentration 16 μM was optimal in protecting cells from hydrogen peroxide-induced cytotoxicity and gave the lowest percentage of apoptotic and necrotic cells. Results showed that zinc carnosine was able to induce glutathione production and protect cells from hydrogen peroxide-induced oxidative stress at all concentration and the highest protection was observed at 32-μM zinc carnosine culture. Cytokinesis-block micronucleus cytome assay showed that cells cultured with 4-32 μM of zinc carnosine showed significant reduction in micronuclei formation, nucleoplasmic bridges and nuclear bud frequencies (p < 0.05), suggesting that these concentrations maybe optimal in protecting cells from hydrogen peroxide-induced DNA damage. However, after being challenged with hydrogen peroxide, no increase in poly(ADP-ribose) polymerase expression was observed. Thus, results from this study demonstrate that zinc carnosines possess antioxidant properties and are able to reduce hydrogen peroxide-induced DNA damage in vitro independent of poly(ADP-ribose) polymerase. Further studies are warranted to understand the mechanism of protection of zinc carnosine against hydrogen peroxide-induced damage.
Collapse
Affiliation(s)
- Theng Choon Ooi
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
211
|
Joray ML, Yu TW, Ho E, Clarke SL, Stanga Z, Gebreegziabher T, Hambidge KM, Stoecker BJ. Zinc supplementation reduced DNA breaks in Ethiopian women. Nutr Res 2014; 35:49-55. [PMID: 25491347 DOI: 10.1016/j.nutres.2014.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 12/19/2022]
Abstract
Assessment of zinc status remains a challenge largely because serum/plasma zinc may not accurately reflect an individual's zinc status. The comet assay, a sensitive method capable of detecting intracellular DNA strand breaks, may serve as a functional biomarker of zinc status. We hypothesized that effects of zinc supplementation on intracellular DNA damage could be assessed from samples collected in field studies in Ethiopia using the comet assay. Forty women, from villages where reported consumption of meat was less than once per month and phytate levels were high, received 20 mg zinc as zinc sulfate or placebo daily for 17 days in a randomized placebo-controlled trial. Plasma zinc concentrations were determined by inductively coupled plasma mass spectrometry. Cells from whole blood at the baseline and end point of the study were embedded in agarose, electrophoresed, and stained before being scored by an investigator blinded to the treatments. Although zinc supplementation did not significantly affect plasma zinc, mean (± SEM) comet tail moment measurement of supplemented women decreased from 39.7 ± 2.7 to 30.0 ± 1.8 (P< .005), indicating a decrease in DNA strand breaks in zinc-supplemented individuals. These findings demonstrated that the comet assay could be used as a functional assay to assess the effects of zinc supplementation on DNA integrity in samples collected in a field setting where food sources of bioavailable zinc are limited. Furthermore, the comet assay was sufficiently sensitive to detect changes in zinc status as a result of supplementation despite no significant changes in plasma zinc.
Collapse
Affiliation(s)
- Maya L Joray
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Tian-Wei Yu
- School of Biological & Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Emily Ho
- School of Biological & Population Health Sciences, Oregon State University, Corvallis, OR, USA.
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Zeno Stanga
- Division of Endocrinology, Diabetes and Clinical Nutrition, University Hospital, Bern, Switzerland; Department of Internal Medicine, University Hospital, Bern, Switzerland.
| | - Tafere Gebreegziabher
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA; Institute of Nutrition, Food Science and Technology, Hawassa University, Hawassa, Ethiopia.
| | - K Michael Hambidge
- Section of Nutrition, Department of Pediatrics, University of Colorado Health Sciences Center, Aurora, CO, USA.
| | - Barbara J Stoecker
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
212
|
Wani R, Nagata A, Murray BW. Protein redox chemistry: post-translational cysteine modifications that regulate signal transduction and drug pharmacology. Front Pharmacol 2014; 5:224. [PMID: 25339904 PMCID: PMC4186267 DOI: 10.3389/fphar.2014.00224] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/17/2014] [Indexed: 12/26/2022] Open
Abstract
The perception of reactive oxygen species has evolved over the past decade from agents of cellular damage to secondary messengers which modify signaling proteins in physiology and the disease state (e.g., cancer). New protein targets of specific oxidation are rapidly being identified. One emerging class of redox modification occurs to the thiol side chain of cysteine residues which can produce multiple chemically distinct alterations to the protein (e.g., sulfenic/sulfinic/sulfonic acid, disulfides). These post-translational modifications (PTM) are shown to affect the protein structure and function. Because redox-sensitive proteins can traffic between subcellular compartments that have different redox environments, cysteine oxidation enables a spatio-temporal control to signaling. Understanding ramifications of these oxidative modifications to the functions of signaling proteins is crucial for understanding cellular regulation as well as for informed-drug discovery process. The effects of EGFR oxidation of Cys797 on inhibitor pharmacology are presented to illustrate the principle. Taken together, cysteine redox PTM can impact both cell biology and drug pharmacology.
