201
|
Hu X, Wu T, Bao Y, Zhang Z. Nanotechnology based therapeutic modality to boost anti-tumor immunity and collapse tumor defense. J Control Release 2017; 256:26-45. [PMID: 28434891 DOI: 10.1016/j.jconrel.2017.04.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022]
Abstract
Cancer is still the leading cause of death. While traditional treatments such as surgery, chemotherapy and radiotherapy play dominating roles, recent breakthroughs in cancer immunotherapy indicate that the influence of immune system on cancer development is virtually beyond our expectation. Manipulating the immune system to fight against cancer has been thriving in recent years. Further understanding of tumor anatomy provides opportunities to put a brake on immunosuppression by overcoming tumor intrinsic resistance or modulating tumor microenvironment. Nanotechnology which provides versatile engineered approaches to enhance therapeutic effects may potentially contribute to the development of future cancer treatment modality. In this review, we will focus on the application of nanotechnology both in boosting anti-tumor immunity and collapsing tumor defense.
Collapse
Affiliation(s)
| | | | - Yuling Bao
- Tongji School of Pharmacy, PR China; Department of Pharmacy, Tongji Hospital, PR China
| | - Zhiping Zhang
- Tongji School of Pharmacy, PR China; National Engineering Research Center for Nanomedicine, PR China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan 430030, PR China.
| |
Collapse
|
202
|
Zheng Y, Tang L, Mabardi L, Kumari S, Irvine DJ. Enhancing Adoptive Cell Therapy of Cancer through Targeted Delivery of Small-Molecule Immunomodulators to Internalizing or Noninternalizing Receptors. ACS NANO 2017; 11:3089-3100. [PMID: 28231431 PMCID: PMC5647839 DOI: 10.1021/acsnano.7b00078] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Adoptive cell therapy (ACT) has achieved striking efficacy in B-cell leukemias, but less success treating other cancers, in part due to the rapid loss of ACT T-cell effector function in vivo due to immunosuppression in solid tumors. Transforming growth factor-β (TGF-β) signaling is an important mechanism of immune suppression in the tumor microenvironment, but systemic inhibition of TGF-β is toxic. Here we evaluated the potential of targeting a small molecule inhibitor of TGF-β to ACT T-cells using PEGylated immunoliposomes. Liposomes were prepared that released TGF-β inhibitor over ∼3 days in vitro. We compared the impact of targeting these drug-loaded vesicles to T-cells via an internalizing receptor (CD90) or noninternalizing receptor (CD45). When lymphocytes were preloaded with immunoliposomes in vitro prior to adoptive therapy, vesicles targeted to both CD45 and CD90 promoted enhanced T-cell expression of granzymes relative to free systemic drug administration, but only targeting to CD45 enhanced accumulation of granzyme-expressing T-cells in tumors, which correlated with the greatest enhancement of T-cell antitumor activity. By contrast, when administered i.v. to target T-cells in vivo, only targeting of a CD90 isoform expressed exclusively by the donor T-cells led to greater tumor regression over equivalent doses of free systemic drug. These results suggest that in vivo, targeting of receptors uniquely expressed by donor T-cells is of paramount importance for maximal efficacy. This immunoliposome strategy should be broadly applicable to target exogenous or endogenous T-cells and defines parameters to optimize delivery of supporting (or suppressive) drugs to these important immune effectors.
Collapse
Affiliation(s)
- Yiran Zheng
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | - Li Tang
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | - Llian Mabardi
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | - Sudha Kumari
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
| | - Darrell J. Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, Massachusetts, USA
- Department of Material Science and Engineering, MIT, Cambridge, Massachusetts, USA
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Boston, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Correspondence should be addressed to D.J.I., Darrell J. Irvine, MIT Room 76-261, 77 Massachusetts Avenue, Cambridge, MA 02139, USA, Telephone: 617-452-4174. Fax: 617-452-3293.
| |
Collapse
|
203
|
Han Y, Wu Y, Yang C, Huang J, Guo Y, Liu L, Chen P, Wu D, Liu J, Li J, Zhou X, Hou J. Dynamic and specific immune responses against multiple tumor antigens were elicited in patients with hepatocellular carcinoma after cell-based immunotherapy. J Transl Med 2017; 15:64. [PMID: 28330473 PMCID: PMC5363021 DOI: 10.1186/s12967-017-1165-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common cancers in China and frequently occurs with chronic hepatitis B virus infection. To investigate whether cell-based cancer immunotherapy induces tumor specific immune responses in patients with HCC and provides clinical benefits, as well as to elucidate the most immunogenic tumor associated antigens (TAAs), multiple antigen stimulating cellular therapy (MASCT) was applied in addition to standard of care. METHODS Mature dendritic cells (DCs) and activated T cells prepared for MASCT were generated from autologous peripheral blood mononuclear cells (PBMCs). DCs were loaded with a peptide pool of multiple HCC-related tumor antigens, and T cells were stimulated by these DCs. RESULTS Thirteen patients with HCC received repeated MASCT after tumor resection during which their immune responses were examined. After three courses of MASCT, the frequency of regulatory T cells in the patients' PBMCs significantly decreased (p < 0.001), while the antigen peptide pool-triggered T cell proliferation (p < 0.001) and IFNγ production (p = 0.001) were significantly enhanced. The specific T cell responses against each antigen in the pool were detected in 11 patients, but with individualized distinct patterns. The most immunogenic TAAs for HCC are survivin, CCND1, and RGS5. Moreover, the antigen-specific immune responses observed in tumor-free patients' PBMCs were significantly stronger than that in the patients with recurrence (p = 0.037). CONCLUSIONS Our study demonstrates that MASCT is well-tolerated by patients with HCC and elicits strong and dynamic immune responses specifically against multiple tumor associated antigens, which may correlate with clinical outcomes.
Collapse
Affiliation(s)
- Yanyan Han
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.,HRYZ Biotech Co., Shenzhen, China
| | - Yeting Wu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chou Yang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yabing Guo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | - Jin Li
- HRYZ Biotech Co., Shenzhen, China
| | | | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
204
|
Hege KM, Bergsland EK, Fisher GA, Nemunaitis JJ, Warren RS, McArthur JG, Lin AA, Schlom J, June CH, Sherwin SA. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J Immunother Cancer 2017; 5:22. [PMID: 28344808 PMCID: PMC5360066 DOI: 10.1186/s40425-017-0222-9] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
Background T cells engineered to express chimeric antigen receptors (CARs) have established efficacy in the treatment of B-cell malignancies, but their relevance in solid tumors remains undefined. Here we report results of the first human trials of CAR-T cells in the treatment of solid tumors performed in the 1990s. Methods Patients with metastatic colorectal cancer (CRC) were treated in two phase 1 trials with first-generation retroviral transduced CAR-T cells targeting tumor-associated glycoprotein (TAG)-72 and including a CD3-zeta intracellular signaling domain (CART72 cells). In trial C-9701 and C-9702, CART72 cells were administered in escalating doses up to 1010 total cells; in trial C-9701 CART72 cells were administered by intravenous infusion. In trial C-9702, CART72 cells were administered via direct hepatic artery infusion in patients with colorectal liver metastases. In both trials, a brief course of interferon-alpha (IFN-α) was given with each CART72 infusion to upregulate expression of TAG-72. Results Fourteen patients were enrolled in C-9701 and nine in C-9702. CART72 manufacturing success rate was 100% with an average transduction efficiency of 38%. Ten patients were treated in CC-9701 and 6 in CC-9702. Symptoms consistent with low-grade, cytokine release syndrome were observed in both trials without clear evidence of on target/off tumor toxicity. Detectable, but mostly short-term (≤14 weeks), persistence of CART72 cells was observed in blood; one patient had CART72 cells detectable at 48 weeks. Trafficking to tumor tissues was confirmed in a tumor biopsy from one of three patients. A subset of patients had 111Indium-labeled CART72 cells injected, and trafficking could be detected to liver, but T cells appeared largely excluded from large metastatic deposits. Tumor biomarkers carcinoembryonic antigen (CEA) and TAG-72 were measured in serum; there was a precipitous decline of TAG-72, but not CEA, in some patients due to induction of an interfering antibody to the TAG-72 binding domain of humanized CC49, reflecting an anti-CAR immune response. No radiologic tumor responses were observed. Conclusion These findings demonstrate the relative safety of CART72 cells. The limited persistence supports the incorporation of co-stimulatory domains in the CAR design and the use of fully human CAR constructs to mitigate immunogenicity.
Collapse
Affiliation(s)
- Kristen M Hege
- Cell Genesys, Inc, Foster City, CA USA.,Celgene Corporation, San Francisco, CA USA.,University of California, San Francisco, CA USA
| | | | | | | | | | | | | | - Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
| | - Carl H June
- University of Pennsylvania, Philadelphia, PA USA
| | - Stephen A Sherwin
- Cell Genesys, Inc, Foster City, CA USA.,University of California, San Francisco, CA USA
| |
Collapse
|
205
|
Anselmo Da Costa I, Rausch S, Kruck S, Todenhöfer T, Stenzl A, Bedke J. Immunotherapeutic strategies for the treatment of renal cell carcinoma: Where will we go? Expert Rev Anticancer Ther 2017; 17:357-368. [PMID: 28162024 DOI: 10.1080/14737140.2017.1292138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Historically, renal cell carcinoma (RCC) is considered a chemotherapy-resistant tumor. The cornerstone of systemic therapy included mammalian target of rapamycin (mTOR) inhibitors, endothelial growth factor receptor (VEGFR) and tyrosine kinase inhibitors (TKIs). Currently, a new era is enteres with promising immunotherapeutic treatments, which are becoming commercially available. Areas covered: We provide a comprehensive review using PubMed and ClinicalTrials.gov about the following immunotherapies in RCC: i) vaccine therapy, ii) adoptive T Cell Transfer and CAR T cells, iii) nonspecific immunotherapy - IL-2 (new formulations), iv) Checkpoint inhibitors, v) other checkpoint-molecules. We will also discuss their mechanism of action and toxicity, the importance of developing new patient selection algorithms (immunoprofiling, guidelines updates) and new biomarkers such as PD-1 expression. Expert commentary: Immunotherapy shows promise, and the current tools used in clinical practice, including guidelines, staging-classification and algorithms should be revised and adapted to the new immunotherapeutic drugs. Although immunotherapy in RCC show promising results, more research is needed in parallel to discover biomarkers that enable the prediction of a treatment response and therefore lead to better patient selection.
Collapse
Affiliation(s)
| | - Steffen Rausch
- a Department of Urology , Eberhard Karls University , Tuebingen , Germany
| | - Stephan Kruck
- a Department of Urology , Eberhard Karls University , Tuebingen , Germany
| | - Tilman Todenhöfer
- a Department of Urology , Eberhard Karls University , Tuebingen , Germany
| | - Arnulf Stenzl
- a Department of Urology , Eberhard Karls University , Tuebingen , Germany
| | - Jens Bedke
- a Department of Urology , Eberhard Karls University , Tuebingen , Germany
| |
Collapse
|
206
|
Schwarz KA, Daringer NM, Dolberg TB, Leonard JN. Rewiring human cellular input-output using modular extracellular sensors. Nat Chem Biol 2017; 13:202-209. [PMID: 27941759 PMCID: PMC11536266 DOI: 10.1038/nchembio.2253] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
Engineered cell-based therapies comprise a promising emerging strategy for treating diverse diseases. Realizing this promise requires new tools for engineering cells to sense and respond to soluble extracellular factors, which provide information about both physiological state and the local environment. Here, we report such a biosensor engineering strategy, leveraging a self-contained receptor-signal transduction system termed modular extracellular sensor architecture (MESA). We developed MESA receptors that enable cells to sense vascular endothelial growth factor (VEGF) and, in response, secrete interleukin 2 (IL-2). By implementing these receptors in human T cells, we created a customized function not observed in nature-an immune cell that responds to a normally immunosuppressive cue (VEGF) by producing an immunostimulatory factor (IL-2). Because this platform utilizes modular, engineerable domains for ligand binding (antibodies) and output (programmable transcription factors based upon Cas9), this approach may be readily extended to novel inputs and outputs. This generalizable approach for rewiring cellular functions could enable both translational applications and fundamental biological research.
Collapse
Affiliation(s)
- Kelly A. Schwarz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Nichole M. Daringer
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Taylor B. Dolberg
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
207
|
Kenderian SS, Porter DL, Gill S. Chimeric Antigen Receptor T Cells and Hematopoietic Cell Transplantation: How Not to Put the CART Before the Horse. Biol Blood Marrow Transplant 2017; 23:235-246. [PMID: 27638367 PMCID: PMC5237606 DOI: 10.1016/j.bbmt.2016.09.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023]
Abstract
Hematopoietic cell transplantation (HCT) remains an important and potentially curative option for most hematologic malignancies. As a form of immunotherapy, allogeneic HCT (allo-HCT) offers the potential for durable remissions but is limited by transplantation- related morbidity and mortality owing to organ toxicity, infection, and graft-versus-host disease. The recent positive outcomes of chimeric antigen receptor T (CART) cell therapy in B cell malignancies may herald a paradigm shift in the management of these disorders and perhaps other hematologic malignancies as well. Clinical trials are now needed to address the relative roles of CART cells and HCT in the context of transplantation-eligible patients. In this review, we summarize the state of the art of the development of CART cell therapy for leukemia, lymphoma, and myeloma and discuss our perspective of how CART cell therapy can be applied in the context of HCT.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD/immunology
- CD3 Complex/genetics
- CD3 Complex/immunology
- Cells, Cultured
- Clinical Trials as Topic
- Costimulatory and Inhibitory T-Cell Receptors/genetics
- Costimulatory and Inhibitory T-Cell Receptors/immunology
- Genes, Synthetic
- Genetic Vectors
- Graft vs Host Disease/prevention & control
- Hematologic Neoplasms/therapy
- Hematopoietic Stem Cell Transplantation
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Multicenter Studies as Topic
- Protein Domains
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transduction, Genetic
- Transplantation Conditioning
Collapse
Affiliation(s)
- Saad S Kenderian
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - David L Porter
- Division of Hematology/Oncology, University of Pennsylvania School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology/Oncology, University of Pennsylvania School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Abramson Cancer Center, University of Pennsylvania School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
208
|
Zhang E, Xu H. A new insight in chimeric antigen receptor-engineered T cells for cancer immunotherapy. J Hematol Oncol 2017; 10:1. [PMID: 28049484 PMCID: PMC5210295 DOI: 10.1186/s13045-016-0379-6] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/16/2016] [Indexed: 02/07/2023] Open
Abstract
Adoptive cell therapy using chimeric antigen receptor (CAR)-engineered T cells has emerged as a very promising approach to combating cancer. Despite its ability to eliminate tumors shown in some clinical trials, CAR-T cell therapy involves some significant safety challenges, such as cytokine release syndrome (CRS) and “on-target, off-tumor” toxicity, which is related to poor control of the dose, location, and timing of T cell activity. In the past few years, some strategies to avoid the side effects of CAR-T cell therapy have been reported, including suicide gene, inhibitory CAR, dual-antigen receptor, and the use of exogenous molecules as switches to control the CAR-T cell functions. Because of the advances of the CAR paradigm and other forms of cancer immunotherapy, the most effective means of defeating the cancer has become the integration therapy with the combinatorial control system of switchable dual-receptor CAR-T cell and immune checkpoint blockade.
Collapse
Affiliation(s)
- Erhao Zhang
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, 210009, China. .,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
209
|
Bu X, Yao Y, Li X. Immune Checkpoint Blockade in Breast Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:383-402. [PMID: 29282694 DOI: 10.1007/978-981-10-6020-5_18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer immunotherapy is emerging as the most promising novel strategy for cancer treatment. Cancer immunotherapy is broadly categorized into three forms: immune checkpoint modulation, adoptive cell transfer, and cancer vaccine. Immune checkpoint blockade is demonstrated as the most clinically effective treatment with low immune-related adverse events (irAE). Blockade of PD-1/PD-L1 and CTLA-4 has achieved remarkable success in treating various types of tumors, which sparks great interests in this therapeutic strategy and expands the role of immune checkpoint blockade in treating tumors including breast cancer. Based on the notable results obtained from clinical trials, the United States' Food and Drug Administration (FDA) has approved multiple CTLA-4 monoclonal antibodies as well as the PD-1/PD-L1 monoclonal antibodies for treatment of different types of tumors. The theories of immunoediting, T-cell exhaustions, and co-stimulatory/co-inhibitory pathways are immunological foundations for immune checkpoint blockade therapy. Breast cancers such as triple negative breast cancer and HER-2 negative breast cancer respond to immune checkpoint blockade therapy due to their high immunogenicity. PD-1/PD-L1 blockade has just received FDA approval as a standard cancer therapy for solid tumors such as breast cancer. Development of immune checkpoint blockade focuses on two directions: one is to identify proper biomarkers of immune checkpoint blockade in breast cancer, and the other is to combine therapies with PD-1/PD-L1 blockade antibodies to achieve optimal clinical outcomes.
Collapse
Affiliation(s)
- Xia Bu
- Department of Medical Oncology, The First Affiliated Hospital, Henan University Cancer Center, School of Medicine, Henan University, Kaifeng, People's Republic of China.
| | - Yihui Yao
- Department of Medical Oncology, The First Affiliated Hospital, Henan University Cancer Center, School of Medicine, Henan University, Kaifeng, People's Republic of China
| | - Xiaoyu Li
- Department of Hematology, The First Affiliated Hospital, Henan University Cancer Center, School of Medicine, Henan University, Kaifeng, People's Republic of China
| |
Collapse
|
210
|
Frankel T, Lanfranca MP, Zou W. The Role of Tumor Microenvironment in Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:51-64. [PMID: 29275464 DOI: 10.1007/978-3-319-67577-0_4] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The field of tumor immunology and immunotherapy has undergone a renaissance in the past decade do in large part to a better understanding of the tumor immune microenvironment. After suffering countless successes and setbacks in the twentieth century, immunotherapy has now come to the forefront of cancer research and is recognized as an important tool in the anti-tumor armamentarium. The goal of therapy is to aid the immune system in recognition and destruction of tumor cells by enhancing its ability to react to tumor antigens. This traditionally has been accomplished by induction of adaptive immunity through vaccination or through passive delivery of immunologic effectors as in the case of adoptive cell transfer. The recent discovery of immune "checkpoints" whose purpose is to suppress immune activity and prevent auto-immunity has created a new angle by which reactivity to tumors can be enhanced. Blockers of these checkpoints have yielded impressive clinical results and have recently been approved for use in a wide variety of malignancies. With data showing increasing rates of not only treatment response, but complete remissions, immunotherapy is poised to become an increasingly utilized therapy in the treatment of cancer.
Collapse
Affiliation(s)
- Timothy Frankel
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mirna Perusina Lanfranca
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- Graduate Programs in Immunology and Tumor Biology, University of Michigan, Ann Arbor, MI, USA.
