201
|
Song Y, Zhao M, Zhang H, Zhang X, Zhao J, Xu J, Gao L. THYROID-STIMULATING HORMONE LEVELS ARE INVERSELY ASSOCIATED WITH SERUM TOTAL BILE ACID LEVELS: A CROSS-SECTIONAL STUDY. Endocr Pract 2015; 22:420-6. [PMID: 26606535 DOI: 10.4158/ep15844.or] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Bile acids (BAs) synthesized from cholesterol play a critical role in eliminating excess cholesterol to maintain cholesterol homeostasis. BAs are also signaling molecules that are involved in the regulation of lipid, glucose, and energy metabolism. Thyroid-stimulating hormone (TSH) has been found to decrease liver BA synthesis via a sterol regulatory element-binding protein 2/hepatocyte nuclear factor 4 alpha/cholesterol 7α-hydroxylase (SREBP-2/HNF-4α/CYP7A1) pathway in vivo and in vitro. However, the relationship between serum TSH and total BA levels in humans is still unclear. METHODS This was a single-center cross-sectional study of 339 subclinical hypothyroidism (SCH) patients and an equal number of controls matched by age and sex from 11,000 subjects. RESULTS Serum total BA levels significantly decreased (3.11 ± 2.05 vs. 5.87 ± 2.39, P<.01), while total cholesterol (TC) levels increased (5.02 ± 0.65 vs. 4.88 ± 0.63, P<.01) in subclinical hypothyroidism (SCH) patients compared to control subjects. Serum TSH and BA levels were significantly and negatively correlated in subclinical hypothyroid patients who were also hypercholesterolemic (rs = -0.189, P = .004). Each 1 μIU/mL increase in TSH level was associated with a decrease in log-transformed values of total BAs (logTBAs) by 0.182 after controlling for confounding factors relevant to BA metabolism. The relationship between TSH and serum total BAs was more significant in subjects younger than 65 years. CONCLUSION Our results suggested that TSH is correlated with the total BA level in SCH patients independent of thyroid hormone, which suggests a potential physiological role of TSH and the importance of maintaining normal range TSH in SCH patients.
Collapse
|
202
|
Selwyn FP, Csanaky IL, Zhang Y, Klaassen CD. Importance of Large Intestine in Regulating Bile Acids and Glucagon-Like Peptide-1 in Germ-Free Mice. Drug Metab Dispos 2015; 43:1544-56. [PMID: 26199423 PMCID: PMC4576674 DOI: 10.1124/dmd.115.065276] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/20/2015] [Indexed: 12/25/2022] Open
Abstract
It is known that 1) elevated serum bile acids (BAs) are associated with decreased body weight, 2) elevated glucagon-like peptide-1 (GLP-1) levels can decrease body weight, and 3) germ-free (GF) mice are resistant to diet-induced obesity. The purpose of this study was to test the hypothesis that a lack of intestinal microbiota results in more BAs in the body, resulting in increased BA-mediated transmembrane G protein-coupled receptor 5 (TGR5) signaling and increased serum GLP-1 as a mechanism of resistance of GF mice to diet-induced obesity. GF mice had 2- to 4-fold increased total BAs in the serum, liver, bile, and ileum. Fecal excretion of BAs was 63% less in GF mice. GF mice had decreased secondary BAs and increased taurine-conjugated BAs, as anticipated. Surprisingly, there was an increase in non-12α-OH BAs, namely, β-muricholic acid, ursodeoxycholic acid (UDCA), and their taurine conjugates, in GF mice. Further, in vitro experiments confirmed that UDCA is a primary BA in mice. There were minimal changes in the mRNA of farnesoid X receptor target genes in the ileum (Fibroblast growth factor 15, small heterodimer protein, and ileal bile acid-binding protein), in the liver (small heterodimer protein, liver receptor homolog-1, and cytochrome P450 7a1), and BA transporters (apical sodium dependent bile acid transporter, organic solute transporter α, and organic solute transporter β) in the ileum of GF mice. Surprisingly, there were marked increases in BA transporters in the large intestine. Increased GLP-1 levels and gallbladder size were observed in GF mice, suggesting activation of TGR5 signaling. In summary, the GF condition results in increased expression of BA transporters in the colon, resulting in 1) an increase in total BA concentrations in tissues, 2) a change in BA composition to favor an increase in non-12α-OH BAs, and 3) activation of TGR5 signaling with increased gallbladder size and GLP-1.
Collapse
Affiliation(s)
- Felcy Pavithra Selwyn
- Departments of Pharmacology, Toxicology, and Therapeutics (F.P.S., Y.Z.) and Internal Medicine (I.L.C., C.D.K.), University of Kansas Medical Center, Kansas City, Kansas
| | - Iván L Csanaky
- Departments of Pharmacology, Toxicology, and Therapeutics (F.P.S., Y.Z.) and Internal Medicine (I.L.C., C.D.K.), University of Kansas Medical Center, Kansas City, Kansas
| | - Youcai Zhang
- Departments of Pharmacology, Toxicology, and Therapeutics (F.P.S., Y.Z.) and Internal Medicine (I.L.C., C.D.K.), University of Kansas Medical Center, Kansas City, Kansas
| | - Curtis D Klaassen
- Departments of Pharmacology, Toxicology, and Therapeutics (F.P.S., Y.Z.) and Internal Medicine (I.L.C., C.D.K.), University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
203
|
Synergic hypocholesterolaemic effect of n-3 PUFA and oestrogen by modulation of hepatic cholesterol metabolism in female rats. Br J Nutr 2015; 114:1766-73. [PMID: 26388416 DOI: 10.1017/s0007114515003517] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
n-3 PUFA such as EPA and DHA as well as oestrogen have been reported to decrease blood levels of cholesterol, but their underlying mechanism is unclear. The purpose of this study was to determine the effects of the combination of n-3 PUFA supplementation and oestrogen injection on hepatic cholesterol metabolism. Rats were fed a modified AIN-93G diet with 0, 1 or 2 % n-3 PUFA (EPA+DHA) relative to the total energy intake for 12 weeks. Rats were surgically ovariectomised at week 8, and, after 1-week recovery, rats were injected with 17β-oestradiol-3-benzoate (E2) or maize oil for the last 3 weeks. Supplementation with n-3 PUFA and E2 injection significantly increased the ratio of the hepatic expression of phosphorylated AMP activated protein kinase (p-AMPK):AMP activated protein kinase (AMPK) and decreased sterol regulatory element-binding protein-2, 3-hydroxy-3-methylglutaryl coenzyme A reductase and proprotein convertase subtilisin/kexin type 9. Supplementation with n-3 PUFA increased hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), sterol 12α-hydroxylase (CYP8B1) and sterol 27-hydroxylase (CYP27A1); however, E2 injection decreased CYP7A1 and CYP8B1 but not CYP27A1. Additionally, E2 injection increased hepatic expression of oestrogen receptor-α and β. In conclusion, n-3 PUFA supplementation and E2 injection had synergic hypocholesterolaemic effects by down-regulating hepatic cholesterol synthesis (n-3 PUFA and oestrogen) and up-regulating bile acid synthesis (n-3 PUFA) in ovariectomised rats.
Collapse
|
204
|
Minato K, Suzuki M, Nagao H, Suzuki R, Ochiai H. Development of analytical method for simultaneous determination of five rodent unique bile acids in rat plasma using ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1002:399-410. [PMID: 26363851 DOI: 10.1016/j.jchromb.2015.08.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Abstract
Bile acids (BAs) are crucial for the diagnosis, follow-up, and prognostics of liver injuries and other BA metabolism related diseases. In particular, rodent unique BAs, α-muricholic acid (α-MCA), β-MCA, ω-MCA, tauro-α-MCA (α-TMCA), and β-TMCA, are valuable biomarkers for preclinical drug development. To the best of our knowledge, however, a simple, selective, sensitive, and robust analytical method for ω-MCA and taurine-conjugated MCAs has never been reported. We have developed a simple, selective, and sensitive analytical method for measurement of 16 BAs including the five rodent unique BAs in rat plasma using an ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) method. Activated charcoal was utilized to prepare BA-free plasma, which served as the surrogate matrix for the preparation of calibration standards and quality control (QC) samples. Results of matrix effects evaluation suggested that the BA-free plasma could be adequate as a surrogate matrix for BAs determination. Three stable isotope labelled internal standards were separated by reverse phase UPLC using gradient elution and were detected by TOF-MS in negative ion mode. The calibration curve was linear for all BAs over a range of 10-25ng/mL to 1000-10,000ng/mL, with overall imprecision below 15% and 20% at lower limit of quantification (LLOQ), respectively. This analytical method was used to determine BA concentrations in more than 300 plasma samples from rats with liver injuries induced using α-naphthylisocyanate, carbon tetrachloride, or flutamide. The alteration of BA concentrations was most evident for necrosis, and cholestasis hepatotoxins, with more subtle effects by steatosis and idiosyncratic hepatotoxins. In conclusion, we have developed a simple, selective, and sensitive analytical method to measure plasma 16 BAs including 5 rodent unique BAs, α-MCA, β-MCA, ω-MCA, α-TMCA, and β-TMCA. Our data suggested that α-TMCA and β-TMCA could be useful for identification or prediction of liver injuries, a currently unmet need in preclinical toxicity. Our method using TOF-MS is useful to determine BAs in rat plasma and of use in structural analyses of metabolites in early stage of drug development.
Collapse
Affiliation(s)
- Kouichi Minato
- Pharmacokinetics Research Department, ASKA Pharmaceutical Co., Ltd., 5-36-1, Shimosakunobe, Takatsu-ku, Kawasaki 213-8522, Japan.
| | - Masanori Suzuki
- Department of Analytical Research, ASKA Pharma Medical Co., Ltd., 5-36-1, Shimosakunobe, Takatsu-ku, Kawasaki 213-8522, Japan
| | - Hidenori Nagao
- Pharmacokinetics Research Department, ASKA Pharmaceutical Co., Ltd., 5-36-1, Shimosakunobe, Takatsu-ku, Kawasaki 213-8522, Japan
| | - Ryota Suzuki
- Pharmacokinetics Research Department, ASKA Pharmaceutical Co., Ltd., 5-36-1, Shimosakunobe, Takatsu-ku, Kawasaki 213-8522, Japan
| | - Hiroyuki Ochiai
- Pharmacokinetics Research Department, ASKA Pharmaceutical Co., Ltd., 5-36-1, Shimosakunobe, Takatsu-ku, Kawasaki 213-8522, Japan
| |
Collapse
|
205
|
Wang X, Lu Y, Wang E, Zhang Z, Xiong X, Zhang H, Lu J, Zheng S, Yang J, Xia X, Yang S, Li X. Hepatic estrogen receptor α improves hepatosteatosis through upregulation of small heterodimer partner. J Hepatol 2015; 63:183-90. [PMID: 25720568 DOI: 10.1016/j.jhep.2015.02.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Estrogen participates in the control of energy homeostasis and lipid metabolism. However the role of hepatic estrogen receptor α (ERα) in triglyceride (TG) homeostasis remains poorly understood. This study aims to investigate the roles of estrogen and ERα in the regulation of hepatic TG metabolism. METHODS Liver TG metabolism was analyzed in female mice with ovariectomy or tamoxifen treatment, and in hepatic ERα knockdown or overexpression. Phenotypes and expression of genes were compared in male and female mice with farnesoid X receptor deficiency. The mechanism of ERα in the regulation of small heterodimer partner (SHP) expression was further investigated. RESULTS Female mice receiving ovariectomy or tamoxifen treatment exhibited hepatic TG accumulation. Ablation of ERα using adenoviral shRNA markedly increased hepatic TG accumulation, while overexpression of ERα ameliorated hepatosteatosis in obese mice. At the molecular level, estrogen upregulated hepatic SHP expression through binding to its proximal promoter. In addition, the roles of estrogen were largely blunted in mice with SHP deficiency. CONCLUSION These findings reveal a novel role of estrogen in improving hepatosteatosis through upregulation of SHP expression.