Collapse
Affiliation(s)
- Revati Wani
- Oncology Research Unit, Pfizer Worldwide Research and Development San Diego, CA, USA
| | - Asako Nagata
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development San Diego, CA, USA
| | - Brion W Murray
- Oncology Research Unit, Pfizer Worldwide Research and Development San Diego, CA, USA
| |
Collapse
|
213
|
Buet A, Moriconi JI, Santa-María GE, Simontacchi M. An exogenous source of nitric oxide modulates zinc nutritional status in wheat plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:337-45. [PMID: 25221922 DOI: 10.1016/j.plaphy.2014.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 08/24/2014] [Indexed: 05/05/2023]
Abstract
The effect of addition of the nitric oxide donor S-nitrosoglutathione (GSNO) on the Zn nutritional status was evaluated in hydroponically-cultured wheat plants (Triticum aestivum cv. Chinese Spring). Addition of GSNO in Zn-deprived plants did not modify biomass accumulation but accelerated leaf senescence in a mode concomitant with accelerated decrease of Zn allocation to shoots. In well-supplied plants, Zn concentration in both roots and shoots declined due to long term exposure to GSNO. A further evaluation of net Zn uptake rate (ZnNUR) during the recovery of long-term Zn-deprivation unveiled that enhanced Zn-accumulation was partially blocked when GSNO was present in the uptake medium. This effect on uptake was mainly associated with a change of Zn translocation to shoots. Our results suggest a role for GSNO in the modulation of Zn uptake and in root-to-shoot translocation during the transition from deficient to sufficient levels of Zn-supply.
Collapse
Affiliation(s)
- Agustina Buet
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Diagonal 113 y 61, La Plata, Buenos Aires 1900, Argentina
| | - Jorge I Moriconi
- Instituto Tecnológico Chascomús (IIB-INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín, Av. Intendente Marino Km 8.2, Chascomús, Buenos Aires 7130, Argentina
| | - Guillermo E Santa-María
- Instituto Tecnológico Chascomús (IIB-INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín, Av. Intendente Marino Km 8.2, Chascomús, Buenos Aires 7130, Argentina
| | - Marcela Simontacchi
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Diagonal 113 y 61, La Plata, Buenos Aires 1900, Argentina.
| |
Collapse
|
214
|
de Queiroz CAA, Fonseca SGC, Frota PB, Figueiredo IL, Aragão KS, Magalhães CEC, de Carvalho CBM, Lima AÂM, Ribeiro RA, Guerrant RL, Moore SR, Oriá RB. Zinc treatment ameliorates diarrhea and intestinal inflammation in undernourished rats. BMC Gastroenterol 2014; 14:136. [PMID: 25095704 PMCID: PMC4142448 DOI: 10.1186/1471-230x-14-136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/28/2014] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND WHO guidelines recommend zinc supplementation as a key adjunct therapy for childhood diarrhea in developing countries, however zinc's anti-diarrheal effects remain only partially understood. Recently, it has been recognized that low-grade inflammation may influence stunting. In this study, we examined whether oral zinc supplementation could improve weight, intestinal inflammation, and diarrhea in undernourished weanling rats. METHODS Rats were undernourished using a northeastern Brazil regional diet (RBD) for two weeks, followed by oral gavage with a saturated lactose solution (30 g/kg) in the last 7 days to induce osmotic diarrhea. Animals were checked for diarrhea daily after lactose intake. Blood was drawn in order to measure serum zinc levels by atomic absorption spectroscopy. Rats were euthanized to harvest jejunal tissue for histology and cytokine profiles by ELISA. In a subset of animals, spleen samples were harvested under aseptic conditions to quantify bacterial translocation. RESULTS Oral zinc supplementation increased serum zinc levels following lactose-induced osmotic diarrhea. In undernourished rats, zinc improved weight gain following osmotic diarrhea and significantly reduced diarrheal scores by the third day of lactose intake (p < 0.05), with improved jejunum histology (p < 0.0001). Zinc supplementation diminished bacterial translocation only in lactose-challenged undernourished rats (p = 0.03) compared with the untreated challenged controls and reduced intestinal IL-1β and TNF-α cytokines to control levels. CONCLUSION Altogether our findings provide novel mechanisms of zinc action in the setting of diarrhea and undernutrition and support the use of zinc to prevent the vicious cycle of malnutrition and diarrhea.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Reinaldo B Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology and Institute of Biomedicine, School of Medicine, Federal University of Ceara, Rua Cel, Nunes de Melo, 1315, Fortaleza, CE, Brazil.
