201
|
Choi Y, Mango SE. Hunting for Darwin's gemmules and Lamarck's fluid: Transgenerational signaling and histone methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1440-53. [DOI: 10.1016/j.bbagrm.2014.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 01/22/2023]
|
202
|
Riffo-Campos ÁL, Castillo J, Tur G, González-Figueroa P, Georgieva EI, Rodríguez JL, López-Rodas G, Rodrigo MI, Franco L. Nucleosome-specific, time-dependent changes in histone modifications during activation of the early growth response 1 (Egr1) gene. J Biol Chem 2014; 290:197-208. [PMID: 25378406 DOI: 10.1074/jbc.m114.579292] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Histone post-translational modifications and nucleosome remodeling are coordinate events involved in eukaryotic transcriptional regulation. There are relatively few data on the time course with which these events occur in individual nucleosomes. As a contribution to fill this gap, we first describe the nature and time course of structural changes in the nucleosomes -2, -1, and +1 of the murine Egr1 gene upon induction. To initiate the transient activation of the gene, we used the stimulation of MLP29 cells with phorbol esters and the in vivo activation after partial hepatectomy. In both models, nucleosomes -1 and +1 are partially evicted, whereas nucleosomes +1 and -2 slide downstream during transcription. The sliding of the latter nucleosome allows the EGR1 protein to bind its site, resulting in the repression of the gene. To decide whether EGR1 is involved in the sliding of nucleosome -2, Egr1 was knocked down. In the absence of detectable EGR1, the nucleosome still slides and remains downstream longer than in control cells, suggesting that the product of the gene may be rather involved in the returning of the nucleosome to the basal position. Moreover, the presence of eight epigenetic histone marks has been determined at a mononucleosomal level in that chromatin region. H3S10phK14ac, H3K4me3, H3K9me3, and H3K27me3 are characteristic of nucleosome +1, and H3K9ac and H4K16ac are mainly found in nucleosome -1, and H3K27ac predominates in nucleosomes -2 and -1. The temporal changes in these marks suggest distinct functions for some of them, although changes in H3K4me3 may result from histone turnover.
Collapse
Affiliation(s)
- Ángela L Riffo-Campos
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and Institute of Health Research INCLIVA, 46010 Valencia, Spain
| | - Josefa Castillo
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and Institute of Health Research INCLIVA, 46010 Valencia, Spain
| | - Gema Tur
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and
| | - Paula González-Figueroa
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and
| | - Elena I Georgieva
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and
| | - José L Rodríguez
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and
| | - Gerardo López-Rodas
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and Institute of Health Research INCLIVA, 46010 Valencia, Spain
| | - M Isabel Rodrigo
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and Institute of Health Research INCLIVA, 46010 Valencia, Spain
| | - Luis Franco
- From the Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, 46100 Valencia and Institute of Health Research INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
203
|
Trembecka-Lucas DO, Dobrucki JW. A heterochromatin protein 1 (HP1) dimer and a proliferating cell nuclear antigen (PCNA) protein interact in vivo and are parts of a multiprotein complex involved in DNA replication and DNA repair. Cell Cycle 2014; 11:2170-5. [DOI: 10.4161/cc.20673] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
204
|
Alam T, Medvedeva YA, Jia H, Brown JB, Lipovich L, Bajic VB. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes. PLoS One 2014; 9:e109443. [PMID: 25275320 PMCID: PMC4183604 DOI: 10.1371/journal.pone.0109443] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/09/2014] [Indexed: 01/08/2023] Open
Abstract
Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.
Collapse
Affiliation(s)
- Tanvir Alam
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, Saudi Arabia
| | - Yulia A. Medvedeva
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, Saudi Arabia
| | - Hui Jia
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - James B. Brown
- Department of Genome Dynamics, Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Leonard Lipovich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
- Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- * E-mail: (LL); (VB)
| | - Vladimir B. Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, Saudi Arabia
- * E-mail: (LL); (VB)
| |
Collapse
|
205
|
Plant homeodomain finger protein 2 promotes bone formation by demethylating and activating Runx2 for osteoblast differentiation. Cell Res 2014; 24:1231-49. [PMID: 25257467 DOI: 10.1038/cr.2014.127] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 07/09/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022] Open
Abstract
Plant homeodomain finger protein 2 (PHF2), which contains a plant homeodomain and a Jumonji-C domain, is an epigenetic regulator that demethylates lysine 9 in histone 3 (H3K9me2). On the other hand, runt-related transcription factor 2 (Runx2) plays essential roles in bone development and regeneration. Given previous reports that the PHF2 mutation can cause dwarfism in mice and that PHF2 expression is correlated with that of Runx2 in differentiating thymocytes, we investigated whether PHF2 regulates Runx2-mediated bone formation. Overexpression of PHF2 facilitated bone development in newborn mice, and viral shRNA-mediated knockdown of PHF2 delayed calvarial bone regeneration in adult rats. In primary osteoblasts and C2C12 precursor cells, PHF2 enhances osteoblast differentiation by demethylating Runx2, while suppressor of variegation 3-9 homolog 1 (SUV39H1) inhibits bone formation by methylating it. The PHF2-Runx2 interaction is mediated by the Jumonji-C and Runt domains of the two proteins, respectively. The interaction between Runx2 and osteocalcin promoter is regulated by the methylation status of Runx2, i.e., the interaction is augmented when Runx2 is demethylated. Our results suggest that SUV39H1 and PHF2 reciprocally regulate osteoblast differentiation by modulating Runx2-driven transcription at the post-translational level. This study may provide a theoretical basis for the development of new therapeutic modalities for patients with impaired bone development or delayed fracture healing.
Collapse
|
206
|
Harouz H, Rachez C, Meijer BM, Marteyn B, Donnadieu F, Cammas F, Muchardt C, Sansonetti P, Arbibe L. Shigella flexneri targets the HP1γ subcode through the phosphothreonine lyase OspF. EMBO J 2014; 33:2606-22. [PMID: 25216677 DOI: 10.15252/embj.201489244] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
HP1 proteins are transcriptional regulators that, like histones, are targets for post-translational modifications defining an HP1-mediated subcode. HP1γ has multiple phosphorylation sites, including serine 83 (S83) that marks it to sites of active transcription. In a guinea pig model for Shigella enterocolitis, we observed that the defective type III secretion mxiD Shigella flexneri strain caused more HP1γ phosphorylation in the colon than the wild-type strain. Shigella interferes with HP1 phosphorylation by injecting the phospholyase OspF. This effector interacts with HP1γ and alters its phosphorylation at S83 by inactivating ERK and consequently MSK1, a downstream kinase. MSK1 that here arises as a novel HP1γ kinase, phosphorylates HP1γ at S83 in the context of an MSK1-HP1γ complex, and thereby favors its accumulation on its target genes. Genome-wide transcriptome analysis reveals that this mechanism is linked to up-regulation of proliferative gene and fine-tuning of immune gene expression. Thus, in addition to histones, bacteria control host transcription by modulating the activity of HP1 proteins, with potential implications in transcriptional reprogramming at the mucosal barrier.
Collapse
Affiliation(s)
- Habiba Harouz
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Christophe Rachez
- Department of Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Institut Pasteur, Paris, France URA2578 CNRS, Paris, France
| | - Benoit M Meijer
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Benoit Marteyn
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Françoise Donnadieu
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Florence Cammas
- Equipe Epigénétique, différenciation cellulaire et cancer IRCM, Montpellier, France
| | - Christian Muchardt
- Department of Biologie du Développement et Cellules Souches, Unité de Régulation Epigénétique, Institut Pasteur, Paris, France URA2578 CNRS, Paris, France
| | - Philippe Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| | - Laurence Arbibe
- Unité de Pathogénie Microbienne Moléculaire, Unité INSERM 786 Institut Pasteur, Paris, France
| |
Collapse
|
207
|
Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, Rath SK, Londhe VA, Patra SK. Chromatin dynamics: H3K4 methylation and H3 variant replacement during development and in cancer. Cell Mol Life Sci 2014; 71:3439-63. [PMID: 24676717 PMCID: PMC11113154 DOI: 10.1007/s00018-014-1605-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/11/2014] [Accepted: 03/06/2014] [Indexed: 12/11/2022]
Abstract
The dynamic nature of chromatin and its myriad modifications play a crucial role in gene regulation (expression and repression) during development, cellular survival, homeostasis, ageing, and apoptosis/death. Histone 3 lysine 4 methylation (H3K4 methylation) catalyzed by H3K4 specific histone methyltransferases is one of the more critical chromatin modifications that is generally associated with gene activation. Additionally, the deposition of H3 variant(s) in conjunction with H3K4 methylation generates an intricately reliable epigenetic regulatory circuit that guides transcriptional activity in normal development and homeostasis. Consequently, alterations in this epigenetic circuit may trigger disease development. The mechanistic relationship between H3 variant deposition and H3K4 methylation during normal development has remained foggy. However, recent investigations in the field of chromatin dynamics in various model organisms, tumors, cancer tissues, and cell lines cultured without and with therapeutic agents, as well as from model reconstituted chromatins reveal that there may be different subsets of chromatin assemblage with specific patterns of histone replacement executing similar functions. In this light, we attempt to explain the intricate control system that maintains chromatin structure and dynamics during normal development as well as during tumor development and cancer progression in this review. Our focus is to highlight the contribution of H3K4 methylation-histone variant crosstalk in regulating chromatin architecture and subsequently its function.