Collapse
Affiliation(s)
- Xiaolin Wang
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yan Lu
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - E Wang
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhijian Zhang
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuelian Xiong
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huijie Zhang
- Xiamen Diabetes Institute, Department of Endocrinology and Metabolism, The First Hospital of Xiamen, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China
| | - Jieli Lu
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Zheng
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Yang
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xuefeng Xia
- Genomic Medicine and Center for Diabetes Research, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, USA
| | - Shuyu Yang
- Xiamen Diabetes Institute, Department of Endocrinology and Metabolism, The First Hospital of Xiamen, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China.
| | - Xiaoying Li
- Shanghai Institute of Endocrinology and Metabolism, Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; The Key Laboratory of Endocrine Tumors and the Division of Endocrine and Metabolic Diseases, E-Institute of Shanghai Universities, Shanghai 200025, China; Chinese-French Laboratory of Genomics and Life Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
206
|
Schött HF, Lütjohann D. Validation of an isotope dilution gas chromatography-mass spectrometry method for combined analysis of oxysterols and oxyphytosterols in serum samples. Steroids 2015; 99:139-50. [PMID: 25701095 DOI: 10.1016/j.steroids.2015.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 11/17/2022]
Abstract
We describe the validation of a method for the analysis of oxysterols, i.e. oxycholesterols and oxyphytosterols, in human serum using gas chromatography-mass spectrometry selected ion monitoring (GC-MS-SIM). Concentrations of 7α- and 7β-hydroxy-, and 7oxo-cholesterol, -campesterol, and -sitosterol as well as 4β-hydroxycholesterol and side-chain oxygenated 24S-, 25-, and 27-hydroxycholesterol were determined by isotope dilution methodology. After saponification at room temperature the oxysterols were extracted, separated from their substrates, cholesterol, campesterol, and sitosterol, by solid phase extraction, and subsequently derivatised to their corresponding trimethylsilyl-ethers prior to GC-MS-SIM. In order to prevent artificial autoxidation butylated hydroxytoluene and ethylenediaminetetraacetic acid were added. The validation of the method was performed according to the International Conference on Harmonisation guidance, including limits of detection and quantification, ranges, recovery and precision. Due to improved instrumental settings and work-up procedure, limits of detection and quantification ranged between 8.0-202.0pg/mL and 28.0-674pg/mL, respectively. Recovery data in five calibration points varied between 91.9% and 116.8% and in serum samples between 93.1% and 118.1%. The mean coefficient of variation (CV) for the recovery of all compounds was <10%. Well satisfying CVs for within-day precision (2.1-10.8%) and for between-day precision (2.3-12.1%) were obtained. More than 20 samples could be processed in a single routine day and test series of about 300 samples can be realised without impairment of the validation parameters during a sequence. Comparison of oxysterol and oxyphytosterol content in serum and plasma revealed no difference. A fully validated isotope dilution methodology for the quantification of oxycholesterols and oxyphytosterols from human serum or plasma is presented.
Collapse
Affiliation(s)
- Hans-Frieder Schött
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, 53105 Bonn, Germany.
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, 53105 Bonn, Germany.
| |
Collapse
|
207
|
Kulig W, Olżyńska A, Jurkiewicz P, Kantola AM, Komulainen S, Manna M, Pourmousa M, Vazdar M, Cwiklik L, Rog T, Khelashvili G, Harries D, Telkki VV, Hof M, Vattulainen I, Jungwirth P. Cholesterol under oxidative stress-How lipid membranes sense oxidation as cholesterol is being replaced by oxysterols. Free Radic Biol Med 2015; 84:30-41. [PMID: 25795515 DOI: 10.1016/j.freeradbiomed.2015.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 02/06/2023]
Abstract
The behavior of oxysterols in phospholipid membranes and their effects on membrane properties were investigated by means of dynamic light scattering, fluorescence spectroscopy, NMR, and extensive atomistic simulations. Two families of oxysterols were scrutinized-tail-oxidized sterols, which are mostly produced by enzymatic processes, and ring-oxidized sterols, formed mostly via reactions with free radicals. The former family of sterols was found to behave similar to cholesterol in terms of molecular orientation, roughly parallel to the bilayer normal, leading to increasing membrane stiffness and suppression of its membrane permeability. In contrast, ring-oxidized sterols behave quantitatively differently from cholesterol. They acquire tilted orientations and therefore disrupt the bilayer structure with potential implications for signaling and other biochemical processes in the membranes.
Collapse
Affiliation(s)
- Waldemar Kulig
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland.
| | - Agnieszka Olżyńska
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v. v. i., Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Piotr Jurkiewicz
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v. v. i., Dolejskova 3, 18223 Prague 8, Czech Republic.
| | - Anu M Kantola
- Department of Physics and Chemistry, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Sanna Komulainen
- Department of Physics and Chemistry, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Moutusi Manna
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Mohsen Pourmousa
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Mario Vazdar
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland; Rudjer Bošković Institute, Division of Organic Chemistry and Biochemistry, POB 180, HR-10002 Zagreb, Croatia
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v. v. i., Dolejskova 3, 18223 Prague 8, Czech Republic; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6, Czech Republic.
| | - Tomasz Rog
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | | | - Daniel Harries
- Institute of Chemistry and the Fritz Haber Research Center, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ville-Veikko Telkki
- Department of Physics and Chemistry, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Martin Hof
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v. v. i., Dolejskova 3, 18223 Prague 8, Czech Republic
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague 6, Czech Republic; Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| |
Collapse
|
208
|
Song Y, Xu C, Shao S, Liu J, Xing W, Xu J, Qin C, Li C, Hu B, Yi S, Xia X, Zhang H, Zhang X, Wang T, Pan W, Yu C, Wang Q, Lin X, Wang L, Gao L, Zhao J. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J Hepatol 2015; 62:1171-9. [PMID: 25533663 DOI: 10.1016/j.jhep.2014.12.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Bile acids (BAs) play a crucial role in dietary fat digestion and in the regulation of lipid, glucose, and energy metabolism. Thyroid-stimulating hormone (TSH) is a hormone produced by the anterior pituitary gland that directly regulates several metabolic pathways. However, the impact of TSH on BA homeostasis remains largely unknown. METHODS We analyzed serum BA and TSH levels in healthy volunteers under strict control of caloric intake. Thyroidectomized rats were administered thyroxine and injected with different doses of TSH. Tshr(-/-) mice were supplemented with thyroxine, and C57BL/6 mice were injected with Tshr-siRNA via the tail vein. The serum BA levels, BA pool size, and fecal BA excretion rate were measured. The regulation of SREBP-2, HNF-4α, and CYP7A1 by TSH were analyzed using luciferase reporter, RNAi, EMSA, and CHIP assays. RESULTS A negative correlation was observed between the serum levels of TSH and the serum BA levels in healthy volunteers. TSH administration led to a decrease in BA content and CYP7A1 activity in thyroidectomized rats supplemented with thyroxine. When Tshr was silenced in mice, the BA pool size, fecal BA excretion rate, and serum BA levels all increased. Additionally, we found that HNF-4α acts as a critical molecule through which TSH represses CYP7A1 activity. We further confirmed that the accumulation of mature SREBP-2 protein could impair the capacity of nuclear HNF-4α to bind to the CYP7A1 promoter, a mechanism that appears to mediate the effects of TSH. CONCLUSIONS TSH represses hepatic BA synthesis via a SREBP-2/HNF-4α/CYP7A1 signaling pathway. This finding strongly supports the notion that TSH is an important pathophysiological regulator of liver BA homeostasis independently of thyroid hormones.
Collapse
Affiliation(s)
- Yongfeng Song
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Shanshan Shao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Jun Liu
- Department of Organ Transplantation Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wanjia Xing
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Jin Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Chengkun Qin
- Department of General Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Chunyou Li
- Department of Organ Transplantation Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Baoxiang Hu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Shounan Yi
- Center for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney at Westmead Hospital, Sydney, Australia
| | - Xuefeng Xia
- Genomic Medicine and Center for Diabetes Research, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | - Haiqing Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Xiujuan Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Tingting Wang
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Wenfei Pan
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Chunxiao Yu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
| | - Qiangxiu Wang
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Xiaoyan Lin
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Laicheng Wang
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China.
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong 250021, China; Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China.
| |
Collapse
|
209
|
Schmitt J, Kong B, Stieger B, Tschopp O, Schultze SM, Rau M, Weber A, Müllhaupt B, Guo GL, Geier A. Protective effects of farnesoid X receptor (FXR) on hepatic lipid accumulation are mediated by hepatic FXR and independent of intestinal FGF15 signal. Liver Int 2015; 35:1133-1144. [PMID: 25156247 PMCID: PMC4146754 DOI: 10.1111/liv.12456] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 12/22/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS There is a growing evidence that bile acids are involved in the regulation of triglyceride-, cholesterol-homoeostasis and fat absorption. In this study organ-specific Fxr knockout mice were used to further investigate the influence of farnesoid X receptor FXR in lipogenesis. METHODS Liver- and intestine-specific Fxr knockout mice were fed a 1% cholesterol diet for 28 days. Histological examination of frozen tissue sections included Sudan III/H&E, BODIPY staining and liver X receptor (LXR) immunohistochemistry. Liver triglycerides, serum cholesterol, serum bile acids and nuclear LXR protein were measured. mRNA expression of several genes involved in bile acid-, cholesterol-homoeostasis and lipogenesis was quantified by real-time PCR. RESULTS Hepatic FXR deficiency contributes to lipid accumulation under 1% cholesterol administration which is not observed in intestinal Fxr knockout mice. Strong lipid accumulation, characterized by larger vacuoles could be observed in hepatic Fxr knockout sections, while intestinal Fxr knockout mice show no histological difference to controls. In addition, these mice have the ability to maintain normal serum cholesterol and bile acid levels. Hepatic Fxr knockouts were characterized by elevated triglycerides and bile acid levels. Expression level of LXR was significantly elevated under control and 1% cholesterol diet in hepatic Fxr knockout mice and was followed by concomitant lipogenic target gene induction such as Fas and Scd-1. This protective FXR effect against hepatic lipid accumulation was independent of intestinal Fgf15 induction. CONCLUSION These results show that the principal site of protective bile acid signalling against lipid accumulation is located in the liver since the absence of hepatic but not intestinal FXR contributes to lipid accumulation under cholesterol diet.
Collapse
Affiliation(s)
- Johannes Schmitt
- Division of Hepatology, Department of Medicine II, University Hospital Wuerzburg, DE-97080 Wuerzburg, Germany
| | - Bo Kong
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy Rutgers University Piscataway, NJ 08854, USA
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich (USZ), CH-8091 Zurich, Switzerland
| | - Oliver Tschopp
- Division of Endocrinology, Diabetes, & Nutrition, University Hospital of Zurich, Zurich, Switzerland
| | - Simon M. Schultze
- Division of Endocrinology, Diabetes, & Nutrition, University Hospital of Zurich, Zurich, Switzerland
| | - Monika Rau
- Division of Hepatology, Department of Medicine II, University Hospital Wuerzburg, DE-97080 Wuerzburg, Germany
| | - Achim Weber
- Department of Pathology, Institute of Surgical Pathology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Beat Müllhaupt
- Department of Gastroenterology & Hepatology, University Hospital Zurich (USZ), Zurich, Switzerland
| | - Grace L. Guo
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy Rutgers University Piscataway, NJ 08854, USA
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Wuerzburg, DE-97080 Wuerzburg, Germany, Department of Gastroenterology & Hepatology, University Hospital Zurich (USZ), Zurich, Switzerland,corresponding author: Andreas Geier, M.D., Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Oberdürrbacherstrasse 6, D-97080 Würzburg, Germany. Phone: ++49 931 201 40021, FAX: ++49 931 201 640201
| |
Collapse
|
210
|
Lorbek G, Perše M, Jeruc J, Juvan P, Gutierrez-Mariscal FM, Lewinska M, Gebhardt R, Keber R, Horvat S, Björkhem I, Rozman D. Lessons from hepatocyte-specific Cyp51 knockout mice: impaired cholesterol synthesis leads to oval cell-driven liver injury. Sci Rep 2015; 5:8777. [PMID: 25739789 PMCID: PMC4350092 DOI: 10.1038/srep08777] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/02/2015] [Indexed: 12/22/2022] Open
Abstract
We demonstrate unequivocally that defective cholesterol synthesis is an independent determinant of liver inflammation and fibrosis. We prepared a mouse hepatocyte-specific knockout (LKO) of lanosterol 14α-demethylase (CYP51) from the part of cholesterol synthesis that is already committed to cholesterol. LKO mice developed hepatomegaly with oval cell proliferation, fibrosis and inflammation, but without steatosis. The key trigger was reduced cholesterol esters that provoked cell cycle arrest, senescence-associated secretory phenotype and ultimately the oval cell response, while elevated CYP51 substrates promoted the integrated stress response. In spite of the oval cell-driven fibrosis being histologically similar in both sexes, data indicates a female-biased down-regulation of primary metabolism pathways and a stronger immune response in males. Liver injury was ameliorated by dietary fats predominantly in females, whereas dietary cholesterol rectified fibrosis in both sexes. Our data place defective cholesterol synthesis as a focus of sex-dependent liver pathologies.
Collapse
Affiliation(s)
- Gregor Lorbek
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Martina Perše
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Juvan
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Francisco M. Gutierrez-Mariscal
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Monika Lewinska
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Rok Keber
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Horvat
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Ingemar Björkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
211
|
Chu L, Zhang K, Zhang Y, Jin X, Jiang H. Mechanism underlying an elevated serum bile acid level in chronic renal failure patients. Int Urol Nephrol 2015; 47:345-51. [PMID: 25539619 DOI: 10.1007/s11255-014-0901-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/06/2014] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Bile acids play an important role in the digestion of dietary lipids. Bile acid metabolism is regulated by the digestive system. The kidney is an important organ of the urinary system and is believed to play a minor role in bile acid excretion; however, many recent studies have reported an increased serum bile acid level and alterations in bile acid homeostasis in both clinical and animal model studies on chronic renal failure. The existing research findings on the mechanisms underlying this phenomenon were mostly derived from animal model studies, but clinical investigations have been limited. MATERIALS AND METHODS Kidney tissues and serum and urine samples from CRF patients and normal controls were studied. RESULTS We found increased serum bile acid levels and decreased urine bile acid output levels in chronic renal failure patients. Mesangial cell and endothelial cell proliferation, glomerular sclerosis, renal interstitial fibrosis, and intrarenal vascular sclerosis were observed based on hematoxylin-eosin and Masson trichrome staining pathology analysis. Scatter diagram and Pearson correlation analysis showed that in chronic renal failure patients, the estimated glomerular filtration rate and serum bile acid level were interrelated. Reverse transcription polymerase chain reaction and Western blotting results indicated that reabsorption and secretion of bile acid at the apical surface of the proximal renal tubular did not contribute to the elevated serum BA level. CONCLUSION The increase in plasma bile acid is due to decreased bile acid filtration through the kidneys in CRF patients.
Collapse
Affiliation(s)
- Lei Chu
- Department of Minimally Invasive Urology Center, Provincial Hospital Affiliated to Shandong University, 9677 Jingshi Road, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
212
|
Bile acid signaling through farnesoid X and TGR5 receptors in hepatobiliary and intestinal diseases. Hepatobiliary Pancreat Dis Int 2015; 14:18-33. [PMID: 25655287 DOI: 10.1016/s1499-3872(14)60307-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The well-known functions of bile acids (BAs) are the emulsification and absorption of lipophilic xenobiotics. However, the emerging evidences in the past decade showed that BAs act as signaling molecules that not only autoregulate their own metabolism and enterohepatic recirculation, but also as important regulators of integrative metabolism by activating nuclear and membrane-bound G protein-coupled receptors. The present review was to get insight into the role of maintenance of BA homeostasis and BA signaling pathways in development and management of hepatobiliary and intestinal diseases. DATA SOURCES Detailed and comprehensive search of PubMed and Scopus databases was carried out for original and review articles. RESULTS Disturbances in BA homeostasis contribute to the development of several hepatobiliary and intestinal disorders, such as non-alcoholic fatty liver disease, liver cirrhosis, cholesterol gallstone disease, intestinal diseases and both hepatocellular and colorectal carcinoma. CONCLUSION Further efforts made in order to advance the understanding of sophisticated BA signaling network may be promising in developing novel therapeutic strategies related not only to hepatobiliary and gastrointestinal but also systemic diseases.
Collapse
|
213
|
Kim E, Kim S, Park Y. Sorghum extract exerts cholesterol-lowering effects through the regulation of hepatic cholesterol metabolism in hypercholesterolemic mice. Int J Food Sci Nutr 2015; 66:308-13. [PMID: 25582172 DOI: 10.3109/09637486.2014.1000839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The purpose of this study is to investigate that sorghum extract (SE) exerts cholesterol-lowering effects through the regulation of hepatic cholesterol metabolism-related protein expression. C57BL/6 mice were fed a modified AIN-93G diet (NC) with saline, or a modified AIN-93G diet with 2% cholesterol and 0.25% cholic acid with either saline (HC) or 600 mg SE/kg body weight (HC-SE). Levels of total cholesterol and triglycerides in serum and liver were significantly lower in HC-SE than in HC. The expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase, sterol regulatory elementary binding protein2 and fatty acid synthase were significantly lower, whereas phosphorylated AMP-activated protein kinase expression was significantly higher in HC-SE than in HC. Cholesterol 7-α hydroxylase expression was also significantly higher in mice given SE than in those given HC. These results suggest that the cholesterol-lowering effect of SE may be related to the regulation of hepatic cholesterol metabolism in this mouse model.
Collapse
Affiliation(s)
- Eunyoung Kim
- Department of Food and Nutrition, Hanyang University , Seoul , South Korea
| | | | | |
Collapse
|
214
|
Modulation of lipid homeostasis in response to continuous or intermittent high-fat diet in pigs. Animal 2015; 9:1000-7. [DOI: 10.1017/s1751731114003292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
215
|
Jones RD, Lopez AM, Tong EY, Posey KS, Chuang JC, Repa JJ, Turley SD. Impact of physiological levels of chenodeoxycholic acid supplementation on intestinal and hepatic bile acid and cholesterol metabolism in Cyp7a1-deficient mice. Steroids 2015; 93:87-95. [PMID: 25447797 PMCID: PMC4297738 DOI: 10.1016/j.steroids.2014.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/07/2014] [Indexed: 01/07/2023]
Abstract
Mice deficient in cholesterol 7α-hydroxylase (Cyp7a1) have a diminished bile acid pool (BAP) and therefore represent a useful model for investigating the metabolic effects of restoring the pool with a specific BA. Previously we carried out such studies in Cyp7a1(-/-) mice fed physiological levels of cholic acid (CA) and achieved BAP restoration, along with an increased CA enrichment, at a dietary level of just 0.03% (w/w). Here we demonstrate that in Cyp7a1(-/-) mice fed chenodeoxycholic acid (CDCA) at a level of 0.06% (w/w), the BAP was restored to normal size and became substantially enriched with muricholic acid (MCA) (>70%), leaving the combined contribution of CA and CDCA to be <15%. This resulted in a partial to complete reversal of the main changes in cholesterol and BA metabolism associated with Cyp7a1 deficiency such as an elevated rate of intestinal sterol synthesis, an enhanced level of mRNA for Cyp8b1 in the liver, and depressed mRNA levels for Ibabp, Shp and Fgf15 in the distal small intestine. When Cyp7a1(-/-) and matching Cyp7a1(+/+) mice were fed a diet with added cholesterol (0.2%) (w/w), either alone, or also containing CDCA (0.06%) (w/w) or CA (0.03%) (w/w) for 18days, the hepatic total cholesterol concentrations (mg/g) in the Cyp7a1(-/-) mice were 26.9±3.7, 16.4±0.9 and 47.6±1.9, respectively, vs. 4.9±0.4, 5.0±0.7 and 6.4±1.9, respectively in the corresponding Cyp7a1(+/+) controls. These data affirm the importance of using moderate levels of dietary BA supplementation to elicit changes in hepatic cholesterol metabolism through shifts in BAP size and composition.
Collapse
Affiliation(s)
- Ryan D Jones
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Adam M Lopez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Ernest Y Tong
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Kenneth S Posey
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Jen-Chieh Chuang
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Joyce J Repa
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States; Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| | - Stephen D Turley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, United States.
| |
Collapse
|
216
|
Fu ZD, Cui JY, Klaassen CD. Atorvastatin induces bile acid-synthetic enzyme Cyp7a1 by suppressing FXR signaling in both liver and intestine in mice. J Lipid Res 2014; 55:2576-86. [PMID: 25278499 DOI: 10.1194/jlr.m053124] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Statins are effective cholesterol-lowering drugs to treat CVDs. Bile acids (BAs), the end products of cholesterol metabolism in the liver, are important nutrient and energy regulators. The present study aims to investigate how statins affect BA homeostasis in the enterohepatic circulation. Male C57BL/6 mice were treated with atorvastatin (100 mg/kg/day po) for 1 week, followed by BA profiling by ultra-performance LC-MS/MS. Atorvastatin decreased BA pool size, mainly due to less BA in the intestine. Surprisingly, atorvastatin did not alter total BAs in the serum or liver. Atorvastatin increased the ratio of 12α-OH/non12α-OH BAs. Atorvastatin increased the mRNAs of the BA-synthetic enzymes cholesterol 7α-hydroxylase (Cyp7a1) (over 10-fold) and cytochrome P450 27a1, the BA uptake transporters Na⁺/taurocholate cotransporting polypeptide and organic anion transporting polypeptide 1b2, and the efflux transporter multidrug resistance-associated protein 2 in the liver. Noticeably, atorvastatin suppressed the expression of BA nuclear receptor farnesoid X receptor (FXR) target genes, namely small heterodimer partner (liver) and fibroblast growth factor 15 (ileum). Furthermore, atorvastatin increased the mRNAs of the organic cation uptake transporter 1 and cholesterol efflux transporters Abcg5 and Abcg8 in the liver. The increased expression of BA-synthetic enzymes and BA transporters appear to be a compensatory response to maintain BA homeostasis after atorvastatin treatment. The Cyp7a1 induction by atorvastatin appears to be due to suppressed FXR signaling in both the liver and intestine.
Collapse
Affiliation(s)
- Zidong Donna Fu
- Departments of Pharmacology, Toxicology, and Therapeutics University of Kansas Medical Center, Kansas City, KS 66160 Department of Pharmacology, Harbin Medical University (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, Heilongjiang Province, People's Republic of China 150081
| | - Julia Yue Cui
- Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Curtis D Klaassen
- Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
217
|
Miyazaki T, Honda A, Matsuzaki Y. Regulation of taurine conjugation and biosynthesis by bile acids through farnesoid X receptor activation. Hepatol Res 2014; 44:E1-2. [PMID: 25257688 DOI: 10.1111/hepr.12290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Teruo Miyazaki
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
| | | | | |
Collapse
|
218
|
Wu ZT, Qi XM, Sheng JJ, Ma LL, Ni X, Ren J, Huang CG, Pan GY. Timosaponin A3 induces hepatotoxicity in rats through inducing oxidative stress and down-regulating bile acid transporters. Acta Pharmacol Sin 2014; 35:1188-98. [PMID: 25087997 PMCID: PMC4155534 DOI: 10.1038/aps.2014.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/20/2014] [Indexed: 12/16/2022]
Abstract
Aim: To investigate the mechanisms underlying the hepatotoxicity of timosaponin A3 (TA3), a steroidal saponin from Anemarrhena asphodeloides, in rats. Methods: Male SD rats were administered TA3 (100 mg·kg−1·d−1, po) for 14 d, and the blood and bile samples were collected after the final administration. The viability of a sandwich configuration of cultured rat hepatocytes (SCRHs) was assessed using WST-1. Accumulation and biliary excretion index (BEI) of d8-TCA in SCRHs were determined with LC-MS/MS. RT-PCR and Western blot were used to analyze the expression of relevant genes and proteins. ROS and ATP levels, and mitochondrial membrane potential (MMP) were measured. F-actin cytoskeletal integrity was assessed under confocal microscopy. Results: TA3 administration in rats significantly elevated the total bile acid in serum, and decreased bile acid (BA) component concentrations in bile. TA3 inhibited the viability of the SCRHs with an IC50 value of 15.21±1.73 μmol/L. Treatment of the SCRHs with TA3 (1–10 μmol/L) for 2 and 24 h dose-dependently decreased the accumulation and BEI of d8-TCA. The TA3 treatment dose-dependently decreased the expression of BA transporters Ntcp, Bsep and Mrp2, and BA biosynthesis related Cyp7a1 in hepatocytes. Furthermore, the TA3 treatment dose-dependently increased ROS generation and HO-1 expression, decreased the ATP level and MMP, and disrupted F-actin in the SCRHs. NAC (5 mmol/L) significantly ameliorated TA3-induced effects in the SCRHs, whereas mangiferin (10–200 μg/mL) almost blocked TA3-induced ROS generation. Conclusion: TA3 triggers liver injury through inducing ROS generation and suppressing the expression of BA transporters. Mangiferin, an active component in Anemarrhena, may protect hepatocytes from TA3-induced hepatotoxicity.
Collapse
|
219
|
Cai JS, Chen JH. The mechanism of enterohepatic circulation in the formation of gallstone disease. J Membr Biol 2014; 247:1067-82. [PMID: 25107305 PMCID: PMC4207937 DOI: 10.1007/s00232-014-9715-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Accepted: 07/25/2014] [Indexed: 12/25/2022]
Abstract
Bile acids entering into enterohepatic circulating are primary acids synthesized from cholesterol in hepatocyte. They are secreted actively across canalicular membrane and carried in bile to gallbladder, where they are concentrated during digestion. About 95 % BAs are actively taken up from the lumen of terminal ileum efficiently, leaving only approximately 5 % (or approximately 0.5 g/d) in colon, and a fraction of bile acids are passively reabsorbed after a series of modifications in the human large intestine including deconjugation and oxidation of hydroxy groups. Bile salts hydrolysis and hydroxy group dehydrogenation reactions are performed by a broad spectrum of intestinal anaerobic bacteria. Next, hepatocyte reabsorbs bile acids from sinusoidal blood, which are carried to liver through portal vein via a series of transporters. Bile acids (BAs) transporters are critical for maintenance of the enterohepatic BAs circulation, where BAs exert their multiple physiological functions including stimulation of bile flow, intestinal absorption of lipophilic nutrients, solubilization, and excretion of cholesterol. Tight regulation of BA transporters via nuclear receptors (NRs) is necessary to maintain proper BA homeostasis. In conclusion, disturbances of enterohepatic circulation may account for pathogenesis of gallstones diseases, including BAs transporters and their regulatory NRs and the metabolism of intestinal bacterias, etc.
Collapse
Affiliation(s)
- Jian-Shan Cai
- Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai, 200040, People's Republic of China,
| | | |
Collapse
|
220
|
Kong B, Huang J, Zhu Y, Li G, Williams J, Shen S, Aleksunes LM, Richardson JR, Apte U, Rudnick DA, Guo GL. Fibroblast growth factor 15 deficiency impairs liver regeneration in mice. Am J Physiol Gastrointest Liver Physiol 2014; 306:G893-902. [PMID: 24699334 PMCID: PMC4024724 DOI: 10.1152/ajpgi.00337.2013] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibroblast growth factor (FGF) 15 (human homolog, FGF19) is an endocrine FGF highly expressed in the small intestine of mice. Emerging evidence suggests that FGF15 is critical for regulating hepatic functions; however, the role of FGF15 in liver regeneration is unclear. This study assessed whether liver regeneration is altered in FGF15 knockout (KO) mice following 2/3 partial hepatectomy (PHx). The results showed that FGF15 KO mice had marked mortality, with the survival rate influenced by genetic background. Compared with wild-type mice, the KO mice displayed extensive liver necrosis and marked elevation of serum bile acids and bilirubin. Furthermore, hepatocyte proliferation was reduced in the KO mice because of impaired cell cycle progression. After PHx, the KO mice had weaker activation of signaling pathways that are important for liver regeneration, including signal transducer and activator of transcription 3, nuclear factor-κB, and mitogen-activated protein kinase. Examination of the KO mice at early time points after PHx revealed a reduced and/or delayed induction of immediate-early response genes, including growth-control transcription factors that are critical for liver regeneration. In conclusion, the results suggest that FGF15 deficiency severely impairs liver regeneration in mice after PHx. The underlying mechanism is likely the result of disrupted bile acid homeostasis and impaired priming of hepatocyte proliferation.
Collapse
Affiliation(s)
- Bo Kong
- 1Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey;
| | - Jiansheng Huang
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri;
| | - Yan Zhu
- 3Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, Peoples Republic of China;
| | - Guodong Li
- 4Department of Surgical Oncology, Cancer Treatment Center, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Peoples Republic of China;
| | - Jessica Williams
- 6Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Steven Shen
- 6Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Lauren M. Aleksunes
- 1Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey;
| | - Jason R. Richardson
- 5Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey; and
| | - Udayan Apte
- 6Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - David A. Rudnick
- 2Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri;
| | - Grace L. Guo
- 1Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey;
| |
Collapse
|
221
|
Daily MD, Olsen BN, Schlesinger PH, Ory DS, Baker NA. Improved Coarse-Grained Modeling of Cholesterol-Containing Lipid Bilayers. J Chem Theory Comput 2014; 10:2137-2150. [PMID: 24910542 PMCID: PMC4044725 DOI: 10.1021/ct401028g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cholesterol trafficking, which is an essential function in mammalian cells, is intimately connected to molecular-scale interactions through cholesterol modulation of membrane structure and dynamics and interaction with membrane receptors. Since these effects of cholesterol occur on micro- to millisecond timescales, it is essential to develop accurate coarse-grained simulation models that can reach these timescales. Cholesterol has been shown experimentally to thicken the membrane and increase phospholipid tail order between 0-40% cholesterol, above which these effects plateau or slightly decrease. Here, we showed that the published MARTINI coarse-grained force-field for phospholipid (POPC) and cholesterol fails to capture these effects. Using reference atomistic simulations, we systematically modified POPC and cholesterol bonded parameters in MARTINI to improve its performance. We showed that the corrections to pseudo-bond angles between glycerol and the lipid tails and around the oleoyl double bond particle (the "angle-corrected model") slightly improves the agreement of MARTINI with experimentally measured thermal, elastic, and dynamic properties of POPC membranes. The angle-corrected model improves prediction of the thickening and ordering effects up to 40% cholesterol but overestimates these effects at higher cholesterol concentration. In accordance with prior work that showed the cholesterol rough face methyl groups are important for limiting cholesterol self-association, we revised the coarse-grained representation of these methyl groups to better match cholesterol-cholesterol radial distribution functions from atomistic simulations. In addition, by using a finer-grained representation of the branched cholesterol tail than MARTINI, we improved predictions of lipid tail order and bilayer thickness across a wide range of concentrations. Finally, transferability testing shows that a model incorporating our revised parameters into DOPC outperforms other CG models in a DOPC/cholesterol simulation series, which further argues for its efficacy and generalizability. These results argue for the importance of systematic optimization for coarse-graining biologically important molecules like cholesterol with complicated molecular structure.
Collapse
Affiliation(s)
- Michael D Daily
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Brett N Olsen
- Department of Medicine, Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri
| | - Paul H Schlesinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Daniel S Ory
- Department of Medicine, Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, Missouri
| | - Nathan A Baker
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, Washington
| |
Collapse
|
222
|
Chow ECY, Magomedova L, Quach HP, Patel R, Durk MR, Fan J, Maeng HJ, Irondi K, Anakk S, Moore DD, Cummins CL, Pang KS. Vitamin D receptor activation down-regulates the small heterodimer partner and increases CYP7A1 to lower cholesterol. Gastroenterology 2014; 146:1048-59. [PMID: 24365583 DOI: 10.1053/j.gastro.2013.12.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 12/15/2013] [Accepted: 12/17/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Little is known about the effects of the vitamin D receptor (VDR) on hepatic activity of human cholesterol 7α-hydroxylase (CYP7A1) and cholesterol metabolism. We studied these processes in mice in vivo and mouse and human hepatocytes. METHODS Farnesoid X receptor (Fxr)(-/-), small heterodimer partner (Shp)(-/-), and C57BL/6 (wild-type control) mice were fed normal or Western diets for 3 weeks and were then given intraperitoneal injections of vehicle (corn oil) or 1α,25-dihydroxyvitamin D3 (1,25[OH]2D3; 4 doses, 2.5 μg/kg, every other day). Plasma and tissue samples were collected and levels of Vdr, Shp, Cyp7a1, Cyp24a1, and rodent fibroblast growth factor (Fgf) 15 expression, as well as levels of cholesterol, were measured. We studied the regulation of Shp by Vdr using reporter and mobility shift assays in transfected human embryonic kidney 293 cells, quantitative polymerase chain reaction with mouse tissues and mouse and human hepatocytes, and chromatin immunoprecipitation assays with mouse liver. RESULTS We first confirmed the presence of Vdr mRNA and protein expression in livers of mice. In mice fed normal diets and given injections of 1,25(OH)2D3, liver and plasma concentrations of 1,25(OH)2D3 increased and decreased in unison. Changes in hepatic Cyp7a1 messenger RNA (mRNA) correlated with those of Cyp24a1 (a Vdr target gene) and inversely with Shp mRNA, but not ileal Fgf15 mRNA. Similarly, incubation with 1,25(OH)2D3 increased levels of Cyp24a1/CYP24A1 and Cyp7a1/CYP7A1 mRNA in mouse and human hepatocytes, and reduced levels of Shp mRNA in mouse hepatocytes. In Fxr(-/-) and wild-type mice with hypercholesterolemia, injection of 1,25(OH)2D3 consistently reduced levels of plasma and liver cholesterol and Shp mRNA, and increased hepatic Cyp7a1 mRNA and protein; these changes were not observed in Shp(-/-) mice given 1,25(OH)2D3 and fed Western diets. Truncation of the human small heterodimer partner (SHP) promoter and deletion analyses revealed VDR-dependent inhibition of SHP, and mobility shift assays showed direct binding of VDR to enhancer regions of SHP. In addition, chromatin immunoprecipitation analysis of livers from mice showed that injection of 1,25(OH)2D3 increased recruitment of Vdr and rodent retinoid X receptor to the Shp promoter. CONCLUSIONS Activation of the VDR represses hepatic SHP to increase levels of mouse and human CYP7A1 and reduce cholesterol.
Collapse
Affiliation(s)
- Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Lilia Magomedova
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Rucha Patel
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Matthew R Durk
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jianghong Fan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Han-Joo Maeng
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Kamdi Irondi
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
223
|
Lord RS, Tuttle DM, Cantor DS. Adult bile acid amino transferase deficiency. AMERICAN JOURNAL OF CASE REPORTS 2014; 15:63-8. [PMID: 24587851 PMCID: PMC3937008 DOI: 10.12659/ajcr.889906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/17/2013] [Indexed: 11/20/2022]
Abstract
Patient: Female, 70 Final Diagnosis: Bile acid amino transferase deficiency Symptoms: Headache • indigestion • itching skin • nausea • vomiting Medication: — Clinical Procedure: — Specialty: Gastroenterology and Hepatology
Collapse
Affiliation(s)
- Richard S Lord
- Medical Affairs, Genova Diagnostics, Inc., Asheville, NC, U.S.A
| | - Daniel M Tuttle
- Mind and Motion, Psychological Sciences Institute, Johns Creek City, GA, U.S.A
| | - David S Cantor
- Mind and Motion, Psychological Sciences Institute, Johns Creek City, GA, U.S.A
| |
Collapse
|
224
|
Shi Y, Guo R, Wang X, Yuan D, Zhang S, Wang J, Yan X, Wang C. The regulation of alfalfa saponin extract on key genes involved in hepatic cholesterol metabolism in hyperlipidemic rats. PLoS One 2014; 9:e88282. [PMID: 24505463 PMCID: PMC3914959 DOI: 10.1371/journal.pone.0088282] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 01/07/2014] [Indexed: 12/12/2022] Open
Abstract
To investigate the cholesterol-lowering effects of alfalfa saponin extract (ASE) and its regulation mechanism on some key genes involved in cholesterol metabolism, 40 healthy 7 weeks old male Sprague Dawley (SD) rats were randomly divided into four groups with 10 rats in each group: control group, hyperlipidemic group, ASE treatment group, ASE prevention group. The body weight gain, relative liver weight and serum lipid 1evels of rats were determined. Total cholesterol (TC) and total bile acids (TBA) levels in liver and feces were also measured. Furthermore, the activity and mRNA expressions of Hmgcr, Acat2, Cyp7a1 and Ldlr were investigated. The results showed the following: (1) The abnormal serum lipid levels in hyperlipidemic rats were ameliorated by ASE administration (both ASE prevention group and treatment group) (P<0.05). (2) Both ASE administration to hyperlipidemic rats significantly reduced liver TC and increased liver TBA level (P<0.05). TC and TBA levels in feces of hyperlipidemic rats were remarkably elevated by both ASE administration (P<0.05). (3) mRNA expressions of Hmgcr and Acat2 in the liver of hyperlipidemic rats were remarkably down-regulated (P<0.05), as well as mRNA expressions of Cyp7a1 and Ldlr were dramatically up-regulated by both ASE administration (P<0.05). The activities of these enzymes also paralleled the observed changes in mRNA levels. (4) There was no significant difference between ASE treatment and ASE prevention group for most parameters evaluated. Our present study indicated that ASE had cholesterol-lowering effects. The possible mechanism could be attributed to (1) the down-regulation of Hmgcr and Acat2, as well as up-regulation of Cyp7a1 and Ldlr in the liver of hyperlipidemic rats, which was involved in cholesterol biosynthesis, uptake, and efflux pathway; (2) the increase in excretion of cholesterol. The findings in our study suggested ASE had great potential usefulness as a natural agent for treating hyperlipidemia.
Collapse
Affiliation(s)
- Yinghua Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- * E-mail: (YS); (CW)
| | - Rui Guo
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xianke Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Dedi Yuan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Senhao Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jie Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xuebing Yan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chengzhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- * E-mail: (YS); (CW)
| |
Collapse
|
225
|
Loh TC, Thanh NT, Foo HL, Hair-Bejo M. Effects of feeding metabolite combinations from lactobacillus plantarum on plasma and breast meat lipids in Broiler Chickens. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2013. [DOI: 10.1590/s1516-635x2013000400004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- TC Loh
- Faculty of Agriculture; Universiti Putra Malaysia
| | | | - HL Foo
- Faculty of Biotechnology and Biomolecular Sciences; Universiti Putra Malaysia
| | | |
Collapse
|
226
|
Abstract
Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans.
Collapse
|
227
|
Reshetnyak VI. Physiological and molecular biochemical mechanisms of bile formation. World J Gastroenterol 2013; 19:7341-7360. [PMID: 24259965 PMCID: PMC3831216 DOI: 10.3748/wjg.v19.i42.7341] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/27/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
This review considers the physiological and molecular biochemical mechanisms of bile formation. The composition of bile and structure of a bile canaliculus, biosynthesis and conjugation of bile acids, bile phospholipids, formation of bile micellar structures, and enterohepatic circulation of bile acids are described. In general, the review focuses on the molecular physiology of the transporting systems of the hepatocyte sinusoidal and apical membranes. Knowledge of physiological and biochemical basis of bile formation has implications for understanding the mechanisms of development of pathological processes, associated with diseases of the liver and biliary tract.
Collapse
|
228
|
Jung D, York JP, Wang L, Yang C, Zhang A, Francis HL, Webb P, McKeehan WL, Alpini G, Lesage GD, Moore DD, Xia X. FXR-induced secretion of FGF15/19 inhibits CYP27 expression in cholangiocytes through p38 kinase pathway. Pflugers Arch 2013; 466:1011-9. [PMID: 24068255 DOI: 10.1007/s00424-013-1364-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 01/01/2023]
Abstract
Cholangiocytes, bile duct lining cells, actively adjust the amount of cholesterol and bile acids in bile through expression of enzymes and channels involved in transportation and metabolism of the cholesterol and bile acids. Herein, we report molecular mechanisms regulating bile acid biosynthesis in cholangiocytes. Among the cytochrome p450 (Cyp) enzymes involved in bile acid biosynthesis, sterol 27-hydroxylase (Cyp27) that is the rate-limiting enzyme for the acidic pathway of bile acid biosynthesis expressed in cholangiocytes. Expression of other Cyp enzymes for the basic bile acid biosynthesis was hardly detected. The Cyp27 expression was negatively regulated by a hydrophobic bile acid through farnesoid X receptor (FXR), a nuclear receptor activated by bile acid ligands. Activated FXR exerted the negative effects by inducing an expression of fibroblast growth factor 15/19 (FGF15/19). Similar to its repressive function against cholesterol 7α-hydroxylase (Cyp7a1) expression in hepatocytes, secreted FGF15/19 triggered Cyp27 repression in cholangiocytes through interaction with its cognate receptor fibroblast growth factor receptor 4 (FGFR4). The involvements of FXR and FGFR4 for the bile acid-induced Cyp27 repression were confirmed in vivo using knockout mouse models. Different from the signaling in hepatocytes, wherein the FGF15/19-induced repression signaling is mediated by c-Jun N-terminal kinase (JNK), FGF15/19-induced Cyp27 repression in cholangiocytes was mediated by p38 kinase. Thus, the results collectively suggest that cholangiocytes may be able to actively regulate bile acid biosynthesis in cholangiocytes and even hepatocyte by secreting FGF15/19. We suggest the presence of cholangiocyte-mediated intrahepatic feedback loop in addition to the enterohepatic feedback loop against bile acid biosynthesis in the liver.
Collapse
Affiliation(s)
- Dongju Jung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Bile salts and their importance for drug absorption. Int J Pharm 2013; 453:44-55. [PMID: 23598075 DOI: 10.1016/j.ijpharm.2013.04.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 11/21/2022]
Abstract
Bile salts are present in the intestines of humans as well as the animals used during the development of pharmaceutical products. This review provides a short introduction into the physical chemical properties of bile salts, a description of the bile concentration and composition of bile in different animal species and an overview of the literature investigating the influence of bile salts on the in vivo performance of different compounds and drug formulations. Generally, there is a positive effect on bioavailability when bile is present in the gastro-intestinal tract, independent of the formulation systems, e.g. suspensions, solutions, cyclodextrin complexes or lipid based formulations, but a few exceptions have also been reported.
Collapse
|
230
|
Puccinelli E, Gervasi PG, Pelosi G, Puntoni M, Longo V. Modulation of cytochrome P450 enzymes in response to continuous or intermittent high-fat diet in pigs. Xenobiotica 2013; 43:686-98. [PMID: 23360109 DOI: 10.3109/00498254.2012.756558] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
1. To date, no information has been available on the modulation of cytochrome P450 enzymes (CYPs) following the administration of a hyperlipidemic diet in pigs. 2. We investigated the potential modulation of xenobiotic-metabolizing CYPs in liver, heart and duodenum of pigs subjected to a high-fat/high-cholesterol diet for 2 months continuously (C-HFD) or on alternate weeks (A-HFD). 3. The administration of the high-fat diet resulted in considerably increased plasma cholesterol levels although the animals were still able to manage the lipid overload efficiently, and no sign of effective tissue inflammation occurred in livers. Plasma lipid profile and liver histology indicated a better adaptive response of the A-HFD pigs compared to the C-HFD group. We showed a post-transcriptional induction of hepatic CYP2E1 activity in C-HFD pigs and a transcriptional induction of hepatic CYP3As - especially in the A-HFD group. No further CYP modulation was observed in either liver or extra-hepatic tissues. 4. In conclusion, the administration of a high-fat diet in pigs resulted in limited effects on the drug metabolism system. The better adaptive response of A-HFD pigs compared to C-HFD pigs is a very interesting observation since the intermittent administration of the diet reflects the mode of human behavior more closely.
Collapse
|
231
|
Henkel AS, Gooijert KER, Havinga R, Boverhof R, Green RM, Verkade HJ. Hepatic overexpression of Abcb11 in mice promotes the conservation of bile acids within the enterohepatic circulation. Am J Physiol Gastrointest Liver Physiol 2013; 304:G221-6. [PMID: 23139217 PMCID: PMC3543647 DOI: 10.1152/ajpgi.00322.2012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The bile salt export pump, encoded by ABCB11, is the predominant canalicular transport protein for biliary bile acid secretion. The level of ABCB11 expression in humans is widely variable yet the impact of this variability on human disease is not well defined. We aim to determine the effect of hepatic Abcb11 overexpression on the enterohepatic circulation (EHC) in mice. We used a stable isotope dilution technique in transgenic mice overexpressing hepatic Abcb11 (TTR-Abcb11) to determine the pool size, fractional turnover rate (FTR), and synthesis rate of the primary bile acid, cholic acid (CA). The gallbladder was cannulated to determine bile flow, bile acid composition, and the biliary secretion rates of CA, total bile acids, phospholipid, and cholesterol. The combined data allowed for estimation of the CA cycling time and the fraction of CA lost per cycle. Hepatic and intestinal gene and protein expression were determined by qPCR and Western blot. Abcb11 overexpression strongly decreased FTR and synthesis rate of CA. Abcb11 overexpression decreased the fraction of CA that was lost per cycle of the EHC. Hepatic expression of Cyp7a1 was suppressed by nearly 50% and ileal expression of FGF15 was increased more than eightfold in TTR-Abcb11 mice. Despite the increased intestinal reabsorption of bile acids, ileal Asbt expression was suppressed. Hepatic Abcb11 overexpression in mice increases the conservation of bile acids within the enterohepatic circulation. These data provide strong evidence for the existence of feed-forward communication between hepatic expression of a bile acid transport protein and the intestine.
Collapse
Affiliation(s)
- Anne S. Henkel
- 1Division of Hepatology, Department of Medicine, Northwestern University, Chicago, Illinois; and
| | - Karin E. R. Gooijert
- 2Department of Pediatrics, Beatrix Childrens' Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rick Havinga
- 2Department of Pediatrics, Beatrix Childrens' Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Renze Boverhof
- 2Department of Pediatrics, Beatrix Childrens' Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Richard M. Green
- 1Division of Hepatology, Department of Medicine, Northwestern University, Chicago, Illinois; and
| | - Henkjan J. Verkade
- 2Department of Pediatrics, Beatrix Childrens' Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
232
|
Weinhofer I, Kunze M, Forss-Petter S, Berger J. Involvement of human peroxisomes in biosynthesis and signaling of steroid and peptide hormones. Subcell Biochem 2013; 69:101-110. [PMID: 23821145 DOI: 10.1007/978-94-007-6889-5_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although peroxisomes exert essential biological functions, cell type-specific features of this important organelle are still only superficially characterized. An intriguing new aspect of peroxisomal function was recently uncovered by the observation that the peptide hormones β-lipotropin (β-LPH) and β-endorphin are localized to peroxisomes in various human tissues. This suggests a functional link between peptide hormone metabolism and peroxisomes. In addition, because endocrine manifestations that affect steroid hormones are often found in patients suffering from inherited peroxisomal disorders, the question has been raised whether peroxisomes are also involved in steroidogenesis. With this chapter, we will review several crucial aspects concerning peroxisomes and hormone metabolism.
Collapse
Affiliation(s)
- Isabelle Weinhofer
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria,
| | | | | | | |
Collapse
|
233
|
Swanson HI, Wada T, Xie W, Renga B, Zampella A, Distrutti E, Fiorucci S, Kong B, Thomas AM, Guo GL, Narayanan R, Yepuru M, Dalton JT, Chiang JYL. Role of nuclear receptors in lipid dysfunction and obesity-related diseases. Drug Metab Dispos 2013; 41:1-11. [PMID: 23043185 PMCID: PMC3533426 DOI: 10.1124/dmd.112.048694] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/03/2012] [Indexed: 12/25/2022] Open
Abstract
This article is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 12 meeting in San Diego, CA. The presentations discussed the roles of a number of nuclear receptors in regulating glucose and lipid homeostasis, the pathophysiology of obesity-related disease states, and the promise associated with targeting their activities to treat these diseases. While many of these receptors (in particular, constitutive androstane receptor and pregnane X receptor) and their target enzymes have been thought of as regulators of drug and xenobiotic metabolism, this symposium highlighted the advances made in our understanding of the endogenous functions of these receptors. Similarly, as we gain a better understanding of the mechanisms underlying bile acid signaling pathways in the regulation of body weight and glucose homeostasis, we see the importance of using complementary approaches to elucidate this fascinating network of pathways. The observation that some receptors, like the farnesoid X receptor, can function in a tissue-specific manner via well defined mechanisms has important clinical implications, particularly in the treatment of liver diseases. Finally, the novel findings that agents that selectively activate estrogen receptor β can effectively inhibit weight gain in a high-fat diet model of obesity identifies a new role for this member of the steroid superfamily. Taken together, the significant findings reported during this symposium illustrate the promise associated with targeting a number of nuclear receptors for the development of new therapies to treat obesity and other metabolic disorders.
Collapse
Affiliation(s)
- Hollie I Swanson
- Department of Molecular and Biomedical Pharmacology, MS305, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY40536, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Dai FJ, Hsu WH, Huang JJ, Wu SC. Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters. Food Chem Toxicol 2012; 53:384-91. [PMID: 23287313 DOI: 10.1016/j.fct.2012.12.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 12/08/2012] [Accepted: 12/19/2012] [Indexed: 11/26/2022]
Abstract
Obesity is associated with increased systemic and airway oxidative stress, which may result from a combination of adipokine imbalance and antioxidant defenses reduction. Obesity-mediated oxidative stress plays an important role in the pathogenesis of dyslipidemia, vascular disease, and nonalcoholic hepatic steatosis. The antidyslipidemic activity of pigeon pea were evaluated by high-fat diet (HFD) hamsters model, in which the level of high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), and total triglyceride (TG) were examined. We found that pigeon pea administration promoted cholesterol converting to bile acid in HFD-induced hamsters, thereby exerting hypolipidemic activity. In the statistical results, pigeon pea significantly increased hepatic carnitine palmitoyltransferase-1 (CPT-1), LDL receptor, and cholesterol 7α-hydroxylase (also known as cytochrome P450 7A1, CYP7A1) expression to attenuate dyslipidemia in HFD-fed hamsters; and markedly elevated antioxidant enzymes in the liver of HFD-induced hamsters, further alleviating lipid peroxidation. These effects may attribute to pigeon pea contained large of unsaturated fatty acids (UFA; C18:2) and phytosterol (β-sitosterol, campesterol, and stigmasterol). Moreover, the effects of pigeon pea on dyslipidemia were greater than β-sitosterol administration (4%), suggesting that phytosterone in pigeon pea could prevent metabolic syndrome.
Collapse
Affiliation(s)
- Fan-Jhen Dai
- Department of Food Science, College of Life Science, National Chiayi University, No. 300, Syue fu Road, Chiayi City 60004, Taiwan, ROC
| | | | | | | |
Collapse
|
235
|
Cong R, Jia Y, Li R, Ni Y, Yang X, Sun Q, Parvizi N, Zhao R. Maternal low-protein diet causes epigenetic deregulation of HMGCR and CYP7α1 in the liver of weaning piglets. J Nutr Biochem 2012; 23:1647-54. [DOI: 10.1016/j.jnutbio.2011.11.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 12/30/2022]
|
236
|
Wang J, Jiang Z, Ji J, Li Y, Chen M, Wang Y, Zhang Y, Tai T, Wang T, Zhang L. Evaluation of hepatotoxicity and cholestasis in rats treated with EtOH extract of Fructus Psoraleae. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:73-81. [PMID: 22954498 DOI: 10.1016/j.jep.2012.08.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 07/21/2012] [Accepted: 08/16/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fructus Psoraleae (FP) has been widely used to heal skin diseases as well as osteoporosis, osteomalacia, and bone fracture. There also exist many clinical reports about FP-induced hepatotoxicity associated with acute cholestatic hepatic injury. However, the FP-induced hepatotoxicity and the underlying mechanisms remain unclear. AIMS OF THE STUDY The present study aims to determine the hepatotoxicity of FP in Sprague-Dawley (SD) rats and to investigate the underlying mechanisms. MATERIALS AND METHODS Sprague-Dawley rats of both sexes were intragastrically administered with the EtOH extract of FP (EEFP) at doses of 1.875, 1.25 and 0.625 g/kg for 28 day. Body weight, relative liver weight, biochemical analysis, histopathology, the mRNA and protein expression of Cholesterol 7α-hydroxylase (CYP7A1), farnesoid X receptor (FXR), bile-salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), multidrug resistance-associated protein 3 (MRP3) were evaluated to study the EEFP-induced hepatotoxicity and its underlying mechanisms. RESULTS Many abnormalities were observed in the EEFP-treated groups including suppression of weight gain and food intake, change of some parameters in serum biochemistry, increased weight of liver, and decreased concentration of bile acid in bile. The mRNA and protein expression of CYP7A1, MRP3, MRP2, BSEP increased and the expression of FXR decreased in EEFP-treated female groups; the mRNA and protein of FXR and CYP7A1 decreased and that of the others remained the same in EEFP-treated male groups. CONCLUSION In conclusion, we provide evidence for the first time that EEFP can induce sex-related cholestatic hepatotoxicity, and that female rats are more sensitive to EEFP-induced hepatotoxicity, which involves the destruction of the biosynthesis and transportation of bile acid. Further investigation is still needed to uncover the mechanism of the sex-dimorphic EEFP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Jiaying Wang
- Jiangsu Provincial Center for Drug Screening, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Kong B, Wang L, Chiang JYL, Zhang Y, Klaassen CD, Guo GL. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 2012; 56:1034-43. [PMID: 22467244 PMCID: PMC3390456 DOI: 10.1002/hep.25740] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/19/2012] [Indexed: 12/13/2022]
Abstract
UNLABELLED Activation of farnesoid X receptor (Fxr, Nr1h4) is a major mechanism in suppressing bile-acid synthesis by reducing the expression levels of genes encoding key bile-acid synthetic enzymes (e.g., cytochrome P450 [CYP]7A1/Cyp7a1 and CYP8B1/Cyp8b1). FXR-mediated induction of hepatic small heterodimer partner (SHP/Shp, Nr0b2) and intestinal fibroblast growth factor 15 (Fgf15; FGF19 in humans) has been shown to be responsible for this suppression. However, the exact contribution of Shp/Fgf15 to this suppression, and the associated cell-signaling pathway, is unclear. By using novel genetically modified mice, the current study showed that the intestinal Fxr/Fgf15 pathway was critical for suppressing both Cyp7a1 and Cyp8b1 gene expression, but the liver Fxr/Shp pathway was important for suppressing Cyp8b1 gene expression and had a minor role in suppressing Cyp7a1 gene expression. Furthermore, in vivo administration of Fgf15 protein to mice led to a strong activation of extracellular signal-related kinase (ERK) and, to a smaller degree, Jun N-terminal kinase (JNK) in the liver. In addition, deficiency of either the ERK or JNK pathway in mouse livers reduced the basal, but not the Fgf15-mediated, suppression of Cyp7a1 and Cyp8b1 gene expression. However, deficiency of both ERK and JNK pathways prevented Fgf15-mediated suppression of Cyp7a1 and Cyp8b1 gene expression. CONCLUSION The current study clearly elucidates the underlying molecular mechanism of hepatic versus intestinal Fxr in regulating the expression of genes critical for bile-acid synthesis and hydrophobicity in the liver.
Collapse
Affiliation(s)
- Bo Kong
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center
| | - Li Wang
- Department of Oncological Sciences, University of Utah
| | - John Y. L. Chiang
- Department of Biochemistry and Molecular Pathology, Northeast Ohio Medical University
| | - Youcai Zhang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center
| | - Curtis D. Klaassen
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center
| | - Grace L. Guo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center
| |
Collapse
|
238
|
Xing WJ, Gao L, Zhao JJ. Expression and regulation of cholesterol 7 alpha-hydroxylase: An update. Shijie Huaren Xiaohua Zazhi 2012; 20:1439-1446. [DOI: 10.11569/wcjd.v20.i16.1439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholesterol 7-alpha hydroxylase (CYP7A1) is the first and rate-limiting enzyme in the neutral pathway of bile acids synthesis. The expression of CYP7A1 can be regulated not only by diurnal rhythm, but also by gene polymorphism, diet, hormones, cytokines and drugs. CYP7A1 gene polymorphism is associated not only with some diseases but also with response to drug therapy. A cascade network consisting of multiple nuclear receptors is involved in the regulation of CYP7A1 expression to control bile acid synthesis and lipid metabolism.
Collapse
|
239
|
Qiao X, Ye M, Xiang C, Bo T, Yang WZ, Liu CF, Miao WJ, Guo DA. Metabolic regulatory effects of licorice: a bile acid metabonomic study by liquid chromatography coupled with tandem mass spectrometry. Steroids 2012; 77:745-55. [PMID: 22521565 DOI: 10.1016/j.steroids.2012.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 12/21/2022]
Abstract
Licorice is one of the most popular herbal medicines worldwide, and is mainly used to moderate the characteristics of other herbs in Traditional Chinese Medicine. It is hypothesized that licorice exerts this role by regulating systemic metabolism. Bile acids play a critical role in lipid digestion and cholesterol metabolism, and are sensitive biomarkers for hepatic function. In this study, the regulatory effects of licorice on bile acid metabonome in rats were investigated using liquid chromatography coupled with tandem mass spectrometry. After oral administration of a clinical dosage of licorice water extract, the levels of 21 fully identified and 41 tentatively characterized bile acid analogs in rat plasma were determined by a fully validated method. Following partial least squares discriminant analysis, the results showed that licorice treatment led to dose-dependent up-regulation of free and glycine-conjugated bile acids excretion. Particularly, the plasma levels of cholic acid (1465.33±915.93-7156.46±3490.49 ng/mL, p=0.0027) and β-muricholic acid (228.19±163.95-1284.40±775.62 ng/mL, p=0.0045) increased significantly 48 h after administration. As licorice is widely used as a detoxifying drug, the regulation of plasma bile acids may be an important evidence to interpret its mechanism.
Collapse
Affiliation(s)
- Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Cui JY, Aleksunes LM, Tanaka Y, Fu ZD, Guo Y, Guo GL, Lu H, Zhong XB, Klaassen CD. Bile acids via FXR initiate the expression of major transporters involved in the enterohepatic circulation of bile acids in newborn mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:G979-96. [PMID: 22268101 PMCID: PMC3362079 DOI: 10.1152/ajpgi.00370.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/12/2012] [Indexed: 02/06/2023]
Abstract
The enterohepatic circulation (EHC) of bile acids (BAs) plays a pivotal role in facilitating lipid absorption. Therefore, initiation of the EHC in newborns is of crucial importance for lipid absorption from milk. The purpose of this study was to determine at what age BA transporters in liver are expressed, and the mechanism for their initiation. Serum and liver samples were collected from C57BL/6 mice at 2 days before birth and various postnatal ages. Messenger RNA assays revealed a dramatic increase at birth in the expression of the BA transporters (Ntcp, Bsep, Mrp4, Ostβ), as well as the phospholipid floppase Mdr2 in mouse liver, with the highest expression at 1 day of age. The mRNA expression of the ileal BA transporters (Ostα and Ostβ) also markedly increased at birth. Meanwhile, taurine-conjugated cholic acid markedly increased in both serum and liver of newborns, correlated with upregulation of the classic pathway of BA biosynthesis in newborn liver. The mRNA levels of the major BA sensors, FXR and PXR, were increased at 1 day of age, and their prototypical target genes were upregulated in liver. The mRNA expression of transporters involved in the EHC of BAs was similar in wild-type and PXR-null mice. In contrast, in FXR-null mice, the "day 1 surge" pattern of Ntcp, Bsep, Ostβ, and Mdr2 was blocked in newborn mouse liver, and the induction of Ostα and Ostβ was also abolished in ileums of FXR-null mice. In conclusion, at birth, BAs from the classic pathway of synthesis trigger the induction of transporters involved in EHC of BAs in mice, through activation of the nuclear receptor FXR.
Collapse
Affiliation(s)
- Julia Yue Cui
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160-7417, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Porez G, Prawitt J, Gross B, Staels B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res 2012; 53:1723-37. [PMID: 22550135 DOI: 10.1194/jlr.r024794] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dyslipidemia is an important risk factor for cardiovascular disease (CVD) and atherosclerosis. When dyslipidemia coincides with other metabolic disorders such as obesity, hypertension, and glucose intolerance, defined as the metabolic syndrome (MS), individuals present an elevated risk to develop type 2 diabetes (T2D) as well as CVD. Because the MS epidemic represents a growing public health problem worldwide, the development of therapies remains a major challenge. Alterations of bile acid pool regulation in T2D have revealed a link between bile acid and metabolic homeostasis. The bile acid receptors farnesoid X receptor (FXR) and TGR5 both regulate lipid, glucose, and energy metabolism, rendering them potential pharmacological targets for MS therapy. This review discusses the mechanisms of metabolic regulation by FXR and TGR5 and the utility relevance of natural and synthetic modulators of FXR and TGR5 activity, including bile acid sequestrants, in the treatment of the MS.
Collapse
|
242
|
Abstract
Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid) is a pentacyclic triterpenoid compound with a widespread occurrence throughout the plant kingdom. In nature, the compound exists either as a free acid or as an aglycone precursor for triterpenoid saponins, in which it can be linked to one or more sugar chains. Oleanolic acid and its derivatives possess several promising pharmacological activities, such as hepatoprotective effects, and anti-inflammatory, antioxidant, or anticancer activities. With the recent elucidation of its biosynthesis and the imminent commercialization of the first oleanolic acid-derived drug, the compound promises to remain important for various studies. In this review, the recent progress in understanding the oleanolic acid biosynthesis and its pharmacology are discussed. Furthermore, the importance and potential application of synthetic oleanolic acid derivatives are highlighted, and research perspectives on oleanolic acid are given.
Collapse
Affiliation(s)
- Jacob Pollier
- Department of Plant Systems Biology, VIB, B-9052 Gent, Belgium.
| | | |
Collapse
|
243
|
A pleiotropic role for the orphan nuclear receptor small heterodimer partner in lipid homeostasis and metabolic pathways. J Lipids 2012; 2012:304292. [PMID: 22577560 PMCID: PMC3346990 DOI: 10.1155/2012/304292] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/05/2011] [Indexed: 12/29/2022] Open
Abstract
Nuclear receptors (NRs) comprise one of the most abundant classes of transcriptional regulators of metabolic diseases and have emerged as promising pharmaceutical targets. Small heterodimer partner (SHP; NR0B2) is a unique orphan NR lacking a DNA-binding domain but contains a putative ligand-binding domain. SHP is a transcriptional regulator affecting multiple key biological functions and metabolic processes including cholesterol, bile acid, and fatty acid metabolism, as well as reproductive biology and glucose-energy homeostasis. About half of all mammalian NRs and several transcriptional coregulators can interact with SHP. The SHP-mediated repression of target transcription factors includes at least three mechanisms including direct interference with the C-terminal activation function 2 (AF2) coactivator domains of NRs, recruitment of corepressors, or direct interaction with the surface of NR/transcription factors. Future research must focus on synthetic ligands acting on SHP as a potential therapeutic target in a series of metabolic abnormalities. Current understanding about the pleiotropic role of SHP is examined in this paper, and principal metabolic aspects connected with SHP function will be also discussed.
Collapse
|
244
|
Souidi M, Racine R, Grandcolas L, Grison S, Stefani J, Gourmelon P, Lestaevel P. Influence of depleted uranium on hepatic cholesterol metabolism in apolipoprotein E-deficient mice. J Steroid Biochem Mol Biol 2012; 129:201-5. [PMID: 22207087 DOI: 10.1016/j.jsbmb.2011.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 11/18/2011] [Accepted: 12/07/2011] [Indexed: 11/29/2022]
Abstract
Depleted uranium (DU) is uranium with a lower content of the fissile isotope U-235 than natural uranium. It is a radioelement and a waste product from the enrichment process of natural uranium. Because of its very high density, it is used in the civil industry and for military purposes. DU exposure can affect many vital systems in the human body, because in addition to being weakly radioactive, uranium is a toxic metal. It should be emphasized that, to be exposed to radiation from DU, you have to eat, drink, or breathe it, or get it on your skin. This particular study is focusing on the health effects of DU for the cholesterol metabolism. Previous studies on the same issue have shown that the cholesterol metabolism was modulated at molecular level in the liver of laboratory rodents contaminated for nine months with DU. However, this modulation was not correlated with some effects at organs or body levels. It was therefore decided to use a "pathological model" such as hypercholesterolemic apolipoprotein E-deficient laboratory mice in order to try to clarify the situation. The purpose of the present study is to assess the effects of a chronic ingestion (during 3 months) of a low level DU-supplemented water (20 mg L(-1)) on the above mentioned mice in order to determine a possible contamination effect. Afterwards the cholesterol metabolism was studied in the liver especially focused on the gene expressions of cholesterol-catabolising enzymes (CYP7A1, CYP27A1 and CYP7B1), as well as those of associated nuclear receptors (LXRα, FXR, PPARα, and SREBP 2). In addition, mRNA levels of other enzymes of interest were measured (ACAT 2, as well as HMGCoA Reductase and HMGCoA Synthase). The gene expression study was completed with SRB1 and LDLr, apolipoproteins A1 and B and membrane transporters ABC A1, ABC G5. The major effect induced by a low level of DU contamination in apo-E deficient mice was a decrease in hepatic gene expression of the enzyme CYP7B1 (-23%) and nuclear receptors LXRα (-24%), RXR (-32%), HNF4α (-21%) when compared to unexposed ones. These modifications on cholesterol metabolism did not lead to increased disturbances that are specific for apolipoprotein E-deficient mice, suggesting that chronic DU exposure did not worsen the pathology in this experimental model. In conclusion, the results of this study indicate that even for a sensitive pathologic model the exposure to a low dose of DU has no relevant impact. The results confirm the results of our first study carried out on healthy laboratory rodents where a sub-chronic contamination with low dose DU did not affect in vivo the metabolism of cholesterol.
Collapse
Affiliation(s)
- M Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Direction de la Radioprotection de l'Homme, Service de Radiobiologie et d'Epidémiologie, Laboratoire de Radiotoxicologie Expérimentale, BP no.17, F-92262 Fontenay-aux-Roses Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
245
|
|
246
|
Olsen BN, Schlesinger PH, Ory DS, Baker NA. Side-chain oxysterols: from cells to membranes to molecules. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:330-6. [PMID: 21745458 PMCID: PMC3197895 DOI: 10.1016/j.bbamem.2011.06.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/21/2011] [Accepted: 06/23/2011] [Indexed: 02/08/2023]
Abstract
This review discusses the application of cellular biology, molecular biophysics, and computational simulation to understand membrane-mediated mechanisms by which oxysterols regulate cholesterol homeostasis. Side-chain oxysterols, which are produced enzymatically in vivo, are physiological regulators of cholesterol homeostasis and primarily serve as cellular signals for excess cholesterol. These oxysterols regulate cholesterol homeostasis through both transcriptional and non-transcriptional pathways; however, many molecular details of their interactions in these pathways are still not well understood. Cholesterol trafficking provides one mechanism for regulation. The current model of cholesterol trafficking regulation is based on the existence of two distinct cholesterol pools in the membrane: a low and a high availability/activity pool. It is proposed that the low availability/activity pool of cholesterol is integrated into tightly packing phospholipids and relatively inaccessible to water or cellular proteins, while the high availability cholesterol pool is more mobile in the membrane and is present in membranes where the phospholipids are not as compressed. Recent results suggest that oxysterols may promote cholesterol egress from membranes by shifting cholesterol from the low to the high activity pools. Furthermore, molecular simulations suggest a potential mechanism for oxysterol "activation" of cholesterol through its displacement in the membrane. This review discusses these results as well as several other important interactions between oxysterols and cholesterol in cellular and model lipid membranes. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Brett N. Olsen
- Diabetic Cardiovascular Disease Center, Washington University in St. Louis School of Medicine
| | - Paul H. Schlesinger
- Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine
| | - Daniel S. Ory
- Diabetic Cardiovascular Disease Center, Washington University in St. Louis School of Medicine
| | - Nathan A. Baker
- Knowledge Systems and Informatics, Pacific Northwest National Laboratory
| |
Collapse
|
247
|
Pai R, French D, Ma N, Hotzel K, Plise E, Salphati L, Setchell KDR, Ware J, Lauriault V, Schutt L, Hartley D, Dambach D. Antibody-mediated inhibition of fibroblast growth factor 19 results in increased bile acids synthesis and ileal malabsorption of bile acids in cynomolgus monkeys. Toxicol Sci 2012; 126:446-56. [PMID: 22268002 DOI: 10.1093/toxsci/kfs011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor 19 (FGF19) represses cholesterol 7α-hydroxylase (Cyp7α1) and inhibits bile acid synthesis in vitro and in vivo. Previous studies have shown that anti-FGF19 antibody treatment reduces growth of colon tumor xenografts and prevents hepatocellular carcinomas in FGF19 transgenic mice and thus may be a useful cancer target. In a repeat dose safety study in cynomolgus monkeys, anti-FGF19 treatment (3-100 mg/kg) demonstrated dose-related liver toxicity accompanied by severe diarrhea and low food consumption. The mechanism of anti-FGF19 toxicity was investigated using in vitro and in vivo approaches. Our results show that anti-FGF19 antibody had no direct cytotoxic effect on monkey hepatocytes. Anti-FGF19 increased Cyp7α1, as expected, but also increased bile acid efflux transporter gene (bile salt export pump, multidrug resistant protein 2 [MRP2], and MRP3) expression and reduced sodium taurocholate cotransporting polypeptide and organic anion transporter 2 expression in liver tissues from treated monkeys and in primary hepatocytes. In addition, anti-FGF19 treatment increased solute transporter gene (ileal bile acid-binding protein, organic solute transporter α [OST-α], and OST-β) expression in ileal tissues from treated monkeys but not in Caco-2 cells. However, deoxycholic acid (a secondary bile acid) increased expression of FGF19 and these solute transporter genes in Caco-2 cells. Gas chromatography-mass spectrometry analysis of monkey feces showed an increase in total bile acids and cholic acid derivatives. These findings suggest that high doses of anti-FGF19 increase Cyp7α1 expression and bile acid synthesis and alter the expression of bile transporters in the liver resulting in enhanced bile acid efflux and reduced uptake. Increased bile acids alter expression of solute transporters in the ileum causing diarrhea and the enhanced enterohepatic recirculation of bile acids leading to liver toxicity.
Collapse
Affiliation(s)
- Rama Pai
- Department of Safety Assessment, Genentech Incorporated, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Lorbek G, Lewinska M, Rozman D. Cytochrome P450s in the synthesis of cholesterol and bile acids--from mouse models to human diseases. FEBS J 2011; 279:1516-33. [PMID: 22111624 DOI: 10.1111/j.1742-4658.2011.08432.x] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The present review describes the transgenic mouse models that have been designed to evaluate the functions of the cytochrome P450s involved in cholesterol and bile acid synthesis, as well as their link with disease. The knockout of cholesterogenic Cyp51 is embrionally lethal, with symptoms of Antley-Bixler syndrome occurring in mice, whereas the evidence for this association is conflicting in humans. Disruption of Cyp7a1 from classic bile acid synthesis in mice leads to either increased postnatal death or a milder phenotype with elevated serum cholesterol. The latter is similar to the case in humans, where CYP7A1 mutations associate with high plasma low-density lipoprotein and hepatic cholesterol content, as well as deficient bile acid excretion. Disruption of Cyp8b1 from an alternative bile acid pathway results in the absence of cholic acid and a reduced absorption of dietary lipids; however, the human CYP8B1 polymorphism fails to explain differences in bile acid composition. Unexpectedly, apparently normal Cyp27a1(-/-) mice still synthesize bile acids that originate from the compensatory pathway. In humans, CYP27A1 mutations cause cerebrotendinous xanthomatosis, suggesting that only mice can compensate for the loss of alternative bile acid synthesis. In line with this, Cyp7b1 knockouts are also apparently normal, whereas human CYP7B1 mutations lead to a congenital bile acid synthesis defect in children or spastic paraplegia in adults. Mouse knockouts of the brain-specific Cyp46a1 have reduced brain cholesterol excretion, whereas, in humans, CYP46A1 polymorphisms associate with cognitive impairment. At present, cytochrome P450 family 39 is poorly characterized. Despite important physiological differences between humans and mice, mouse models prove to be an invaluable tool for understanding the multifactorial facets of cholesterol and bile acid-related disorders.
Collapse
Affiliation(s)
- Gregor Lorbek
- Center for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | |
Collapse
|
249
|
Nuclear receptor HNF4α binding sequences are widespread in Alu repeats. BMC Genomics 2011; 12:560. [PMID: 22085832 PMCID: PMC3252374 DOI: 10.1186/1471-2164-12-560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 11/15/2011] [Indexed: 12/04/2022] Open
Abstract
Background Alu repeats, which account for ~10% of the human genome, were originally considered to be junk DNA. Recent studies, however, suggest that they may contain transcription factor binding sites and hence possibly play a role in regulating gene expression. Results Here, we show that binding sites for a highly conserved member of the nuclear receptor superfamily of ligand-dependent transcription factors, hepatocyte nuclear factor 4alpha (HNF4α, NR2A1), are highly prevalent in Alu repeats. We employ high throughput protein binding microarrays (PBMs) to show that HNF4α binds > 66 unique sequences in Alu repeats that are present in ~1.2 million locations in the human genome. We use chromatin immunoprecipitation (ChIP) to demonstrate that HNF4α binds Alu elements in the promoters of target genes (ABCC3, APOA4, APOM, ATPIF1, CANX, FEMT1A, GSTM4, IL32, IP6K2, PRLR, PRODH2, SOCS2, TTR) and luciferase assays to show that at least some of those Alu elements can modulate HNF4α-mediated transactivation in vivo (APOM, PRODH2, TTR, APOA4). HNF4α-Alu elements are enriched in promoters of genes involved in RNA processing and a sizeable fraction are in regions of accessible chromatin. Comparative genomics analysis suggests that there may have been a gain in HNF4α binding sites in Alu elements during evolution and that non Alu repeats, such as Tiggers, also contain HNF4α sites. Conclusions Our findings suggest that HNF4α, in addition to regulating gene expression via high affinity binding sites, may also modulate transcription via low affinity sites in Alu repeats.
Collapse
|
250
|
Steiner C, Othman A, Saely CH, Rein P, Drexel H, von Eckardstein A, Rentsch KM. Bile acid metabolites in serum: intraindividual variation and associations with coronary heart disease, metabolic syndrome and diabetes mellitus. PLoS One 2011; 6:e25006. [PMID: 22110577 PMCID: PMC3215718 DOI: 10.1371/journal.pone.0025006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/24/2011] [Indexed: 01/12/2023] Open
Abstract
Bile acids (BAs) regulate glucose and lipid metabolism. In longitudinal and case-control-studies, we investigated the diurnal variation of serum concentrations of the 15 major BAs as well as the biosynthetic precursor 7α-hydroxy-4-cholesten-3-one (C4) and their associations, respectively, with coronary artery disease (CAD), diabetes mellitus type 2 (T2DM), and non-diabetic metabolic syndrome (MetS). In hourly taken blood samples of four healthy probands, the intraindividual 24 h variation of C4, conjugated and unconjugated BAs ranged from 42% to 72%, from 23% to 91%, and from 49% to 90%, respectively. Conjugated BA concentrations mainly increased following food intake. Serum levels of C4 and unconjugated BAs changed with daytime with maxima varying interindividually between 20h00 and 1h00 and between 3h00 and 8h00, respectively. Comparisons of data from 75 CAD patients with 75 CAD-free controls revealed no statistically significant association of CAD with BAs or C4. Comparisons of data from 50 controls free of T2DM or MetS, 50 MetS patients, and 50 T2DM patients revealed significantly increased fasting serum levels of C4 in patients with MetS and T2DM. Multiple regression analysis revealed body mass index (BMI) and plasma levels of triglycerides (TG) as independent determinants of C4 levels. Upon multivariate and principle component analyses the association of C4 with T2DM and/or MetS was not independent of or superior to the canonical MetS components. In conclusion, despite large intra- and interindividual variation, serum levels of C4,are significantly increased in patients with MetS and T2DM but confounded with BMI and TG.
Collapse
Affiliation(s)
- Carine Steiner
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Alaa Othman
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich and University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Christoph H. Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Philipp Rein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
- Department of Medicine and Cardiology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Competence Center for Systems Physiology and Metabolic Diseases, ETH Zurich and University of Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - Katharina M. Rentsch
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
- Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|