| |
Collapse
|
215
|
Davidson HW, Wenzlau JM, O'Brien RM. Zinc transporter 8 (ZnT8) and β cell function. Trends Endocrinol Metab 2014; 25:415-24. [PMID: 24751356 PMCID: PMC4112161 DOI: 10.1016/j.tem.2014.03.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 02/07/2023]
Abstract
Human pancreatic β cells have exceptionally high zinc content. In β cells the highest zinc concentration is in insulin secretory granules, from which it is cosecreted with the hormone. Uptake of zinc into secretory granules is mainly mediated by zinc transporter 8 (ZnT8), the product of the SLC30A8 [solute carrier family 30 (zinc transporter), member 8] gene. The minor alleles of several single-nucleotide polymorphisms (SNPs) in SLC30A8 are associated with decreased risk of type 2 diabetes (T2D), but the precise mechanisms underlying the protective effects remain uncertain. In this article we review current knowledge of the role of ZnT8 in maintaining zinc homeostasis in β cells, its role in glucose metabolism based on knockout mouse studies, and current theories regarding the link between ZnT8 function and T2D.
Collapse
Affiliation(s)
- Howard W Davidson
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA; Integrated Department of Immunology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Janet M Wenzlau
- Barbara Davis Center for Diabetes, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
216
|
Cortese-Krott MM, Kulakov L, Opländer C, Kolb-Bachofen V, Kröncke KD, Suschek CV. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells. Redox Biol 2014; 2:945-54. [PMID: 25180171 PMCID: PMC4143817 DOI: 10.1016/j.redox.2014.06.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 01/07/2023] Open
Abstract
Aberrant production of nitric oxide (NO) by inducible NO synthase (iNOS) has been implicated in the pathogenesis of endothelial dysfunction and vascular disease. Mechanisms responsible for the fine-tuning of iNOS activity in inflammation are still not fully understood. Zinc is an important structural element of NOS enzymes and is known to inhibit its catalytical activity. In this study we aimed to investigate the effects of zinc on iNOS activity and expression in endothelial cells. We found that zinc down-regulated the expression of iNOS (mRNA+protein) and decreased cytokine-mediated activation of the iNOS promoter. Zinc-mediated regulation of iNOS expression was due to inhibition of NF-κB transactivation activity, as determined by a decrease in both NF-κB-driven luciferase reporter activity and expression of NF-κB target genes, including cyclooxygenase 2 and IL-1β. However, zinc did not affect NF-κB translocation into the nucleus, as assessed by Western blot analysis of nuclear and cytoplasmic fractions. Taken together our results demonstrate that zinc limits iNOS-derived high output NO production in endothelial cells by inhibiting NF-κB-dependent iNOS expression, pointing to a role of zinc as a regulator of iNOS activity in inflammation. Zinc inhibits iNOS-dependent nitrite accumulation in endothelial cells. Zinc decreases cytokine-induced iNOS expression in endothelial cells. Zinc inhibits iNOS promoter activity. NF-kB silencing abolishes cytokine-induced iNOS expression. Zinc inhibits the transactivation activity of NF-κB.