Collapse
Affiliation(s)
- Moonmoon Deb
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Swayamsiddha Kar
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Dipta Sengupta
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Arunima Shilpi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sabnam Parbin
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Sandip K. Rath
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| | - Vedang A. Londhe
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1752 USA
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008 India
| |
Collapse
|
208
|
Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1α at chromatin. Mol Cell Biol 2014; 34:3662-74. [PMID: 25047840 DOI: 10.1128/mcb.00205-14] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Methylation of histone H3 on lysine 9 or 27 is crucial for heterochromatin formation. Previously considered hallmarks of, respectively, constitutive and facultative heterochromatin, recent evidence has accumulated in favor of coexistence of these two marks and their cooperation in gene silencing maintenance. H3K9me2/3 ensures anchorage at chromatin of heterochromatin protein 1α (HP1α), a main component of heterochromatin. HP1α chromoshadow domain, involved in dimerization and interaction with partners, has additional but still unclear roles in HP1α recruitment to chromatin. Because of previously suggested links between polycomb repressive complex 2 (PRC2), which catalyzes H3K27 methylation, and HP1α, we tested whether PRC2 may regulate HP1α abundance at chromatin. We found that the EZH2 and SUZ12 subunits of PRC2 are required for HP1α stability, as knockdown of either protein led to HP1α degradation. Similar results were obtained upon overexpression of H3K27me2/3 demethylases. We further showed that binding of HP1α/β/γ to H3K9me3 peptides is greatly increased in the presence of H3K27me3, and this is dependent on PRC2. These data fit with recent proteomic studies identifying PRC2 as an indirect H3K9me3 binder in mouse tissues and suggest the existence of a cooperative mechanism of HP1α anchorage at chromatin involving H3 methylation on both K9 and K27 residues.
Collapse
|
209
|
Rajcevic U, Knol JC, Piersma S, Bougnaud S, Fack F, Sundlisaeter E, Søndenaa K, Myklebust R, Pham TV, Niclou SP, Jiménez CR. Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture. Proteome Sci 2014; 12:39. [PMID: 25075203 PMCID: PMC4114130 DOI: 10.1186/1477-5956-12-39] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 06/09/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Organotypic tumor spheroids, a 3D in vitro model derived from patient tumor material, preserve tissue heterogeneity and retain structural tissue elements, thus replicating the in vivo tumor more closely than commonly used 2D and 3D cell line models. Such structures harbour tumorigenic cells, as revealed by xenograft implantation studies in animal models and maintain the genetic makeup of the original tumor material. The aim of our work was a morphological and proteomic characterization of organotypic spheroids derived from colorectal cancer tissue in order to get insight into their composition and associated biology. RESULTS Morphological analysis showed that spheroids were of about 250 μm in size and varied in structure, while the spheroid cells differed in shape and size and were tightly packed together by desmosomes and tight junctions. Our proteomic data revealed significant alterations in protein expression in organotypic tumor spheroids cultured as primary explants compared to primary colorectal cancer tissue. Components underlying cellular and tissue architecture were changed; nuclear DNA/ chromatin maintenance systems were up-regulated, whereas various mitochondrial components were down-regulated in spheroids. Most interestingly, the mesenchymal cells appear to be substantial component in such cellular assemblies. Thus the observed changes may partly occur in this cellular compartment. Finally, in the proteomics analysis stem cell-like characteristics were observed within the spheroid cellular assembly, reflected by accumulation of Alcam, Ctnnb1, Aldh1, Gpx2, and CD166. These findings were underlined by IHC analysis of Ctnnb1, CD24 and CD44, therefore warranting closer investigation of the tumorigenic compartment in this 3D culture model for tumor tissue. CONCLUSIONS Our analysis of organotypic CRC tumor spheroids has identified biological processes associated with a mixture of cell types and states, including protein markers for mesenchymal and stem-like cells. This 3D tumor model in which tumor heterogeneity is preserved may represent an advantageous model system to investigate novel therapeutic approaches.
Collapse
Affiliation(s)
- Uros Rajcevic
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg ; Department of Research and Development, Blood Transfusion Center of Slovenia, Ljubljana, Slovenia ; Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jaco C Knol
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Sander Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Sébastien Bougnaud
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg
| | - Fred Fack
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg
| | | | - Karl Søndenaa
- Department of Surgery, Haraldsplass Deaconal Hospital, University of Bergen, Bergen, Norway
| | | | - Thang V Pham
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Simone P Niclou
- NorLux Neuro-Oncology Laboratory, Department of Oncology, CRP-Santé, Luxembourg, Luxembourg
| | - Connie R Jiménez
- OncoProteomics Laboratory, Department of Medical Oncology, VUmc-Cancer Center Amsterdam, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| |
Collapse
|
210
|
Menafra R, Brinkman AB, Matarese F, Franci G, Bartels SJJ, Nguyen L, Shimbo T, Wade PA, Hubner NC, Stunnenberg HG. Genome-wide binding of MBD2 reveals strong preference for highly methylated loci. PLoS One 2014; 9:e99603. [PMID: 24927503 PMCID: PMC4057170 DOI: 10.1371/journal.pone.0099603] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/16/2014] [Indexed: 12/31/2022] Open
Abstract
MBD2 is a subunit of the NuRD complex that is postulated to mediate gene repression via recruitment of the complex to methylated DNA. In this study we adopted an MBD2 tagging-approach to study its genome wide binding characteristics. We show that in vivo MBD2 is mainly recruited to CpG island promoters that are highly methylated. Interestingly, MBD2 binds around 1 kb downstream of the transcription start site of a subset of ∼ 400 CpG island promoters that are characterized by the presence of active histone marks, RNA polymerase II (Pol2) and low to medium gene expression levels and H3K36me3 deposition. These tagged-MBD2 binding sites in MCF-7 show increased methylation in a cohort of primary breast cancers but not in normal breast samples, suggesting a putative role for MBD2 in breast cancer.
Collapse
Affiliation(s)
- Roberta Menafra
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Arie B. Brinkman
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Filomena Matarese
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Gianluigi Franci
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Stefanie J. J. Bartels
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Luan Nguyen
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Takashi Shimbo
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Paul A. Wade
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Nina C. Hubner
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
211
|
Ha N, Pham DH, Shahsafaei A, Naruse C, Asano M, Thai TH. HP-1γ Controls High-Affinity Antibody Response to T-Dependent Antigens. Front Immunol 2014; 5:271. [PMID: 24971082 PMCID: PMC4053855 DOI: 10.3389/fimmu.2014.00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/26/2014] [Indexed: 12/23/2022] Open
Abstract
In vitro observations suggest a role for the mouse heterochromatin protein 1γ (HP-1γ) in the immune system. However, it has not been shown if and how HP-1γ contributes to immunity in vivo. Here we show that in mice, HP-1γ positively regulates the germinal center reaction and high-affinity antibody response to thymus (T)-dependent antigens by limiting the size of CD8+ regulatory T-cell (Treg) compartment without affecting progenitor B- or T-cell-development. Moreover, HP-1γ does not control cell proliferation or class switch recombination. Haploinsufficiency of cbx-3 (gene encoding HP-1γ) is sufficient to expand the CD8+ Treg population and impair the immune response in mice despite the presence of wild-type HP-1α and HP-1β. This is the first in vivo evidence demonstrating the non-redundant role of HP-1γ in immunity.
Collapse
Affiliation(s)
- Ngoc Ha
- Beth Israel Deaconess Medical Center, Department of Pathology, Harvard Medical School , Boston, MA , USA
| | - Duc-Hung Pham
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven , Leuven , Belgium
| | | | - Chie Naruse
- Advanced Science Research Center, Kanazawa University , Kanazawa , Japan
| | - Masahide Asano
- Advanced Science Research Center, Kanazawa University , Kanazawa , Japan
| | - To-Ha Thai
- Beth Israel Deaconess Medical Center, Department of Pathology, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
212
|
Yang X, Hegde VL, Rao R, Zhang J, Nagarkatti PS, Nagarkatti M. Histone modifications are associated with Δ9-tetrahydrocannabinol-mediated alterations in antigen-specific T cell responses. J Biol Chem 2014; 289:18707-18. [PMID: 24841204 DOI: 10.1074/jbc.m113.545210] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Marijuana is one of the most abused drugs due to its psychotropic effects. Interestingly, it is also used for medicinal purposes. The main psychotropic component in marijuana, Δ(9)-tetrahydrocannabinol (THC), has also been shown to mediate potent anti-inflammatory properties. Whether the immunomodulatory activity of THC is mediated by epigenetic regulation has not been investigated previously. In this study, we employed ChIP-Seq technology to examine the in vivo effect of THC on global histone methylation in lymph node cells of mice immunized with a superantigen, staphylococcal enterotoxin B. We compared genome-wide histone H3 Lys-4, Lys-27, Lys-9, and Lys-36 trimethylation and histone H3 Lys-9 acetylation patterns in such cells exposed to THC or vehicle. Our results showed that THC treatment leads to the association of active histone modification signals to Th2 cytokine genes and suppressive modification signals to Th1 cytokine genes, indicating that such a mechanism may play a critical role in the THC-mediated switch from Th1 to Th2. At the global level, a significant portion of histone methylation and acetylation regions were altered by THC. However, the overall distribution of these histone methylation signals among the genomic features was not altered significantly by THC, suggesting that THC activates the expression of a subset of genes while suppressing the expression of another subset of genes through histone modification. Functional classification of these histone marker-associated genes showed that these differentially associated genes were involved in various cellular functions, from cell cycle regulation to metabolism, suggesting that THC had a pleiotropic effect on gene expression in immune cells. Altogether, the current study demonstrates for the first time that THC may modulate immune response through epigenetic regulation involving histone modifications.
