201
|
Garbuzova-Davis S, Thomson A, Kurien C, Shytle RD, Sanberg PR. Potential new complication in drug therapy development for amyotrophic lateral sclerosis. Expert Rev Neurother 2016; 16:1397-1405. [PMID: 27362330 DOI: 10.1080/14737175.2016.1207530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron degeneration in the brain and spinal cord. Treatment development for ALS is complicated by complex underlying disease factors. Areas covered: Numerous tested drug compounds have shown no benefits in ALS patients, although effective in animal models. Discrepant results of pre-clinical animal studies and clinical trials for ALS have primarily been attributed to limitations of ALS animal models for drug-screening studies and methodological inconsistencies in human trials. Current status of pre-clinical and clinical trials in ALS is summarized. Specific blood-CNS barrier damage in ALS patients, as a novel potential reason for the clinical failures in drug therapies, is discussed. Expert commentary: Pathological perivascular collagen IV accumulation, one unique characteristic of barrier damage in ALS patients, could be hindering transport of therapeutics to the CNS. Restoration of B-CNS-B integrity would foster delivery of therapeutics to the CNS.
Collapse
Affiliation(s)
- Svitlana Garbuzova-Davis
- a Center of Excellence for Aging & Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,b Department of Neurosurgery and Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,c Department of Molecular Pharmacology and Physiology , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,d Department of Pathology and Cell Biology , University of South Florida, Morsani College of Medicine , Tampa , FL , USA
| | - Avery Thomson
- e Department of Neurology , University of South Florida, Morsani College of Medicine , Tampa , FL , USA
| | - Crupa Kurien
- a Center of Excellence for Aging & Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA
| | - R Douglas Shytle
- a Center of Excellence for Aging & Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,b Department of Neurosurgery and Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA
| | - Paul R Sanberg
- a Center of Excellence for Aging & Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,b Department of Neurosurgery and Brain Repair , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,d Department of Pathology and Cell Biology , University of South Florida, Morsani College of Medicine , Tampa , FL , USA.,f Department of Psychiatry , University of South Florida, Morsani College of Medicine , Tampa , FL , USA
| |
Collapse
|
202
|
The antileishmanial drug miltefosine (Impavido(®)) causes oxidation of DNA bases, apoptosis, and necrosis in mammalian cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 806:34-9. [PMID: 27476333 DOI: 10.1016/j.mrgentox.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/09/2016] [Indexed: 11/23/2022]
Abstract
Miltefosine was developed to treat skin cancer; further studies showed that the drug also has activity against Leishmania. Miltefosine is the first oral agent for treating leishmaniasis. However, its mechanism of action is not completely understood. We have evaluated the induction of DNA damage by miltefosine. Cytotoxicity and genotoxicity (comet assay) tests were performed on human leukocytes exposed to the drug in vitro. Apoptosis and necrosis were also evaluated. In vivo tests were conducted in Swiss male mice (Mus musculus) treated orally with miltefosine. Oxidation of DNA bases in peripheral blood cells was measured using the comet assay followed by digestion with formamidopyrimidine glycosylase (FPG), which removes oxidized guanine bases. The micronucleus test was performed on bone marrow erythrocytes. Miltefosine caused DNA damage, apoptosis, and necrosis in vitro. Mice treated with miltefosine showed an increase in the DNA damage score, which was further increased following FPG digestion. The micronucleus test was also positive.
Collapse
|
203
|
Pasquinelli A, Chico L, Pasquali L, Bisordi C, Lo Gerfo A, Fabbrini M, Petrozzi L, Marconi L, Caldarazzo Ienco E, Mancuso M, Siciliano G. Gly482Ser PGC-1α Gene Polymorphism and Exercise-Related Oxidative Stress in Amyotrophic Lateral Sclerosis Patients. Front Cell Neurosci 2016; 10:102. [PMID: 27147974 PMCID: PMC4840260 DOI: 10.3389/fncel.2016.00102] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/05/2016] [Indexed: 12/11/2022] Open
Abstract
The role of exercise in Amyotrophic lateral sclerosis (ALS) pathogenesis is controversial and unclear. Exercise induces a pleiotropic adaptive response in skeletal muscle, largely through the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional coactivator that regulates mitochondrial biogenesis and antioxidant defense mechanisms. It has been suggested that a Gly482Ser substitution in PGC-1α has functional relevance in human disorders and in athletic performance. To test this hypothesis, we examined the genotype distribution of PGC-1α Gly482Ser (1444 G > A) in ALS patients to evaluate whether or not the minor serine-encoding allele 482Ser is involved in oxidative stress responses during physical exercise. We genotyped 197 sporadic ALS patients and 197 healthy controls in order to detect differences in allelic frequencies and genotype distribution between the two groups. A total of 74 ALS patients and 65 controls were then comparatively assessed for plasmatic levels of the oxidative stress biomarkers, advanced oxidation protein products, ferric reducing ability and thiol groups. In addition a subgroup of 35 ALS patients were also assessed for total SOD and catalase plasmatic activity. Finally in 28 ALS patients we evaluated the plasmatic curve of the oxidative stress biomarkers and lactate during an incremental exercise test. No significant differences were observed in the genotype distribution and allelic frequency in ALS patients compared to the controls. We found significant increased advanced oxidation protein products (p < 0.001) and significant decreased ferric reducing ability (p < 0.001) and thiol groups (p < 0.001) in ALS patients compared to controls. When comparing different genotypes of PGC-1α, no relation between Gly482Ser polymorphism and oxidative stress biomarker levels was detected in resting conditions. On the other hand, when considering exercise performance, lactate levels were significantly higher (between p < 0.01 and p < 0.001) and greater protein oxidative products were found in AA (Ser482Ser) compared to GG (Gly482Gly) and GA (Gly482Ser) ALS patients. Our findings highlight the importance and confirm the involvement of oxidative stress in ALS pathogenesis. Although not associated with 1444 G > A SNP, ALS patients with Gly482Ser allelic variant show increased exercise-related oxidative stress. This thus highlights the possible role of this antioxidant defense transcriptional coactivator in ALS.
Collapse
Affiliation(s)
- Angelique Pasquinelli
- Departments of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa Pisa, Italy
| | - Lucia Chico
- Departments of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa Pisa, Italy
| | - Livia Pasquali
- Departments of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa Pisa, Italy
| | - Costanza Bisordi
- Departments of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa Pisa, Italy
| | - Annalisa Lo Gerfo
- Departments of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa Pisa, Italy
| | - Monica Fabbrini
- Departments of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa Pisa, Italy
| | - Lucia Petrozzi
- Departments of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa Pisa, Italy
| | - Letizia Marconi
- Departments of Surgical, Medical and Molecular Pathology, and Critical Area, University of Pisa Pisa, Italy
| | - Elena Caldarazzo Ienco
- Departments of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa Pisa, Italy
| | - Michelangelo Mancuso
- Departments of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa Pisa, Italy
| | - Gabriele Siciliano
- Departments of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa Pisa, Italy
| |
Collapse
|
204
|
Elmann A, Telerman A, Erlank H, Ofir R, Kashman Y, Beit-Yannai E. Achillolide A Protects Astrocytes against Oxidative Stress by Reducing Intracellular Reactive Oxygen Species and Interfering with Cell Signaling. Molecules 2016; 21:301. [PMID: 26950103 PMCID: PMC6274406 DOI: 10.3390/molecules21030301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 11/17/2022] Open
Abstract
Achillolide A is a natural sesquiterpene lactone that we have previously shown can inhibit microglial activation. In this study we present evidence for its beneficial effects on astrocytes under oxidative stress, a situation relevant to neurodegenerative diseases and brain injuries. Viability of brain astrocytes (primary cultures) was determined by lactate dehydrogenase (LDH) activity, intracellular ROS levels were detected using 2',7'-dichlorofluorescein diacetate, in vitro antioxidant activity was measured by differential pulse voltammetry, and protein phosphorylation was determined using specific ELISA kits. We have found that achillolide A prevented the H₂O₂-induced death of astrocytes, and attenuated the induced intracellular accumulation of reactive oxygen species (ROS). These activities could be attributed to the inhibition of the H₂O₂-induced phosphorylation of MAP/ERK kinase 1 (MEK1) and p44/42 mitogen-activated protein kinases (MAPK), and to the antioxidant activity of achillolide A, but not to H₂O₂ scavenging. This is the first study that demonstrates its protective effects on brain astrocytes, and its ability to interfere with MAPK activation. We propose that achillolide A deserves further evaluation for its potential to be developed as a drug for the prevention/treatment of neurodegenerative diseases and brain injuries where oxidative stress is part of the pathophysiology.