Collapse
Affiliation(s)
- Miriam M Cortese-Krott
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology, and Angiology, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany ; Research Group Immunobiology, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Larissa Kulakov
- Cardiovascular Research Laboratory, Department of Cardiology, Pneumology, and Angiology, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany ; Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Christian Opländer
- Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Victoria Kolb-Bachofen
- Research Group Immunobiology, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Klaus-D Kröncke
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Christoph V Suschek
- Research Group Immunobiology, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany ; Department of Trauma and Hand Surgery, Medical Faculty, Heinrich-Heine-University of Düsseldorf, Universitätsstr. 1, Düsseldorf D-40225, Germany
| |
Collapse
|
217
|
Marlatt VL, Sun J, Curran CA, Bailey HC, Kennedy CK, Elphick JR, Martyniuk CJ. Molecular responses to 17β-estradiol in early life stage salmonids. Gen Comp Endocrinol 2014; 203:203-14. [PMID: 24698784 DOI: 10.1016/j.ygcen.2014.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 01/19/2023]
Abstract
Environmental estrogens (EE) are ubiquitous in many aquatic environments and biological responses to EEs in early developmental stages of salmonids are poorly understood compared to juvenile and adult stages. Using 17β-estradiol (E2) as a model estrogen, waterborne exposures were conducted on early life stage rainbow trout (Oncorhynchus mykiss; egg, alevin, swim-up fry) and both molecular and physiological endpoints were measured to quantify the effects of E2. To investigate developmental stage-specific effects, laboratory exposures of 1 μg/L E2 were initiated pre-hatching as eyed embryos or post-hatching upon entering the alevin stage. High mortality (∼90%) was observed when E2 exposures were initiated at the eyed embryo stage compared to the alevin stage (∼35% mortality), demonstrating stage-specific sensitivity. Gene expression analyses revealed that vitellogenin was detectable in the liver of swim-up fry, and was highly inducible by 1 μg/L E2 (>200-fold higher levels compared to control animals). Experiments also confirmed the induction of vitellogenin protein levels in protein extracts isolated from head and tail regions of swim-up fry after E2 exposure. These findings suggest that induction of vitellogenin, a well-characterized biomarker for estrogenic exposure, can be informative measured at this early life stage. Several other genes of the reproductive endocrine axis (e.g. estrogen receptors and androgen receptors) exhibited decreased expression levels compared to control animals. In addition, chronic exposure to E2 during the eyed embryo and alevin stages resulted in suppressive effects on growth related genes (growth hormone receptors, insulin-like growth factor 1) as well as premature hatching, suggesting that the somatotropic axis is a key target for E2-mediated developmental and growth disruptions. Combining molecular biomarkers with morphological and physiological changes in early life stage salmonids holds considerable promise for further defining estrogen action during development, and for assessing the impacts of endocrine disrupting chemicals in vivo in teleosts.
Collapse
Affiliation(s)
- Vicki L Marlatt
- Nautilus Environmental, 8664 Commerce Court, Burnaby, British Columbia V5A 4N71, Canada.
| | - Jinying Sun
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Cat A Curran
- Nautilus Environmental, 8664 Commerce Court, Burnaby, British Columbia V5A 4N71, Canada
| | - Howard C Bailey
- Nautilus Environmental, 8664 Commerce Court, Burnaby, British Columbia V5A 4N71, Canada
| | - Chris K Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | - James R Elphick
- Nautilus Environmental, 8664 Commerce Court, Burnaby, British Columbia V5A 4N71, Canada
| | - Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada
| |
Collapse
|
218
|
Interaction of Circadian Clock Proteins CRY1 and PER2 Is Modulated by Zinc Binding and Disulfide Bond Formation. Cell 2014; 157:1203-15. [DOI: 10.1016/j.cell.2014.03.057] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/06/2014] [Accepted: 03/17/2014] [Indexed: 11/22/2022]
|
219
|
Scientific Opinion on the potential reduction of the currently authorised maximum zinc content in complete feed. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3668] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
220
|
Zinc regulates the acute phase response and serum amyloid A production in response to sepsis through JAK-STAT3 signaling. PLoS One 2014; 9:e94934. [PMID: 24732911 PMCID: PMC3986341 DOI: 10.1371/journal.pone.0094934] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/21/2014] [Indexed: 01/08/2023] Open
Abstract
Sepsis rapidly activates the host inflammatory response and acute phase response. Severe sepsis, complicated by multiple organ failure, is associated with overwhelming inflammation and high mortality. We previously observed that zinc (Zn) deficiency significantly increases mortality in a mouse model of polymicrobial sepsis due to over-activation of the inflammatory response. In order to identify potential mechanisms that account for Zn-responsive effects, we generated whole exome expression profiles from the lung tissue of septic mice that were maintained on Zn modified diets. Based on systems analysis, we observed that Zn deficiency enhances the acute phase response and particularly the JAK-STAT3 pathway, resulting in increased serum amyloid A production. In vitro studies of primary hepatocytes and HepG2 cells substantiated that Zn-deficiency augments serum amyloid A production through up-regulation of the JAK-STAT3 and NF-κB pathways. In contrast, Zn inhibited STAT3 activation through the up-regulation of SHP1 activity. Collectively, these findings demonstrate that Zn deficiency enhances the acute phase response through up-regulation of the JAK-STAT3 pathway, thereby perpetuating increased inflammation that may lead to increased morbidity and mortality in response to sepsis.
Collapse
|
221
|
Tian X, Zheng Y, Li Y, Shen Z, Tao L, Dou X, Qian J, Shen H. Psychological stress induced zinc accumulation and up-regulation of ZIP14 and metallothionein in rat liver. BMC Gastroenterol 2014; 14:32. [PMID: 24548602 PMCID: PMC3931483 DOI: 10.1186/1471-230x-14-32] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 02/13/2014] [Indexed: 12/31/2022] Open
Abstract
Background Zinc is necessary for normal liver function; and vice versa, the liver plays a central role in zinc homeostasis. The aim of present study is to assess the effects of repeated psychological stress (PS) on the zinc metabolism and related mechanism involved in zinc homeostasis in rat liver. Methods In present study, we used communication box to create PS model and investigated the serum corticosterone (CORT), zinc level in serum and liver, liver metallothionein (MT) content and ZRT/IRT-like Protein 14 (ZIP14) mRNA expression. Results The results showed that the serum CORT level increased and serum zinc level decreased significantly after 7 d and 14 d PS treatment. Meanwhile, zinc and MT contents in liver were elevated after 14 d PS exposure, while those in 7 d PS exposure group did not change. ZIP14 mRNA was expressed markedly at 7 d after the onset of PS, while Zip14 mRNA expression in the liver after 14 d PS exposure reached normal level compared with control group. Conclusions The results suggest that PS exposure could induce hypozincemia, which might be related to liver zinc accumulation because of high level of MT through glucocorticoid-mediated MT synthesis and ZIP14 expression induced by interleukin-6.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianxin Qian
- Department of Naval Hygiene, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China.
| | | |
Collapse
|
222
|
Enhancement of cellular antioxidant-defence preserves diastolic dysfunction via regulation of both diastolic Zn2+ and Ca2+ and prevention of RyR2-leak in hyperglycemic cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:290381. [PMID: 24693334 PMCID: PMC3945998 DOI: 10.1155/2014/290381] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/17/2013] [Indexed: 01/03/2023]
Abstract
We examined whether cellular antioxidant-defence enhancement preserves diastolic dysfunction via regulation of both diastolic intracellular free Zn2+ and Ca2+ levels ([Zn2+]i and [Ca2+]i) levels N-acetyl cysteine (NAC) treatment (4 weeks) of diabetic rats preserved altered cellular redox state and also prevented diabetes-induced tissue damage and diastolic dysfunction with marked normalizations in the resting [Zn2+]i and [Ca2+]i. The kinetic parameters of transient changes in Zn2+ and Ca2+ under electrical stimulation and the spatiotemporal properties of Zn2+ and Ca2+ sparks in resting cells are found to be normal in the treated diabetic group. Biochemical analysis demonstrated that the NAC treatment also antagonized hyperphosphorylation of cardiac ryanodine receptors (RyR2) and significantly restored depleted protein levels of both RyR2 and calstabin2. Incubation of cardiomyocytes with 10 µM ZnCl2 exerted hyperphosphorylation in RyR2 as well as higher phosphorphorylations in both PKA and CaMKII in a concentration-dependent manner, similar to hyperglycemia. Our present data also showed that a subcellular oxidative stress marker, NF-κB, can be activated if the cells are exposed directly to Zn2+. We thus for the first time report that an enhancement of antioxidant defence in diabetics via directly targeting heart seems to prevent diastolic dysfunction due to modulation of RyR2 macromolecular-complex thereby leading to normalized [Ca2+]i and [Zn2+]i
in cardiomyocytes.
Collapse
|
223
|
Trevisan R, Flesch S, Mattos JJ, Milani MR, Bainy ACD, Dafre AL. Zinc causes acute impairment of glutathione metabolism followed by coordinated antioxidant defenses amplification in gills of brown mussels Perna perna. Comp Biochem Physiol C Toxicol Pharmacol 2014; 159:22-30. [PMID: 24095941 DOI: 10.1016/j.cbpc.2013.09.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 01/28/2023]
Abstract
Zinc demonstrates protective and antioxidant properties at physiological levels, although these characteristics are not attributed at moderate or high concentrations. Zinc toxicity has been related to a number of factors, including interference with antioxidant defenses. In particular, the inhibition of glutathione reductase (GR) has been suggested as a possible mechanism for acute zinc toxicity in bivalves. The present work investigates the biochemical effects of a non-lethal zinc concentration on antioxidant-related parameters in gills of brown mussels Perna perna exposed for 21 days to 2.6 μM zinc chloride. After 2 days of exposure, zinc caused impairment of the antioxidant system, decreasing GR activity and glutathione levels. An increase in antioxidant defenses became evident at 7 and 21 days of exposure, as an increase in superoxide dismutase and glutathione peroxidase activity along with restoration of glutathione levels and GR activity. After 7 and 21 days, an increase in cellular peroxides and lipid peroxidation end products were also detected, which are indicative of oxidative damage. Changes in GR activity contrasts with protein immunoblotting data, suggesting that zinc produces a long lasting inhibition of GR. Contrary to the general trend in antioxidants, levels of peroxiredoxin 6 decreased after 21 days of exposure. The data presented here support the hypothesis that zinc can impair thiol homeostasis, causes an increase in lipid peroxidation and inhibits GR, imposing a pro-oxidant status, which seems to trigger homeostatic mechanisms leading to a subsequent increase on antioxidant-related defenses.
Collapse
Affiliation(s)
- Rafael Trevisan
- Department of Biochemistry, Biological Sciences Centre, Federal University of Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|
224
|
Azzouz I, Trabelsi H, Hanini A, Ferchichi S, Tebourbi O, Sakly M, Abdelmelek H. Interaction between nanoparticles generated by zinc chloride treatment and oxidative responses in rat liver. Int J Nanomedicine 2013; 9:223-9. [PMID: 24403828 PMCID: PMC3883618 DOI: 10.2147/ijn.s55974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim of the present study was to investigate the interaction of zinc chloride (3 mg/kg, intraperitoneally [ip]) in rat liver in terms of the biosynthesis of nanoparticles. Zinc treatment increased zinc content in rat liver. Analysis of fluorescence revealed the presence of red fluorescence in the liver following zinc treatment. Interestingly, the co-exposure to zinc (3 mg/kg, ip) and selenium (0.20 mg/L, per os [by mouth]) led to a higher intensity of red fluorescence compared to zinc-treated rats. In addition, X-ray diffraction measurements carried out on liver fractions of zinc-treated rats point to the biosynthesis of zinc sulfide and/or selenide nanocomplexes at nearly 51.60 nm in size. Moreover, co-exposure led to nanocomplexes of about 72.60 nm in size. The interaction of zinc with other mineral elements (S, Se) generates several nanocomplexes, such as ZnS and/or ZnSe. The nanocomplex ZnX could interact directly with enzyme activity or indirectly by the disruption of mineral elements’ bioavailability in cells. Subacute zinc or selenium treatment decreased malondialdehyde levels, indicating a drop in lipid peroxidation. In addition, antioxidant enzyme assays showed that treatment with zinc or co-treatment with zinc and selenium increased the activities of glutathione peroxidase, catalase, and superoxide dismutase. Consequently, zinc complexation with sulfur and/or selenium at nanoscale level could enhance antioxidative responses, which is correlated to the ratio of number of ZnX nanoparticles (X=sulfur or X=selenium) to malondialdehyde level in rat liver.
Collapse
Affiliation(s)
- Inès Azzouz
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, Tunisia
| | - Hamdi Trabelsi
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, Tunisia
| | - Amel Hanini
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, Tunisia
| | - Soumaya Ferchichi
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, Tunisia
| | - Olfa Tebourbi
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, Tunisia
| | - Mohsen Sakly
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, Tunisia
| | - Hafedh Abdelmelek
- Laboratory of Integrative Physiology, Faculty of Sciences of Bizerte, Carthage University, Tunisia
| |
Collapse
|
225
|
Nuttall JR, Oteiza PI. Zinc and the aging brain. GENES AND NUTRITION 2013; 9:379. [PMID: 24366781 DOI: 10.1007/s12263-013-0379-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/06/2013] [Indexed: 11/25/2022]
Abstract
Alterations in trace element homeostasis could be involved in the pathology of dementia, and in particular of Alzheimer's disease (AD). Zinc is a structural or functional component of many proteins, being involved in numerous and relevant physiological functions. Zinc homeostasis is affected in the elderly, and current evidence points to alterations in the cellular and systemic distribution of zinc in AD. Although the association of zinc and other metals with AD pathology remains unclear, therapeutic approaches designed to restore trace element homeostasis are being tested in clinical trials. Not only could zinc supplementation potentially benefit individuals with AD, but zinc supplementation also improves glycemic control in the elderly suffering from diabetes mellitus. However, the findings that select genetic polymorphisms may alter an individual's zinc intake requirements should be taken into consideration when planning zinc supplementation. This review will focus on current knowledge regarding pathological and protective mechanisms involving brain zinc in AD to highlight areas where future research may enable development of new and improved therapies.
Collapse
Affiliation(s)
- Johnathan R Nuttall
- Department of Nutrition, University of California, One Shields Av., Davis, CA, 95616, USA
| | | |
Collapse
|
226
|
Huang GJ, Deng JS, Chen HJ, Huang SS, Shih CC, Lin YH. Dehydroascorbate reductase and monodehydroascorbate reductase activities of two metallothionein-like proteins from sweet potato (Ipomoea batatas [L.] Lam. 'Tainong 57') storage roots. BOTANICAL STUDIES 2013; 54:7. [PMID: 28510854 PMCID: PMC5430376 DOI: 10.1186/1999-3110-54-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/26/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND Metallothionein (MT) is a group of proteins with low molecular masses and high cysteine contents, and it is classified into different types, which generally contains two domains with typical amino acid sequences. RESULTS In this report, two full-length cDNAs (MT-1 and MT-II) encoding MT-like proteins were isolated from the roots of sweet potato (Ipomoea batatas [L.] Lam. 'Tainong 57'). Their open reading frames contained 642 and 519 nucleotides (66 and 81 amino acids) for MT-1 and MT-II, respectively, and exhibited a relatively low amino acid sequence similarity. On the basis of the amino acid sequence similarity and conserved residues, it is suggested that MT-I is a member of the plant MT Type-I family, and MT-II is a member of the plant MT Type-II family. The corresponding mRNA levels of MT-1 and MT-II were the highest found in the storage roots. Recombinant MT-1 and MT-II protein overproduced in E. coli (M15) was purified by Ni2+-chelated affinity chromatography. MT-1 and MT-II reduced dehydroascorbate (DHA) in the presence of glutathione (GSH) to regenerate L-ascorbic acid (AsA). However, without GSH, MT-1 and MT-II has very low DHA reductase activity. And AsA was oxidized by AsA oxidase to generate monodehydroascorbate (MDA) free radical. MDA was also reduced by MT-1 and MT-II to AsA in the presence of NADH mimicking the MDA reductase catalyzed reaction. CONCLUSIONS These data suggest that MT-1 and MT-II have both DHA reductase and MDA reductase activities. MT-1 and MT-II are apparently the first reported plant MTs exhibiting both DHA and MDA activities in vitro.
Collapse
Affiliation(s)
- Guan-Jhong Huang
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, 404 Taichung, Taiwan
| | - Jeng-Shyan Deng
- School of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, 404 Taichung, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, 413 Taichung, Taiwan
| | - Hsien-Jung Chen
- Department of Biological Sciences, National Sun Yat-sen University, kaohsiung 804, Taiwan
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, 404 Taichung, Taiwan
| | - Chun-Ching Shih
- Graduate Institute of Pharmaceutical Science and Technology, College of Health Science, Central Taiwan University of Science and Technology, 406 Taichung, Taiwan
| | - Yaw-Huei Lin
- Institute of Plant and Microbial Biology, Academia Sinica, 115 Nankang, Taipei, Taiwan
| |
Collapse
|
227
|
Arciello M, Gori M, Balsano C. Mitochondrial dysfunctions and altered metals homeostasis: new weapons to counteract HCV-related oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:971024. [PMID: 24371505 PMCID: PMC3859171 DOI: 10.1155/2013/971024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/18/2013] [Accepted: 10/28/2013] [Indexed: 02/06/2023]
Abstract
The hepatitis C virus (HCV) infection produces several pathological effects in host organism through a wide number of molecular/metabolic pathways. Today it is worldwide accepted that oxidative stress actively participates in HCV pathology, even if the antioxidant therapies adopted until now were scarcely effective. HCV causes oxidative stress by a variety of processes, such as activation of prooxidant enzymes, weakening of antioxidant defenses, organelle damage, and metals unbalance. A focal point, in HCV-related oxidative stress onset, is the mitochondrial failure. These organelles, known to be the "power plants" of cells, have a central role in energy production, metabolism, and metals homeostasis, mainly copper and iron. Furthermore, mitochondria are direct viral targets, because many HCV proteins associate with them. They are the main intracellular free radicals producers and targets. Mitochondrial dysfunctions play a key role in the metal imbalance. This event, today overlooked, is involved in oxidative stress exacerbation and may play a role in HCV life cycle. In this review, we summarize the role of mitochondria and metals in HCV-related oxidative stress, highlighting the need to consider their deregulation in the HCV-related liver damage and in the antiviral management of patients.
Collapse
Affiliation(s)
- Mario Arciello
- Department of Internal Medicine and Medical Specialties, “Sapienza” University of Rome, Via del Policlinico 155, 00161 Rome, Italy
- Francesco Balsano Foundation, Via G.B. Martini 6, 00198 Rome, Italy
| | - Manuele Gori
- Francesco Balsano Foundation, Via G.B. Martini 6, 00198 Rome, Italy
| | - Clara Balsano
- Francesco Balsano Foundation, Via G.B. Martini 6, 00198 Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM); CNR, Piazzale Aldo Moro 7, 00185 Rome, Italy
| |
Collapse
|
228
|
Antony S, Bayse CA. Density Functional Theory Study of the Attack of Ebselen on a Zinc-Finger Model. Inorg Chem 2013; 52:13803-5. [DOI: 10.1021/ic401429z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Sonia Antony
- Department of Chemistry and Biochemistry, Old Dominion University, Hampton Boulevard, Norfolk, Virginia 23529, United States
| | - Craig A. Bayse
- Department of Chemistry and Biochemistry, Old Dominion University, Hampton Boulevard, Norfolk, Virginia 23529, United States
| |
Collapse
|
229
|
Golbabapour S, Gwaram NS, Hassandarvish P, Hajrezaie M, Kamalidehghan B, Abdulla MA, Ali HM, Hadi AHA, Majid NA. Gastroprotection studies of Schiff base zinc (II) derivative complex against acute superficial hemorrhagic mucosal lesions in rats. PLoS One 2013; 8:e75036. [PMID: 24058648 PMCID: PMC3772879 DOI: 10.1371/journal.pone.0075036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/08/2013] [Indexed: 12/30/2022] Open
Abstract
Background The study was carried out to assess the gastroprotective effect of the zinc (II) complex against ethanol-induced acute hemorrhagic lesions in rats. Methodology/Principal Finding The animals received their respective pre-treatments dissolved in tween 20 (5% v/v), orally. Ethanol (95% v/v) was orally administrated to induce superficial hemorrhagic mucosal lesions. Omeprazole (5.790×10−5 M/kg) was used as a reference medicine. The pre-treatment with the zinc (II) complex (2.181×10−5 and 4.362×10−5 M/kg) protected the gastric mucosa similar to the reference control. They significantly increased the activity levels of nitric oxide, catalase, superoxide dismutase, glutathione and prostaglandin E2, and decreased the level of malondialdehyde. The histology assessments confirmed the protection through remarkable reduction of mucosal lesions and increased the production of gastric mucosa. Immunohistochemistry and western blot analysis indicated that the complex might induced Hsp70 up-regulation and Bax down-regulation. The complex moderately increased the gastroprotectiveness in fine fettle. The acute toxicity approved the non-toxic characteristic of the complex (<87.241×10−5 M/kg). Conclusion/Significance The gastroprotective effect of the zinc (II) complex was mainly through its antioxidant activity, enzymatic stimulation of prostaglandins E2, and up-regulation of Hsp70. The gastric wall mucus was also a remarkable protective mechanism.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Pouya Hassandarvish
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Maryam Hajrezaie
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Behnam Kamalidehghan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hapipah Mohd Ali
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - A. Hamid A Hadi
- Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Nazia Abdul Majid
- Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
230
|
Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R. The role of metallothionein in oxidative stress. Int J Mol Sci 2013; 14:6044-66. [PMID: 23502468 PMCID: PMC3634463 DOI: 10.3390/ijms14036044] [Citation(s) in RCA: 526] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 12/15/2022] Open
Abstract
Free radicals are chemical particles containing one or more unpaired electrons, which may be part of the molecule. They cause the molecule to become highly reactive. The free radicals are also known to play a dual role in biological systems, as they can be either beneficial or harmful for living systems. It is clear that there are numerous mechanisms participating on the protection of a cell against free radicals. In this review, our attention is paid to metallothioneins (MTs) as small, cysteine-rich and heavy metal-binding proteins, which participate in an array of protective stress responses. The mechanism of the reaction of metallothioneins with oxidants and electrophilic compounds is discussed. Numerous reports indicate that MT protects cells from exposure to oxidants and electrophiles, which react readily with sulfhydryl groups. Moreover, MT plays a key role in regulation of zinc levels and distribution in the intracellular space. The connections between zinc, MT and cancer are highlighted.
Collapse
Affiliation(s)
- Branislav Ruttkay-Nedecky
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (B.R.-N.); (L.N.); (J.G.); (O.Z.); (M.M.); (V.A.)
| | - Lukas Nejdl
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Jaromir Gumulec
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (B.R.-N.); (L.N.); (J.G.); (O.Z.); (M.M.); (V.A.)
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-612 00 Brno, Czech Republic
| | - Ondrej Zitka
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (B.R.-N.); (L.N.); (J.G.); (O.Z.); (M.M.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Michal Masarik
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (B.R.-N.); (L.N.); (J.G.); (O.Z.); (M.M.); (V.A.)
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-612 00 Brno, Czech Republic
| | - Tomas Eckschlager
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, CZ-150 06 Prague 5, Czech Republic; E-Mail:
| | - Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, CZ-128 40 Prague 2, Czech Republic; E-Mail:
| | - Vojtech Adam
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (B.R.-N.); (L.N.); (J.G.); (O.Z.); (M.M.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| | - Rene Kizek
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mails: (B.R.-N.); (L.N.); (J.G.); (O.Z.); (M.M.); (V.A.)
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic
| |
Collapse
|