Collapse
Affiliation(s)
- Xiaoming Yang
- From the Department of Pathology, Microbiology, and Immunology, School of Medicine, and
| | - Venkatesh L Hegde
- From the Department of Pathology, Microbiology, and Immunology, School of Medicine, and
| | - Roshni Rao
- From the Department of Pathology, Microbiology, and Immunology, School of Medicine, and
| | - Jiajia Zhang
- the School of Public Health, University of South Carolina, Columbia, South Carolina 29209
| | - Prakash S Nagarkatti
- From the Department of Pathology, Microbiology, and Immunology, School of Medicine, and
| | - Mitzi Nagarkatti
- From the Department of Pathology, Microbiology, and Immunology, School of Medicine, and
| |
Collapse
|
213
|
Sehnalová P, Legartová S, Cmarko D, Kozubek S, Bártová E. Recruitment of HP1β to UVA-induced DNA lesions is independent of radiation-induced changes in A-type lamins. Biol Cell 2014; 106:151-65. [DOI: 10.1111/boc.201300076] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/03/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Petra Sehnalová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 Czech Republic
| | - Soňa Legartová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 Czech Republic
| | - Dušan Cmarko
- Institute of Cellular Biology and Pathology; The First Faculty of Medicine, Charles University in Prague; Prague 128 00 Czech Republic
| | - Stanislav Kozubek
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 Czech Republic
| | - Eva Bártová
- Institute of Biophysics; Academy of Sciences of the Czech Republic; Brno 612 65 Czech Republic
| |
Collapse
|
214
|
Nosrati N, Kapoor NR, Kumar V. Combinatorial action of transcription factors orchestrates cell cycle-dependent expression of the ribosomal protein genes and ribosome biogenesis. FEBS J 2014; 281:2339-52. [DOI: 10.1111/febs.12786] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 03/01/2014] [Accepted: 03/17/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Nagisa Nosrati
- Virology Group; International Centre for Genetic Engineering and Biotechnology; New Delhi India
| | - Neetu R. Kapoor
- Virology Group; International Centre for Genetic Engineering and Biotechnology; New Delhi India
| | - Vijay Kumar
- Virology Group; International Centre for Genetic Engineering and Biotechnology; New Delhi India
| |
Collapse
|
215
|
Hiragami-Hamada K, Fischle W. RNAs - physical and functional modulators of chromatin reader proteins. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:737-42. [PMID: 24704208 DOI: 10.1016/j.bbagrm.2014.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 11/25/2022]
Abstract
The regulatory role of histone modifications with respect to the structure and function of chromatin is well known. Proteins and protein complexes establishing, erasing and binding these marks have been extensively studied. RNAs have only recently entered the picture of epigenetic regulation with the discovery of a vast number of long non-coding RNAs. Fast growing evidence suggests that such RNAs influence all aspects of histone modification biology. Here, we focus exclusively on the emerging functional interplay between RNAs and proteins that bind histone modifications. We discuss recent findings of reciprocally positive and negative regulations as well as summarize the current insights into the molecular mechanism directing these interactions. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function.
Collapse
Affiliation(s)
- Kyoko Hiragami-Hamada
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
216
|
de Almeida SF, Carmo-Fonseca M. Reciprocal regulatory links between cotranscriptional splicing and chromatin. Semin Cell Dev Biol 2014; 32:2-10. [PMID: 24657193 DOI: 10.1016/j.semcdb.2014.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
Here we review recent findings showing that chromatin organization adds another layer of complexity to the already intricate network of splicing regulatory mechanisms. Chromatin structure can impact splicing by either affecting the elongation rate of RNA polymerase II or by signaling the recruitment of splicing regulatory proteins. The C-terminal domain of the RNA polymerase II largest subunit serves as a coordination platform that binds factors required for adapting chromatin structure to both efficient transcription and processing of the newly synthesized RNA. Reciprocal interconnectivity of steps required for gene activation plays a critical role ensuring efficiency and fidelity of gene expression.
Collapse
Affiliation(s)
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
217
|
Canzio D, Larson A, Narlikar GJ. Mechanisms of functional promiscuity by HP1 proteins. Trends Cell Biol 2014; 24:377-86. [PMID: 24618358 DOI: 10.1016/j.tcb.2014.01.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/03/2023]
Abstract
Heterochromatin protein 1 (HP1) proteins were originally identified as critical components in heterochromatin-mediated gene silencing and are now recognized to play essential roles in several other processes including gene activation. Several eukaryotes possess more than one HP1 paralog. Despite high sequence conservation, the HP1 paralogs achieve diverse functions. Further, in many cases, the same HP1 paralog is implicated in multiple functions. Recent biochemical studies have revealed interesting paralog-specific biophysical differences and unanticipated conformational versatility in HP1 proteins that may account for this functional promiscuity. Here we review these findings and describe a molecular framework that aims to link the conformational flexibility of HP1 proteins observed in vitro with their functional promiscuity observed in vivo.
Collapse
Affiliation(s)
- Daniele Canzio
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Adam Larson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Tetrad Graduate Program, University of California San Francisco, San Francisco, CA 94158, USA
| | - Geeta J Narlikar
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
218
|
McEachern LA, Murphy PR. Chromatin-remodeling factors mediate the balance of sense-antisense transcription at the FGF2 locus. Mol Endocrinol 2014; 28:477-89. [PMID: 24552587 DOI: 10.1210/me.2013-1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antisense transcription is prevalent in mammalian genomes, yet the function of many antisense transcripts remains elusive. We have previously shown that the fibroblast growth factor 2 (FGF2) gene is regulated endogenously by an overlapping antisense gene called Nudix-type motif 6 (NUDT6). However, the molecular mechanisms that determine the balance of FGF2 and NUDT6 transcripts are not yet well understood. Here we demonstrate that there is a strong negative correlation between FGF2 and NUDT6 across 7 different cell lines. Small interfering RNA-mediated knockdown of NUDT6 causes an increase in nascent FGF2 transcripts, including a short FGF2 variant that lacks sequence complementarity with NUDT6, indicating the involvement of transcriptional mechanisms. In support of this, we show that changes in histone acetylation by trichostatin A treatment, histone deacetylase inhibition, or small interfering RNA knockdown of the histone acetyltransferase CSRP2BP, oppositely affect NUDT6 and FGF2 mRNA levels. A significant increase in histone acetylation with trichostatin A treatment was only detected at the genomic region where the 2 genes overlap, suggesting that this may be an important regulatory region for determining the balance of NUDT6 and FGF2. Knockdown of the histone demethylase KDM4A similarly causes a shift in the balance of NUDT6 and FGF2 transcripts. Expression of CSRP2BP and KDM4A correlates positively with NUDT6 expression and negatively with FGF2 expression. The results presented here indicate that histone acetylation and additional chromatin modifiers are important in determining the relative levels of FGF2 and NUDT6 and support a model in which epigenetic remodeling contributes to their relative expression levels.
Collapse
Affiliation(s)
- Lori A McEachern
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | | |
Collapse
|
219
|
Miller JL, Grant PA. The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell Biochem 2014; 61:289-317. [PMID: 23150256 DOI: 10.1007/978-94-007-4525-4_13] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although the field of genetics has grown by leaps and bounds within the last decade due to the completion and availability of the human genome sequence, transcriptional regulation still cannot be explained solely by an individual's DNA sequence. Complex coordination and communication between a plethora of well-conserved chromatin modifying factors are essential for all organisms. Regulation of gene expression depends on histone post translational modifications (HPTMs), DNA methylation, histone variants, remodeling enzymes, and effector proteins that influence the structure and function of chromatin, which affects a broad spectrum of cellular processes such as DNA repair, DNA replication, growth, and proliferation. If mutated or deleted, many of these factors can result in human disease at the level of transcriptional regulation. The common goal of recent studies is to understand disease states at the stage of altered gene expression. Utilizing information gained from new high-throughput techniques and analyses will aid biomedical research in the development of treatments that work at one of the most basic levels of gene expression, chromatin. This chapter will discuss the effects of and mechanism by which histone modifications and DNA methylation affect transcriptional regulation.
Collapse
Affiliation(s)
- Jaime L Miller
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | | |
Collapse
|
220
|
Duong HA, Weitz CJ. Temporal orchestration of repressive chromatin modifiers by circadian clock Period complexes. Nat Struct Mol Biol 2014; 21:126-32. [PMID: 24413057 DOI: 10.1038/nsmb.2746] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 11/25/2013] [Indexed: 12/25/2022]
Abstract
The mammalian circadian clock is built on a molecular feedback loop in which the Period (PER) proteins, acting in a large, poorly understood complex, repress Clock-Bmal1, the transcription factor driving their expression. We found that mouse PER complexes include the histone methyltransferase HP1γ-Suv39h. PER proteins recruited HP1γ-Suv39h to the Per1 and Per2 promoters, and HP1γ-Suv39h proved important for circadian di- and trimethylation of histone H3 Lys9 (H3K9) at the Per1 promoter, feedback repression and clock function. HP1γ-Suv39h was recruited to the Per1 and Per2 promoters ~4 h after recruitment of HDAC1, a PER-associated protein previously implicated in clock function and H3K9 deacetylation at the Per1 promoter. PER complexes containing HDAC1 or HP1γ-Suv39h appeared to be physically separable. Circadian clock negative feedback by the PER complex thus involves dynamic, ordered recruitment of repressive chromatin modifiers to DNA-bound Clock-Bmal1.
Collapse
Affiliation(s)
- Hao A Duong
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles J Weitz
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
221
|
Sigalotti L, Fratta E, Coral S, Maio M. Epigenetic drugs as immunomodulators for combination therapies in solid tumors. Pharmacol Ther 2013; 142:339-50. [PMID: 24384533 DOI: 10.1016/j.pharmthera.2013.12.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 12/14/2022]
Abstract
Continuously improving knowledge of the fine mechanisms regulating cross-talk between immune cells, and of their multi-faceted interactions with cancer cells, has prompted the development of several novel immunotherapeutic strategies for cancer treatment. Among these, modulation of the host's immune system by targeting immunological synapses has shown notable clinical efficacy in different tumor types. Despite this, objective clinical responses and, more importantly, long-term survival are achieved only by a fraction of patients; therefore, identification of the mechanism(s) responsible for the differential effectiveness of immune checkpoint blockade in specific patient populations is an area of intense investigation. Neoplastic cells can activate multiple mechanisms to escape from immune control; among these, epigenetic reprogramming is emerging as a key player. Selected tumor-associated antigens, Human Leukocyte Antigens, and accessory/co-stimulatory molecules required for efficient recognition of neoplastic cells by the immune system have been shown to be epigenetically silenced or down-regulated in cancer. Consistent with the inherent reversibility of epigenetic silencing, "epigenetic" drugs, such as inhibitors of DNA methyltransferases and of histone deacetylases, can restore the functional expression of these down-regulated molecules, thus improving the recognition of cancer cells by both the innate and adaptive immune responses. This review focuses on the immunomodulatory activity of epigenetic drugs and on their proposed clinical use in novel combined chemo-immunotherapeutic regimens for the treatment of solid tumors.
Collapse
Affiliation(s)
- Luca Sigalotti
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico Aviano, National Cancer Institute, Aviano, Italy
| | - Elisabetta Fratta
- Cancer Bioimmunotherapy Unit, Centro di Riferimento Oncologico Aviano, National Cancer Institute, Aviano, Italy
| | - Sandra Coral
- Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy
| | - Michele Maio
- Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, Istituto Toscano Tumori, Siena, Italy.
| |
Collapse
|
222
|
Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov Today 2013; 19:654-60. [PMID: 24269836 DOI: 10.1016/j.drudis.2013.11.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/15/2013] [Accepted: 11/14/2013] [Indexed: 01/22/2023]
Abstract
Lysine acetylation is a reversible post-translational modification (PTM) of cellular proteins and represents an important regulatory switch in signal transduction. Lysine acetylation, in combination with other PTMs, directs the outcomes as well as the activation levels of important signal transduction pathways such as the nuclear factor (NF)-κB pathway. Small molecule modulators of the 'writers' (HATs) and 'erasers' (HDACs) can regulate the NF-κB pathway in a specific manner. This review focuses on the effects of frequently used HAT and HDAC inhibitors on the NF-κB signal transduction pathway and inflammatory responses, and their potential as novel therapeutics.
Collapse
|
223
|
Dozmorov MG, Wren JD, Alarcón-Riquelme ME. Epigenomic elements enriched in the promoters of autoimmunity susceptibility genes. Epigenetics 2013; 9:276-85. [PMID: 24213554 DOI: 10.4161/epi.27021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genome-wide association studies have identified a number of autoimmune disease-susceptibility genes. Whether or not these loci share any regulatory or functional elements, however, is an open question. Finding such common regulators is of considerable research interest in order to define systemic therapeutic targets. The growing amount of experimental genomic annotations, particularly those from the ENCODE project, provide a wealth of opportunities to search for such commonalities. We hypothesized that regulatory commonalities might not only delineate a regulatory landscape predisposing to autoimmune diseases, but also define functional elements distinguishing specific diseases. We further investigated if, and how, disease-specific epigenomic elements can identify novel genes yet to be associated with the diseases. We evaluated transcription factors, histone modifications, and chromatin state data obtained from the ENCODE project for statistically significant over- or under-representation in the promoters of genes associated with Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA), and Systemic Sclerosis (SSc). We identified BATF, BCL11A, IRF4, NFkB, PAX5, and PU.1 as transcription factors over-represented in SLE- and RA-susceptibility gene promoters. H3K4me1 and H3K4me2 epigenomic marks were associated with SLE susceptibility genes, and H3K9me3 was common to both SLE and RA. In contrast to a transcriptionally active signature in SLE and RA, SSc-susceptibility genes were depleted in activating epigenomic elements. Using epigenomic elements enriched in SLE and RA, we identified additional immune and B cell signaling-related genes with the same elements in their promoters. Our analysis suggests common and disease-specific epigenomic elements that may define novel therapeutic targets for controlling aberrant activation of autoimmune susceptibility genes.
Collapse
Affiliation(s)
- Mikhail G Dozmorov
- Oklahoma Medical Research Foundation; Arthritis and Clinical Immunology Research Program; Oklahoma City, OK USA
| | - Jonathan D Wren
- Oklahoma Medical Research Foundation; Arthritis and Clinical Immunology Research Program; Oklahoma City, OK USA; University of Oklahoma Health Sciences Center; Department of Biochemistry and Molecular Biology; Oklahoma City, OK USA
| | - Marta E Alarcón-Riquelme
- Oklahoma Medical Research Foundation; Arthritis and Clinical Immunology Research Program; Oklahoma City, OK USA; GENYO; Centre for Genomics and Oncological Research; Pfizer; University of Granada; Andalusian Regional Government; Granada, Spain
| |
Collapse
|
224
|
Portha B, Fournier A, Kioon MDA, Mezger V, Movassat J. Early environmental factors, alteration of epigenetic marks and metabolic disease susceptibility. Biochimie 2013; 97:1-15. [PMID: 24139903 DOI: 10.1016/j.biochi.2013.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 10/07/2013] [Indexed: 12/11/2022]
Abstract
The environmental conditions that are experienced in early life can profoundly influence human biology and long-term health. Early-life nutrition and stress are among the best documented examples of such conditions because they influence the adult risk of developing metabolic diseases, such as type 2 diabetes mellitus (T2D) and cardiovascular diseases. It is now becoming increasingly accepted that environmental compounds including nutrients can produce changes in the genome activity that in spite of not altering DNA sequence can produce important, stable and transgenerational alterations in the phenotype. Epigenetic changes, in particular DNA methylation and histone acetylation/methylation, provide a 'memory' of developmental plastic responses to early environment and are central to the generation of phenotypes and their stability throughout the life course. Their effects may only become manifest later in life, e.g. in terms of altered responses to environmental challenges.
Collapse
Affiliation(s)
- B Portha
- Université Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS EAC 4413, Bâtiment BUFFON, 5ème étage, 4 Rue Lagroua Weill Hallé, Case 7126, F-75205 Paris Cedex 13, France.
| | - A Fournier
- Univ ParisDiderot, Sorbonne-Paris-Cité, Unité EDC (Epigénétique et Destin Cellulaire), CNRS UMR7216, F-75205 Paris Cedex 13, Paris, France
| | - M D Ah Kioon
- Université Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS EAC 4413, Bâtiment BUFFON, 5ème étage, 4 Rue Lagroua Weill Hallé, Case 7126, F-75205 Paris Cedex 13, France
| | - V Mezger
- Univ ParisDiderot, Sorbonne-Paris-Cité, Unité EDC (Epigénétique et Destin Cellulaire), CNRS UMR7216, F-75205 Paris Cedex 13, Paris, France
| | - J Movassat
- Université Paris-Diderot, Sorbonne-Paris-Cité, Laboratoire B2PE (Biologie et Pathologie du Pancréas Endocrine), Unité BFA (Biologie Fonctionnelle et Adaptive), CNRS EAC 4413, Bâtiment BUFFON, 5ème étage, 4 Rue Lagroua Weill Hallé, Case 7126, F-75205 Paris Cedex 13, France
| |
Collapse
|
225
|
Johnson C, Warmoes MO, Shen X, Locasale JW. Epigenetics and cancer metabolism. Cancer Lett 2013; 356:309-14. [PMID: 24125862 DOI: 10.1016/j.canlet.2013.09.043] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 09/22/2013] [Accepted: 09/30/2013] [Indexed: 12/25/2022]
Abstract
Cancer cells adapt their metabolism to support proliferation and survival. A hallmark of cancer, this alteration is characterized by dysfunctional metabolic enzymes, changes in nutrient availability, tumor microenvironment and oncogenic mutations. Metabolic rewiring in cancer is tightly connected to changes at the epigenetic level. Enzymes that mediate epigenetic status of cells catalyze posttranslational modifications of DNA and histones and influence metabolic gene expression. These enzymes require metabolites that are used as cofactors and substrates to carry out reactions. This interaction of epigenetics and metabolism constitutes a new avenue of cancer biology and could lead to new insights for the development of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Christelle Johnson
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, United States; Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Marc O Warmoes
- Systems Bioinformatics/AIMMS, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands; Department of Medical Oncology, OncoProteomics Laboratory, VU University Medical Center, Amsterdam, The Netherlands
| | - Xiling Shen
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, NY, United States
| | - Jason W Locasale
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
226
|
Julienne H, Zoufir A, Audit B, Arneodo A. Human genome replication proceeds through four chromatin states. PLoS Comput Biol 2013; 9:e1003233. [PMID: 24130466 PMCID: PMC3794905 DOI: 10.1371/journal.pcbi.1003233] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Advances in genomic studies have led to significant progress in understanding the epigenetically controlled interplay between chromatin structure and nuclear functions. Epigenetic modifications were shown to play a key role in transcription regulation and genome activity during development and differentiation or in response to the environment. Paradoxically, the molecular mechanisms that regulate the initiation and the maintenance of the spatio-temporal replication program in higher eukaryotes, and in particular their links to epigenetic modifications, still remain elusive. By integrative analysis of the genome-wide distributions of thirteen epigenetic marks in the human cell line K562, at the 100 kb resolution of corresponding mean replication timing (MRT) data, we identify four major groups of chromatin marks with shared features. These states have different MRT, namely from early to late replicating, replication proceeds though a transcriptionally active euchromatin state (C1), a repressive type of chromatin (C2) associated with polycomb complexes, a silent state (C3) not enriched in any available marks, and a gene poor HP1-associated heterochromatin state (C4). When mapping these chromatin states inside the megabase-sized U-domains (U-shaped MRT profile) covering about 50% of the human genome, we reveal that the associated replication fork polarity gradient corresponds to a directional path across the four chromatin states, from C1 at U-domains borders followed by C2, C3 and C4 at centers. Analysis of the other genome half is consistent with early and late replication loci occurring in separate compartments, the former correspond to gene-rich, high-GC domains of intermingled chromatin states C1 and C2, whereas the latter correspond to gene-poor, low-GC domains of alternating chromatin states C3 and C4 or long C4 domains. This new segmentation sheds a new light on the epigenetic regulation of the spatio-temporal replication program in human and provides a framework for further studies in different cell types, in both health and disease. Previous studies revealed spatially coherent and biological-meaningful chromatin mark combinations in human cells. Here, we analyze thirteen epigenetic mark maps in the human cell line K562 at 100 kb resolution of MRT data. The complexity of epigenetic data is reduced to four chromatin states that display remarkable similarities with those reported in fly, worm and plants. These states have different MRT: (C1) is transcriptionally active, early replicating, enriched in CTCF; (C2) is Polycomb repressed, mid-S replicating; (C3) lacks of marks and replicates late and (C4) is a late-replicating gene-poor HP1 repressed heterochromatin state. When mapping these states inside the 876 replication U-domains of K562, the replication fork polarity gradient observed in these U-domains comes along with a remarkable epigenetic organization from C1 at U-domain borders to C2, C3 and ultimately C4 at centers. The remaining genome half displays early replicating, gene rich and high GC domains of intermingled C1 and C2 states segregating from late replicating, gene poor and low GC domains of concatenated C3 and/or C4 states. This constitutes the first evidence of epigenetic compartmentalization of the human genome into replication domains likely corresponding to autonomous units in the 3D chromatin architecture.
Collapse
Affiliation(s)
- Hanna Julienne
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Azedine Zoufir
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Benjamin Audit
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| | - Alain Arneodo
- Université de Lyon, Lyon, France
- Laboratoire de Physique, CNRS UMR 5672, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
227
|
Zhou HL, Luo G, Wise JA, Lou H. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 2013; 42:701-13. [PMID: 24081581 PMCID: PMC3902899 DOI: 10.1093/nar/gkt875] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The molecular mechanisms through which alternative splicing and histone modifications regulate gene expression are now understood in considerable detail. Here, we discuss recent studies that connect these two previously separate avenues of investigation, beginning with the unexpected discoveries that nucleosomes are preferentially positioned over exons and DNA methylation and certain histone modifications also show exonic enrichment. These findings have profound implications linking chromatin structure, histone modification and splicing regulation. Complementary single gene studies provided insight into the mechanisms through which DNA methylation and histones modifications modulate alternative splicing patterns. Here, we review an emerging theme resulting from these studies: RNA-guided mechanisms integrating chromatin modification and splicing. Several groundbreaking papers reported that small noncoding RNAs affect alternative exon usage by targeting histone methyltransferase complexes to form localized facultative heterochromatin. More recent studies provided evidence that pre-messenger RNA itself can serve as a guide to enable precise alternative splicing regulation via local recruitment of histone-modifying enzymes, and emerging evidence points to a similar role for long noncoding RNAs. An exciting challenge for the future is to understand the impact of local modulation of transcription elongation rates on the dynamic interplay between histone modifications, alternative splicing and other processes occurring on chromatin.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China, Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center and Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | | | | |
Collapse
|
228
|
Majocchi S, Aritonovska E, Mermod N. Epigenetic regulatory elements associate with specific histone modifications to prevent silencing of telomeric genes. Nucleic Acids Res 2013; 42:193-204. [PMID: 24071586 PMCID: PMC3874193 DOI: 10.1093/nar/gkt880] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In eukaryotic cells, transgene expression levels may be limited by an unfavourable chromatin structure at the integration site. Epigenetic regulators are DNA sequences which may protect transgenes from such position effect. We evaluated different epigenetic regulators for their ability to protect transgene expression at telomeres, which are commonly associated to low or inconsistent expression because of their repressive chromatin environment. Although to variable extents, matrix attachment regions (MARs), ubiquitous chromatin opening element (UCOE) and the chicken cHS4 insulator acted as barrier elements, protecting a telomeric-distal transgene from silencing. MARs also increased the probability of silent gene reactivation in time-course experiments. Additionally, all MARs improved the level of expression in non-silenced cells, unlike other elements. MARs were associated to histone marks usually linked to actively expressed genes, especially acetylation of histone H3 and H4, suggesting that they may prevent the spread of silencing chromatin by imposing acetylation marks on nearby nucleosomes. Alternatively, an UCOE was found to act by preventing deposition of repressive chromatin marks. We conclude that epigenetic DNA elements used to enhance and stabilize transgene expression all have specific epigenetic signature that might be at the basis of their mode of action.
Collapse
Affiliation(s)
- Stefano Majocchi
- Laboratory of Molecular Biotechnology, Center for Biotechnology UNIL-EPFL, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
229
|
Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina. Chromosome Res 2013; 21:535-54. [PMID: 23996328 DOI: 10.1007/s10577-013-9375-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/20/2022]
Abstract
To improve light propagation through the retina, the rod nuclei of nocturnal mammals are uniquely changed compared to the nuclei of other cells. In particular, the main classes of chromatin are segregated in them and form regular concentric shells in order; inverted in comparison to conventional nuclei. A broad study of the epigenetic landscape of the inverted and conventional mouse retinal nuclei indicated several differences between them and several features of general interest for the organization of the mammalian nuclei. In difference to nuclei with conventional architecture, the packing density of pericentromeric satellites and LINE-rich chromatin is similar in inverted rod nuclei; euchromatin has a lower packing density in both cases. A high global chromatin condensation in rod nuclei minimizes the structural difference between active and inactive X chromosome homologues. DNA methylation is observed primarily in the chromocenter, Dnmt1 is primarily associated with the euchromatic shell. Heterochromatin proteins HP1-alpha and HP1-beta localize in heterochromatic shells, whereas HP1-gamma is associated with euchromatin. For most of the 25 studied histone modifications, we observed predominant colocalization with a certain main chromatin class. Both inversions in rod nuclei and maintenance of peripheral heterochromatin in conventional nuclei are not affected by a loss or depletion of the major silencing core histone modifications in respective knock-out mice, but for different reasons. Maintenance of peripheral heterochromatin appears to be ensured by redundancy both at the level of enzymes setting the epigenetic code (writers) and the code itself, whereas inversion in rods rely on the absence of the peripheral heterochromatin tethers (absence of code readers).
Collapse
|
230
|
Lim PS, Li J, Holloway AF, Rao S. Epigenetic regulation of inducible gene expression in the immune system. Immunology 2013; 139:285-93. [PMID: 23521628 DOI: 10.1111/imm.12100] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 01/12/2023] Open
Abstract
T cells are exquisitely poised to respond rapidly to pathogens and have proved an instructive model for exploring the regulation of inducible genes. Individual genes respond to antigenic stimulation in different ways, and it has become clear that the interplay between transcription factors and the chromatin platform of individual genes governs these responses. Our understanding of the complexity of the chromatin platform and the epigenetic mechanisms that contribute to transcriptional control has expanded dramatically in recent years. These mechanisms include the presence/absence of histone modification marks, which form an epigenetic signature to mark active or inactive genes. These signatures are dynamically added or removed by epigenetic enzymes, comprising an array of histone-modifying enzymes, including the more recently recognized chromatin-associated signalling kinases. In addition, chromatin-remodelling complexes physically alter the chromatin structure to regulate chromatin accessibility to transcriptional regulatory factors. The advent of genome-wide technologies has enabled characterization of the chromatin landscape of T cells in terms of histone occupancy, histone modification patterns and transcription factor association with specific genomic regulatory regions, generating a picture of the T-cell epigenome. Here, we discuss the multi-layered regulation of inducible gene expression in the immune system, focusing on the interplay between transcription factors, and the T-cell epigenome, including the role played by chromatin remodellers and epigenetic enzymes. We will also use IL2, a key inducible cytokine gene in T cells, as an example of how the different layers of epigenetic mechanisms regulate immune responsive genes during T-cell activation.
Collapse
Affiliation(s)
- Pek Siew Lim
- Discipline of Biomedical Sciences, Faculty of Education, Science, Technology and Mathematics, University of Canberra, Canberra, Australia.
| | | | | | | |
Collapse
|
231
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
232
|
Bomsztyk K, Flanagin S, Mar D, Mikula M, Johnson A, Zager R, Denisenko O. Synchronous recruitment of epigenetic modifiers to endotoxin synergistically activated Tnf-α gene in acute kidney injury. PLoS One 2013; 8:e70322. [PMID: 23936185 PMCID: PMC3728219 DOI: 10.1371/journal.pone.0070322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/18/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND As a consequence of acute kidney injury (AKI), proximal tubular cells hyperrespond to endotoxin (lipopolysaccharide, LPS) by exaggerated renal Tnf-α Production. This LPS hyperresponsiveness is transcriptionally mediated. The epigenetic pathways that control these responses are unknown. METHODS/FINDINGS We applied multiplex chromatin immunoprecipitation platform (Matrix ChIP) to explore epigenetic pathways that underlie endotoxin hyperresponsiveness in the setting of preceding unilateral renal ischemia/reperfusion (I/R) in mouse AKI model. Endotoxin exposure after I/R resulted in enhanced transcription, manifested by hyperresponsive recruitment of RNA polymerase II (Pol II) at the Tnf-α gene. At this locus, LPS but not I/R increased levels of Pol II C-terminal domain (CTD) phosho-serine2 &5 and induced dephosphorylation of the transcription-repressive histone H4 phospho-serine-1. In contrast, I/R but not LPS increased the transcription-permissive histone phosphorylation (H3 phospho-serine-10, H3.3 phospho-serine-31) at the Tnf-α gene. In agreement with these observations, I/R but not LPS increased activity of cognate kinases (Erk1/2, Msk1/2 and Aurora A) at the Tnf-α locus. Cross-talk of histone phosphorylation and acetylation synergize to active gene expression. I/R and LPS increased histone acetylation. (H3K9/14Ac, H4K5/8/12/16Ac, H2KA5Ac, H2BK4/7Ac). Levels of some histone acetyltransferases at this gene (PCAF and MOF) were increased by I/R but not by LPS, while others were induced by either I/R or LPS and exhibited endotoxin hyperresponsive patterns (GCN5, CBP and p300). The adaptor protein 14-3-3 couples histone phosphorylation with acetylation, and tethers chromatin modifiers/transcription elongation factors to target genes. Both I/R and LPS increased levels of 14-3-3 and several chromatin/transcription modifiers (BRD4, BRG1, HP-1γ and IKKα) at the Tnf-α gene, all exhibiting endotoxin hyperresponsive recruitment patterns similar to Pol II. CONCLUSIONS Our results suggest that I/R and LPS differentially trigger phosphorylation (Pol II and histone) and acetylation (histone) epigenetic pathways that interact at the Tnf-α gene to generate endotoxin hyperresponse in AKI.
Collapse
Affiliation(s)
- Karol Bomsztyk
- Department of Medicine, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | | | |
Collapse
|
233
|
Thomas M, Lange-Grünweller K, Hartmann D, Golde L, Schlereth J, Streng D, Aigner A, Grünweller A, Hartmann RK. Analysis of transcriptional regulation of the human miR-17-92 cluster; evidence for involvement of Pim-1. Int J Mol Sci 2013; 14:12273-96. [PMID: 23749113 PMCID: PMC3709785 DOI: 10.3390/ijms140612273] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 01/07/2023] Open
Abstract
The human polycistronic miRNA cluster miR-17-92 is frequently overexpressed in hematopoietic malignancies and cancers. Its transcription is in part controlled by an E2F-regulated host gene promoter. An intronic A/T-rich region directly upstream of the miRNA coding region also contributes to cluster expression. Our deletion analysis of the A/T-rich region revealed a strong dependence on c-Myc binding to the functional E3 site. Yet, constructs lacking the 5′-proximal ~1.3 kb or 3′-distal ~0.1 kb of the 1.5 kb A/T-rich region still retained residual specific promoter activity, suggesting multiple transcription start sites (TSS) in this region. Furthermore, the protooncogenic kinase, Pim-1, its phosphorylation target HP1γ and c-Myc colocalize to the E3 region, as inferred from chromatin immunoprecipitation. Analysis of pri-miR-17-92 expression levels in K562 and HeLa cells revealed that silencing of E2F3, c-Myc or Pim-1 negatively affects cluster expression, with a synergistic effect caused by c-Myc/Pim-1 double knockdown in HeLa cells. Thus, we show, for the first time, that the protooncogene Pim-1 is part of the network that regulates transcription of the human miR-17-92 cluster.
Collapse
Affiliation(s)
- Maren Thomas
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany; E-Mails: (M.T.); (K.L.-G.); (D.H.); (L.G.); (J.S.); (D.S.)
| | - Kerstin Lange-Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany; E-Mails: (M.T.); (K.L.-G.); (D.H.); (L.G.); (J.S.); (D.S.)
| | - Dorothee Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany; E-Mails: (M.T.); (K.L.-G.); (D.H.); (L.G.); (J.S.); (D.S.)
| | - Lara Golde
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany; E-Mails: (M.T.); (K.L.-G.); (D.H.); (L.G.); (J.S.); (D.S.)
| | - Julia Schlereth
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany; E-Mails: (M.T.); (K.L.-G.); (D.H.); (L.G.); (J.S.); (D.S.)
| | - Dennis Streng
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany; E-Mails: (M.T.); (K.L.-G.); (D.H.); (L.G.); (J.S.); (D.S.)
| | - Achim Aigner
- Medizinische Fakultät, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Klinische Pharmakologie, Universität Leipzig, 04107 Leipzig, Germany; E-Mail:
| | - Arnold Grünweller
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany; E-Mails: (M.T.); (K.L.-G.); (D.H.); (L.G.); (J.S.); (D.S.)
- Authors to whom correspondence should be addressed; E-Mails: (A.G.); (R.K.H.); Tel.: +49-6421-28-25553 (R.K.H.); Fax: +49-6421-28-25854 (R.K.H.)
| | - Roland K. Hartmann
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, 35032 Marburg, Germany; E-Mails: (M.T.); (K.L.-G.); (D.H.); (L.G.); (J.S.); (D.S.)
- Authors to whom correspondence should be addressed; E-Mails: (A.G.); (R.K.H.); Tel.: +49-6421-28-25553 (R.K.H.); Fax: +49-6421-28-25854 (R.K.H.)
| |
Collapse
|
234
|
Julienne H, Zoufir A, Audit B, Arneodo A. Epigenetic regulation of the human genome: coherence between promoter activity and large-scale chromatin environment. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.832706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
235
|
Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla MA, Hadi AHA. Gene silencing and Polycomb group proteins: an overview of their structure, mechanisms and phylogenetics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:283-96. [PMID: 23692361 PMCID: PMC3662373 DOI: 10.1089/omi.2012.0105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA methylation, histone modifications, and chromatin configuration are crucially important in the regulation of gene expression. Among these epigenetic mechanisms, silencing the expression of certain genes depending on developmental stage and tissue specificity is a key repressive system in genome programming. Polycomb (Pc) proteins play roles in gene silencing through different mechanisms. These proteins act in complexes and govern the histone methylation profiles of a large number of genes that regulate various cellular pathways. This review focuses on two main Pc complexes, Pc repressive complexes 1 and 2, and their phylogenetic relationship, structures, and function. The dynamic roles of these complexes in silencing will be discussed herein, with a focus on the recruitment of Pc complexes to target genes and the key factors involved in their recruitment.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
236
|
Aune TM, Collins PL, Collier SP, Henderson MA, Chang S. Epigenetic Activation and Silencing of the Gene that Encodes IFN-γ. Front Immunol 2013; 4:112. [PMID: 23720660 PMCID: PMC3655339 DOI: 10.3389/fimmu.2013.00112] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/28/2013] [Indexed: 12/24/2022] Open
Abstract
Transcriptional activation and repression of genes that are developmentally regulated or exhibit cell-type specific expression patterns is largely achieved by modifying the chromatin template at a gene locus. Complex formation of stable epigenetic histone marks, loss or gain of DNA methylation, alterations in chromosome conformation, and specific utilization of both proximal and distal transcriptional enhancers and repressors all contribute to this process. In addition, long non-coding RNAs are a new species of regulatory RNAs that either positively or negatively regulate transcription of target gene loci. IFN-γ is a pro-inflammatory cytokine with critical functions in both innate and adaptive arms of the immune system. This review focuses on our current understanding of how the chromatin template is modified at the IFNG locus during developmental processes leading to its transcriptional activation and silencing.
Collapse
Affiliation(s)
- Thomas M Aune
- Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA ; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine Nashville, TN, USA
| | | | | | | | | |
Collapse
|
237
|
DNA microarray profiling of genes differentially regulated by three heterochromatin protein 1 (HP1) homologs in Drosophila. Biochem Biophys Res Commun 2013; 434:820-8. [DOI: 10.1016/j.bbrc.2013.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/13/2013] [Indexed: 01/24/2023]
|
238
|
Coffey K, Rogerson L, Ryan-Munden C, Alkharaif D, Stockley J, Heer R, Sahadevan K, O’Neill D, Jones D, Darby S, Staller P, Mantilla A, Gaughan L, Robson CN. The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Nucleic Acids Res 2013; 41:4433-46. [PMID: 23435229 PMCID: PMC3632104 DOI: 10.1093/nar/gkt106] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 01/23/2023] Open
Abstract
The androgen receptor (AR) is a key molecule involved in prostate cancer (PC) development and progression. Post-translational modification of the AR by co-regulator proteins can modulate its transcriptional activity. To identify which demethylases might be involved in AR regulation, an siRNA screen was performed to reveal that the demethylase, KDM4B, may be an important co-regulator protein. KDM4B enzymatic activity is required to enhance AR transcriptional activity; however, independently of this activity, KDM4B can enhance AR protein stability via inhibition of AR ubiquitination. Importantly, knockdown of KDM4B in multiple cell lines results in almost complete depletion of AR protein levels. For the first time, we have identified KDM4B to be an androgen-regulated demethylase enzyme, which can influence AR transcriptional activity not only via demethylation activity but also via modulation of ubiquitination. Together, these findings demonstrate the close functional relationship between AR and KDM4B, which work together to amplify the androgen response. Furthermore, KDM4B expression in clinical PC specimens positively correlates with increasing cancer grade (P < 0.001). Consequently, KDM4B is a viable therapeutic target in PC.
Collapse
Affiliation(s)
- Kelly Coffey
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lynsey Rogerson
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Claudia Ryan-Munden
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Dhuha Alkharaif
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jacqueline Stockley
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rakesh Heer
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Kanagasabai Sahadevan
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Daniel O’Neill
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Dominic Jones
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Steven Darby
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Peter Staller
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Alejandra Mantilla
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Luke Gaughan
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Craig N. Robson
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK and Biotech Research and Innovation Centre, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
239
|
Witham J, Ouboussad L, Lefevre PF. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages. PLoS One 2013; 8:e59389. [PMID: 23533622 PMCID: PMC3606415 DOI: 10.1371/journal.pone.0059389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/14/2013] [Indexed: 02/06/2023] Open
Abstract
The transcriptional activation of the chicken lysozyme gene (cLys) by lipopolysaccharide (LPS) in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR) triggering eviction of the CCCTC-binding factor (CTCF) from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE). In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3′ end of the gene.
Collapse
Affiliation(s)
- James Witham
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom
| | - Lylia Ouboussad
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom
| | - Pascal F. Lefevre
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Wellcome Trust Brenner Building, St. James’s University Hospital, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
240
|
Lundberg LE, Stenberg P, Larsson J. HP1a, Su(var)3-9, SETDB1 and POF stimulate or repress gene expression depending on genomic position, gene length and expression pattern in Drosophila melanogaster. Nucleic Acids Res 2013; 41:4481-94. [PMID: 23476027 PMCID: PMC3632140 DOI: 10.1093/nar/gkt158] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Heterochromatin protein 1a (HP1a) is a chromatin-associated protein important for the formation and maintenance of heterochromatin. In Drosophila, the two histone methyltransferases SETDB1 and Su(var)3-9 mediate H3K9 methylation marks that initiates the establishment and spreading of HP1a-enriched chromatin. Although HP1a is generally regarded as a factor that represses gene transcription, several reports have linked HP1a binding to active genes, and in some cases, it has been shown to stimulate transcriptional activity. To clarify the function of HP1a in transcription regulation and its association with Su(var)3-9, SETDB1 and the chromosome 4-specific protein POF, we conducted genome-wide expression studies and combined the results with available binding data in Drosophila melanogaster. The results suggest that HP1a, SETDB1 and Su(var)3-9 repress genes on chromosome 4, where non-ubiquitously expressed genes are preferentially targeted, and stimulate genes in pericentromeric regions. Further, we showed that on chromosome 4, Su(var)3-9, SETDB1 and HP1a target the same genes. In addition, we found that transposons are repressed by HP1a and Su(var)3-9 and that the binding level and expression effects of HP1a are affected by gene length. Our results indicate that genes have adapted to be properly expressed in their local chromatin environment.
Collapse
Affiliation(s)
- Lina E Lundberg
- Department of Molecular Biology, Umeå University, SE-90187 Umeå, Sweden
| | | | | |
Collapse
|
241
|
Hennig W, Weyrich A. Histone modifications in the male germ line of Drosophila. BMC DEVELOPMENTAL BIOLOGY 2013; 13:7. [PMID: 23433182 PMCID: PMC3602674 DOI: 10.1186/1471-213x-13-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 01/31/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND In the male germ line of Drosophila chromatin remains decondensed and highly transcribed during meiotic prophase until it is rapidly compacted. A large proportion of the cell cycle-regulated histone H3.1 is replaced by H3.3, a histone variant encoded outside the histone repeat cluster and not subject to cell cycle controlled expression. RESULTS We investigated histone modification patterns in testes of D. melanogaster and D. hydei. In somatic cells of the testis envelope and in germ cells these modification patterns differ from those typically seen in eu- and heterochromatin of other somatic cells. During the meiotic prophase some modifications expected in active chromatin are not found or are found at low level. The absence of H4K16ac suggests that dosage compensation does not take place. Certain histone modifications correspond to either the cell cycle-regulated histone H3.1 or to the testis-specific variant H3.3. In spermatogonia we found H3K9 methylation in cytoplasmic histones, most likely corresponding to the H3.3 histone variant. Most histone modifications persist throughout the meiotic divisions. The majority of modifications persist until the early spermatid nuclei, and only a minority further persist until the final chromatin compaction stages before individualization of the spermatozoa. CONCLUSION Histone modification patterns in the male germ line differ from expected patterns. They are consistent with an absence of dosage compensation of the X chromosome during the male meiotic prophase. The cell cycle-regulated histone variant H3.1 and H3.3, expressed throughout the cell cycle, also vary in their modification patterns. Postmeiotically, we observed a highly complex pattern of the histone modifications until late spermatid nuclear elongation stages. This may be in part due to postmeiotic transcription and in part to differential histone replacement during chromatin condensation.
Collapse
Affiliation(s)
- Wolfgang Hennig
- DAAD Laboratory, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | |
Collapse
|
242
|
Jeffries AR, Perfect LW, Ledderose J, Schalkwyk LC, Bray NJ, Mill J, Price J. Stochastic choice of allelic expression in human neural stem cells. Stem Cells 2013; 30:1938-47. [PMID: 22714879 DOI: 10.1002/stem.1155] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Monoallelic gene expression, such as genomic imprinting, is well described. Less well-characterized are genes undergoing stochastic monoallelic expression (MA), where specific clones of cells express just one allele at a given locus. We performed genome-wide allelic expression assessment of human clonal neural stem cells derived from cerebral cortex, striatum, and spinal cord, each with differing genotypes. We assayed three separate clonal lines from each donor, distinguishing stochastic MA from genotypic effects. Roughly 2% of genes showed evidence for autosomal MA, and in about half of these, allelic expression was stochastic between different clones. Many of these loci were known neurodevelopmental genes, such as OTX2 and OLIG2. Monoallelic genes also showed increased levels of DNA methylation compared to hypomethylated biallelic loci. Identified monoallelic gene loci showed altered chromatin signatures in fetal brain, suggesting an in vivo correlate of this phenomenon. We conclude that stochastic allelic expression is prevalent in neural stem cells, providing clonal diversity to developing tissues such as the human brain.
Collapse
Affiliation(s)
- Aaron R Jeffries
- King's College London, Institute of Psychiatry, Centre for the Cellular Basis of Behaviour, Department of Neuroscience, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
243
|
Morikawa K, Ikeda N, Hisatome I, Shirayoshi Y. Heterochromatin protein 1γ overexpression in P19 embryonal carcinoma cells elicits spontaneous differentiation into the three germ layers. Biochem Biophys Res Commun 2013; 431:225-31. [PMID: 23313480 DOI: 10.1016/j.bbrc.2012.12.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/30/2012] [Indexed: 11/15/2022]
Abstract
P19 embryonal carcinoma (EC) cells are pluripotent stem cells and have numerous morphological and biochemical properties in common with embryonic stem (ES) cells. However, P19 cells differentiate very ineffectively as embryoid bodies (EBs) without the specific chemical inducers whereas ES cells exhibit spontaneous differentiation to the three germ layers. Recently the heterochromatin protein 1 (HP1) family protein HP1γ, which is an epigenetic modulator that binds histone H3 methylated at lysine 9, is shown to be associated with the progression from pluripotent to differentiated status in ES cells. Therefore, to study the role of HP1γ in the differentiation capacity of P19 cells, we have established a HP1γ-overexpressing P19 cell line (HPlγ-P19). Similar to the parental P19 cells, undifferentiated HP1γ-P19 cells continued to express pluripotency marker genes. However, HP1γ-P19 cells exhibited significant morphological differentiation including beating cardiomyocytes, as well as Tuj1-positive neuronal cells and Sox17-positive endodermal cells after EB formation under a normal culture condition. Moreover, real-time RT-qPCR analysis revealed that HP1γ-P19 EB cells expressed various differentiation marker genes. Thus, HP1γ-P19 cells could give rise to all three germ layers in EBs without any drug treatment. Therefore, HP1γ affects the spontaneous differentiation potential of P19 cells, and might play major roles in the decision of cell fates in pluripotent stem cells.
Collapse
Affiliation(s)
- Kumi Morikawa
- Division of Regenerative Medicine and Therapeutics, Institute of Regenerative Medicine and Biofunction, Tottori University Graduate School of Medical Science, 86 Nishimachi, Yonago, Tottori 683-8503, Japan.
| | | | | | | |
Collapse
|
244
|
Correa F, Ljunggren E, Patil J, Wang X, Hagberg H, Mallard C, Sandberg M. Time-dependent effects of systemic lipopolysaccharide injection on regulators of antioxidant defence Nrf2 and PGC-1α in the neonatal rat brain. Neuroimmunomodulation 2013; 20:185-93. [PMID: 23635713 PMCID: PMC4096332 DOI: 10.1159/000347161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/16/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/AIMS Both excitotoxicity and neuroinflammation are associated with oxidative stress. One transcription factor, nuclear factor E2-related factor 2 (Nrf2), and one transcription cofactor, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), increase the endogenous antioxidant defence and can thus modulate neuronal cell death. Here, we investigated the temporal effects (after 24 and 72 h) of systemic (i.p.) administration of lipopolysaccharide (LPS) on the cerebral Nrf2 and PGC-1α systems. METHODS AND RESULTS Seven-day-old rat pups were injected with LPS (0.3 mg/kg). After 24 h, the protein levels of γ-glutamylcysteine ligase modulatory subunit, γ-glutamylcysteine ligase catalytic subunit, Nrf2, PGC-1α and manganese superoxide dismutase (MnSOD) were increased in parallel with decreased levels of Keap1. These effects were correlated with an increased level of phosphorylated Akt and elevated acetylation of histone 4. In contrast, 72 h following LPS, a decrease in the components of the Nrf2 system in parallel with an increase in Keap1 was observed. The down-regulation after 72 h correlated with phosphorylation of p38 mitogen-activated protein kinase, while there were no changes in PGC-1α and MnSOD protein levels or the acetylation/methylation pattern of histones. CONCLUSION Systemic LPS in neonatal rats induced time-dependent changes in brain Nrf2 and PGC-1α that correlated well with the protective effect observed after 24 h (pre-conditioning) and the deleterious effects observed after 72 h (sensitizing) of systemic LPS reported earlier. Collectively, the results point towards Nrf2 and PGC-1α as a possible mechanism behind these effects.
Collapse
Affiliation(s)
- Fernando Correa
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
245
|
Trembecka-Lucas DO, Szczurek AT, Dobrucki JW. Dynamics of the HP1β-PCNA-containing complexes in DNA replication and repair. Nucleus 2013; 4:74-82. [PMID: 23337132 DOI: 10.4161/nucl.23683] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Heterochromatin protein 1 (HP1), a small non-histone chromosomal protein, was recently shown to form a complex in vivo with Proliferating Cell Nuclear Antigen (PCNA), a key factor in DNA replication. The complex, which requires HP1β in a form of a dimer, is engaged in DNA repair and replication. We now provide further evidence based on FRET-FLIM live cell studies confirming the association and close proximity between HP1β and PCNA in the complex. We also demonstrate using FRAP, that although HP1β-PCNA complexes are highly mobile in nonreplicating nuclei, when engaged in DNA replication, they become bound and do not exchange with the mobile pool. These observations are in agreement with a notion that a subpopulation of HP1 molecules interact with PCNA in vivo during DNA replication. Similarly, HP1β which is associated with PCNA in regions of DNA repair, is bound and does not exchange with the mobile pool, suggesting that HP1β in association with PCNA may be a component of a DNA repair complex.
Collapse
Affiliation(s)
- Dominika O Trembecka-Lucas
- Division of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | | |
Collapse
|
246
|
|
247
|
Ni P, Xu H, Chen C, Wang J, Liu X, Hu Y, Fan Q, Hou Z, Lu Y. Serum starvation induces DRAM expression in liver cancer cells via histone modifications within its promoter locus. PLoS One 2012; 7:e50502. [PMID: 23251372 PMCID: PMC3520922 DOI: 10.1371/journal.pone.0050502] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/24/2012] [Indexed: 12/13/2022] Open
Abstract
DRAM is a lysosomal membrane protein and is critical for p53-mediated autophagy and apoptosis. DRAM has a potential tumor-suppressive function and is downregulated in many human cancers. However, the regulation of DRAM expression is poorly described so far. Here, we demonstrated that serum deprivation strongly induces DRAM expression in liver cancer cells and a core DNA sequence in the DRAM promoter is essential for its responsiveness to serum deprivation. We further observed that euchromatin markers for active transcriptions represented by diacetyl-H3, tetra-acetyl-H4 and the trimethyl-H3K4 at the core promoter region of DRAM gene are apparently increased in a time-dependent manner upon serum deprivation, and concomitantly the dimethyl-H3K9, a herterochromatin marker associated with silenced genes, was time-dependently decreased. Moreover, the chromatin remodeling factor Brg-1 is enriched at the core promoter region of the DRAM gene and is required for serum deprivation induced DRAM expression. These observations lay the ground for further investigation of the DRAM gene expression.
Collapse
Affiliation(s)
- Peihua Ni
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Hong Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Changqiang Chen
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Xiangfan Liu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Yiqun Hu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Qishi Fan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
| | - Zhaoyuan Hou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- * E-mail: (YL); (ZH)
| | - Yang Lu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China
- * E-mail: (YL); (ZH)
| |
Collapse
|
248
|
Choi JD, Park MA, Lee JS. Suppression and recovery of BRCA1-mediated transcription by HP1γ via modulation of promoter occupancy. Nucleic Acids Res 2012; 40:11321-38. [PMID: 23074186 PMCID: PMC3526311 DOI: 10.1093/nar/gks947] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 12/17/2022] Open
Abstract
Heterochromatin protein 1γ (HP1γ) is a chromatin protein involved in gene silencing. Herein, we show that HP1γ interacts with breast cancer type 1 susceptibility protein (BRCA1) and regulates BRCA1-mediated transcription via modulation of promoter occupancy and histone modification. We used several HP1γ mutants and small interfering RNAs for histone methyltransferases to show that BRCA1-HP1γ interaction, but not methylated histone binding, is important in HP1γ repression of BRCA1-mediated transcription. Time-lapse studies on promoter association and histone methylation after DNA damage revealed that HP1γ accumulates at the promoter before DNA damage, but BRCA1 is recruited at the promoter after the damage while promoter-resident HP1γ is disassembled. Importantly, HP1γ assembly recovers after release from the damage in a BRCA1-HP1γ interaction-dependent manner and targets SUV39H1. HP1γ/SUV39H1 restoration at the promoter results in BRCA1 disassembly and histone methylation, after which transcription repression resumes. We propose that through interaction with BRCA1, HP1γ is guided to the BRCA1 target promoter during recovery and functions in the activation-repression switch and recovery from BRCA1-mediated transcription in response to DNA damage.
Collapse
Affiliation(s)
- Jae Duk Choi
- Department of Molecular Science and Technology College of Natural Sciences Ajou University, Suwon, Korea and School of Biological Sciences, Seoul National University, Seoul Korea
| | - Mi Ae Park
- Department of Molecular Science and Technology College of Natural Sciences Ajou University, Suwon, Korea and School of Biological Sciences, Seoul National University, Seoul Korea
| | - Jong-Soo Lee
- Department of Molecular Science and Technology College of Natural Sciences Ajou University, Suwon, Korea and School of Biological Sciences, