201
|
Human mitochondrial degradosome prevents harmful mitochondrial R loops and mitochondrial genome instability. Proc Natl Acad Sci U S A 2018; 115:11024-11029. [PMID: 30301808 DOI: 10.1073/pnas.1807258115] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
R loops are nucleic acid structures comprising an DNA-RNA hybrid and a displaced single-stranded DNA. These structures may occur transiently during transcription, playing essential biological functions. However, persistent R loops may become pathological as they are important drivers of genome instability and have been associated with human diseases. The mitochondrial degradosome is a functionally conserved complex from bacteria to human mitochondria. It is composed of the ATP-dependent RNA and DNA helicase SUV3 and the PNPase ribonuclease, playing a central role in mitochondrial RNA surveillance and degradation. Here we describe a new role for the mitochondrial degradosome in preventing the accumulation of pathological R loops in the mitochondrial DNA, in addition to preventing dsRNA accumulation. Our data indicate that, similar to the molecular mechanisms acting in the nucleus, RNA surveillance mechanisms in the mitochondria are crucial to maintain its genome integrity by counteracting pathological R-loop accumulation.
Collapse
|
202
|
Cruz C, Llop-Guevara A, Garber JE, Arun BK, Pérez Fidalgo JA, Lluch A, Telli ML, Fernández C, Kahatt C, Galmarini CM, Soto-Matos A, Alfaro V, Pérez de la Haza A, Domchek SM, Antolin S, Vahdat L, Tung NM, Lopez R, Arribas J, Vivancos A, Baselga J, Serra V, Balmaña J, Isakoff SJ. Multicenter Phase II Study of Lurbinectedin in BRCA-Mutated and Unselected Metastatic Advanced Breast Cancer and Biomarker Assessment Substudy. J Clin Oncol 2018; 36:3134-3143. [PMID: 30240327 PMCID: PMC6209089 DOI: 10.1200/jco.2018.78.6558] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose This multicenter phase II trial evaluated lurbinectedin (PM01183), a selective inhibitor of active transcription of protein-coding genes, in patients with metastatic breast cancer. A unicenter translational substudy assessed potential mechanisms of lurbinectedin resistance. Patients and Methods Two arms were evaluated according to germline BRCA1/2 status: BRCA1/2 mutated (arm A; n = 54) and unselected (BRCA1/2 wild-type or unknown status; arm B; n = 35). Lurbinectedin starting dose was a 7-mg flat dose and later, 3.5 mg/m2 in arm A. The primary end point was objective response rate (ORR) per Response Evaluation Criteria in Solid Tumors (RECIST). The translational substudy of resistance mechanisms included exome sequencing (n = 13) and in vivo experiments with patient-derived xenografts (n = 11) from BRCA1/2-mutated tumors. Results ORR was 41% (95% CI, 28% to 55%) in arm A and 9% (95% CI, 2% to 24%) in arm B. In arm A, median progression-free survival was 4.6 months (95% CI, 3.0 to 6.0 months), and median overall survival was 20.0 months (95% CI, 11.8 to 26.6 months). Patients with BRCA2 mutations showed an ORR of 61%, median progression-free survival of 5.9 months, and median overall survival of 26.6 months. The safety profile improved with lurbinectedin dose adjustment to body surface area. The most common nonhematologic adverse events seen at 3.5 mg/m2 were nausea (74%; grade 3, 5%) and fatigue (74%; grade 3, 21%). Neutropenia was the most common severe hematologic adverse event (grade 3, 47%; grade 4, 10%). Exome sequencing showed mutations in genes related to the nucleotide excision repair pathway in four of seven tumors at primary or acquired resistance and in one patient with short-term stable disease. In vivo, sensitivity to cisplatin and lurbinectedin was evidenced in lurbinectedin-resistant (one of two) and cisplatin-resistant (two of three) patient-derived xenografts. Conclusion Lurbinectedin showed noteworthy activity in patients with BRCA1/2 mutations. Response and survival was notable in those with BRCA2 mutations. Additional clinical development in this subset of patients with metastatic breast cancer is warranted.
Collapse
Affiliation(s)
- Cristina Cruz
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Alba Llop-Guevara
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Judy E Garber
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Banu K Arun
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - José A Pérez Fidalgo
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Ana Lluch
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Melinda L Telli
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Cristian Fernández
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Carmen Kahatt
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Carlos M Galmarini
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Arturo Soto-Matos
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Vicente Alfaro
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Aitor Pérez de la Haza
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Susan M Domchek
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Silvia Antolin
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Linda Vahdat
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Nadine M Tung
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Rafael Lopez
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Joaquín Arribas
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Ana Vivancos
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - José Baselga
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Violeta Serra
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Judith Balmaña
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Steven J Isakoff
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| |
Collapse
|
203
|
Wang IX, Grunseich C, Fox J, Burdick J, Zhu Z, Ravazian N, Hafner M, Cheung VG. Human proteins that interact with RNA/DNA hybrids. Genome Res 2018; 28:1405-1414. [PMID: 30108179 PMCID: PMC6120628 DOI: 10.1101/gr.237362.118] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/27/2018] [Indexed: 12/16/2022]
Abstract
RNA/DNA hybrids form when RNA hybridizes with its template DNA generating a three-stranded structure known as the R-loop. Knowledge of how they form and resolve, as well as their functional roles, is limited. Here, by pull-down assays followed by mass spectrometry, we identified 803 proteins that bind to RNA/DNA hybrids. Because these proteins were identified using in vitro assays, we confirmed that they bind to R-loops in vivo. They include proteins that are involved in a variety of functions, including most steps of RNA processing. The proteins are enriched for K homology (KH) and helicase domains. Among them, more than 300 proteins preferred binding to hybrids than double-stranded DNA. These proteins serve as starting points for mechanistic studies to elucidate what RNA/DNA hybrids regulate and how they are regulated.
Collapse
Affiliation(s)
- Isabel X Wang
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Christopher Grunseich
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland 20892, USA
| | - Jennifer Fox
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Joshua Burdick
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Zhengwei Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Niema Ravazian
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892, USA
| | - Vivian G Cheung
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
204
|
Genome-wide Map of R-Loop-Induced Damage Reveals How a Subset of R-Loops Contributes to Genomic Instability. Mol Cell 2018; 71:487-497.e3. [PMID: 30078723 DOI: 10.1016/j.molcel.2018.06.037] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/23/2018] [Accepted: 06/22/2018] [Indexed: 01/04/2023]
Abstract
DNA-RNA hybrids associated with R-loops promote DNA damage and genomic instability. The capacity of hybrids at different genomic sites to cause DNA damage was not known, and the mechanisms leading from hybrid to damage were poorly understood. Here, we adopt a new strategy to map and characterize the sites of hybrid-induced damage genome-wide in budding yeast. We show that hybrid removal is essential for life because persistent hybrids cause irreparable DNA damage and cell death. We identify that a subset of hybrids is prone to cause damage, and the chromosomal context of hybrids dramatically impacts their ability to induce damage. Furthermore, persistent hybrids affect the repair pathway, generating large regions of single-stranded DNA (ssDNA) by two distinct mechanisms, likely resection and re-replication. These damaged regions may act as potential precursors to gross chromosomal rearrangements like deletions and duplications that are associated with R-loops and cancers.
Collapse
|
205
|
Watanabe T, Marotta M, Suzuki R, Diede SJ, Tapscott SJ, Niida A, Chen X, Mouakkad L, Kondratova A, Giuliano AE, Orsulic S, Tanaka H. Impediment of Replication Forks by Long Non-coding RNA Provokes Chromosomal Rearrangements by Error-Prone Restart. Cell Rep 2018; 21:2223-2235. [PMID: 29166612 DOI: 10.1016/j.celrep.2017.10.103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/05/2017] [Accepted: 10/25/2017] [Indexed: 01/12/2023] Open
Abstract
Naturally stalled replication forks are considered to cause structurally abnormal chromosomes in tumor cells. However, underlying mechanisms remain speculative, as capturing naturally stalled forks has been a challenge. Here, we captured naturally stalled forks in tumor cells and delineated molecular processes underlying the structural evolution of circular mini-chromosomes (double-minute chromosomes; DMs). Replication forks stalled on the DM by the co-directional collision with the transcription machinery for long non-coding RNA. RPA, BRCA2, and DNA polymerase eta (Polη) were recruited to the stalled forks. The recruitment of Polη was critical for replication to continue, as Polη knockdown resulted in DM loss. Rescued stalled forks were error-prone and switched replication templates repeatedly to create complex fusions of multiple short genomic segments. In mice, such complex fusions circularized the genomic region surrounding MYC to create a DM during tumorigenesis. Our results define a molecular path that guides stalled replication forks to complex chromosomal rearrangements.
Collapse
Affiliation(s)
- Takaaki Watanabe
- Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Michael Marotta
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Ryusuke Suzuki
- Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - Scott J Diede
- Division of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Stephen J Tapscott
- Division of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Atsushi Niida
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Xiongfong Chen
- Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., National Cancer Institute at Frederick, Frederick, MD 21701, USA
| | - Lila Mouakkad
- Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - Anna Kondratova
- Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | | | - Sandra Orsulic
- Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA
| | - Hisashi Tanaka
- Cedars-Sinai Medical Center, West Hollywood, CA 90048, USA; Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA.
| |
Collapse
|
206
|
Owiti N, Wei S, Bhagwat AS, Kim N. Unscheduled DNA synthesis leads to elevated uracil residues at highly transcribed genomic loci in Saccharomyces cerevisiae. PLoS Genet 2018; 14:e1007516. [PMID: 30016327 PMCID: PMC6063437 DOI: 10.1371/journal.pgen.1007516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/27/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022] Open
Abstract
Recombination and mutagenesis are elevated by active transcription. The correlation between transcription and genome instability is largely explained by the topological and structural changes in DNA and the associated physical obstacles generated by the transcription machinery. However, such explanation does not directly account for the unique types of mutations originating from the non-canonical residues, uracil or ribonucleotide, which are also elevated at highly transcribed regions. Based on the previous findings that abasic (AP) lesions derived from the uracil residues incorporated into DNA in place of thymine constitute a major component of the transcription-associated mutations in yeast, we formed the hypothesis that DNA synthesis ensuing from the repair of the transcription-induced DNA damage provide the opportunity for uracil-incorporation. In support of this hypothesis, we show here the positive correlation between the level of transcription and the density of uracil residues in the yeast genome indirectly through the mutations generated by the glycosylase that excise undamaged cytosine as well as uracil. The higher uracil-density at actively transcribed regions is confirmed by the long-amplicon PCR analysis. We also show that the uracil-associated mutations at a highly transcribed region are elevated by the induced DNA damage and reduced by the overexpression of a dUTP-catalyzing enzyme Dut1 in G1- or G2-phases of the cell cycle. Overall, our results show that the DNA composition can be modified to include higher uracil-content through the non-replicative, repair-associated DNA synthesis. Uracil in DNA, a major source of spontaneous mutations, can occur through the deamination of cytosine residues or through the direct incorporation of dUTP by DNA polymerases. Recent studies in yeast have shown that the uracil-associated mutations occur more frequently at highly transcribed regions. Because the reduction in dUTP pool decreased these mutations, it was postulated that the extent of uracil-incorporation into DNA is significantly affected by the local transcription activity. We show here that the higher transcription rate does correlate with the higher uracil-density in the yeast genome. We further provide multiple lines of evidence supporting a model of uracil-incorporation into DNA that is dependent on the repair synthesis of transcription-associated DNA damage.
Collapse
Affiliation(s)
- Norah Owiti
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX United States of America
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX United States of America
| | - Shanqiao Wei
- Department of Chemistry, Wayne State University, Detroit, MI United States of America
| | - Ashok S. Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI United States of America
- Department of Biochemistry, Immunology and Microbiology, Wayne State University, Detroit, MI United States of America
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX United States of America
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX United States of America
- * E-mail:
| |
Collapse
|
207
|
Lindström MS, Jurada D, Bursac S, Orsolic I, Bartek J, Volarevic S. Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis. Oncogene 2018; 37:2351-2366. [PMID: 29429989 PMCID: PMC5931986 DOI: 10.1038/s41388-017-0121-z] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
The nucleolus is the major site for synthesis of ribosomes, complex molecular machines that are responsible for protein synthesis. A wealth of research over the past 20 years has clearly indicated that both quantitative and qualitative alterations in ribosome biogenesis can drive the malignant phenotype via dysregulation of protein synthesis. However, numerous recent proteomic, genomic, and functional studies have implicated the nucleolus in the regulation of processes that are unrelated to ribosome biogenesis, including DNA-damage response, maintenance of genome stability and its spatial organization, epigenetic regulation, cell-cycle control, stress responses, senescence, global gene expression, as well as assembly or maturation of various ribonucleoprotein particles. In this review, the focus will be on features of rDNA genes, which make them highly vulnerable to DNA damage and intra- and interchromosomal recombination as well as built-in mechanisms that prevent and repair rDNA damage, and how dysregulation of this interplay affects genome-wide DNA stability, gene expression and the balance between euchromatin and heterochromatin. We will also present the most recent insights into how malfunction of these cellular processes may be a central driving force of human malignancies, and propose a promising new therapeutic approach for the treatment of cancer.
Collapse
Affiliation(s)
- Mikael S Lindström
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Deana Jurada
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Rijeka, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Rijeka, Croatia
| | - Sladana Bursac
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Rijeka, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Rijeka, Croatia
| | - Ines Orsolic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Rijeka, Croatia
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Rijeka, Croatia
| | - Jiri Bartek
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- The Danish Cancer Society Research Centre, Copenhagen, Denmark.
| | - Sinisa Volarevic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Rijeka, Croatia.
- Scientific Center of Excellence for Reproductive and Regenerative Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
208
|
Walker C, El-Khamisy SF. Perturbed autophagy and DNA repair converge to promote neurodegeneration in amyotrophic lateral sclerosis and dementia. Brain 2018; 141:1247-1262. [PMID: 29584802 PMCID: PMC5917746 DOI: 10.1093/brain/awy076] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/16/2018] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
Maintaining genomic stability constitutes a major challenge facing cells. DNA breaks can arise from direct oxidative damage to the DNA backbone, the inappropriate activities of endogenous enzymes such as DNA topoisomerases, or due to transcriptionally-derived RNA/DNA hybrids (R-loops). The progressive accumulation of DNA breaks has been linked to several neurological disorders. Recently, however, several independent studies have implicated nuclear and mitochondrial genomic instability, perturbed co-transcriptional processing, and impaired cellular clearance pathways as causal and intertwined mechanisms underpinning neurodegeneration. Here, we discuss this emerging paradigm in the context of amyotrophic lateral sclerosis and frontotemporal dementia, and outline how this knowledge paves the way to novel therapeutic interventions.
Collapse
Affiliation(s)
- Callum Walker
- Krebs Institute, Department of Molecular biology and biotechnology, University of Sheffield, UK
- The Institute of Cancer Research, London, UK
| | - Sherif F El-Khamisy
- Krebs Institute, Department of Molecular biology and biotechnology, University of Sheffield, UK
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
209
|
Kotsantis P, Petermann E, Boulton SJ. Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discov 2018; 8:537-555. [PMID: 29653955 DOI: 10.1158/2159-8290.cd-17-1461] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022]
Abstract
Oncogene activation disturbs cellular processes and accommodates a complex landscape of changes in the genome that contribute to genomic instability, which accelerates mutation rates and promotes tumorigenesis. Part of this cellular turmoil involves deregulation of physiologic DNA replication, widely described as replication stress. Oncogene-induced replication stress is an early driver of genomic instability and is attributed to a plethora of factors, most notably aberrant origin firing, replication-transcription collisions, reactive oxygen species, and defective nucleotide metabolism.Significance: Replication stress is a fundamental step and an early driver of tumorigenesis and has been associated with many activated oncogenes. Deciphering the mechanisms that contribute to the replication stress response may provide new avenues for targeted cancer treatment. In this review, we discuss the latest findings on the DNA replication stress response and examine the various mechanisms through which activated oncogenes induce replication stress. Cancer Discov; 8(5); 537-55. ©2018 AACR.
Collapse
Affiliation(s)
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
210
|
Strengths and Weaknesses of the Current Strategies to Map and Characterize R-Loops. Noncoding RNA 2018; 4:ncrna4020009. [PMID: 29657305 PMCID: PMC6027298 DOI: 10.3390/ncrna4020009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/26/2022] Open
Abstract
R-loops are evolutionarily conserved three-stranded structures that result from the formation of stable DNA:RNA hybrids in the genome. R-loops have attracted increasing interest in recent years as potent regulators of gene expression and genome stability. In particular, their strong association with severe replication stress makes them potential oncogenic structures. Despite their importance, the rules that govern their formation and their dynamics are still controversial and an in-depth description of their direct impact on chromatin organization and DNA transactions is still lacking. To better understand the diversity of R-loop functions, reliable, accurate, and quantitative mapping techniques, as well as functional assays are required. Here, I review the different approaches that are currently used to do so and to highlight their individual strengths and weaknesses. In particular, I review the advantages and disadvantages of using the S9.6 antibody to map R-loops in vivo in an attempt to propose guidelines for best practices.
Collapse
|
211
|
Abstract
The nuclear RNA exosome is an essential and versatile machinery that regulates maturation and degradation of a huge plethora of RNA species. The past two decades have witnessed remarkable progress in understanding the whole picture of its RNA substrates and the structural basis of its functions. In addition to the exosome itself, recent studies focusing on associated co-factors have been elucidating how the exosome is directed towards specific substrates. Moreover, it has been gradually realized that loss-of-function of exosome subunits affect multiple biological processes such as the DNA damage response, R-loop resolution, maintenance of genome integrity, RNA export, translation and cell differentiation. In this review, we summarize the current knowledge of the mechanisms of nuclear exosome-mediated RNA metabolism and discuss their physiological significance.
Collapse
|
212
|
Mikolaskova B, Jurcik M, Cipakova I, Kretova M, Chovanec M, Cipak L. Maintenance of genome stability: the unifying role of interconnections between the DNA damage response and RNA-processing pathways. Curr Genet 2018; 64:971-983. [PMID: 29497809 DOI: 10.1007/s00294-018-0819-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 01/14/2023]
Abstract
Endogenous and exogenous factors can severely affect the integrity of genetic information by inducing DNA damage and impairing genome stability. The protection of genome integrity is ensured by the so-called "DNA damage response" (DDR), a set of evolutionary-conserved events that, triggered upon DNA damage detection, arrests the cell cycle, and attempts DNA repair. Here, we review the role of the DDR proteins as post-transcriptional regulators of gene expression, in addition to their roles in DNA damage recognition, signaling, and repair. At the same time, we discuss recent insights into how pre-mRNA splicing factors go beyond their splicing activities and play direct functions in detecting, signaling, and repairing DNA damage. The importance of extensive two-way crosstalk and interaction between the RNA processing and the DDR stems from growing evidence that the defects of their communication lead to genomic instability.
Collapse
Affiliation(s)
- B Mikolaskova
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - M Jurcik
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - I Cipakova
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - M Kretova
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - M Chovanec
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - L Cipak
- Department of Genetics, Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
213
|
Misino S, Bonetti D, Luke-Glaser S, Luke B. Increased TERRA levels and RNase H sensitivity are conserved hallmarks of post-senescent survivors in budding yeast. Differentiation 2018; 100:37-45. [DOI: 10.1016/j.diff.2018.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/08/2018] [Accepted: 02/14/2018] [Indexed: 01/17/2023]
|
214
|
Farg MA, Konopka A, Soo KY, Ito D, Atkin JD. The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum Mol Genet 2018; 26:2882-2896. [PMID: 28481984 DOI: 10.1093/hmg/ddx170] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease affecting motor neurons. Hexanucleotide (GGGGCC) repeat expansions in a non-coding region of C9orf72 are the major cause of familial ALS and frontotemporal dementia (FTD) worldwide. The C9orf72 repeat expansion undergoes repeat-associated non-ATG (RAN) translation to produce five dipeptide repeat proteins (DRPs), including poly(GR) and poly(PR). Whilst it remains unclear how mutations in C9orf72 lead to neurodegeneration in ALS/FTD, dysfunction to the nucleolus and R loop formation are implicated as pathogenic mechanisms. These events can damage DNA and hence genome integrity. Cells activate the DNA damage response (DDR) with the aim of repairing this damage. However, if the damage cannot be repaired, apoptosis is triggered. In lumbar motor neurons from C9orf72-positive ALS patients, we demonstrate significant up-regulation of markers of the DDR compared to controls: phosphorylated histone 2AX (γ-H2AX), phosphorylated ataxia telangiectasia mutated (p-ATM), cleaved poly (ADP-Ribose) polymerase 1 (PARP-1) and tumour suppressor p53-binding protein (53BP1). Similarly, significant up-regulation of γ-H2AX and p-ATM was detected in neuronal cells expressing poly(GR)100 and poly(PR)100 compared to controls, revealing that DNA damage is triggered by the DRPs. Nucleophosmin (NPM1) is a histone chaperone induced during the DDR, which interacts with APE1 to enhance DNA repair. We also demonstrate that more NPM1 precipitates with APE1 in C9orf72 patients compared to controls. Furthermore, overexpression of NPM1 inhibits apoptosis in cells expressing poly(GR)100 and poly(PR)100. This study therefore demonstrates that DNA damage is activated by the C9orf72 repeat expansion in ALS.
Collapse
Affiliation(s)
- Manal A Farg
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Anna Konopka
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, 2 Technology Place, Macquarie University, NSW 2109, Australia
| | - Kai Ying Soo
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Daisuke Ito
- Department of Neurology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Julie D Atkin
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, 2 Technology Place, Macquarie University, NSW 2109, Australia
| |
Collapse
|
215
|
Abstract
Topoisomerase I (Top1) resolves torsional stress that accumulates during transcription, replication and chromatin remodeling by introducing a transient single-strand break in DNA. The cleavage activity of Top1 has opposing roles, either promoting or destabilizing genome integrity depending on the context. Resolution of transcription-associated negative supercoils, for example, prevents pairing of the nascent RNA with the DNA template (R-loops) as well as DNA secondary structure formation. Reduced Top1 levels thus enhance CAG repeat contraction, somatic hypermutation, and class switch recombination. Actively transcribed ribosomal DNA is also destabilized in the absence of Top1, reflecting the importance of Top1 in ensuring efficient transcription. In terms of promoting genome instability, an aborted Top1 catalytic cycle stimulates deletions at short tandem repeats and the enzyme's transesterification activity supports illegitimate recombination. Finally, Top1 incision at ribonucleotides embedded in DNA generates deletions in tandem repeats, and induces gross chromosomal rearrangements and mitotic recombination.
Collapse
Affiliation(s)
- Jang-Eun Cho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, CARL 384, Durham, NC, 27710, USA
| | - Sue Jinks-Robertson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, CARL 384, Durham, NC, 27710, USA.
| |
Collapse
|
216
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
217
|
Abstract
DNA-RNA hybrids form naturally during essential cellular functions such as transcription and replication. However, they may be an important source of genome instability, a hallmark of cancer and genetic diseases. Detection of DNA-RNA hybrids in cells is becoming crucial to understand an increasing number of molecular biology processes in genome dynamics and function and to identify new factors and mechanisms responsible for disease in biomedical research. Here, we describe two different procedures for the reliable detection of DNA-RNA hybrids in the yeast Saccharomyces cerevisiae and in human cells: DNA-RNA Immunoprecipitation (DRIP) and Immunofluorescence.
Collapse
|
218
|
Lejart A, Salbert G, Huet S. Cytosine hydroxymethylation by TET enzymes: From the control of gene expression to the regulation of DNA repair mechanisms, and back. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.3.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
219
|
Lafuente-Barquero J, Luke-Glaser S, Graf M, Silva S, Gómez-González B, Lockhart A, Lisby M, Aguilera A, Luke B. The Smc5/6 complex regulates the yeast Mph1 helicase at RNA-DNA hybrid-mediated DNA damage. PLoS Genet 2017; 13:e1007136. [PMID: 29281624 PMCID: PMC5760084 DOI: 10.1371/journal.pgen.1007136] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 01/09/2018] [Accepted: 11/28/2017] [Indexed: 01/08/2023] Open
Abstract
RNA-DNA hybrids are naturally occurring obstacles that must be overcome by the DNA replication machinery. In the absence of RNase H enzymes, RNA-DNA hybrids accumulate, resulting in replication stress, DNA damage and compromised genomic integrity. We demonstrate that Mph1, the yeast homolog of Fanconi anemia protein M (FANCM), is required for cell viability in the absence of RNase H enzymes. The integrity of the Mph1 helicase domain is crucial to prevent the accumulation of RNA-DNA hybrids and RNA-DNA hybrid-dependent DNA damage, as determined by Rad52 foci. Mph1 forms foci when RNA-DNA hybrids accumulate, e.g. in RNase H or THO-complex mutants and at short telomeres. Mph1, however is a double-edged sword, whose action at hybrids must be regulated by the Smc5/6 complex. This is underlined by the observation that simultaneous inactivation of RNase H2 and Smc5/6 results in Mph1-dependent synthetic lethality, which is likely due to an accumulation of toxic recombination intermediates. The data presented here support a model, where Mph1’s helicase activity plays a crucial role in responding to persistent RNA-DNA hybrids. DNA damage can either occur exogenously through DNA damaging agents such as UV light and exposure to chemotherapeutics, or endogenously via metabolic, cellular processes. The RNA product of transcription, for example, can engage in the formation of RNA-DNA hybrids. Such RNA-DNA hybrids can impede replication fork progression and cause genomic instability, a hallmark of cancer. The misregulation of RNA-DNA hybrids has also been implicated in several neurological disorders. Recently, it has become evident that RNA-DNA hybrids may also have beneficial roles and therefore, these structures have to be tightly controlled. We found that Mph1 (mutator phenotype 1), the budding yeast homolog of Fanconi Anemia protein M, counteracts the accumulation of RNA-DNA hybrids. The inactivation of MPH1 results in a severe growth defect when combined with mutations in the well-characterized RNase H enzymes, that degrade the RNA moiety of an RNA-DNA hybrid. Based on the data presented here, we propose a model, where Mph1 itself has to be kept in check by the SMC (structural maintenance of chromosome) 5/6 complex at replication forks stalled by RNA-DNA hybrids. Mph1 acts as a double-edged sword, as both its deletion and the inability to control its helicase activity cause DNA damage and growth arrest when RNA-DNA hybrids accumulate.
Collapse
Affiliation(s)
- Juan Lafuente-Barquero
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
| | - Sarah Luke-Glaser
- Institute of Molecular Biology (IMB), Mainz, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Marco Graf
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Sonia Silva
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
- Department of Biology, University of Copenhagen, Ole Maaloeesvej 5, Copenhagen N, Denmark
| | - Belén Gómez-González
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
| | | | - Michael Lisby
- Department of Biology, University of Copenhagen, Ole Maaloeesvej 5, Copenhagen N, Denmark
| | - Andrés Aguilera
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Avda. Americo Vespucio 24, Seville, Spain
- * E-mail: (BL); (AA)
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Institute of Neurobiology and Developmental Biology, JGU Mainz, Mainz, Germany
- * E-mail: (BL); (AA)
| |
Collapse
|
220
|
Rambout X, Dequiedt F, Maquat LE. Beyond Transcription: Roles of Transcription Factors in Pre-mRNA Splicing. Chem Rev 2017; 118:4339-4364. [PMID: 29251915 DOI: 10.1021/acs.chemrev.7b00470] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Whereas individual steps of protein-coding gene expression in eukaryotes can be studied in isolation in vitro, it has become clear that these steps are intimately connected within cells. Connections not only ensure quality control but also fine-tune the gene expression process, which must adapt to environmental changes while remaining robust. In this review, we systematically present proven and potential mechanisms by which sequence-specific DNA-binding transcription factors can alter gene expression beyond transcription initiation and regulate pre-mRNA splicing, and thereby mRNA isoform production, by (i) influencing transcription elongation rates, (ii) binding to pre-mRNA to recruit splicing factors, and/or (iii) blocking the association of splicing factors with pre-mRNA. We propose various mechanistic models throughout the review, in some cases without explicit supportive evidence, in hopes of providing fertile ground for future studies.
Collapse
|
221
|
Sarkar K, Han SS, Wen KK, Ochs HD, Dupré L, Seidman MM, Vyas YM. R-loops cause genomic instability in T helper lymphocytes from patients with Wiskott-Aldrich syndrome. J Allergy Clin Immunol 2017; 142:219-234. [PMID: 29248492 DOI: 10.1016/j.jaci.2017.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT), and X-linked neutropenia, which are caused by WAS mutations affecting Wiskott-Aldrich syndrome protein (WASp) expression or activity, manifest in immunodeficiency, autoimmunity, genomic instability, and lymphoid and other cancers. WASp supports filamentous actin formation in the cytoplasm and gene transcription in the nucleus. Although the genetic basis for XLT/WAS has been clarified, the relationships between mutant forms of WASp and the diverse features of these disorders remain ill-defined. OBJECTIVE We sought to define how dysfunctional gene transcription is causally linked to the degree of TH cell deficiency and genomic instability in the XLT/WAS clinical spectrum. METHODS In human TH1- or TH2-skewing cell culture systems, cotranscriptional R-loops (RNA/DNA duplex and displaced single-stranded DNA) and DNA double-strand breaks (DSBs) were monitored in multiple samples from patients with XLT and WAS and in normal T cells depleted of WASp. RESULTS WASp deficiency provokes increased R-loops and R-loop-mediated DSBs in TH1 cells relative to TH2 cells. Mechanistically, chromatin occupancy of serine 2-unphosphorylated RNA polymerase II is increased, and that of topoisomerase 1, an R-loop preventing factor, is decreased at R-loop-enriched regions of IFNG and TBX21 (TH1 genes) in TH1 cells. These aberrations accompany increased unspliced (intron-retained) and decreased spliced mRNA of IFNG and TBX21 but not IL13 (TH2 gene). Significantly, increased cellular load of R-loops and DSBs, which are normalized on RNaseH1-mediated suppression of ectopic R-loops, inversely correlates with disease severity scores. CONCLUSION Transcriptional R-loop imbalance is a novel molecular defect causative in TH1 immunodeficiency and genomic instability in patients with WAS. The study proposes that cellular R-loop load could be used as a potential biomarker for monitoring symptom severity and prognostic outcome in the XLT-WAS clinical spectrum and could be targeted therapeutically.
Collapse
Affiliation(s)
- Koustav Sarkar
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Seong-Su Han
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Kuo-Kuang Wen
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md
| | - Hans D Ochs
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, University of Washington, Seattle, Md
| | - Loïc Dupré
- INSERM, UMR1043, Centre de Physiopathologie de Toulouse Purpan, Toulouse, Md; Université Toulouse III Paul-Sabatier, Toulouse, Md; CNRS, UMR5282, Toulouse, Md; Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Md; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Md
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health (NIH), NIH Biomedical Research Center, Baltimore, Md
| | - Yatin M Vyas
- Division of Pediatric Hematology-Oncology, Carver College of Medicine and the University of Iowa Stead Family Children's Hospital, Iowa City, Md.
| |
Collapse
|
222
|
Kuzminov A. When DNA Topology Turns Deadly - RNA Polymerases Dig in Their R-Loops to Stand Their Ground: New Positive and Negative (Super)Twists in the Replication-Transcription Conflict. Trends Genet 2017; 34:111-120. [PMID: 29179918 DOI: 10.1016/j.tig.2017.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022]
Abstract
Head-on replication-transcription conflict is especially bitter in bacterial chromosomes, explaining why actively transcribed genes are always co-oriented with replication. The mechanism of this conflict remains unclear, besides the anticipated accumulation of positive supercoils between head-on-conflicting polymerases. Unexpectedly, experiments in bacterial and human cells reveal that head-on replication-transcription conflict induces R-loops, indicating hypernegative supercoiling [(-)sc] in the region - precisely the opposite of that assumed. Further, as a result of these R-loops, both replication and transcription in the affected region permanently stall, so the failure of R-loop removal in RNase H-deficient bacteria becomes lethal. How hyper(-)sc emerges in the middle of a positively supercoiled chromosomal domain is a mystery that requires rethinking of topoisomerase action around polymerases.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 CLSL, 601 South Goodwin Avenue, Urbana, IL 61801-3709, USA.
| |
Collapse
|
223
|
Abstract
The synthesis, processing and function of coding and non-coding RNA molecules and their interacting proteins has been the focus of a great deal of research that has boosted our understanding of key molecular pathways that underlie higher order events such as cell cycle control, development, innate immune response and the occurrence of genetic diseases. In this study, we have found that formamide preferentially weakens RNA related processes in vivo. Using a non-essential Schizosaccharomyces pombe gene deletion collection, we identify deleted loci that make cells sensitive to formamide. Sensitive deletions are significantly enriched in genes involved in RNA metabolism. Accordingly, we find that previously known temperature-sensitive splicing mutants become lethal in the presence of the drug under permissive temperature. Furthermore, in a wild type background, splicing efficiency is decreased and R-loop formation is increased in the presence of formamide. In addition, we have also isolated 35 formamide-sensitive mutants, many of which display remarkable morphology and cell cycle defects potentially unveiling new players in the regulation of these processes. We conclude that formamide preferentially targets RNA related processes in vivo, probably by relaxing RNA secondary structures and/or RNA-protein interactions, and can be used as an effective tool to characterize these processes.
Collapse
|
224
|
Chen L, Chen JY, Zhang X, Gu Y, Xiao R, Shao C, Tang P, Qian H, Luo D, Li H, Zhou Y, Zhang DE, Fu XD. R-ChIP Using Inactive RNase H Reveals Dynamic Coupling of R-loops with Transcriptional Pausing at Gene Promoters. Mol Cell 2017; 68:745-757.e5. [PMID: 29104020 PMCID: PMC5957070 DOI: 10.1016/j.molcel.2017.10.008] [Citation(s) in RCA: 264] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/05/2017] [Accepted: 10/06/2017] [Indexed: 12/18/2022]
Abstract
R-loop, a three-stranded RNA/DNA structure, has been linked to induced genome instability and regulated gene expression. To enable precision analysis of R-loops in vivo, we develop an RNase-H-based approach; this reveals predominant R-loop formation near gene promoters with strong G/C skew and propensity to form G-quadruplex in non-template DNA, corroborating with all biochemically established properties of R-loops. Transcription perturbation experiments further indicate that R-loop induction correlates to transcriptional pausing. Interestingly, we note that most mapped R-loops are each linked to a nearby free RNA end; by using a ribozyme to co-transcriptionally cleave nascent RNA, we demonstrate that such a free RNA end coupled with a G/C-skewed sequence is necessary and sufficient to induce R-loop. These findings provide a topological solution for RNA invasion into duplex DNA and suggest an order for R-loop initiation and elongation in an opposite direction to that previously proposed.
Collapse
Affiliation(s)
- Liang Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Jia-Yu Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Xuan Zhang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Ying Gu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Rui Xiao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Peng Tang
- State Key Laboratory of Virology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hao Qian
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Daji Luo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA; School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Yu Zhou
- State Key Laboratory of Virology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Dong-Er Zhang
- Department of Pathology, Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093-0651, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA.
| |
Collapse
|
225
|
Zeller P, Gasser SM. The Importance of Satellite Sequence Repression for Genome Stability. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:15-24. [PMID: 29133300 DOI: 10.1101/sqb.2017.82.033662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Up to two-thirds of eukaryotic genomes consist of repetitive sequences, which include both transposable elements and tandemly arranged simple or satellite repeats. Whereas extensive progress has been made toward understanding the danger of and control over transposon expression, only recently has it been recognized that DNA damage can arise from satellite sequence transcription. Although the structural role of satellite repeats in kinetochore function and end protection has long been appreciated, it has now become clear that it is not only these functions that are compromised by elevated levels of transcription. RNA from simple repeat sequences can compromise replication fork stability and genome integrity, thus compromising germline viability. Here we summarize recent discoveries on how cells control the transcription of repeat sequence and the dangers that arise from their expression. We propose that the link between the DNA damage response and the transcriptional silencing machinery may help a cell or organism recognize foreign DNA insertions into an evolving genome.
Collapse
Affiliation(s)
- Peter Zeller
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
226
|
Shen W, Sun H, De Hoyos CL, Bailey JK, Liang XH, Crooke ST. Dynamic nucleoplasmic and nucleolar localization of mammalian RNase H1 in response to RNAP I transcriptional R-loops. Nucleic Acids Res 2017; 45:10672-10692. [PMID: 28977560 PMCID: PMC5737507 DOI: 10.1093/nar/gkx710] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
An R-loop is a DNA:RNA hybrid formed during transcription when a DNA duplex is invaded by a nascent RNA transcript. R-loops accumulate in nucleoli during RNA polymerase I (RNAP I) transcription. Here, we report that mammalian RNase H1 enriches in nucleoli and co-localizes with R-loops in cultured human cells. Co-migration of RNase H1 and R-loops from nucleoli to perinucleolar ring structures was observed upon inhibition of RNAP I transcription. Treatment with camptothecin which transiently stabilized nucleolar R-loops recruited RNase H1 to the nucleoli. It has been reported that the absence of Topoisomerase and RNase H activity in Escherichia coli or Saccharomyces cerevisiae caused R-loop accumulation along rDNA. We found that the distribution of RNase H1 and Top1 along rDNA coincided at sites where R-loops accumulated in mammalian cells. Loss of either RNase H1 or Top1 caused R-loop accumulation, and the accumulation of R-loops was exacerbated when both proteins were depleted. Importantly, we observed that protein levels of Top1 were negatively correlated with the abundance of RNase H1. We conclude that Top1 and RNase H1 are partially functionally redundant in mammalian cells to suppress RNAP I transcription-associate R-loops.
Collapse
Affiliation(s)
- Wen Shen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Cheryl L De Hoyos
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Jeffrey K Bailey
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
227
|
Boulianne B, Feldhahn N. Transcribing malignancy: transcription-associated genomic instability in cancer. Oncogene 2017; 37:971-981. [DOI: 10.1038/onc.2017.402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
|
228
|
Salas-Armenteros I, Pérez-Calero C, Bayona-Feliu A, Tumini E, Luna R, Aguilera A. Human THO-Sin3A interaction reveals new mechanisms to prevent R-loops that cause genome instability. EMBO J 2017; 36:3532-3547. [PMID: 29074626 DOI: 10.15252/embj.201797208] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 11/09/2022] Open
Abstract
R-loops, formed by co-transcriptional DNA-RNA hybrids and a displaced DNA single strand (ssDNA), fulfill certain positive regulatory roles but are also a source of genomic instability. One key cellular mechanism to prevent R-loop accumulation centers on the conserved THO/TREX complex, an RNA-binding factor involved in transcription elongation and RNA export that contributes to messenger ribonucleoprotein (mRNP) assembly, but whose precise function is still unclear. To understand how THO restrains harmful R-loops, we searched for new THO-interacting factors. We found that human THO interacts with the Sin3A histone deacetylase complex to suppress co-transcriptional R-loops, DNA damage, and replication impairment. Functional analyses show that histone hypo-acetylation prevents accumulation of harmful R-loops and RNA-mediated genomic instability. Diminished histone deacetylase activity in THO- and Sin3A-depleted cell lines correlates with increased R-loop formation, genomic instability, and replication fork stalling. Our study thus uncovers physical and functional crosstalk between RNA-binding factors and chromatin modifiers with a major role in preventing R-loop formation and RNA-mediated genome instability.
Collapse
Affiliation(s)
- Irene Salas-Armenteros
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Carmen Pérez-Calero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Aleix Bayona-Feliu
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Emanuela Tumini
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| |
Collapse
|
229
|
Sakasai R, Isono M, Wakasugi M, Hashimoto M, Sunatani Y, Matsui T, Shibata A, Matsunaga T, Iwabuchi K. Aquarius is required for proper CtIP expression and homologous recombination repair. Sci Rep 2017; 7:13808. [PMID: 29061988 PMCID: PMC5653829 DOI: 10.1038/s41598-017-13695-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 09/26/2017] [Indexed: 01/01/2023] Open
Abstract
Accumulating evidence indicates that transcription is closely related to DNA damage formation and that the loss of RNA biogenesis factors causes genome instability. However, whether such factors are involved in DNA damage responses remains unclear. We focus here on the RNA helicase Aquarius (AQR), a known R-loop processing factor, and show that its depletion in human cells results in the accumulation of DNA damage during S phase, mediated by R-loop formation. We investigated the involvement of Aquarius in DNA damage responses and found that AQR knockdown decreased DNA damage-induced foci formation of Rad51 and replication protein A, suggesting that Aquarius contributes to homologous recombination (HR)-mediated repair of DNA double-strand breaks (DSBs). Interestingly, the protein level of CtIP, a DSB processing factor, was decreased in AQR-knockdown cells. Exogenous expression of Aquarius partially restored CtIP protein level; however, CtIP overproduction did not rescue defective HR in AQR-knockdown cells. In accordance with these data, Aquarius depletion sensitized cells to genotoxic agents. We propose that Aquarius contributes to the maintenance of genomic stability via regulation of HR by CtIP-dependent and -independent pathways.
Collapse
Affiliation(s)
- Ryo Sakasai
- Department of Biochemistry I, Kanazawa Medical University, Ishikawa, Japan
| | - Mayu Isono
- Education and Research Support Center, Gunma University, Ishikawa, Japan
| | - Mitsuo Wakasugi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | | | - Yumi Sunatani
- Department of Biochemistry I, Kanazawa Medical University, Ishikawa, Japan
| | - Tadashi Matsui
- Department of Biochemistry I, Kanazawa Medical University, Ishikawa, Japan
| | - Atsushi Shibata
- Education and Research Support Center, Gunma University, Ishikawa, Japan
| | - Tsukasa Matsunaga
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Ishikawa, Japan
| | - Kuniyoshi Iwabuchi
- Department of Biochemistry I, Kanazawa Medical University, Ishikawa, Japan.
| |
Collapse
|
230
|
Pathways and Mechanisms that Prevent Genome Instability in Saccharomyces cerevisiae. Genetics 2017; 206:1187-1225. [PMID: 28684602 PMCID: PMC5500125 DOI: 10.1534/genetics.112.145805] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Genome rearrangements result in mutations that underlie many human diseases, and ongoing genome instability likely contributes to the development of many cancers. The tools for studying genome instability in mammalian cells are limited, whereas model organisms such as Saccharomyces cerevisiae are more amenable to these studies. Here, we discuss the many genetic assays developed to measure the rate of occurrence of Gross Chromosomal Rearrangements (called GCRs) in S. cerevisiae. These genetic assays have been used to identify many types of GCRs, including translocations, interstitial deletions, and broken chromosomes healed by de novo telomere addition, and have identified genes that act in the suppression and formation of GCRs. Insights from these studies have contributed to the understanding of pathways and mechanisms that suppress genome instability and how these pathways cooperate with each other. Integrated models for the formation and suppression of GCRs are discussed.
Collapse
|
231
|
Vitelli V, Galbiati A, Iannelli F, Pessina F, Sharma S, d'Adda di Fagagna F. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks. Annu Rev Genomics Hum Genet 2017; 18:87-113. [PMID: 28859573 DOI: 10.1146/annurev-genom-091416-035314] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.
Collapse
Affiliation(s)
- Valerio Vitelli
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | | | - Fabio Iannelli
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Fabio Pessina
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Sheetal Sharma
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy;
| | - Fabrizio d'Adda di Fagagna
- FIRC Institute of Molecular Oncology (IFOM), Milan 20139, Italy; .,Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (CNR), Pavia 27100, Italy
| |
Collapse
|
232
|
Chang EYC, Novoa CA, Aristizabal MJ, Coulombe Y, Segovia R, Chaturvedi R, Shen Y, Keong C, Tam AS, Jones SJM, Masson JY, Kobor MS, Stirling PC. RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability. J Cell Biol 2017; 216:3991-4005. [PMID: 29042409 PMCID: PMC5716281 DOI: 10.1083/jcb.201703168] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023] Open
Abstract
Sgs1, the orthologue of human Bloom's syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription-replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1Δ reveals copy number changes flanked by repetitive regions with high R-loop-forming potential. Analysis of BLM in Bloom's syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop-associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop-mediated genome instability.
Collapse
Affiliation(s)
| | - Carolina A Novoa
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | | | - Yan Coulombe
- Genome Stability Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Romulo Segovia
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Richa Chaturvedi
- Genome Stability Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Yaoqing Shen
- Michael Smith Genome Sciences Centre, Vancouver, Canada
| | - Christelle Keong
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Annie S Tam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences Centre, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
233
|
D'Alessandro G, d'Adda di Fagagna F. Transcription and DNA Damage: Holding Hands or Crossing Swords? J Mol Biol 2017; 429:3215-3229. [DOI: 10.1016/j.jmb.2016.11.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 01/12/2023]
|
234
|
Physical proximity of chromatin to nuclear pores prevents harmful R loop accumulation contributing to maintain genome stability. Proc Natl Acad Sci U S A 2017; 114:10942-10947. [PMID: 28973905 DOI: 10.1073/pnas.1707845114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During transcription, the mRNA may hybridize with DNA, forming an R loop, which can be physiological or pathological, constituting in this case a source of genomic instability. To understand the mechanism by which eukaryotic cells prevent harmful R loops, we used human activation-induced cytidine deaminase (AID) to identify genes preventing R loops. A screening of 400 Saccharomyces cerevisiae selected strains deleted in nuclear genes revealed that cells lacking the Mlp1/2 nuclear basket proteins show AID-dependent genomic instability and replication defects that were suppressed by RNase H1 overexpression. Importantly, DNA-RNA hybrids accumulated at transcribed genes in mlp1/2 mutants, indicating that Mlp1/2 prevents R loops. Consistent with the Mlp1/2 role in gene gating to nuclear pores, artificial tethering to the nuclear periphery of a transcribed locus suppressed R loops in mlp1∆ cells. The same occurred in THO-deficient hpr1∆ cells. We conclude that proximity of transcribed chromatin to the nuclear pore helps restrain pathological R loops.
Collapse
|
235
|
García-Pichardo D, Cañas JC, García-Rubio ML, Gómez-González B, Rondón AG, Aguilera A. Histone Mutants Separate R Loop Formation from Genome Instability Induction. Mol Cell 2017; 66:597-609.e5. [PMID: 28575656 DOI: 10.1016/j.molcel.2017.05.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/03/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
R loops have positive physiological roles, but they can also be deleterious by causing genome instability, and the mechanisms for this are unknown. Here we identified yeast histone H3 and H4 mutations that facilitate R loops but do not cause instability. R loops containing single-stranded DNA (ssDNA), versus RNA-DNA hybrids alone, were demonstrated using ssDNA-specific human AID and bisulfite. Notably, they are similar size regardless of whether or not they induce genome instability. Contrary to mutants causing R loop-mediated instability, these histone mutants do not accumulate H3 serine-10 phosphate (H3S10-P). We propose a two-step mechanism in which, first, an altered chromatin facilitates R loops, and second, chromatin is modified, including H3S10-P, as a requisite for compromising genome integrity. Consistently, these histone mutations suppress the high H3S10 phosphorylation and genomic instability of hpr1 and sen1 mutants. Therefore, contrary to what was previously believed, R loops do not cause genome instability by themselves.
Collapse
Affiliation(s)
- Desiré García-Pichardo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - Juan C Cañas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - María L García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - Ana G Rondón
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville 41092, Spain.
| |
Collapse
|
236
|
Cytosine deamination and base excision repair cause R-loop-induced CAG repeat fragility and instability in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2017; 114:E8392-E8401. [PMID: 28923949 DOI: 10.1073/pnas.1711283114] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CAG/CTG repeats are structure-forming repetitive DNA sequences, and expansion beyond a threshold of ∼35 CAG repeats is the cause of several human diseases. Expanded CAG repeats are prone to breakage, and repair of the breaks can cause repeat contractions and expansions. In this study, we found that cotranscriptional R-loops formed at a CAG-70 repeat inserted into a yeast chromosome. R-loops were further elevated upon deletion of yeast RNaseH genes and caused repeat fragility. A significant increase in CAG repeat contractions was also observed, consistent with previous human cell studies. Deletion of yeast cytosine deaminase Fcy1 significantly decreased the rate of CAG repeat fragility and contractions in the rnh1Δrnh201Δ background, indicating that Fcy1-mediated deamination is one cause of breakage and contractions in the presence of R-loops. Furthermore, base excision repair (BER) is responsible for causing CAG repeat contractions downstream of Fcy1, but not fragility. The Rad1/XPF and Rad2/XPG nucleases were also important in protecting against contractions, but through BER rather than nucleotide excision repair. Surprisingly, the MutLγ (Mlh1/Mlh3) endonuclease caused R-loop-dependent CAG fragility, defining an alternative function for this complex. These findings provide evidence that breakage at expanded CAG repeats occurs due to R-loop formation and reveal two mechanisms for CAG repeat instability: one mediated by cytosine deamination of DNA engaged in R-loops and the other by MutLγ cleavage. Since disease-causing CAG repeats occur in transcribed regions, our results suggest that R-loop-mediated fragility is a mechanism that could cause DNA damage and repeat-length changes in human cells.
Collapse
|
237
|
Nguyen HD, Yadav T, Giri S, Saez B, Graubert TA, Zou L. Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1. Mol Cell 2017; 65:832-847.e4. [PMID: 28257700 DOI: 10.1016/j.molcel.2017.01.029] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/05/2016] [Accepted: 01/24/2017] [Indexed: 10/20/2022]
Abstract
R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here we show that replication protein A (RPA), an ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability.
Collapse
Affiliation(s)
- Hai Dang Nguyen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Tribhuwan Yadav
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sumanprava Giri
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Borja Saez
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Timothy A Graubert
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
238
|
Rohilla KJ, Gagnon KT. RNA biology of disease-associated microsatellite repeat expansions. Acta Neuropathol Commun 2017; 5:63. [PMID: 28851463 PMCID: PMC5574247 DOI: 10.1186/s40478-017-0468-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Microsatellites, or simple tandem repeat sequences, occur naturally in the human genome and have important roles in genome evolution and function. However, the expansion of microsatellites is associated with over two dozen neurological diseases. A common denominator among the majority of these disorders is the expression of expanded tandem repeat-containing RNA, referred to as xtrRNA in this review, which can mediate molecular disease pathology in multiple ways. This review focuses on the potential impact that simple tandem repeat expansions can have on the biology and metabolism of RNA that contain them and underscores important gaps in understanding. Merging the molecular biology of repeat expansion disorders with the current understanding of RNA biology, including splicing, transcription, transport, turnover and translation, will help clarify mechanisms of disease and improve therapeutic development.
Collapse
|
239
|
Bayona-Feliu A, Casas-Lamesa A, Reina O, Bernués J, Azorín F. Linker histone H1 prevents R-loop accumulation and genome instability in heterochromatin. Nat Commun 2017; 8:283. [PMID: 28819201 PMCID: PMC5561251 DOI: 10.1038/s41467-017-00338-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/22/2017] [Indexed: 12/01/2022] Open
Abstract
Linker histone H1 is an important structural component of chromatin that stabilizes the nucleosome and compacts the nucleofilament into higher-order structures. The biology of histone H1 remains, however, poorly understood. Here we show that Drosophila histone H1 (dH1) prevents genome instability as indicated by the increased γH2Av (H2AvS137P) content and the high incidence of DNA breaks and sister-chromatid exchanges observed in dH1-depleted cells. Increased γH2Av occurs preferentially at heterochromatic elements, which are upregulated upon dH1 depletion, and is due to the abnormal accumulation of DNA:RNA hybrids (R-loops). R-loops accumulation is readily detectable in G1-phase, whereas γH2Av increases mainly during DNA replication. These defects induce JNK-mediated apoptosis and are specific of dH1 depletion since they are not observed when heterochromatin silencing is relieved by HP1a depletion. Altogether, our results suggest that histone H1 prevents R-loops-induced DNA damage in heterochromatin and unveil its essential contribution to maintenance of genome stability.While structural importance of linker histone H1 in packaging eukaryotic genome into chromatin is well known, its biological function remains poorly understood. Here the authors reveal that Drosophila linker histone H1 prevents DNA:RNA hybrids accumulation and genome instability in heterochromatin.
Collapse
Affiliation(s)
- Aleix Bayona-Feliu
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain
| | - Anna Casas-Lamesa
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Oscar Reina
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain
| | - Jordi Bernués
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain.
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, IBMB, CSIC, Baldiri Reixac, 4, 08028, Barcelona, Spain.
- Institute for Research in Biomedicine, IRB Barcelona, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028, Barcelona, Spain.
| |
Collapse
|
240
|
Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA. Transcription-Replication Conflict Orientation Modulates R-Loop Levels and Activates Distinct DNA Damage Responses. Cell 2017; 170:774-786.e19. [PMID: 28802045 DOI: 10.1016/j.cell.2017.07.043] [Citation(s) in RCA: 431] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/09/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
Abstract
Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexes, induce DNA breaks and orientation-specific DNA damage responses during conflicts with replication forks. Unexpectedly, the replisome acts as an orientation-dependent regulator of R-loop levels, reducing R-loops in the co-directional (CD) orientation but promoting their formation in the head-on (HO) orientation. Replication stress and deregulated origin firing increase the number of HO collisions leading to genome-destabilizing R-loops. Our findings connect DNA replication to R-loop homeostasis and suggest a mechanistic basis for genome instability resulting from deregulated DNA replication, observed in cancer and other disease states.
Collapse
Affiliation(s)
- Stephan Hamperl
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael J Bocek
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joshua C Saldivar
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Karlene A Cimprich
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
241
|
Kouzminova EA, Kadyrov FF, Kuzminov A. RNase HII Saves rnhA Mutant Escherichia coli from R-Loop-Associated Chromosomal Fragmentation. J Mol Biol 2017; 429:2873-2894. [PMID: 28821455 DOI: 10.1016/j.jmb.2017.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 01/02/2023]
Abstract
The rnhAB mutant Escherichia coli, deficient in two RNase H enzymes that remove both R-loops and incorporated ribonucleotides (rNs) from DNA, grow slowly, suggesting accumulation of rN-containing DNA lesions (R-lesions). We report that the rnhAB mutants have reduced viability, form filaments with abnormal nucleoids, induce SOS, and fragment their chromosome, revealing replication and/or segregation stress. R-loops are known to interfere with replication forks, and sensitivity of the double rnhAB mutants to translation inhibition points to R-loops as precursors for R-lesions. However, the strict specificity of bacterial RNase HII for RNA-DNA junctions indicates that R-lesions have rNs integrated into DNA. Indeed, instead of relieving problems of rnhAB mutants, transient inhibition of replication from oriC kills them, suggesting that oriC-initiated replication removes R-loops instead of compounding them to R-lesions. Yet, replication from an R-loop-initiating plasmid origin kills the double rnhAB mutant, revealing generation of R-lesions by R-loop-primed DNA synthesis. These R-lesions could be R-tracts, contiguous runs of ≥4 RNA nucleotides within DNA strand and the only common substrate between the two bacterial RNase H enzymes. However, a plasmid relaxation test failed to detect R-tracts in DNA of the rnhAB mutants, although it readily detected R-patches (runs of 1-3 rNs). Instead, we detected R-gaps, single-strand gaps containing rNs, in the chromosomal DNA of the rnhAB mutant. Therefore, we propose that RNase H-deficient mutants convert some R-loops into R-tracts, which progress into R-gaps and then to double-strand breaks-explaining why R-tracts do not accumulate in RNase H-deficient cells, while double-strand breaks do.
Collapse
Affiliation(s)
- Elena A Kouzminova
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Farid F Kadyrov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
242
|
Velazquez Camacho O, Galan C, Swist-Rosowska K, Ching R, Gamalinda M, Karabiber F, De La Rosa-Velazquez I, Engist B, Koschorz B, Shukeir N, Onishi-Seebacher M, van de Nobelen S, Jenuwein T. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. eLife 2017; 6. [PMID: 28760199 PMCID: PMC5538826 DOI: 10.7554/elife.25293] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 06/09/2017] [Indexed: 12/19/2022] Open
Abstract
The Suv39h1 and Suv39h2 histone lysine methyltransferases are hallmark enzymes at mammalian heterochromatin. We show here that the mouse Suv39h2 enzyme differs from Suv39h1 by containing an N-terminal basic domain that facilitates retention at mitotic chromatin and provides an additional affinity for major satellite repeat RNA. To analyze an RNA-dependent interaction with chromatin, we purified native nucleosomes from mouse ES cells and detect that Suv39h1 and Suv39h2 exclusively associate with poly-nucleosomes. This association was attenuated upon RNaseH incubation and entirely lost upon RNaseA digestion of native chromatin. Major satellite repeat transcripts remain chromatin-associated and have a secondary structure that favors RNA:DNA hybrid formation. Together, these data reveal an RNA-mediated mechanism for the stable chromatin interaction of the Suv39h KMT and suggest a function for major satellite non-coding RNA in the organization of an RNA-nucleosome scaffold as the underlying structure of mouse heterochromatin.
Collapse
Affiliation(s)
- Oscar Velazquez Camacho
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Carmen Galan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Kalina Swist-Rosowska
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Molecular and Cellular Biology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Reagan Ching
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Michael Gamalinda
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | - Bettina Engist
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Birgit Koschorz
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Nicholas Shukeir
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
243
|
Bonnet A, Grosso AR, Elkaoutari A, Coleno E, Presle A, Sridhara SC, Janbon G, Géli V, de Almeida SF, Palancade B. Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability. Mol Cell 2017; 67:608-621.e6. [PMID: 28757210 DOI: 10.1016/j.molcel.2017.07.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 05/19/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022]
Abstract
Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage.
Collapse
Affiliation(s)
- Amandine Bonnet
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Ana R Grosso
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600-276 Lisboa, Portugal
| | - Abdessamad Elkaoutari
- Cancer Research Center of Marseille (CRCM), Equipe Labellisée Ligue, U1068 INSERM, UMR7258 CNRS, Institut Paoli-Calmettes, Aix Marseille University, 13284 Marseille, France
| | - Emeline Coleno
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Adrien Presle
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
| | - Sreerama C Sridhara
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600-276 Lisboa, Portugal
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, 75015 Paris, France
| | - Vincent Géli
- Cancer Research Center of Marseille (CRCM), Equipe Labellisée Ligue, U1068 INSERM, UMR7258 CNRS, Institut Paoli-Calmettes, Aix Marseille University, 13284 Marseille, France
| | - Sérgio F de Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1600-276 Lisboa, Portugal
| | - Benoit Palancade
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| |
Collapse
|
244
|
Parajuli S, Teasley DC, Murali B, Jackson J, Vindigni A, Stewart SA. Human ribonuclease H1 resolves R-loops and thereby enables progression of the DNA replication fork. J Biol Chem 2017; 292:15216-15224. [PMID: 28717002 DOI: 10.1074/jbc.m117.787473] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/21/2017] [Indexed: 11/06/2022] Open
Abstract
Faithful DNA replication is essential for genome stability. To ensure accurate replication, numerous complex and redundant replication and repair mechanisms function in tandem with the core replication proteins to ensure DNA replication continues even when replication challenges are present that could impede progression of the replication fork. A unique topological challenge to the replication machinery is posed by RNA-DNA hybrids, commonly referred to as R-loops. Although R-loops play important roles in gene expression and recombination at immunoglobulin sites, their persistence is thought to interfere with DNA replication by slowing or impeding replication fork progression. Therefore, it is of interest to identify DNA-associated enzymes that help resolve replication-impeding R-loops. Here, using DNA fiber analysis, we demonstrate that human ribonuclease H1 (RNH1) plays an important role in replication fork movement in the mammalian nucleus by resolving R-loops. We found that RNH1 depletion results in accumulation of RNA-DNA hybrids, slowing of replication forks, and increased DNA damage. Our data uncovered a role for RNH1 in global DNA replication in the mammalian nucleus. Because accumulation of RNA-DNA hybrids is linked to various human cancers and neurodegenerative disorders, our study raises the possibility that replication fork progression might be impeded, adding to increased genomic instability and contributing to disease.
Collapse
Affiliation(s)
| | | | - Bhavna Murali
- From the Departments of Cell Biology and Physiology and
| | - Jessica Jackson
- the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Alessandro Vindigni
- the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 .,Siteman Cancer Center, and
| | - Sheila A Stewart
- From the Departments of Cell Biology and Physiology and .,Siteman Cancer Center, and.,Medicine.,Integrating Communications within the Cancer Environment (ICCE) Institute, Washington University School of Medicine, St. Louis, Missouri 63110 and
| |
Collapse
|
245
|
Barker HV, Niblock M, Lee YB, Shaw CE, Gallo JM. RNA Misprocessing in C9orf72-Linked Neurodegeneration. Front Cell Neurosci 2017; 11:195. [PMID: 28744202 PMCID: PMC5504096 DOI: 10.3389/fncel.2017.00195] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
A large GGGGCC hexanucleotide repeat expansion in the first intron or promoter region of the C9orf72 gene is the most common genetic cause of familial and sporadic Amyotrophic lateral sclerosis (ALS), a devastating degenerative disease of motor neurons, and of Frontotemporal Dementia (FTD), the second most common form of presenile dementia after Alzheimer's disease. C9orf72-associated ALS/FTD is a multifaceted disease both in terms of its clinical presentation and the misregulated cellular pathways contributing to disease progression. Among the numerous pathways misregulated in C9orf72-associated ALS/FTD, altered RNA processing has consistently appeared at the forefront of C9orf72 research. This includes bidirectional transcription of the repeat sequence, accumulation of repeat RNA into nuclear foci sequestering specific RNA-binding proteins (RBPs) and translation of RNA repeats into dipeptide repeat proteins (DPRs) by repeat-associated non-AUG (RAN)-initiated translation. Over the past few years the true extent of RNA misprocessing in C9orf72-associated ALS/FTD has begun to emerge and disruptions have been identified in almost all aspects of the life of an RNA molecule, including release from RNA polymerase II, translation in the cytoplasm and degradation. Furthermore, several alterations have been identified in the processing of the C9orf72 RNA itself, in terms of its transcription, splicing and localization. This review article aims to consolidate our current knowledge on the consequence of the C9orf72 repeat expansion on RNA processing and draws attention to the mechanisms by which several aspects of C9orf72 molecular pathology converge to perturb every stage of RNA metabolism.
Collapse
Affiliation(s)
- Holly V. Barker
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Michael Niblock
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Youn-Bok Lee
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| | - Jean-Marc Gallo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College LondonLondon, United Kingdom
| |
Collapse
|
246
|
Hodroj D, Serhal K, Maiorano D. Ddx19 links mRNA nuclear export with progression of transcription and replication and suppresses genomic instability upon DNA damage in proliferating cells. Nucleus 2017; 8:489-495. [PMID: 28696814 DOI: 10.1080/19491034.2017.1348448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The DEAD-box Helicase 19 (Ddx19) gene codes for an RNA helicase involved in both mRNA (mRNA) export from the nucleus into the cytoplasm and in mRNA translation. In unperturbed cells, Ddx19 localizes in the cytoplasm and at the cytoplasmic face of the nuclear pore. Here we review recent findings related to an additional Ddx19 function in the nucleus in resolving RNA:DNA hybrids (R-loops) generated during collision between transcription and replication, and upon DNA damage. Activation of a DNA damage response pathway dependent upon the ATR kinase, a major regulator of replication fork progression, stimulates translocation of the Ddx19 protein from the cytoplasm into the nucleus. Only nuclear Ddx19 is competent to resolve R-loops, and down regulation of Ddx19 expression induces DNA double strand breaks only in proliferating cells. Overall these observations put forward Ddx19 as an important novel mediator of the crosstalk between transcription and replication.
Collapse
Affiliation(s)
- Dana Hodroj
- a Institute of Human Genetics, UMR9002 CNRS-UM, 141, Montpellier , France
| | - Kamar Serhal
- a Institute of Human Genetics, UMR9002 CNRS-UM, 141, Montpellier , France
| | - Domenico Maiorano
- a Institute of Human Genetics, UMR9002 CNRS-UM, 141, Montpellier , France
| |
Collapse
|
247
|
Aguilera A, Gómez-González B. DNA-RNA hybrids: the risks of DNA breakage during transcription. Nat Struct Mol Biol 2017; 24:439-443. [PMID: 28471430 DOI: 10.1038/nsmb.3395] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/05/2017] [Indexed: 12/28/2022]
Abstract
Although R loops can occur at different genomic locations, the factors that determine their formation and frequency remain unclear. Emerging evidence indicates that DNA breaks stimulate DNA-RNA hybrid formation. Here, we discuss the possibility that formation of hybrids may be an inevitable risk of DNA breaks that occur within actively transcribed regions. While such hybrids must be removed to permit repair, their potential role as repair intermediates remains to be established.
Collapse
Affiliation(s)
- Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
248
|
Catania F. From intronization to intron loss: How the interplay between mRNA-associated processes can shape the architecture and the expression of eukaryotic genes. Int J Biochem Cell Biol 2017; 91:136-144. [PMID: 28673893 DOI: 10.1016/j.biocel.2017.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/25/2017] [Accepted: 06/30/2017] [Indexed: 12/29/2022]
Abstract
Transcription-coupled processes such as capping, splicing, and cleavage/polyadenylation participate in the journey from genes to proteins. Although they are traditionally thought to serve only as steps in the generation of mature mRNAs, a synthesis of available data indicates that these processes could also act as a driving force for the evolution of eukaryotic genes. A theoretical framework for how mRNA-associated processes may shape gene structure and expression has recently been proposed. Factors that promote splicing and cleavage/polyadenylation in this framework compete for access to overlapping or neighboring signals throughout the transcription cycle. These antagonistic interactions allow mechanisms for intron gain and splice site recognition as well as common trends in eukaryotic gene structure and expression to be coherently integrated. Here, I extend this framework further. Observations that largely (but not exclusively) revolve around the formation of DNA-RNA hybrid structures, called R loops, and promoter directionality are integrated. Additionally, the interplay between splicing factors and cleavage/polyadenylation factors is theorized to also affect the formation of intragenic DNA double-stranded breaks thereby contributing to intron loss. The most notable prediction in this proposition is that RNA molecules can mediate intron loss by serving as a template to repair DNA double-stranded breaks. The framework presented here leverages a vast body of empirical observations, logically extending previous suggestions, and generating verifiable predictions to further substantiate the view that the intracellular environment plays an active role in shaping the structure and the expression of eukaryotic genes.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149 Münster, Germany.
| |
Collapse
|
249
|
Abstract
TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems.
Collapse
|
250
|
Bhatia V, Herrera-Moyano E, Aguilera A, Gómez-González B. The Role of Replication-Associated Repair Factors on R-Loops. Genes (Basel) 2017; 8:E171. [PMID: 28653981 PMCID: PMC5541304 DOI: 10.3390/genes8070171] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
The nascent RNA can reinvade the DNA double helix to form a structure termed the R-loop, where a single-stranded DNA (ssDNA) is accompanied by a DNA-RNA hybrid. Unresolved R-loops can impede transcription and replication processes and lead to genomic instability by a mechanism still not fully understood. In this sense, a connection between R-loops and certain chromatin markers has been reported that might play a key role in R-loop homeostasis and genome instability. To counteract the potential harmful effect of R-loops, different conserved messenger ribonucleoprotein (mRNP) biogenesis and nuclear export factors prevent R-loop formation, while ubiquitously-expressed specific ribonucleases and DNA-RNA helicases resolve DNA-RNA hybrids. However, the molecular events associated with R-loop sensing and processing are not yet known. Given that R-loops hinder replication progression, it is plausible that some DNA replication-associated factors contribute to dissolve R-loops or prevent R-loop mediated genome instability. In support of this, R-loops accumulate in cells depleted of the BRCA1, BRCA2 or the Fanconi anemia (FA) DNA repair factors, indicating that they play an active role in R-loop dissolution. In light of these results, we review our current view of the role of replication-associated DNA repair pathways in preventing the harmful consequences of R-loops.
Collapse
Affiliation(s)
- Vaibhav Bhatia
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| | - Emilia Herrera-Moyano
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| | - Andrés Aguilera
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| | - Belén Gómez-González
- Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Av. Américo Vespucio 24, 41092 Seville, Spain.
| |
Collapse
|