Collapse
Affiliation(s)
- Anat Elmann
- Department of Food Quality and Safety, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel.
| | - Alona Telerman
- Department of Food Quality and Safety, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel.
| | - Hilla Erlank
- Department of Food Quality and Safety, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel.
| | - Rivka Ofir
- Dead Sea & Arava Science Center and Regenerative Medicine & Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheba 84105, Israel.
| | - Yoel Kashman
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of chemistry, Tel Aviv University, Ramat Aviv 69978, Israel.
| | - Elie Beit-Yannai
- Clinical Biochemistry and Pharmacology Department, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheba 84105, Israel.
| |
Collapse
|
205
|
Moura MC, Novaes MRCG, Zago YSSP, Eduardo EJ, Casulari LA. Efficacy of Stem Cell Therapy in Amyotrophic Lateral Sclerosis: A Systematic Review and Meta-Analysis. J Clin Med Res 2016; 8:317-24. [PMID: 26985252 PMCID: PMC4780495 DOI: 10.14740/jocmr2495w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Published studies seeking to improve survival in amyotrophic lateral sclerosis (ALS) have poor results in humans, although there are several studies in animal models with positive results. METHODS We conducted a systematic review and meta-analysis of studies that were published between March 2009 and March 2015 on stem cell therapy and survival in animal models and patients with ALS. A total of 714 articles were identified, and from these, we selected preclinical in vivo studies and retrospective clinical studies. RESULTS AND CONCLUSIONS A meta-analysis confirmed the efficacy of stem cell therapy in improving survival in preclinical trials, where a mean difference of 9.79 days (95% confidence interval: 4.45 - 15.14) in lifespan favored stem cell therapy. In contrast, the number of clinical studies is still insufficient to assess their effectiveness, and these studies only demonstrate the absence of serious adverse events. However, even this conclusion should be interpreted with caution because clinical studies are retrospective and heterogeneous and have an unsatisfactory quality.
Collapse
Affiliation(s)
- Mirian Conceicao Moura
- Hospital Regional da Asa Norte, State Secretariat of Health of the Federal District, DF, Brazil
| | | | | | | | | |
Collapse
|
206
|
Shakirzyanova A, Valeeva G, Giniatullin A, Naumenko N, Fulle S, Akulov A, Atalay M, Nikolsky E, Giniatullin R. Age-dependent action of reactive oxygen species on transmitter release in mammalian neuromuscular junctions. Neurobiol Aging 2016; 38:73-81. [DOI: 10.1016/j.neurobiolaging.2015.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 10/13/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023]
|
207
|
Linkus B, Wiesner D, MeΔner M, Karabatsiakis A, Scheffold A, Rudolph KL, Thal DR, Weishaupt JH, Ludolph AC, Danzer KM. Telomere shortening leads to earlier age of onset in ALS mice. Aging (Albany NY) 2016; 8:382-93. [PMID: 26978042 PMCID: PMC4789589 DOI: 10.18632/aging.100904] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
Abstract
Telomere shortening has been linked to a variety of neurodegenerative diseases. Recent evidence suggests that reduced telomerase expression results in shorter telomeres in leukocytes from sporadic patients with amyotrophic lateral sclerosis (ALS) compared with healthy controls. Here, we have characterized telomere length in microglia, astroglia and neurons in human post mortem brain tissue from ALS patients and healthy controls. Moreover, we studied the consequences of telomerase deletion in a genetic mouse model for ALS. We found a trend towards longer telomeres in microglia in the brains of ALS patients compared to non-neurologic controls. Knockout of telomerase leading to telomere shortening accelerated the ALS phenotype inSOD1G93A-transgenic mice. Our results suggest that telomerase dysfunction might contribute to the age-related risk for ALS.
Collapse
Affiliation(s)
- Birgit Linkus
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Diana Wiesner
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Martina MeΔner
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | | | - Annika Scheffold
- Department of Internal Medicine III, Ulm University, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
208
|
Yin B, Barrionuevo G, Weber SG. Optimized real-time monitoring of glutathione redox status in single pyramidal neurons in organotypic hippocampal slices during oxygen-glucose deprivation and reperfusion. ACS Chem Neurosci 2015; 6:1838-48. [PMID: 26291433 DOI: 10.1021/acschemneuro.5b00186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A redox-sensitive Grx1-roGFP2 fusion protein was introduced by transfection into single pyramidal neurons in the CA1 subfield of organotypic hippocampal slice cultures (OHSCs). We assessed changes in the GSH system in neuronal cytoplasm and mitochondria during oxygen-glucose deprivation and reperfusion (OGD/RP), an in vitro model of stroke. Pyramidal cells in a narrow range of depths below the surface of the OHSC were transfected by gene gun or single-cell electroporation with cyto- or mito-Grx1-roGFP2. To mimic the conditions of acute stroke, we developed an optimized superfusion system with the capability of rapid and reproducible exchange of the solution bathing the OHSCs. Measurements of pO2 as a function of tissue depth show that in the region containing the transfected cells, the pO2 is well-controlled. We also found that the pO2 changes on the same time scale as changes in intracranial pressure, cerebral blood flow, and pO2 during acute stroke. Determining the reduction potential, EGSH, from the ratiometric fluorescence signal requires an absolute intensity measurement during calibration of the Grx1-roGFP2. Using the signal from cotransfected tdTomato as an internal standard during calibration improves quantitative measurements of Grx1-roGFP2 redox status and allows EGSH to be determined. EGSH becomes more reducing during OGD and more oxidizing during RP in mitochondria while changes in cytoplasm are not significant compared with controls.
Collapse
Affiliation(s)
- Bocheng Yin
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Germán Barrionuevo
- Department
of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stephen G. Weber
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
209
|
Kanninen KM, Pomeshchik Y, Leinonen H, Malm T, Koistinaho J, Levonen AL. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic Biol Med 2015; 88:350-361. [PMID: 26164630 DOI: 10.1016/j.freeradbiomed.2015.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 01/15/2023]
Abstract
Oxidative stress has been implicated to play a role in a number of acute and chronic diseases including acute injuries of the central nervous system, neurodegenerative and cardiovascular diseases, and cancer. The redox-activated transcription factor Nrf2 has been shown to protect many different cell types and organs from a variety of toxic insults, whereas in many cancers, unchecked Nrf2 activity increases the expression of cytoprotective genes and, consequently, provides growth advantage to cancerous cells. Herein, we discuss current preclinical gene therapy approaches to either increase or decrease Nrf2 activity with a special reference to neurological diseases and cancer. In addition, we discuss the role of Nrf2 in stem cell therapy for neurological disorders.
Collapse
Affiliation(s)
- Katja M Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Hanna Leinonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| | - Anna-Liisa Levonen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland.
| |
Collapse
|
210
|
Theme 5 Cognitive Change. Amyotroph Lateral Scler Frontotemporal Degener 2015; 16 Suppl 1:115-23. [DOI: 10.3109/21678421.2015.1098809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
211
|
Prognostic Factors in Amyotrophic Lateral Sclerosis: A Population-Based Study. PLoS One 2015; 10:e0141500. [PMID: 26517122 PMCID: PMC4627754 DOI: 10.1371/journal.pone.0141500] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022] Open
Abstract
Objective To determine the prognostic factors associated with survival in amyotrophic lateral sclerosis at diagnosis. Methods This retrospective population-based study evaluated 218 patients treated with riluzole between 2005 and 2014 and described their clinical and demographic profiles after the analysis of clinical data and records from the mortality information system in the Federal District, Brazil. Cox multivariate regression analysis was conducted for the parameters found. Results The study sample consisted of 132 men and 86 women with a mean age at disease onset of 57.2±12.3 years; 77.6% of them were Caucasian. The mean periods between disease onset and diagnosis were 22.7 months among men and 23.5 months among women, and the mean survival periods were 45.7±47.0 months among men and 39.3±29.8 months among women. In addition, 80.3% patients presented non-bulbar-onset amyotrophic lateral sclerosis, and 19.7% presented bulbar-onset. Cox regression analysis indicated worse prognosis for body mass index (BMI) <25 kg/m2 (relative risk [RR]: 3.56, 95% confidence interval [CI]: 1.44–8.86), age >75 years (RR: 12.47, 95% CI: 3.51–44.26), and bulbar-onset (RR: 4.56, 95% CI: 2.06–10.12). Electromyography did not confirm the diagnosis in 55.6% of the suspected cases and in 27.9% of the bulbar-onset cases. Conclusions The factors associated with lower survival in amyotrophic lateral sclerosis were age >75 years, BMI <25 kg/m2, and bulbar-onset.
Collapse
|
212
|
Volonté C, Apolloni S, Parisi C, Amadio S. Purinergic contribution to amyotrophic lateral sclerosis. Neuropharmacology 2015; 104:180-93. [PMID: 26514402 DOI: 10.1016/j.neuropharm.2015.10.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/13/2022]
Abstract
By signalling through purinergic receptors classified as ionotropic P2X (for ATP) and metabotropic P1 (for adenosine) and P2Y (mainly for ADP, UDP, UTP, ATP), the extracellular nucleotides and their metabolic derivatives originated by extracellular activity of several different ectonucleotidases, are involved in the functioning of the nervous system. Here they exert a central role during physiological processes, but also in the precarious balance between beneficial and noxious events. Indeed, in recent years, the dysregulation of extracellular purinergic homeostasis has been correlated to well-characterized acute and chronic neurodegenerative and neuroinflammatory diseases. Among these, we focus our attention on purinergic signalling occurring in amyotrophic lateral sclerosis (ALS), the most common late onset motoneuron disease, characterized by specific loss of motoneurons in brain stem and ventral horns of spinal cord. ALS is a progressive non-cell-autonomous and multifactorial neuroinflammatory disease, whose aetiology and pathological mechanisms are unidentified for most patients and initiate long before any sign or symptom becomes apparent. By combining purinergic with ALS knowledge, in this work we thus present and sustain a novel line of investigation on the purinergic contribution to ALS. In particular, here we recapitulate very early results about P2X4, P2X7 and P2Y6 receptor expression in tissues from ALS animal and cell models and patients, and more recent achievements about purinergic signalling mainly performed in vitro in microglia and lately in astrocytes and motoneurons. We finally highlight how purinergic signalling has progressively evolved up to preclinical trials, to the point of deserving now full consideration with reference to ALS. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Cinzia Volonté
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy.
| | - Savina Apolloni
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Chiara Parisi
- Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| | - Susanna Amadio
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Institute of Cell Biology and Neurobiology, CNR, Rome, Italy
| |
Collapse
|
213
|
Aulas A, Vande Velde C. Alterations in stress granule dynamics driven by TDP-43 and FUS: a link to pathological inclusions in ALS? Front Cell Neurosci 2015; 9:423. [PMID: 26557057 PMCID: PMC4615823 DOI: 10.3389/fncel.2015.00423] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022] Open
Abstract
Stress granules (SGs) are RNA-containing cytoplasmic foci formed in response to stress exposure. Since their discovery in 1999, over 120 proteins have been described to be localized to these structures (in 154 publications). Most of these components are RNA binding proteins (RBPs) or are involved in RNA metabolism and translation. SGs have been linked to several pathologies including inflammatory diseases, cancer, viral infection, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In ALS and FTD, the majority of cases have no known etiology and exposure to external stress is frequently proposed as a contributor to either disease initiation or the rate of disease progression. Of note, both ALS and FTD are characterized by pathological inclusions, where some well-known SG markers localize with the ALS related proteins TDP-43 and FUS. We propose that TDP-43 and FUS serve as an interface between genetic susceptibility and environmental stress exposure in disease pathogenesis. Here, we will discuss the role of TDP-43 and FUS in SG dynamics and how disease-linked mutations affect this process.
Collapse
Affiliation(s)
- Anaïs Aulas
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal Montréal, QC, Canada ; Department of Biochemistry, Université de Montréal Montréal, QC, Canada
| | - Christine Vande Velde
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal Montréal, QC, Canada ; Department of Neurosciences, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
214
|
Lee S, Park S, Won J, Lee SR, Chang KT, Hong Y. The Incremental Induction of Neuroprotective Properties by Multiple Therapeutic Strategies for Primary and Secondary Neural Injury. Int J Mol Sci 2015; 16:19657-70. [PMID: 26295390 PMCID: PMC4581318 DOI: 10.3390/ijms160819657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 01/09/2023] Open
Abstract
Neural diseases including injury by endogenous factors, traumatic brain injury, and degenerative neural injury are eventually due to reactive oxygen species (ROS). Thus ROS generation in neural tissues is a hallmark feature of numerous forms of neural diseases. Neural degeneration and the neural damage process is complex, involving a vast array of tissue structure, transcriptional/translational, electrochemical, metabolic, and functional events within the intact neighbors surrounding injured neural tissues. During aging, multiple changes involving physical, chemical, and biochemical processes occur from the molecular to the morphological levels in neural tissues. Among many recommended therapeutic candidates, melatonin also plays a role in protecting the nervous system from anti-inflammation and efficiently safeguards neuronal cells via antioxidants and other endogenous/exogenous beneficial factors. Therefore, given the wide range of mechanisms responsible for neuronal damage, multi-action drugs or therapies for the treatment of neural injury that make use of two or more agents and target several pathways may have greater efficacy in promoting functional recovery than a single therapy alone.
Collapse
Affiliation(s)
- Seunghoon Lee
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
| | - Sookyoung Park
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Life Sciences, Kyungnam University, Changwon 51767, Korea.
| | - Jinyoung Won
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea.
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang 28116, Korea.
| | - Yonggeun Hong
- Department of Physical Therapy, College of Biomedical Science & Engineering, Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
| |
Collapse
|
215
|
Yuste JE, Tarragon E, Campuzano CM, Ros-Bernal F. Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci 2015; 9:322. [PMID: 26347610 PMCID: PMC4538301 DOI: 10.3389/fncel.2015.00322] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide (NO) is a pleiotropic janus-faced molecule synthesized by nitric oxide synthases (NOS) which plays a critical role in a number of physiological and pathological processes in humans. The physiological roles of NO depend on its local concentrations, as well as its availability and the nature of downstream target molecules. Its double-edged sword action has been linked to neurodegenerative disorders. Excessive NO production, as the evoked by inflammatory signals, has been identified as one of the major causative reasons for the pathogenesis of several neurodegenerative diseases. Moreover, excessive NO synthesis under neuroinflammation leads to the formation of reactive nitrogen species and neuronal cell death. There is an intimate relation between microglial activation, NO and neuroinflammation in the human brain. The role of NO in neuroinflammation has been defined in animal models where this neurotransmitter can modulate the inflammatory process acting on key regulatory pathways, such as those associated with excitotoxicity processes induced by glutamate accumulation and microglial activation. Activated glia express inducible NOS and produce NO that triggers calcium mobilization from the endoplasmic reticulum, activating the release of vesicular glutamate from astroglial cells resulting in neuronal death. This change in microglia potentially contributes to the increased age-associated susceptibility and neurodegeneration. In the current review, information is provided about the role of NO, glial activation and age-related processes in the central nervous system (CNS) that may be helpful in the isolation of new therapeutic targets for aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jose Enrique Yuste
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| | - Ernesto Tarragon
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain ; Département des Sciences Biomédicales et Précliniques/Biochimie et Physiologie du Système Nerveux, Centre de Recherche du Cyclotron, Université de Liège Liège, Belgium
| | - Carmen María Campuzano
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| | - Francisco Ros-Bernal
- Neurobiotechnology Group, Departament of Medicine, Facultat de Ciències de la Salut, Universitat Jaume I Castelló de la Plana, Spain
| |
Collapse
|
216
|
Ehrhart J, Smith AJ, Kuzmin-Nichols N, Zesiewicz TA, Jahan I, Shytle RD, Kim SH, Sanberg CD, Vu TH, Gooch CL, Sanberg PR, Garbuzova-Davis S. Humoral factors in ALS patients during disease progression. J Neuroinflammation 2015; 12:127. [PMID: 26126965 PMCID: PMC4487852 DOI: 10.1186/s12974-015-0350-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/19/2015] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and lower motor neurons in the CNS and leading to paralysis and death. There are currently no effective treatments for ALS due to the complexity and heterogeneity of factors involved in motor neuron degeneration. A complex of interrelated effectors have been identified in ALS, yet systemic factors indicating and/or reflecting pathological disease developments are uncertain. The purpose of the study was to identify humoral effectors as potential biomarkers during disease progression. METHODS Thirteen clinically definite ALS patients and seven non-neurological controls enrolled in the study. Peripheral blood samples were obtained from each ALS patient and control at two visits separated by 6 months. The Revised ALS Functional Rating Scale (ALSFRS-R) was used to evaluate overall ALS-patient functional status at each visit. Eleven humoral factors were analyzed in sera. Cytokine levels (GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, and TNF-α) were determined using the Bio-Rad Bio-Plex® Luminex 200 multiplex assay system. Nitrite, a breakdown product of NO, was quantified using a Griess Reagent System. Glutathione (GSH) concentrations were measured using a Glutathione Fluorometric Assay Kit. RESULTS ALS patients had ALSFRS-R scores of 30.5 ± 1.9 on their first visit and 27.3 ± 2.7 on the second visit, indicating slight disease progression. Serum multiplex cytokine panels revealed statistically significant changes in IL-2, IL-5, IL-6, and IL-8 levels in ALS patients depending on disease status at each visit. Nitrite serum levels trended upwards in ALS patients while serum GSH concentrations were drastically decreased in sera from ALS patients versus controls at both visits. CONCLUSIONS Our results demonstrated a systemic pro-inflammatory state and impaired antioxidant system in ALS patients during disease progression. Increased levels of pro-inflammatory IL-6, IL-8, and nitrite and significantly decreased endogenous antioxidant GSH levels could identify these humoral constituents as systemic biomarkers for ALS. However, systemic changes in IL-2, IL-5, and IL-6 levels determined between visits in ALS patients might indicate adaptive immune system responses dependent on current disease stage. These novel findings, showing dynamic changes in humoral effectors during disease progression, could be important for development of an effective treatment for ALS.
Collapse
Affiliation(s)
| | - Adam J Smith
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | | | - Theresa A Zesiewicz
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Israt Jahan
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - R Douglas Shytle
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA.
| | - Seol-Hee Kim
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | | | - Tuan H Vu
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Clifton L Gooch
- Department of Neurology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Paul R Sanberg
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA. .,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Psychiatry, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| | - Svitlana Garbuzova-Davis
- Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA. .,Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA. .,Department of Pathology and Cell Biology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
217
|
Cahill-Smith S, Li JM. Oxidative stress, redox signalling and endothelial dysfunction in ageing-related neurodegenerative diseases: a role of NADPH oxidase 2. Br J Clin Pharmacol 2015; 78:441-53. [PMID: 25279404 DOI: 10.1111/bcp.12357] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic oxidative stress and oxidative damage of the cerebral microvasculature and brain cells has become one of the most convincing theories in neurodegenerative pathology. Controlled oxidative metabolism and redox signalling in the central nervous system are crucial for maintaining brain function; however, excessive production of reactive oxygen species and enhanced redox signalling damage neurons. While several enzymes and metabolic processes can generate intracellular reactive oxygen species in the brain, recently an O2−-generating enzyme, NADPH oxidase 2 (Nox2), has emerged as a major source of oxidative stress in ageing-related vascular endothelial dysfunction and neurodegenerative diseases. The currently available inhibitors of Nox2 are not specific, and general antioxidant therapy is not effective in the clinic; therefore, insights into the mechanism of Nox2 activation and its signalling pathways are needed for the discovery of novel drug targets to prevent or treat these neurodegenerative diseases. This review summarizes the recent developments in understanding the mechanisms of Nox2 activation and redox-sensitive signalling pathways and biomarkers involved in the pathophysiology of the most common neurodegenerative diseases, such as ageing-related mild cognitive impairment, Alzheimer's disease and Parkinson's disease.
Collapse
|
218
|
RBM45 Modulates the Antioxidant Response in Amyotrophic Lateral Sclerosis through Interactions with KEAP1. Mol Cell Biol 2015; 35:2385-99. [PMID: 25939382 DOI: 10.1128/mcb.00087-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the selective loss of motor neurons. Various factors contribute to the disease, including RNA binding protein dysregulation and oxidative stress, but their exact role in pathogenic mechanisms remains unclear. We have recently linked another RNA binding protein, RBM45, to ALS via increased levels of protein in the cerebrospinal fluid of ALS patients and its localization to cytoplasmic inclusions in ALS motor neurons. Here we show RBM45 nuclear exit in ALS spinal cord motor neurons compared to controls, a phenotype recapitulated in vitro in motor neurons treated with oxidative stressors. We find that RBM45 binds and stabilizes KEAP1, the inhibitor of the antioxidant response transcription factor NRF2. ALS lumbar spinal cord lysates similarly show increased cytoplasmic binding of KEAP1 and RBM45. Binding of RBM45 to KEAP1 impedes the protective antioxidant response, thus contributing to oxidative stress-induced cellular toxicity. Our findings thus describe a novel link between a mislocalized RNA binding protein implicated in ALS (RBM45) and dysregulation of the neuroprotective antioxidant response seen in the disease.
Collapse
|
219
|
Milne GL, Dai Q, Roberts LJ. The isoprostanes--25 years later. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:433-45. [PMID: 25449649 PMCID: PMC5404383 DOI: 10.1016/j.bbalip.2014.10.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/13/2014] [Accepted: 10/21/2014] [Indexed: 01/26/2023]
Abstract
Isoprostanes (IsoPs) are prostaglandin-like molecules generated independent of the cyclooxygenase (COX) by the free radical-induced peroxidation of arachidonic acid. The first isoprostane species discovered were isomeric to prostaglandin F2α and were thus termed F2-IsoPs. Since the initial discovery of the F2-IsoPs, IsoPs with differing ring structures have been identified as well as IsoPs from different polyunsaturated fatty acids, including eicosapentaenoic acid and docosahexanenoic acid. The discovery of these molecules in vivo in humans has been a major contribution to the field of lipid oxidation and free radical research over the course of the past 25 years. These molecules have been determined to be both biomarkers and mediators of oxidative stress in numerous disease settings. This review focuses on recent developments in the field with an emphasis on clinical research. Special focus is given to the use of IsoPs as biomarkers in obesity, ischemia-reperfusion injury, the central nervous system, cancer, and genetic disorders. Additionally, attention is paid to diet and lifestyle factors that can affect endogenous levels of IsoPs. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Ginger L Milne
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Dai
- Division of Epidemiology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - L Jackson Roberts
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
220
|
Finelli MJ, Liu KX, Wu Y, Oliver PL, Davies KE. Oxr1 improves pathogenic cellular features of ALS-associated FUS and TDP-43 mutations. Hum Mol Genet 2015; 24:3529-44. [PMID: 25792726 PMCID: PMC4498158 DOI: 10.1093/hmg/ddv104] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/16/2015] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of motor neuron-like cells. Mutations in the RNA- and DNA-binding proteins, fused in sarcoma (FUS) and transactive response DNA-binding protein 43 kDa (TDP-43), are responsible for 5–10% of familial and 1% of sporadic ALS cases. Importantly, aggregation of misfolded FUS or TDP-43 is also characteristic of several neurodegenerative disorders in addition to ALS, including frontotemporal lobar degeneration. Moreover, splicing deregulation of FUS and TDP-43 target genes as well as mitochondrial abnormalities are associated with disease-causing FUS and TDP-43 mutants. While progress has been made to understand the functions of these proteins, the exact mechanisms by which FUS and TDP-43 cause ALS remain unknown. Recently, we discovered that, in addition to being up-regulated in spinal cords of ALS patients, the novel protein oxidative resistance 1 (Oxr1) protects neurons from oxidative stress-induced apoptosis. To further understand the function of Oxr1, we present here the first interaction study of the protein. We show that Oxr1 binds to Fus and Tdp-43 and that certain ALS-associated mutations in Fus and Tdp-43 affect their Oxr1-binding properties. We further demonstrate that increasing Oxr1 levels in cells expressing specific Fus and Tdp-43 mutants improves the three main cellular features associated with ALS: cytoplasmic mis-localization and aggregation, splicing changes of a mitochondrial gene and mitochondrial defects. Taken together, these findings suggest that OXR1 may have therapeutic benefits for the treatment of ALS and related neurodegenerative disorders with TDP-43 pathology.
Collapse
Affiliation(s)
- Mattéa J Finelli
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Kevin X Liu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Yixing Wu
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Peter L Oliver
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| | - Kay E Davies
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3PT, UK
| |
Collapse
|
221
|
Liu KX, Edwards B, Lee S, Finelli MJ, Davies B, Davies KE, Oliver PL. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis. Brain 2015; 138:1167-81. [PMID: 25753484 PMCID: PMC4407188 DOI: 10.1093/brain/awv039] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a key factor contributing to motor neuron injury in amyotrophic lateral sclerosis (ALS). Liu et al. show that overexpression of oxidation resistance 1 (Oxr1) in neurons reduces pathology and extends lifespan in an ALS mouse model. Manipulation of OXR1 levels may have therapeutic benefit in neurodegenerative disease. Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder characterized by the progressive loss of spinal motor neurons. While the aetiological mechanisms underlying the disease remain poorly understood, oxidative stress is a central component of amyotrophic lateral sclerosis and contributes to motor neuron injury. Recently, oxidation resistance 1 (OXR1) has emerged as a critical regulator of neuronal survival in response to oxidative stress, and is upregulated in the spinal cord of patients with amyotrophic lateral sclerosis. Here, we tested the hypothesis that OXR1 is a key neuroprotective factor during amyotrophic lateral sclerosis pathogenesis by crossing a new transgenic mouse line that overexpresses OXR1 in neurons with the SOD1G93A mouse model of amyotrophic lateral sclerosis. Interestingly, we report that overexpression of OXR1 significantly extends survival, improves motor deficits, and delays pathology in the spinal cord and in muscles of SOD1G93A mice. Furthermore, we find that overexpression of OXR1 in neurons significantly delays non-cell-autonomous neuroinflammatory response, classic complement system activation, and STAT3 activation through transcriptomic analysis of spinal cords of SOD1G93A mice. Taken together, these data identify OXR1 as the first neuron-specific antioxidant modulator of pathogenesis and disease progression in SOD1-mediated amyotrophic lateral sclerosis, and suggest that OXR1 may serve as a novel target for future therapeutic strategies.
Collapse
Affiliation(s)
- Kevin X Liu
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Benjamin Edwards
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Sheena Lee
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Mattéa J Finelli
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Ben Davies
- 2 Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kay E Davies
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| | - Peter L Oliver
- 1 Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
222
|
Low-frequency magnetic fields do not aggravate disease in mouse models of Alzheimer's disease and amyotrophic lateral sclerosis. Sci Rep 2015; 5:8585. [PMID: 25717019 PMCID: PMC4341214 DOI: 10.1038/srep08585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/27/2015] [Indexed: 11/08/2022] Open
Abstract
Low-frequency magnetic fields (LF-MF) generated by power lines represent a potential environmental health risk and are classified as possibly carcinogenic by the World Health Organization. Epidemiological studies indicate that LF-MF might propagate neurodegenerative diseases like Alzheimer's disease (AD) or amyotrophic lateral sclerosis (ALS). We conducted a comprehensive analysis to determine whether long-term exposure to LF-MF (50 Hz, 1 mT) interferes with disease development in established mouse models for AD and ALS, namely APP23 mice and mice expressing mutant Cu/Zn-superoxide dismutase (SOD1), respectively. Exposure for 16 months did not aggravate learning deficit of APP23 mice. Likewise, disease onset and survival of SOD1(G85R) or SOD1(G93A) mice were not altered upon LF-MF exposure for ten or eight months, respectively. These results and an extended biochemical analysis of protein aggregation, glial activation and levels of toxic protein species suggests that LF-MF do not affect cellular processes involved in the pathogenesis of AD or ALS.
Collapse
|
223
|
Carrì MT, Valle C, Bozzo F, Cozzolino M. Oxidative stress and mitochondrial damage: importance in non-SOD1 ALS. Front Cell Neurosci 2015; 9:41. [PMID: 25741238 PMCID: PMC4330888 DOI: 10.3389/fncel.2015.00041] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/27/2015] [Indexed: 12/12/2022] Open
Abstract
It is well known that mitochondrial damage (MD) is both the major contributor to oxidative stress (OS) (the condition arising from unbalance between production and removal of reactive oxygen species) and one of the major consequences of OS, because of the high dependance of mitochondrial function on redox-sensitive targets such as intact membranes. Conditions in which neuronal cells are not able to cope with MD and OS seem to lead or contribute to several neurodegenerative diseases including Amyotrophic Lateral Sclerosis (ALS), at least in the most studied superoxide dismutase 1 (SOD1)-linked genetic variant. As summarized in this review, new evidence indicates that MD and OS play a role also in non-SOD1 ALS and thus they may represent a target for therapy despite previous failures in clinical trials.
Collapse
Affiliation(s)
- Maria Teresa Carrì
- Department of Biology, Università di Roma Tor Vergata Rome, Italy ; Fondazione Santa Lucia, IRCCS Rome, Italy
| | - Cristiana Valle
- Fondazione Santa Lucia, IRCCS Rome, Italy ; Institute of Cell Biology and Neurobiology, IBCN, National Research Council, CNR Rome, Italy
| | - Francesca Bozzo
- Department of Biology, Università di Roma Tor Vergata Rome, Italy ; Fondazione Santa Lucia, IRCCS Rome, Italy
| | - Mauro Cozzolino
- Institute of Translational Pharmacology, National Research Council, CNR, Molecular Mechanisms of Neurodegenerative Diseases Rome, Italy
| |
Collapse
|
224
|
Maniecka Z, Polymenidou M. From nucleation to widespread propagation: A prion-like concept for ALS. Virus Res 2015; 207:94-105. [PMID: 25656065 DOI: 10.1016/j.virusres.2014.12.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Abstract
Propagation of pathological protein assemblies via a prion-like mechanism has been suggested to drive neurodegenerative diseases, such as Parkinson's and Alzheimer's. Recently, amyotrophic lateral sclerosis (ALS)-linked proteins, such as SOD1, TDP-43 and FUS were shown to follow self-perpetuating seeded aggregation, thereby adding ALS to the group of prion-like disorders. The cell-to-cell spread of these pathological protein assemblies and their pathogenic mechanism is poorly understood. However, as ALS is a non-cell autonomous disease and pathology in glial cells was shown to contribute to motor neuron damage, spreading mechanisms are likely to underlie disease progression via the interplay between affected neurons and their neighboring glial cells.
Collapse
Affiliation(s)
- Zuzanna Maniecka
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Magdalini Polymenidou
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
225
|
Eisen A, Kiernan M, Mitsumoto H, Swash M. Amyotrophic lateral sclerosis: a long preclinical period? J Neurol Neurosurg Psychiatry 2014; 85:1232-8. [PMID: 24648037 DOI: 10.1136/jnnp-2013-307135] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The onset of amyotrophic lateral sclerosis (ALS) is conventionally considered as commencing with the recognition of clinical symptoms. We propose that, in common with other neurodegenerations, the pathogenic mechanisms culminating in ALS phenotypes begin much earlier in life. Animal models of genetically determined ALS exhibit pathological abnormalities long predating clinical deficits. The overt clinical ALS phenotype may develop when safety margins are exceeded subsequent to years of mitochondrial dysfunction, neuroinflammation or an imbalanced environment of excitation and inhibition in the neuropil. Somatic mutations, the epigenome and external environmental influences may interact to trigger a metabolic cascade that in the adult eventually exceeds functional threshold. A long preclinical and subsequent presymptomatic period pose a challenge for recognition, since it offers an opportunity for protective and perhaps even preventive therapeutic intervention to rescue dysfunctional neurons. We suggest, by analogy with other neurodegenerations and from SOD1 ALS mouse studies, that vulnerability might be induced in the perinatal period.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Hiroshi Mitsumoto
- Wesley J. Howe Professor of Neurology at CUMC, Eleanor and Lou Gehrig MDA/ALS Research Center, The Neurological Institute of New York, Columbia University Medical Center, New York, USA
| | - Michael Swash
- Queen Mary University of London, UK Institute of Neuroscience, University of Lisbon, Portugal
| |
Collapse
|
226
|
Mitsumoto H, Brooks BR, Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol 2014; 13:1127-1138. [DOI: 10.1016/s1474-4422(14)70129-2] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
227
|
Liu YJ, Ju TC, Chen HM, Jang YS, Lee LM, Lai HL, Tai HC, Fang JM, Lin YL, Tu PH, Chern Y. Activation of AMP-activated protein kinase α1 mediates mislocalization of TDP-43 in amyotrophic lateral sclerosis. Hum Mol Genet 2014; 24:787-801. [DOI: 10.1093/hmg/ddu497] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
228
|
Faravelli I, Riboldi G, Nizzardo M, Simone C, Zanetta C, Bresolin N, Comi GP, Corti S. Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cell Mol Life Sci 2014; 71:3257-68. [PMID: 24699704 PMCID: PMC11113626 DOI: 10.1007/s00018-014-1613-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/26/2014] [Accepted: 03/17/2014] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by degeneration of upper and lower motor neurons. There are currently no clinically impactful treatments for this disorder. Death occurs 3-5 years after diagnosis, usually due to respiratory failure. ALS pathogenesis seems to involve several pathological mechanisms (i.e., oxidative stress, inflammation, and loss of the glial neurotrophic support, glutamate toxicity) with different contributions from environmental and genetic factors. This multifaceted combination highlights the concept that an effective therapeutic approach should counteract simultaneously different aspects: stem cell therapies are able to maintain or rescue motor neuron function and modulate toxicity in the central nervous system (CNS) at the same time, eventually representing the most comprehensive therapeutic approach for ALS. To achieve an effective cell-mediated therapy suitable for clinical applications, several issues must be addressed, including the identification of the most performing cell source, a feasible administration protocol, and the definition of therapeutic mechanisms. The method of cell delivery represents a major issue in developing cell-mediated approaches since the cells, to be effective, need to be spread across the CNS, targeting both lower and upper motor neurons. On the other hand, there is the need to define a strategy that could provide a whole distribution without being too invasive or burdened by side effects. Here, we review the recent advances regarding the therapeutic potential of stem cells for ALS with a focus on the minimally invasive strategies that could facilitate an extensive translation to their clinical application.
Collapse
Affiliation(s)
- Irene Faravelli
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giulietta Riboldi
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Monica Nizzardo
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Chiara Simone
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Chiara Zanetta
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Nereo Bresolin
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo P. Comi
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation (DEPT), Neuroscience Section, Dino Ferrari Centre, Neurology Unit, University of Milan, IRCCS Foundation Ca’Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
229
|
Hottman DA, Chernick D, Cheng S, Wang Z, Li L. HDL and cognition in neurodegenerative disorders. Neurobiol Dis 2014; 72 Pt A:22-36. [PMID: 25131449 DOI: 10.1016/j.nbd.2014.07.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 06/26/2014] [Accepted: 07/28/2014] [Indexed: 12/12/2022] Open
Abstract
High-density lipoproteins (HDLs) are a heterogeneous group of lipoproteins composed of various lipids and proteins. HDL is formed both in the systemic circulation and in the brain. In addition to being a crucial player in the reverse cholesterol transport pathway, HDL possesses a wide range of other functions including anti-oxidation, anti-inflammation, pro-endothelial function, anti-thrombosis, and modulation of immune function. It has been firmly established that high plasma levels of HDL protect against cardiovascular disease. Accumulating evidence indicates that the beneficial role of HDL extends to many other systems including the central nervous system. Cognition is a complex brain function that includes all aspects of perception, thought, and memory. Cognitive function often declines during aging and this decline manifests as cognitive impairment/dementia in age-related and progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. A growing concern is that no effective therapy is currently available to prevent or treat these devastating diseases. Emerging evidence suggests that HDL may play a pivotal role in preserving cognitive function under normal and pathological conditions. This review attempts to summarize recent genetic, clinical and experimental evidence for the impact of HDL on cognition in aging and in neurodegenerative disorders as well as the potential of HDL-enhancing approaches to improve cognitive function.
Collapse
Affiliation(s)
- David A Hottman
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dustin Chernick
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Shaowu Cheng
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhe Wang
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
230
|
Mitsumoto H, Factor-Litvak P, Andrews H, Goetz RR, Andrews L, Rabkin JG, McElhiney M, Nieves J, Santella RM, Murphy J, Hupf J, Singleton J, Merle D, Kilty M, Heitzman D, Bedlack RS, Miller RG, Katz JS, Forshew D, Barohn RJ, Sorenson EJ, Oskarsson B, Filho JAMF, Kasarskis EJ, Lomen-Hoerth C, Mozaffar T, Rollins YD, Nations SP, Swenson AJ, Shefner JM, Andrews JA, Koczon-Jaremko BA. ALS Multicenter Cohort Study of Oxidative Stress (ALS COSMOS): study methodology, recruitment, and baseline demographic and disease characteristics. Amyotroph Lateral Scler Frontotemporal Degener 2014; 15:192-203. [PMID: 24564738 PMCID: PMC4310702 DOI: 10.3109/21678421.2013.864312] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract In a multicenter study of newly diagnosed ALS patients without a reported family history of ALS, we are prospectively investigating whether markers of oxidative stress (OS) are associated with disease progression. Methods utilize an extensive structured telephone interview ascertaining environmental, lifestyle, dietary and psychological risk factors associated with OS. Detailed assessments were performed at baseline and at 3-6 month intervals during the ensuing 30 months. Our biorepository includes DNA, plasma, urine, and skin. Three hundred and fifty-five patients were recruited. Subjects were enrolled over a 36-month period at 16 sites. To meet the target number of subjects, the recruitment period was prolonged and additional sites were included. Results showed that demographic and disease characteristics were similar between 477 eligible/non-enrolled and enrolled patients, the only difference being type of health insurance among enrolled patients. Sites were divided into three groups by the number of enrolled subjects. Comparing these three groups, the Columbia site had fewer 'definite ALS' diagnoses. This is the first prospective, interdisciplinary, in-depth, multicenter epidemiological investigation of OS related to ALS progression and has been accomplished by an aggressive recruitment process. The baseline demographic and disease features of the study sample are now fully characterized.
Collapse
Affiliation(s)
- Hiroshi Mitsumoto
- Eleanor and Lou Gehrig MDA/ALS Research Center Department of Neurology Columbia University Medical Center 710 West 168 St, New York, NY 10032
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University
| | - Howard Andrews
- Data Coordinating Center (DCC), Mailman School of Public Health Biostatistics Department, Columbia University
| | - Raymond R. Goetz
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University
| | - Leslie Andrews
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University
| | - Judith G. Rabkin
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University
| | - Martin McElhiney
- New York State Psychiatric Institute & Department of Psychiatry, Columbia University
| | - Jeri Nieves
- Department of Epidemiology, Mailman School of Public Health, Columbia University
- Clinical Research Center, Helen Hayes
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University
| | - Jennifer Murphy
- Department of Neurology, University of California, San Francisco
| | - Jonathan Hupf
- Eleanor and Lou Gehrig MDA/ALS Research Center Department of Neurology Columbia University Medical Center 710 West 168 St, New York, NY 10032
| | - Jess Singleton
- Eleanor and Lou Gehrig MDA/ALS Research Center Department of Neurology Columbia University Medical Center 710 West 168 St, New York, NY 10032
| | - David Merle
- Data Coordinating Center (DCC), Mailman School of Public Health Biostatistics Department, Columbia University
| | - Mary Kilty
- Department of Epidemiology, Mailman School of Public Health, Columbia University
| | | | | | | | | | - Dallas Forshew
- Forbes Norris ALS Center, California Pacific Medical Center
| | | | | | | | | | | | | | | | | | - Sharon P. Nations
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern
| | | | | | | | | | | |
Collapse
|
231
|
Miller E, Morel A, Saso L, Saluk J. Isoprostanes and neuroprostanes as biomarkers of oxidative stress in neurodegenerative diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:572491. [PMID: 24868314 PMCID: PMC4020162 DOI: 10.1155/2014/572491] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/05/2023]
Abstract
Accumulating data shows that oxidative stress plays a crucial role in neurodegenerative disorders. The literature data indicate that in vivo or postmortem cerebrospinal fluid and brain tissue levels of F2-isoprostanes (F2-IsoPs) especially F4-neuroprotanes (F4-NPs) are significantly increased in some neurodegenerative diseases: multiple sclerosis, Alzheimer's disease, Huntington's disease, and Creutzfeldt-Jakob disease. Central nervous system is the most metabolically active organ of the body characterized by high requirement for oxygen and relatively low antioxidative activity, what makes neurons and glia highly susceptible to destruction by reactive oxygen/nitrogen species and neurodegeneration. The discovery of F2-IsoPs and F4-NPs as markers of lipid peroxidation caused by the free radicals has opened up new areas of investigation regarding the role of oxidative stress in the pathogenesis of human neurodegenerative diseases. This review focuses on the relationship between F2-IsoPs and F4-NPs as biomarkers of oxidative stress and neurodegenerative diseases. We summarize the knowledge of these novel biomarkers of oxidative stress and the advantages of monitoring their formation to better define the involvement of oxidative stress in neurological diseases.
Collapse
Affiliation(s)
- Elżbieta Miller
- Department of Physical Medicine, Medical University of Lodz, Hallera 1, Lodz, Poland
- Neurorehabilitation Ward, III General Hospital in Lodz, Milionowa 14, Lodz, Poland
| | - Agnieszka Morel
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, Rome, Italy
| | - Joanna Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Department of Toxicology, Faculty of Pharmacy with Division of Medical Analytics, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| |
Collapse
|
232
|
Abstract
Paroxonase 1 displays multiple physiological activities that position it as a putative player in the pathogenesis of neurological disorders. Here we reviewed the literature focusing on the role of paraoxonase 1 (PON1) as a factor in the risk of stroke and the major neurodegenerative diseases. PON1 activity is reduced in stroke patients, which significantly correlates inversely with carotid and cerebral atherosclerosis. The presence of the R allele of the Q192R PON1 polymorphism seems to potentiate this risk for stroke. PON1 exerts peroxidase activities that may be important in neurodegenerative disorders associated with oxidative stress. PON1 is also a key detoxifier of organophosphates and organophosphate exposure has been linked to the development of neurological disorders in which acetylcholine plays a significant role. In Parkinson's disease most of the studies suggest no participation of either L55M or the Q192R polymorphisms in its pathogenesis. However, many studies suggest that the MM55 PON1 genotype is associated with a higher risk for Parkinson's disease in individuals exposed to organophosphates. In Alzheimer's disease most studies have failed to find any association between PON1 polymorphisms and the development of the disease. Some studies show that PON1 activity is decreased in patients with Alzheimer's disease or other dementias, suggesting a possible protective role of PON1. No links between PON1 polymorphisms or activity have been found in other neurodegenerative diseases such as multiple sclerosis and amyotrophic lateral sclerosis. PON1 is a potential player in the pathogenesis of several neurological disorders. More research is warranted to ascertain the precise pathogenic links and the prognostic value of its measurement in neurological patients.
Collapse
Affiliation(s)
- Teresita Menini
- Department of Basic SciencesTouro University-California College of Osteopathic Medicine, Vallejo, CA, USA
| | - Alejandro Gugliucci
- GlycationOxidation and Disease Laboratory, Department of Research, Touro University-California College of Osteopathic Medicine, Vallejo, CA, USA
| |
Collapse
|
233
|
Meng X, Sun G, Ye J, Xu H, Wang H, Sun X. Notoginsenoside R1-mediated neuroprotection involves estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways: a novel mechanism of Nrf2/ARE signaling activation. Free Radic Res 2014; 48:445-60. [PMID: 24437944 DOI: 10.3109/10715762.2014.885117] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Notoginsenoside R1 (NGR1), a novel phytoestrogen isolated from Panax notoginseng, has antioxidant and anti-apoptotic properties. Oxidative stress plays a pivotal role in neurodegenerative diseases. To mimic oxidative stress in neurons and explore the neuroprotection of NGR1, H₂O₂-induced neurotoxicity in NGF-induced differentiation of PC12 cells was used. In this study, NGR1 preconditioning provided neuroprotective effects via suppressing H₂O₂-induced the intracellular ROS accumulation, the increase in the product of lipid peroxidation (MDA), protein oxidation (protein carbonyl), and DNA fragmentation (8-OHdG), and mitochondrial membrane depolarization as well as caspase-3 activation. Moreover, NGR1 treatment alone potently increased the nuclear translocation of Nrf2, augmented ARE enhancer activity, and upregulated the expression and activity of phase II antioxidant enzymes including HO-1, NQO-1, and γ-GCSc. NGR1 could also increase the ERE activity and activate Akt and ERK1/2 pathways. NGR1-mediated activation of Nrf2/ARE signaling and neuroprotection were abolished by genetic silencing of Nrf2 using siRNA or the pharmacological blockade of estrogen receptors using ICI-182780, and partially inhibited by Akt siRNA or ERK siRNA transfection. In addition, the phosphorylation of ERK1/2 mediated by NGR1 was markedly inhibited in PC12 cells transfected with Akt siRNA. On the contrary, ERK1/2 siRNA transfection hardly had any effect on the phosphorylation of Akt mediated by NGR1. NGR1-mediated activation of Akt and ERK1/2 pathways was blocked by ICI-182780. In conclusion, NGR1 provided neuroprotection via inducing an estrogen receptor-dependent crosstalk between Akt and ERK1/2 pathways, subsequently activating Nrf2/ARE signaling and thereby up-regulating phase II antioxidant enzymes.
Collapse
Affiliation(s)
- X Meng
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , P. R. China
| | | | | | | | | | | |
Collapse
|
234
|
Parihar VK, Pasha J, Tran KK, Craver BM, Acharya MM, Limoli CL. Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation. Brain Struct Funct 2014; 220:1161-71. [PMID: 24446074 DOI: 10.1007/s00429-014-0709-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/08/2014] [Indexed: 12/14/2022]
Abstract
Cranial radiotherapy is used routinely to control the growth of primary and secondary brain tumors, but often results in serious and debilitating cognitive dysfunction. In part due to the beneficial dose depth distributions that may spare normal tissue damage, the use of protons to treat CNS and other tumor types is rapidly gaining popularity. Astronauts exposed to lower doses of protons in the space radiation environment are also at risk for developing adverse CNS complications. To explore the consequences of whole body proton irradiation, mice were subjected to 0.1 and 1 Gy and analyzed for morphometric changes in hippocampal neurons 10 and 30 days following exposure. Significant dose-dependent reductions (~33 %) in dendritic complexity were found, when dendritic length, branching and area were analyzed 30 days after exposure. At equivalent doses and times, significant reductions in the number (~30 %) and density (50-75 %) of dendritic spines along hippocampal neurons of the dentate gyrus were also observed. Immature spines (filopodia, long) exhibited the greatest sensitivity (1.5- to 3-fold) to irradiation, while more mature spines (mushroom) were more resistant to changes over a 1-month post-irradiation timeframe. Irradiated granule cell neurons spanning the subfields of the dentate gyrus showed significant and dose-responsive reductions in synaptophysin expression, while the expression of postsynaptic density protein (PSD-95) was increased significantly. These findings corroborate our past work using photon irradiation, and demonstrate for the first time, dose-responsive changes in dendritic complexity, spine density and morphology and synaptic protein levels following exposure to low-dose whole body proton irradiation.
Collapse
Affiliation(s)
- Vipan K Parihar
- Department of Radiation Oncology, University of California, Medical Sciences I, Room B-146B, Irvine, CA, 92697-2695, USA
| | | | | | | | | | | |
Collapse
|
235
|
Rotunno MS, Bosco DA. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis. Front Cell Neurosci 2013; 7:253. [PMID: 24379756 PMCID: PMC3863749 DOI: 10.3389/fncel.2013.00253] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that targets motor neurons, leading to paralysis and death within a few years of disease onset. While several genes have been linked to the inheritable, or familial, form of ALS, much less is known about the cause(s) of sporadic ALS, which accounts for ~90% of ALS cases. Due to the clinical similarities between familial and sporadic ALS, it is plausible that both forms of the disease converge on a common pathway and, therefore, involve common factors. Recent evidence suggests the Cu,Zn-superoxide dismutase (SOD1) protein to be one such factor that is common to both sporadic and familial ALS. In 1993, mutations were uncovered in SOD1 that represent the first known genetic cause of familial ALS. While the exact mechanism of mutant-SOD1 toxicity is still not known today, most evidence points to a gain of toxic function that stems, at least in part, from the propensity of this protein to misfold. In the wild-type SOD1 protein, non-genetic perturbations such as metal depletion, disruption of the quaternary structure, and oxidation, can also induce SOD1 to misfold. In fact, these aforementioned post-translational modifications cause wild-type SOD1 to adopt a “toxic conformation” that is similar to familial ALS-linked SOD1 variants. These observations, together with the detection of misfolded wild-type SOD1 within human post-mortem sporadic ALS samples, have been used to support the controversial hypothesis that misfolded forms of wild-type SOD1 contribute to sporadic ALS pathogenesis. In this review, we present data from the literature that both support and contradict this hypothesis. We also discuss SOD1 as a potential therapeutic target for both familial and sporadic ALS.
Collapse
Affiliation(s)
- Melissa S Rotunno
- Department of Neurology, University of Massachusetts Medical Center Worcester, MA, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Medical Center Worcester, MA, USA
| |
Collapse
|
236
|
Nizzardo M, Simone C, Rizzo F, Ruggieri M, Salani S, Riboldi G, Faravelli I, Zanetta C, Bresolin N, Comi GP, Corti S. Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum Mol Genet 2013; 23:342-54. [PMID: 24006477 PMCID: PMC3869354 DOI: 10.1093/hmg/ddt425] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disease characterized by the degeneration of motor neurons. Currently, there is no effective therapy for ALS. Stem cell transplantation is a potential therapeutic strategy for ALS, and the reprogramming of adult somatic cells into induced pluripotent stem cells (iPSCs) represents a novel cell source. In this study, we isolated a specific neural stem cell (NSC) population from human iPSCs based on high aldehyde dehydrogenase activity, low side scatter and integrin VLA4 positivity. We assessed the therapeutic effects of these NSCs on the phenotype of ALS mice after intrathecal or intravenous injections. Transplanted NSCs migrated and engrafted into the central nervous system via both routes of injection. Compared with control ALS, treated ALS mice exhibited improved neuromuscular function and motor unit pathology and significantly increased life span, in particular with the systemic administration of NSCs (15%). These positive effects are linked to multiple mechanisms, including production of neurotrophic factors and reduction of micro- and macrogliosis. NSCs induced a decrease in astrocyte number through the activation of the vanilloid receptor TRPV1. We conclude that minimally invasive injections of iPSC-derived NSCs can exert a therapeutic effect in ALS. This study contributes to advancements in iPSC-mediated approaches for treating ALS and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Neurology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|