- The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
211
|
Kenderian SS, June CH, Gill S. Generating and Expanding Autologous Chimeric Antigen Receptor T Cells from Patients with Acute Myeloid Leukemia. Methods Mol Biol 2017; 1633:267-276. [PMID: 28735493 DOI: 10.1007/978-1-4939-7142-8_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adoptive transfer of genetically engineered T cells can lead to profound and durable responses in patients with hematologic malignancies, generating enormous enthusiasm among scientists, clinicians, patients, and biotechnology companies. The success of adoptive cellular immunotherapy depends upon the ability to manufacture good quality T cells. We discuss here the methodologies and reagents that are used to generate T cells for the preclinical study of chimeric antigen receptor T cell therapy for acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Saad S Kenderian
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology/Oncology, Center for Cellular Immunotherapies, Smilow Center for Translational Research, 8-100, 3400 Civic Center Blvd, Philadelphia, PA, 19146, USA.
| |
Collapse
|
212
|
Abstract
The recent development of CRISPR-Cas systems as easily accessible and programmable tools for genome editing and regulation is spurring a revolution in biology. Paired with the rapid expansion of reference and personalized genomic sequence information, technologies based on CRISPR-Cas are enabling nearly unlimited genetic manipulation, even in previously difficult contexts, including human cells. Although much attention has focused on the potential of CRISPR-Cas to cure Mendelian diseases, the technology also holds promise to transform the development of therapies to treat complex heritable and somatic disorders. In this Review, we discuss how CRISPR-Cas can affect the next generation of drugs by accelerating the identification and validation of high-value targets, uncovering high-confidence biomarkers and developing differentiated breakthrough therapies. We focus on the promises, pitfalls and hurdles of this revolutionary gene-editing technology, discuss key aspects of different CRISPR-Cas screening platforms and offer our perspectives on the best practices in genome engineering.
Collapse
|
213
|
Orlowski RJ, Porter DL, Frey NV. The promise of chimeric antigen receptor T cells (CARTs) in leukaemia. Br J Haematol 2016; 177:13-26. [PMID: 27977050 DOI: 10.1111/bjh.14475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The success of genetically engineered T cells that express chimeric antigen receptors (CARTs) has been a momentous step forward in harnessing the potent cancer fighting abilities of the immune system. The efficacy seen in relapsed/refractory (r/r) acute lymphoblastic leukaemia (ALL), not only by inducing remission, but also in maintaining long-term disease control, has been unprecedented. While the foundation for this approach has been firmly set in place, continued development will improve the efficacy, toxicity and applicability to other malignancies of this new class of 'living drugs'. In this review, we provide a comprehensive overview of the most current clinical trial data in both acute and chronic leukaemias, and discuss some of the potential ways to enhance the activity and safety of CART therapy going forward.
Collapse
Affiliation(s)
- Robert J Orlowski
- Department of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - David L Porter
- Department of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Noelle V Frey
- Department of Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
214
|
Kobold S, Duewell P, Schnurr M, Subklewe M, Rothenfusser S, Endres S. Immunotherapy in Tumors. DEUTSCHES ARZTEBLATT INTERNATIONAL 2016; 112:809-15. [PMID: 26667979 DOI: 10.3238/arztebl.2015.0809] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND A number of new drugs for tumor immunotherapy have been approved in the past few years. They work by activating T cells to combat tumors. METHODS This review is based on publications on recently approved T-cell-activating drugs that were retrieved by a selective search in PubMed. RESULTS Randomized, controlled trials of "checkpoint" inhibitors, i.e., inhibitory antibodies for use against tumors, have shown that the cytotoxic T-lymphocyte antigen 4 (CTLA-4) inhibitor ipilimumab can prolong the survival of patients with advanced melanoma by 2 to 4 months. No data on median overall survival are yet available for the two programmed-death-1 (PD-1) inhibitors pembrolizumab und nivolumab; the endpoint "tumor response" was achieved in 24% and 32% of patients receiving these drugs, respectively. Grade 3 or 4 adverse effects occurred in 50% of patients receiving ipilimumab and in 12 to 13% of those taking either of the two PD-1-inhibitors. Nivolumab prolonged the median survival of patients with metastatic non-small-cell lung cancer from 6 to 9 months. In refractory or recurrent Philadelphia-chromosome-negative pre-B acute lymphoblastic leukemia (pre-B-ALL), treatment with the bispecific antibody construct blinatumomab led to complete remission in 43% of the patients, while grade 3, 4 or 5 toxicities occurred in 83%. CONCLUSION T-cell-directed strategies have been established as a new pillar of treatment in medical oncology. As these drugs have frequent and severe adverse effects, therapeutic decision-making will have to take account not only of the predicted prolongation of survival, but also of the potential for an impaired quality of life while the patient is under treatment.
Collapse
Affiliation(s)
- Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Klinikum der Universität München, Department of Internal Medicine III, Klinikum der Universität München, München
| | | | | | | | | | | |
Collapse
|
215
|
Inoo K, Inagaki R, Fujiwara K, Sasawatari S, Kamigaki T, Nakagawa S, Okada N. Immunological quality and performance of tumor vessel-targeting CAR-T cells prepared by mRNA-EP for clinical research. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16024. [PMID: 27909701 PMCID: PMC5111575 DOI: 10.1038/mto.2016.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/14/2016] [Accepted: 08/27/2016] [Indexed: 01/03/2023]
Abstract
We previously reported that tumor vessel-redirected T cells, which were genetically engineered with chimeric antigen receptor (CAR) specific for vascular endothelial growth factor receptor 2 (VEGFR2), demonstrated significant antitumor effects in various murine solid tumor models. In the present study, we prepared anti-VEGFR2 CAR-T cells by CAR-coding mRNA electroporation (mRNA-EP) and analyzed their immunological characteristics and functions for use in clinical research. The expression of anti-VEGFR2 CAR on murine and human T cells was detected with approximately 100% efficiency for a few days, after peaking 6-12 hours after mRNA-EP. Triple transfer of murine anti-VEGFR2 CAR-T cells into B16BL6 tumor-bearing mice demonstrated an antitumor effect comparable to that for the single transfer of CAR-T cells engineered with retroviral vector. The mRNA-EP did not cause any damage or defects to human T-cell characteristics, as determined by viability, growth, and phenotypic parameters. Additionally, two kinds of human anti-VEGFR2 CAR-T cells, which expressed different CAR construction, differentiated to effector phase with cytokine secretion and cytotoxic activity in antigen-specific manner. These results indicate that our anti-VEGFR2 CAR-T cells prepared by mRNA-EP have the potential in terms of quality and performance to offer the prospect of safety and efficacy in clinical research as cellular medicine.
Collapse
Affiliation(s)
- Kanako Inoo
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Ryo Inagaki
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Kento Fujiwara
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | | | - Takashi Kamigaki
- MEDINET Co., Ltd., Kanagawa, Japan; Seta Clinic Group, Tokyo, Japan
| | - Shinsaku Nakagawa
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Naoki Okada
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| |
Collapse
|
216
|
Ando M, Nakauchi H. 'Off-the-shelf' immunotherapy with iPSC-derived rejuvenated cytotoxic T lymphocytes. Exp Hematol 2016; 47:2-12. [PMID: 27826124 DOI: 10.1016/j.exphem.2016.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
Abstract
Adoptive T-cell therapy to target and kill tumor cells shows promise and induces durable remissions in selected malignancies. However, for most cancers, clinical utility is limited. Cytotoxic T lymphocytes continuously exposed to viral or tumor antigens, with long-term expansion, may become unable to proliferate ("exhausted"). To exploit fully rejuvenated induced pluripotent stem cell (iPSC)-derived antigen-specific cytotoxic T lymphocytes is a potentially powerful approach. We review recent progress in engineering iPSC-derived T cells and prospects for clinical translation. We also describe the importance of introducing a suicide gene safeguard system into adoptive T-cell therapy, including iPSC-derived T-cell therapy, to protect from unexpected events in first-in-humans clinical trials.
Collapse
Affiliation(s)
- Miki Ando
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo, Japan.
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
217
|
Swart M, Verbrugge I, Beltman JB. Combination Approaches with Immune-Checkpoint Blockade in Cancer Therapy. Front Oncol 2016; 6:233. [PMID: 27847783 PMCID: PMC5088186 DOI: 10.3389/fonc.2016.00233] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022] Open
Abstract
In healthy individuals, immune-checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune-checkpoint blockade of cytotoxic T lymphocyte antigen-4 and programed death-1 emerged as promising strategies to activate antitumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune-checkpoint blockade in the context of the cancer-immunity cycle, aimed at increasing response rates to the single treatments. Specifically, we discuss combinations that promote antigen release and presentation, that further amplify T cell activation, that inhibit trafficking of regulatory T cells or MSDCs, that stimulate intratumoral T cell infiltration, that increase cancer recognition by T cells, and that stimulate tumor killing.
Collapse
Affiliation(s)
- Maarten Swart
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Inge Verbrugge
- Division of Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Joost B. Beltman
- Division of Toxicology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
218
|
Realism and pragmatism in developing an effective chimeric antigen receptor T-cell product for solid cancers. Cytotherapy 2016; 18:1382-1392. [DOI: 10.1016/j.jcyt.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 01/21/2023]
|
219
|
Chen Q, Xu L, Liang C, Wang C, Peng R, Liu Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat Commun 2016; 7:13193. [PMID: 27767031 PMCID: PMC5078754 DOI: 10.1038/ncomms13193] [Citation(s) in RCA: 1116] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/12/2016] [Indexed: 01/03/2023] Open
Abstract
A therapeutic strategy that can eliminate primary tumours, inhibit metastases, and prevent tumour relapses is developed herein by combining adjuvant nanoparticle-based photothermal therapy with checkpoint-blockade immunotherapy. Indocyanine green (ICG), a photothermal agent, and imiquimod (R837), a Toll-like-receptor-7 agonist, are co-encapsulated by poly(lactic-co-glycolic) acid (PLGA). The formed PLGA-ICG-R837 nanoparticles composed purely by three clinically approved components can be used for near-infrared laser-triggered photothermal ablation of primary tumours, generating tumour-associated antigens, which in the presence of R837-containing nanoparticles as the adjuvant can show vaccine-like functions. In combination with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4 (CTLA4), the generated immunological responses will be able to attack remaining tumour cells in mice, useful in metastasis inhibition, and may potentially be applicable for various types of tumour models. Furthermore, such strategy offers a strong immunological memory effect, which can provide protection against tumour rechallenging post elimination of their initial tumours. Photothermal therapy can induce an anti-tumour immune response by producing tumour-associated antigens. Here, the authors design a nanoparticle that simultaneously acts as a photothermal agent and an immune-adjuvant and demonstrate the anti-tumour efficacy in combination with anti-CTLA4 therapy in preclinical murine cancer models.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ligeng Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Liang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Chao Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Rui Peng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
220
|
Chang L, Li L, Shi J, Sheng Y, Lu W, Gallego-Perez D, Lee LJ. Micro-/nanoscale electroporation. LAB ON A CHIP 2016; 16:4047-4062. [PMID: 27713986 DOI: 10.1039/c6lc00840b] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Electroporation has been one of the most popular non-viral technologies for cell transfection. However, conventional bulk electroporation (BEP) shows significant limitations in efficiency, cell viability and transfection uniformity. Recent advances in microscale-electroporation (MEP) resulted in improved cell viability. Further miniaturization of the electroporation system (i.e., nanoscale) has brought up many unique advantages, including negligible cell damage and dosage control capabilities with single-cell resolution, which has enabled more translational applications. In this review, we give an insight into the fundamental and technical aspects of micro- and nanoscale/nanochannel electroporation (NEP) and go over several examples of MEP/NEP-based cutting-edge research, including gene editing, adoptive immunotherapy, and cellular reprogramming. The challenges and opportunities of advanced electroporation technologies are also discussed.
Collapse
Affiliation(s)
- Lingqian Chang
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Lei Li
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Junfeng Shi
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Sheng
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43209, USA
| | - Wu Lu
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43209, USA
| | - Daniel Gallego-Perez
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA. and Department of Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Ly James Lee
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA. and Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA and William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43209, USA
| |
Collapse
|
221
|
Mathematical Models for Immunology: Current State of the Art and Future Research Directions. Bull Math Biol 2016; 78:2091-2134. [PMID: 27714570 PMCID: PMC5069344 DOI: 10.1007/s11538-016-0214-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/26/2016] [Indexed: 01/01/2023]
Abstract
The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years.
Collapse
|
222
|
Schwarz KA, Leonard JN. Engineering cell-based therapies to interface robustly with host physiology. Adv Drug Deliv Rev 2016; 105:55-65. [PMID: 27266446 DOI: 10.1016/j.addr.2016.05.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/10/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Engineered cell-based therapies comprise a rapidly growing clinical technology for treating disease by leveraging the natural capabilities of cells, including migration, information transduction, and biosynthesis and secretion. There now exists a substantial portfolio of intracellular and extracellular sensors that enable bioengineers to program cells to execute defined responses to specific changes in state or environmental cues. As our capability to construct more sophisticated cellular programs increases, assessing and improving the degree to which cell-based therapies perform as desired in vivo will become an increasingly important consideration and opportunity for technological advancement. In this review, we seek to describe both current capabilities and potential needs for building cell-based therapies that interface with host physiology in a manner that is robust - a phrase we use in this context to describe the achievement of therapeutic efficacy across a range of patients and implementations. We first review the portfolio of sensors and outputs currently available for use in cell-based therapies by highlighting key advancements and current gaps. Then, we propose a conceptual framework for evaluating and pursuing robust clinical performance of engineered cell-based therapies.
Collapse
|
223
|
Li Z, Liu X, Guo R, Wang P. CD4 +Foxp3 - type 1 regulatory T cells in glioblastoma multiforme suppress T cell responses through multiple pathways and are regulated by tumor-associated macrophages. Int J Biochem Cell Biol 2016; 81:1-9. [PMID: 27644153 DOI: 10.1016/j.biocel.2016.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/23/2016] [Accepted: 09/15/2016] [Indexed: 01/01/2023]
Abstract
CD4+Foxp3- type 1 regulatory T (Tr1) cells are potent producers of interleukin 10 (IL-10) and transforming growth factor beta (TGF-β), through which they suppress pathogenic inflammation and autoimmune responses. The role of Tr1 response in glioblastoma multiforme (GBM) is still unclear. Here, we examined the frequency, phenotype, induction mechanism, and function of Tr1 cells in GBM patients. Compared to healthy controls, GBM patients presented significantly higher frequency of Tr1 cells in peripheral blood. The Tr1 frequency was further elevated in the tumor. By surface marker expression, the Tr1 cells were enriched in the antigen-experienced effector/memory cell compartment. A minority of Tr1 cells presented IL-10+TGF-β+ double expression. Interestingly, naive CD4+CD45RA+ T cells could differentiate into IL-10- and TGF-β-expressing cells, if incubated with tumor-associated macrophages (TAMs) or with macrophages conditioned with primary glioma cells, suggesting that tumor cells and TAMs had a role in inducing Tr1 cells in GBM patients. Coculture of Tr1 cells with proinflammatory CD4+ T cells resulted in TGF-β-dependent reduction of interferon gamma (IFN-γ) and IL-10-dependent reduction of tumor necrosis factor alpha (TNF-α), while coculture of Tr1 cells with CD8+ T cells resulted in lower tumor-specific cytotoxicity. Together, these results demonstrated an upregulation of Tr1 cells in GBM with anti-inflammatory functions.
Collapse
Affiliation(s)
- Zhao Li
- Department of Neurosurgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaobing Liu
- Department of Neurosurgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Rongbin Guo
- Department of Neurosurgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pengfei Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
224
|
Menezes AA, Montague MG, Cumbers J, Hogan JA, Arkin AP. Grand challenges in space synthetic biology. J R Soc Interface 2016; 12:20150803. [PMID: 26631337 PMCID: PMC4707852 DOI: 10.1098/rsif.2015.0803] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth.
Collapse
Affiliation(s)
- Amor A Menezes
- California Institute for Quantitative Biosciences, University of California, 2151 Berkeley Way, Berkeley, CA 94704-5230, USA
| | - Michael G Montague
- Applications of Vital Knowledge, 113 Chestnut Hill Way, Frederick, MD 21702, USA
| | - John Cumbers
- NASA Ames Space Portal, NASA Ames Research Center, MS 555-2, Moffett Field, CA 94035, USA
| | - John A Hogan
- Bioengineering Branch, NASA Ames Research Center, MS 239-15, Moffett Field, CA 94035, USA
| | - Adam P Arkin
- California Institute for Quantitative Biosciences, University of California, 2151 Berkeley Way, Berkeley, CA 94704-5230, USA E.O. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS955-512 L, Berkeley, CA 94720, USA Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
225
|
|
226
|
Adriani G, Pavesi A, Tan AT, Bertoletti A, Thiery JP, Kamm RD. Microfluidic models for adoptive cell-mediated cancer immunotherapies. Drug Discov Today 2016; 21:1472-1478. [PMID: 27185084 PMCID: PMC5035566 DOI: 10.1016/j.drudis.2016.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 05/09/2016] [Indexed: 01/02/2023]
Abstract
Current adoptive T cell therapies have shown promising results in clinical trials but need further development as an effective cancer treatment. Here, we discuss how 3D microfluidic tumour models mimicking the tumour microenvironment could help in testing T cell immunotherapies by assessing engineered T cells and identifying combinatorial therapy to improve therapeutic efficacy. We propose that 3D microfluidic systems can be used to screen different patient-specific treatments, thereby reducing the burden of in vivo testing and facilitating the rapid translation of successful T cell cancer immunotherapies to the clinic.
Collapse
Affiliation(s)
- Giulia Adriani
- Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, 138602, Singapore
| | - Andrea Pavesi
- Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, 138602, Singapore
| | - Anthony T Tan
- DUKE-NUS Graduate Medical School Singapore, Emerging Infectious Disease Program, 8 College Road, 169857, Singapore
| | - Antonio Bertoletti
- DUKE-NUS Graduate Medical School Singapore, Emerging Infectious Disease Program, 8 College Road, 169857, Singapore
| | - Jean Paul Thiery
- National University of Singapore, Department of Biochemistry, Yong Loo Lin School of Medicine MD7, 8 Medical Drive, 117597, Singapore
| | - Roger D Kamm
- Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, 138602, Singapore; Massachusetts Institute of Technology, Department of Biological Engineering, 77 Massachusetts Avenue, 02139 Cambridge, MA, USA.
| |
Collapse
|
227
|
Gordley RM, Bugaj LJ, Lim WA. Modular engineering of cellular signaling proteins and networks. Curr Opin Struct Biol 2016; 39:106-114. [PMID: 27423114 DOI: 10.1016/j.sbi.2016.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022]
Abstract
Living cells respond to their environment using networks of signaling molecules that act as sensors, information processors, and actuators. These signaling systems are highly modular at both the molecular and network scales, and much evidence suggests that evolution has harnessed this modularity to rewire and generate new physiological behaviors. Conversely, we are now finding that, following nature's example, signaling modules can be recombined to form synthetic tools for monitoring, interrogating, and controlling the behavior of cells. Here we highlight recent progress in the modular design of synthetic receptors, optogenetic switches, and phospho-regulated proteins and circuits, and discuss the expanding role of combinatorial design in the engineering of cellular signaling proteins and networks.
Collapse
Affiliation(s)
- Russell M Gordley
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Lukasz J Bugaj
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Wendell A Lim
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States.
| |
Collapse
|
228
|
[Anti-CD19 chimeric antigen receptor T cells (CART-19) for hemotological malignancies therapy]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:164-8. [PMID: 27014991 PMCID: PMC7348191 DOI: 10.3760/cma.j.issn.0253-2727.2016.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
229
|
Panjwani MK, Smith JB, Schutsky K, Gnanandarajah J, O'Connor CM, Powell DJ, Mason NJ. Feasibility and Safety of RNA-transfected CD20-specific Chimeric Antigen Receptor T Cells in Dogs with Spontaneous B Cell Lymphoma. Mol Ther 2016; 24:1602-14. [PMID: 27401141 DOI: 10.1038/mt.2016.146] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022] Open
Abstract
Preclinical murine models of chimeric antigen receptor (CAR) T cell therapy are widely applied, but are greatly limited by their inability to model the complex human tumor microenvironment and adequately predict safety and efficacy in patients. We therefore sought to develop a system that would enable us to evaluate CAR T cell therapies in dogs with spontaneous cancers. We developed an expansion methodology that yields large numbers of canine T cells from normal or lymphoma-diseased dogs. mRNA electroporation was utilized to express a first-generation canine CD20-specific CAR in expanded T cells. The canine CD20 (cCD20) CAR expression was efficient and transient, and electroporated T cells exhibited antigen-specific interferon-gamma (IFN-γ) secretion and lysed cCD20+ targets. In a first-in-canine study, autologous cCD20-ζ CAR T cells were administered to a dog with relapsed B cell lymphoma. Treatment was well tolerated and led to a modest, but transient, antitumor activity, suggesting that stable CAR expression will be necessary for durable clinical remissions. Our study establishes the methodologies necessary to evaluate CAR T cell therapy in dogs with spontaneous malignancies and lays the foundation for use of outbred canine cancer patients to evaluate the safety and efficacy of next-generation CAR therapies and their optimization prior to translation into humans.
Collapse
Affiliation(s)
- M Kazim Panjwani
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jenessa B Smith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keith Schutsky
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Josephine Gnanandarajah
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicola J Mason
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
230
|
Adenoviral Delivery of Tumor Necrosis Factor-α and Interleukin-2 Enables Successful Adoptive Cell Therapy of Immunosuppressive Melanoma. Mol Ther 2016; 24:1435-43. [PMID: 27357626 DOI: 10.1038/mt.2016.137] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/20/2016] [Indexed: 12/12/2022] Open
Abstract
Adoptive T-cell transfer is a promising treatment approach for metastatic cancer, but efficacy in solid tumors has only been achieved with toxic pre- and postconditioning regimens. Thus, adoptive T-cell therapies would benefit from complementary modalities that enable their full potential without excessive toxicity. We aimed to improve the efficacy and safety of adoptive T-cell transfer by using adenoviral vectors for direct delivery of immunomodulatory murine cytokines into B16.OVA melanoma tumors with concomitant T-cell receptor transgenic OT-I T-cell transfer. Armed adenoviruses expressed high local and low systemic levels of cytokine when injected into B16.OVA tumors, suggesting safety of virus-mediated cytokine delivery. Antitumor efficacy was significantly enhanced with adenoviruses coding for murine interleukin-2 (mIL-2) and tumor necrosis factor-α (mTNFα) when compared with T-cell transfer alone or viruses alone. Further improvement in efficacy was achieved with a triple combination of mIL-2, mTNFα, and OT-I T-cells. Mechanistic studies suggest that mIL-2 has an important role in activating T-cells at the tumor, while mTNFα induces chemokine expression. Furthermore, adenovirus treatments enhanced tumor-infiltration of OT-I T-cells as demonstrated by SPECT/CT imaging of (111)In-labeled cells. Our results suggest the utility of cytokine-coding adenoviruses for improving the efficacy of adoptive T-cell therapies.
Collapse
|
231
|
Kawalekar OU, O'Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD, Patel PR, Guedan S, Scholler J, Keith B, Snyder NW, Snyder N, Blair IA, Blair I, Milone MC, June CH. Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells. Immunity 2016; 44:380-90. [PMID: 26885860 DOI: 10.1016/j.immuni.2016.01.021] [Citation(s) in RCA: 799] [Impact Index Per Article: 88.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/02/2015] [Accepted: 12/07/2015] [Indexed: 12/16/2022]
Abstract
Chimeric antigen receptors (CARs) redirect T cell cytotoxicity against cancer cells, providing a promising approach to cancer immunotherapy. Despite extensive clinical use, the attributes of CAR co-stimulatory domains that impact persistence and resistance to exhaustion of CAR-T cells remain largely undefined. Here, we report the influence of signaling domains of coreceptors CD28 and 4-1BB on the metabolic characteristics of human CAR T cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8(+) central memory T cells that had significantly enhanced respiratory capacity, increased fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells with CD28 domains yielded effector memory cells with a genetic signature consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 signaling domains in clinical trials and inform the design of future CAR T cell therapies.
Collapse
Affiliation(s)
- Omkar U Kawalekar
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roddy S O'Connor
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Guo
- Penn SRP Center, Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shannon E McGettigan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Prachi R Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia Guedan
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Scholler
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Keith
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Nathaniel Snyder
- Penn SRP Center, Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA
| | | | - Ian Blair
- Penn SRP Center, Center of Excellence in Environmental Toxicology and Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael C Milone
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
232
|
Immunotherapy in colorectal cancer: What have we learned so far? Clin Chim Acta 2016; 460:78-87. [PMID: 27350293 DOI: 10.1016/j.cca.2016.06.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/13/2022]
Abstract
After decades of progress based on chemotherapy and targeted agents, patients with metastatic colorectal cancer still have low long-term survival, with more than 500,000 deaths occurring worldwide every year. Recent results showing clinical evidence of efficacy using immunotherapy in other types of tumors, such as melanoma and lung cancer, have also made this a viable therapy for evaluation in colorectal cancer in clinical trials. The development of cancer immunotherapies is progressing quickly, with a variety of technological approaches. This review summarizes the current status of clinical trials testing immunotherapy in colorectal cancer and discusses what has been learned based on previous results. Immunotherapy strategies, such as various models of vaccines, effector-cell therapy and checkpoint inhibitor antibodies, provide protection against progression for a limited subset of patients diagnosed with colorectal cancer. A better understanding of particular immune cell types and pathways in each patient is still needed. These findings will enable the development of novel biomarkers to select the appropriate subset of patients to be treated with a particular immunotherapy, and the tendencies determined from recent results can guide clinical practice for oncologists in this new therapeutic area and in the design of the next round of clinical trials.
Collapse
|
233
|
Miao D, Van Allen EM. Genomic determinants of cancer immunotherapy. Curr Opin Immunol 2016; 41:32-38. [PMID: 27254251 DOI: 10.1016/j.coi.2016.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 01/19/2023]
Abstract
Cancer immunotherapies - including therapeutic vaccines, adoptive cell transfer, oncolytic viruses, and immune checkpoint blockade - yield durable responses in many cancer types, but understanding of predictors of response is incomplete. Genomic characterization of human cancers has already contributed to the success of targeted therapies; in cancer immunotherapy, identification of tumor-specific antigens through whole-exome sequencing may be key to designing individualized, highly immunogenic therapeutic vaccines. Additionally, pre-treatment tumor mutational and gene expression signatures can predict which patients are most likely to benefit from cancer immunotherapy. Continued work in harnessing genomic, transcriptomic, and immunological data from clinical cohorts of immunotherapy-treated patients will bring the promises of precision medicine to immuno-oncology.
Collapse
Affiliation(s)
- Diana Miao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, United States; Broad Institute of MIT and Harvard, Cambridge, MA 02142, United States; Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| |
Collapse
|
234
|
Ortega RA, Barham W, Sharman K, Tikhomirov O, Giorgio TD, Yull FE. Manipulating the NF-κB pathway in macrophages using mannosylated, siRNA-delivering nanoparticles can induce immunostimulatory and tumor cytotoxic functions. Int J Nanomedicine 2016; 11:2163-77. [PMID: 27274241 PMCID: PMC4876941 DOI: 10.2147/ijn.s93483] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are critically important in the context of solid tumor progression. Counterintuitively, these host immune cells can often support tumor cells along the path from primary tumor to metastatic colonization and growth. Thus, the ability to transform protumor TAMs into antitumor, immune-reactive macrophages would have significant therapeutic potential. However, in order to achieve these effects, two major hurdles would need to be overcome: development of a methodology to specifically target macrophages and increased knowledge of the optimal targets for cell-signaling modulation. This study addresses both of these obstacles and furthers the development of a therapeutic agent based on this strategy. Using ex vivo macrophages in culture, the efficacy of mannosylated nanoparticles to deliver small interfering RNA specifically to TAMs and modify signaling pathways is characterized. Then, selective small interfering RNA delivery is tested for the ability to inhibit gene targets within the canonical or alternative nuclear factor-kappaB pathways and result in antitumor phenotypes. Results confirm that the mannosylated nanoparticle approach can be used to modulate signaling within macrophages. We also identify appropriate gene targets in critical regulatory pathways. These findings represent an important advance toward the development of a novel cancer therapy that would minimize side effects because of the targeted nature of the intervention and that has rapid translational potential.
Collapse
Affiliation(s)
- Ryan A Ortega
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Whitney Barham
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Kavya Sharman
- Department of Neuroscience, Vanderbilt University, Nashville, TN, USA
| | - Oleg Tikhomirov
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Todd D Giorgio
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA; Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Yull
- Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
235
|
Tian G, Courtney AN, Jena B, Heczey A, Liu D, Marinova E, Guo L, Xu X, Torikai H, Mo Q, Dotti G, Cooper LJ, Metelitsa LS. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. J Clin Invest 2016; 126:2341-55. [PMID: 27183388 DOI: 10.1172/jci83476] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/22/2016] [Indexed: 12/25/2022] Open
Abstract
Vα24-invariant natural killer T cells (NKTs) localize to tumors and have inherent antitumor properties, making them attractive chimeric antigen receptor (CAR) carriers for redirected cancer immunotherapy. However, clinical application of CAR-NKTs has been impeded, as mechanisms responsible for NKT expansion and the in vivo persistence of these cells are unknown. Here, we demonstrated that antigen-induced expansion of primary NKTs in vitro associates with the accumulation of a CD62L+ subset and exhaustion of CD62L- cells. Only CD62L+ NKTs survived and proliferated in response to secondary stimulation. When transferred to immune-deficient NSG mice, CD62L+ NKTs persisted 5 times longer than CD62L- NKTs. Moreover, CD62L+ cells transduced with a CD19-specific CAR achieved sustained tumor regression in a B cell lymphoma model. Proliferating CD62L+ cells downregulated or maintained CD62L expression when activated via T cell receptor alone or in combination with costimulatory receptors. We generated HLAnull K562 cell clones that were engineered to express CD1d and costimulatory ligands. Clone B-8-2 (HLAnullCD1dmedCD86high4-1BBLmedOX40Lhigh) induced the highest rates of NKT expansion and CD62L expression. B-8-2-expanded CAR-NKTs exhibited prolonged in vivo persistence and superior therapeutic activities in models of lymphoma and neuroblastoma. Therefore, we have identified CD62L as a marker of a distinct NKT subset endowed with high proliferative potential and have developed artificial antigen-presenting cells that generate CD62L-enriched NKTs for effective cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- Cells, Cultured
- Cytokines/biosynthesis
- Cytotoxicity, Immunologic
- Humans
- Immunotherapy, Adoptive
- L-Selectin/metabolism
- Lymphocyte Activation
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Natural Killer T-Cells/classification
- Natural Killer T-Cells/immunology
- Neuroblastoma/immunology
- Neuroblastoma/therapy
- Receptors, Antigen/immunology
- Recombinant Fusion Proteins/immunology
- Xenograft Model Antitumor Assays
Collapse
|
236
|
Ding ZC, Liu C, Cao Y, Habtetsion T, Kuczma M, Pi W, Kong H, Cacan E, Greer SF, Cui Y, Blazar BR, Munn DH, Zhou G. IL-7 signaling imparts polyfunctionality and stemness potential to CD4(+) T cells. Oncoimmunology 2016; 5:e1171445. [PMID: 27471650 DOI: 10.1080/2162402x.2016.1171445] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
The functional status of CD4(+) T cells is a critical determinant of antitumor immunity. Polyfunctional CD4(+) T cells possess the ability to concomitantly produce multiple Th1-type cytokines, exhibiting a functional attribute desirable for cancer immunotherapy. However, the mechanisms by which these cells are induced are neither defined nor it is clear if these cells can be used therapeutically to treat cancer. Here, we report that CD4(+) T cells exposed to exogenous IL-7 during antigenic stimulation can acquire a polyfunctional phenotype, characterized by their ability to simultaneously express IFNγ, IL-2, TNFα and granzyme B. This IL-7-driven polyfunctional phenotype was associated with increased histone acetylation in the promoters of the effector genes, indicative of increased chromatin accessibility. Moreover, forced expression of a constitutively active (CA) form of STAT5 recapitulated IL-7 in inducing CD4(+) T-cell polyfunctionality. Conversely, the expression of a dominant negative (DN) form of STAT5 abolished the ability of IL-7 to induce polyfunctional CD4(+) T cells. These in-vitro-generated polyfunctional CD4(+) T cells can traffic to tumor and expand intratumorally in response to immunization. Importantly, adoptive transfer of polyfunctional CD4(+) T cells following lymphodepletive chemotherapy was able to eradicate large established tumors. This beneficial outcome was associated with the occurrence of antigen epitope spreading, activation of the endogenous CD8(+) T cells and persistence of donor CD4(+) T cells exhibiting memory stem cell attributes. These findings indicate that IL-7 signaling can impart polyfunctionality and stemness potential to CD4(+) T cells, revealing a previously unknown property of IL-7 that can be exploited in adoptive T-cell immunotherapy.
Collapse
Affiliation(s)
- Zhi-Chun Ding
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University , Augusta, GA, USA
| | - Chufeng Liu
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Orthodontics, Guangdong Provincial Stomatological Hospital, Southern Medical University, Guangzhou, PR, China
| | - Yang Cao
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Orthodontics, Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR, China
| | - Tsadik Habtetsion
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University , Augusta, GA, USA
| | - Michal Kuczma
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University , Augusta, GA, USA
| | - Wenhu Pi
- Department of Biochemistry and Molecular Biology, Augusta University , Augusta, GA, USA
| | - Heng Kong
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, USA; Department of Thyroid and Breast Surgery, Shenzhen Nanshan District People's Hospital, Shenzhen, Guangzhou, PR, China
| | - Ercan Cacan
- Department of Biology, Georgia State University , Atlanta, GA, USA
| | - Susanna F Greer
- Department of Biology, Georgia State University , Atlanta, GA, USA
| | - Yan Cui
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University , Augusta, GA, USA
| | - Bruce R Blazar
- Department of Pediatrics and Division of Blood and Marrow Transplantation, University of Minnesota , Minneapolis, MN, USA
| | - David H Munn
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University , Augusta, GA, USA
| | - Gang Zhou
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University , Augusta, GA, USA
| |
Collapse
|
237
|
Ohtake J, Wada S, Yada E, Fujimoto Y, Uchiyama H, Yoshida S, Itoh K, Sasada T. Personalized immunotherapy in colorectal cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2016. [DOI: 10.1080/23808993.2016.1174060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
238
|
Narayanan V, Weekes CD. Molecular therapeutics in pancreas cancer. World J Gastrointest Oncol 2016; 8:366-79. [PMID: 27096032 PMCID: PMC4824715 DOI: 10.4251/wjgo.v8.i4.366] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/15/2015] [Accepted: 01/27/2016] [Indexed: 02/05/2023] Open
Abstract
The emergence of the "precision-medicine" paradigm in oncology has ushered in tremendous improvements in patient outcomes in a wide variety of malignancies. However, pancreas ductal adenocarcinoma (PDAC) has remained an obstinate challenge to the oncology community and continues to be associated with a dismal prognosis with 5-year survival rates consistently less than 5%. Cytotoxic chemotherapy with gemcitabine-based regimens has been the cornerstone of treatment in PDAC especially because most patients present with inoperable disease. But in recent years remarkable basic science research has improved our understanding of the molecular and genetic basis of PDAC. Whole genomic analysis has exemplified the genetic heterogeneity of pancreas cancer and has led to ingenious efforts to target oncogenes and their downstream signaling cascades. Novel stromal depletion strategies have been devised based on our enhanced recognition of the complex architecture of the tumor stroma and the various mechanisms in the tumor microenvironment that sustain tumorigenesis. Immunotherapy using vaccines and immune checkpoint inhibitors has also risen to the forefront of therapeutic strategies against PDAC. Furthermore, adoptive T cell transfer and strategies to target epigenetic regulators are being explored with enthusiasm. This review will focus on the recent advances in molecularly targeted therapies in PDAC and offer future perspectives to tackle this lethal disease.
Collapse
|
239
|
Zah E, Lin MY, Silva-Benedict A, Jensen MC, Chen YY. T Cells Expressing CD19/CD20 Bispecific Chimeric Antigen Receptors Prevent Antigen Escape by Malignant B Cells. Cancer Immunol Res 2016; 4:498-508. [PMID: 27059623 DOI: 10.1158/2326-6066.cir-15-0231] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/06/2016] [Indexed: 01/29/2023]
Abstract
The adoptive transfer of T cells expressing anti-CD19 chimeric antigen receptors (CARs) has shown remarkable curative potential against advanced B-cell malignancies, but multiple trials have also reported patient relapses due to the emergence of CD19-negative leukemic cells. Here, we report the design and optimization of single-chain, bispecific CARs that trigger robust cytotoxicity against target cells expressing either CD19 or CD20, two clinically validated targets for B-cell malignancies. We determined the structural parameters required for efficient dual-antigen recognition, and we demonstrate that optimized bispecific CARs can control both wild-type B-cell lymphoma and CD19(-) mutants with equal efficiency in vivo To our knowledge, this is the first bispecific CAR capable of preventing antigen escape by performing true OR-gate signal computation on a clinically relevant pair of tumor-associated antigens. The CD19-OR-CD20 CAR is fully compatible with existing T-cell manufacturing procedures and implementable by current clinical protocols. These results present an effective solution to the challenge of antigen escape in CD19 CAR T-cell therapy, and they highlight the utility of structure-based rational design in the development of receptors with higher-level complexity. Cancer Immunol Res; 4(6); 498-508. ©2016 AACR
Collapse
Affiliation(s)
- Eugenia Zah
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California
| | - Meng-Yin Lin
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California
| | - Anne Silva-Benedict
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington. Department of Oncology and Hematology, St. Luke's Regional Cancer Center, Duluth, Minnesota
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington. Division of Pediatric Hematology-Oncology, University of Washington School of Medicine, Seattle, Washington. Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
240
|
Raber PL, Sierra RA, Thevenot PT, Shuzhong Z, Wyczechowska DD, Kumai T, Celis E, Rodriguez PC. T cells conditioned with MDSC show an increased anti-tumor activity after adoptive T cell based immunotherapy. Oncotarget 2016; 7:17565-17578. [PMID: 27007050 PMCID: PMC4951233 DOI: 10.18632/oncotarget.8197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/14/2016] [Indexed: 11/25/2022] Open
Abstract
The success of adoptive T cell-based immunotherapy (ACT) in cancer is limited in part by the accumulation of myeloid-derived suppressor cells (MDSC), which block several T cell functions, including T cell proliferation and the expression of various cytotoxic mediators. Paradoxically, the inhibition of CD8+ T cell differentiation into cytotoxic populations increased their efficacy after ACT into tumor-bearing hosts. Therefore, we aimed to test the impact of conditioning CD8+ T cells with MDSC on their differentiation potential and ACT efficacy. Our results indicate that MDSC impaired the progression of CD8+ T cells into effector populations, without altering their activation status, production of IL-2, or signaling through the T cell receptor. In addition, culture of CD8+ T cells with MDSC resulted in an increased ACT anti-tumor efficacy, which correlated with a higher frequency of the transferred T cells and elevated IFNγ production. Interestingly, activated CD62L+ CD8+ T cells were responsible for the enhanced anti-tumor activity showed by MDSC-exposed T cells. Additional results showed a decreased protein synthesis rate and lower activity of the mammalian/mechanistic target of rapamycin (mTOR) in T cells conditioned with MDSC. Silencing of the negative mTOR regulator tuberous sclerosis complex-2 in T cells co-cultured with MDSC restored mTOR activity, but resulted in T cell apoptosis. These results indicate that conditioning of T cells with MDSC induces stress survival pathways mediated by a blunted mTOR signaling, which regulated T cell differentiation and ACT efficacy. Continuation of this research will enable the development of better strategies to increase ACT responses in cancer.
Collapse
Affiliation(s)
| | - Rosa A. Sierra
- Georgia Regents University Cancer Center, Augusta, GA, USA
| | - Paul T. Thevenot
- Institute of Translational Research, Ochsner Medical Center, New Orleans, LA, USA
| | - Zhang Shuzhong
- Georgia Regents University Cancer Center, Augusta, GA, USA
| | - Dorota D. Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Takumi Kumai
- Georgia Regents University Cancer Center, Augusta, GA, USA
| | - Esteban Celis
- Georgia Regents University Cancer Center, Augusta, GA, USA
| | | |
Collapse
|
241
|
Novosiadly R, Kalos M. High-content molecular profiling of T-cell therapy in oncology. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16009. [PMID: 27626060 PMCID: PMC5008264 DOI: 10.1038/mto.2016.9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/19/2022]
Abstract
Recent clinical data have revealed the remarkable potential for T-cell-modulating agents to induce potent and durable responses in a subset of cancer patients. In this review, we discuss molecular approaches, platforms, and strategies that enable a broader interrogation of the activity of agents that modulate the activity of tumor-specific T cells, to more comprehensively understand how and why the agents succeed and fail, as well as examples of data sets generated in clinical trials that have provided important insights into the biological activity of T-cell therapies and that support further rational development of this exciting treatment modality.
Collapse
Affiliation(s)
- Ruslan Novosiadly
- Department of Cancer Immunobiology, Eli Lilly and Company , New York, New York, USA
| | - Michael Kalos
- Department of Cancer Immunobiology, Eli Lilly and Company , New York, New York, USA
| |
Collapse
|
242
|
Kohrt HE, Tumeh PC, Benson D, Bhardwaj N, Brody J, Formenti S, Fox BA, Galon J, June CH, Kalos M, Kirsch I, Kleen T, Kroemer G, Lanier L, Levy R, Lyerly HK, Maecker H, Marabelle A, Melenhorst J, Miller J, Melero I, Odunsi K, Palucka K, Peoples G, Ribas A, Robins H, Robinson W, Serafini T, Sondel P, Vivier E, Weber J, Wolchok J, Zitvogel L, Disis ML, Cheever MA. Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. J Immunother Cancer 2016; 4:15. [PMID: 26981245 PMCID: PMC4791805 DOI: 10.1186/s40425-016-0118-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/15/2016] [Indexed: 12/26/2022] Open
Abstract
The efficacy of PD-1/PD-L1 targeted therapies in addition to anti-CTLA-4 solidifies immunotherapy as a modality to add to the anticancer arsenal. Despite raising the bar of clinical efficacy, immunologically targeted agents raise new challenges to conventional drug development paradigms by highlighting the limited relevance of assessing standard pharmacokinetics (PK) and pharmacodynamics (PD). Specifically, systemic and intratumoral immune effects have not consistently correlated with standard relationships between systemic dose, toxicity, and efficacy for cytotoxic therapies. Hence, PK and PD paradigms remain inadequate to guide the selection of doses and schedules, both starting and recommended Phase 2 for immunotherapies. The promise of harnessing the immune response against cancer must also be considered in light of unique and potentially serious toxicities. Refining immune endpoints to better inform clinical trial design represents a high priority challenge. The Cancer Immunotherapy Trials Network investigators review the immunodynamic effects of specific classes of immunotherapeutic agents to focus immune assessment modalities and sites, both systemic and importantly intratumoral, which are critical to the success of the rapidly growing field of immuno-oncology.
Collapse
Affiliation(s)
- Holbrook E Kohrt
- Division of Oncology, Stanford Cancer Institute, Stanford University Medical Center, 269 Campus Drive, CCSR 1105, Stanford, CA 94305-5151 USA
| | - Paul C Tumeh
- Division of Dermatology, Department of Medicine, University of California Los Angeles, Los Angeles, CA USA
| | - Don Benson
- Division of Hematology/Oncology, Ohio State University, Columbus, OH USA
| | - Nina Bhardwaj
- Medicine, Hematology and Medical Oncology, Mount Sinai Hospital, New York, NY USA
| | - Joshua Brody
- Medicine, Hematology and Medical Oncology, Mount Sinai Hospital, Ruttenberg Treatment Center, New York, NY USA
| | - Silvia Formenti
- Department of Radiation Oncology, New York Weill Cornell Medical Center, New York, NY USA
| | - Bernard A Fox
- SOM-Molecular Microbiology & Immunology Department, Laboratory of Molecular and Tumor Immunology, OHSU Cancer Institute, Portland, OR USA
| | - Jerome Galon
- INSERM, Integrative Cancer Immunology Team, Cordeliers Research Center, Paris, France
| | - Carl H June
- Perelman School of Medicine, University of Pennsylvania, Pathology and Laboratory Medicine, Philadelphia, PA USA
| | - Michael Kalos
- Cancer Immunobiology, Eli Lilly & Company, New York, NY USA
| | - Ilan Kirsch
- Translational Medicine, Adaptive Biotechnologies Corp, Seattle, WA USA
| | - Thomas Kleen
- Immune Monitoring, Epiontis GmbH, Berlin, Germany
| | - Guido Kroemer
- Faculty of Medicine, University of Paris Descartes, Paris, France
| | - Lewis Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, CA USA
| | - Ron Levy
- Division of Oncology, Stanford School of Medicine, Stanford, CA USA
| | - H Kim Lyerly
- Duke University School of Medicine, Durham, NC USA
| | - Holden Maecker
- Human Immune Monitoring Center Shared Resource, Stanford Cancer Institute, Stanford, CA USA
| | | | - Jos Melenhorst
- Product Development and Correlative Sciences, Smilow Center for Translational Research, Philadelphia, PA USA
| | - Jeffrey Miller
- Division of Hematology, Experimental Therapeutics, University of Minnesota, Oncology and Transplantation, Minneapolis, MN USA
| | - Ignacio Melero
- Centro de Investigacion Medica Aplicada, Universidad de Navarra, Avda. Pamplona, Spain
| | - Kunle Odunsi
- Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY USA
| | | | - George Peoples
- Cancer Vaccine Development Program, Brooke Army Medical Center, Houston, TX USA
| | - Antoni Ribas
- Tumor Immunology Program Area, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA USA
| | | | - William Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA USA
| | | | - Paul Sondel
- Cellular & Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI USA
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | | | - Jedd Wolchok
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY USA
| | - Laurence Zitvogel
- Institut National de la Santé et Recherche Médicale, Institut GrustaveRoussy, Villejuif, France
| | - Mary L Disis
- Tumor Vaccine Group, University of Washington, Seattle, WA USA
| | - Martin A Cheever
- Fred Hutchinson Cancer Research Center, 1100 Eastlake Ave N., E3-300, PO Box 19024, Seattle, WA 98109-1023 USA
| | | |
Collapse
|
243
|
Slimano F, Roessle C, Blanc C, De Maleissye MF, Bauler S. [Updates on prevention and treatment of melanoma: Pharmacist involvements and challenges]. ANNALES PHARMACEUTIQUES FRANÇAISES 2016; 74:335-49. [PMID: 26968263 DOI: 10.1016/j.pharma.2016.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 02/07/2023]
Abstract
Melanoma is a skin cancer that represents an actual public health problem. Its incidence is increasing every year. Environmental risk factors have been clearly identified. Early diagnosis of a suspicious skin lesion should be possible by any health professionals because the prognosis is correlated with the evolution of the disease and the presence of metastases. The advent of new therapies in metastatic forms with the development of immunotherapies and kinases inhibitors has significantly changed the management of this disease. New therapies are available in retail pharmacies and involve health professionals out of the hospital. This article is intended for community and hospital pharmacists and summarizes recommendations for primary and secondary prevention. It updates on new targeted therapies. It wants to give advices to the community pharmacists about the effective use of those treatments for melanoma.
Collapse
Affiliation(s)
- F Slimano
- Département de pharmacie clinique, Gustave-Roussy cancer campus, 114, rue Édouard-Vaillant, 94805 Villejuif, France; Laboratoire de pharmacologie et pharmacocinétique, UFR de pharmacie, université de Reims-Champagne-Ardenne, 51, rue Cognacq-Jay, 51100 Reims, France; Unité MEDyC, UMR CNRS/URCA, université de Reims-Champagne-Ardenne, 51, rue Cognacq-Jay, 51100 Reims, France.
| | - C Roessle
- Département de pharmacie clinique, Gustave-Roussy cancer campus, 114, rue Édouard-Vaillant, 94805 Villejuif, France
| | - C Blanc
- Service de pharmacie, hôpital Ambroise-Paré, 9, avenue Charles-de-Gaulle, 92104 Boulogne-Billancourt, France
| | - M-F De Maleissye
- Service de dermatologie, hôpital Ambroise-Paré, 9, avenue Charles-de-Gaulle, 92104 Boulogne-Billancourt, France
| | - S Bauler
- Service de pharmacie, hôpital Ambroise-Paré, 9, avenue Charles-de-Gaulle, 92104 Boulogne-Billancourt, France
| |
Collapse
|
244
|
Busch DH, Fräßle SP, Sommermeyer D, Buchholz VR, Riddell SR. Role of memory T cell subsets for adoptive immunotherapy. Semin Immunol 2016; 28:28-34. [PMID: 26976826 DOI: 10.1016/j.smim.2016.02.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/14/2022]
Abstract
Adoptive transfer of primary (unmodified) or genetically engineered antigen-specific T cells has demonstrated astonishing clinical results in the treatment of infections and some malignancies. Besides the definition of optimal targets and antigen receptors, the differentiation status of transferred T cells is emerging as a crucial parameter for generating cell products with optimal efficacy and safety profiles. Long-living memory T cells subdivide into phenotypically as well as functionally different subsets (e.g. central memory, effector memory, tissue-resident memory T cells). This diversification process is crucial for effective immune protection, with probably distinct dependencies on the presence of individual subsets dependent on the disease to which the immune response is directed as well as its organ location. Adoptive T cell therapy intends to therapeutically transfer defined T cell immunity into patients. Efficacy of this approach often requires long-term maintenance of transferred cells, which depends on the presence and persistence of memory T cells. However, engraftment and survival of highly differentiated memory T cell subsets upon adoptive transfer is still difficult to achieve. Therefore, the recent observation that a distinct subset of weakly differentiated memory T cells shows all characteristics of adult tissue stem cells and can reconstitute all types of effector and memory T cell subsets, became highly relevant. We here review our current understanding of memory subset formation and T cell subset purification, and its implications for adoptive immunotherapy.
Collapse
Affiliation(s)
- Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich 81675, Germany; Focus Group "Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich 81675, Germany; National Center for Infection Research (DZIF), Munich 81675, Germany.
| | - Simon P Fräßle
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich 81675, Germany; Focus Group "Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich 81675, Germany
| | - Daniel Sommermeyer
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich 81675, Germany
| | - Stanley R Riddell
- Focus Group "Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich 81675, Germany; Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
245
|
Comrie WA, Burkhardt JK. Action and Traction: Cytoskeletal Control of Receptor Triggering at the Immunological Synapse. Front Immunol 2016; 7:68. [PMID: 27014258 PMCID: PMC4779853 DOI: 10.3389/fimmu.2016.00068] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/12/2016] [Indexed: 01/03/2023] Open
Abstract
It is well known that F-actin dynamics drive the micron-scale cell shape changes required for migration and immunological synapse (IS) formation. In addition, recent evidence points to a more intimate role for the actin cytoskeleton in promoting T cell activation. Mechanotransduction, the conversion of mechanical input into intracellular biochemical changes, is thought to play a critical role in several aspects of immunoreceptor triggering and downstream signal transduction. Multiple molecules associated with signaling events at the IS have been shown to respond to physical force, including the TCR, costimulatory molecules, adhesion molecules, and several downstream adapters. In at least some cases, it is clear that the relevant forces are exerted by dynamics of the T cell actomyosin cytoskeleton. Interestingly, there is evidence that the cytoskeleton of the antigen-presenting cell also plays an active role in T cell activation, by countering the molecular forces exerted by the T cell at the IS. Since actin polymerization is itself driven by TCR and costimulatory signaling pathways, a complex relationship exists between actin dynamics and receptor activation. This review will focus on recent advances in our understanding of the mechanosensitive aspects of T cell activation, paying specific attention to how F-actin-directed forces applied from both sides of the IS fit into current models of receptor triggering and activation.
Collapse
Affiliation(s)
- William A Comrie
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, PA , USA
| |
Collapse
|
246
|
Melanoma cell lysosome secretory burst neutralizes the CTL-mediated cytotoxicity at the lytic synapse. Nat Commun 2016; 7:10823. [PMID: 26940455 PMCID: PMC4785227 DOI: 10.1038/ncomms10823] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Human melanoma cells express various tumour antigens that are recognized by CD8(+) cytotoxic T lymphocytes (CTLs) and elicit tumour-specific responses in vivo. However, natural and therapeutically enhanced CTL responses in melanoma patients are of limited efficacy. The mechanisms underlying CTL effector phase failure when facing melanomas are still largely elusive. Here we show that, on conjugation with CTL, human melanoma cells undergo an active late endosome/lysosome trafficking, which is intensified at the lytic synapse and is paralleled by cathepsin-mediated perforin degradation and deficient granzyme B penetration. Abortion of SNAP-23-dependent lysosomal trafficking, pH perturbation or impairment of lysosomal proteolytic activity restores susceptibility to CTL attack. Inside the arsenal of melanoma cell strategies to escape immune surveillance, we identify a self-defence mechanism based on exacerbated lysosome secretion and perforin degradation at the lytic synapse. Interfering with this synaptic self-defence mechanism might be useful in potentiating CTL-mediated therapies in melanoma patients.
Collapse
|
247
|
Kis Z, Pereira HS, Homma T, Pedrigi RM, Krams R. Mammalian synthetic biology: emerging medical applications. J R Soc Interface 2016; 12:rsif.2014.1000. [PMID: 25808341 DOI: 10.1098/rsif.2014.1000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes.
Collapse
Affiliation(s)
- Zoltán Kis
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Takayuki Homma
- Department of Bioengineering, Imperial College London, London, UK
| | - Ryan M Pedrigi
- Department of Bioengineering, Imperial College London, London, UK
| | - Rob Krams
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
248
|
Menderes G, Schwab CL, Black J, Santin AD. The Role of the Immune System in Ovarian Cancer and Implications on Therapy. Expert Rev Clin Immunol 2016; 12:681-95. [PMID: 26821930 DOI: 10.1586/1744666x.2016.1147957] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancy in the United States. While the treatment options have improved with conventional cytotoxic chemotherapy and advanced surgical techniques, disease recurrence is common and fatal in nearly all cases. Current evidence suggests that the immune system and its ability to recognize and eliminate microscopic disease is paramount in preventing recurrence. The goal of immunotherapy is to balance the activation of the immune system against cancer while preventing the potential for tremendous toxicity elicited by immune modulation. In this paper we will review the role of immune system in disease pathogenesis and different immunotherapies available for the treatment of ovarian cancer as well as current ongoing studies and potential future directions.
Collapse
Affiliation(s)
- Gulden Menderes
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Carlton L Schwab
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Jonathan Black
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| | - Alessandro D Santin
- a Department of Obstetrics, Gynecology & Reproductive Sciences , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
249
|
Arina A, Corrales L, Bronte V. Enhancing T cell therapy by overcoming the immunosuppressive tumor microenvironment. Semin Immunol 2016; 28:54-63. [DOI: 10.1016/j.smim.2016.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 01/23/2023]
|
250
|
Tsai AK, Davila E. Producer T cells: Using genetically engineered T cells as vehicles to generate and deliver therapeutics to tumors. Oncoimmunology 2016; 5:e1122158. [PMID: 27467930 PMCID: PMC4910704 DOI: 10.1080/2162402x.2015.1122158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 12/27/2022] Open
Abstract
Adoptive cell transfer (ACT) is an emerging anticancer therapy that has shown promise in various malignancies. Redirecting antigen specificity by genetically engineering T cells to stably express receptors has become an effective variant of ACT. A novel extension of this approach is to utilize engineered T cells to produce and deliver anticancer therapeutics that enhance cytotoxic T cell function and simultaneously inhibit immunosuppressive processes. Here, we review the potential of using T cells as therapeutic-secreting vehicles for immunotherapies and present theoretical and established arguments in support of further development of this unique cell-based immunotherapy.
Collapse
Affiliation(s)
- Alexander K Tsai
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland , Baltimore, Baltimore, MD, USA
| | - Eduardo Davila
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland, Baltimore, Baltimore, MD, USA; Department of Microbiology and Immunology, University of Maryland, Baltimore, Baltimore, MD, USA
| |
Collapse
|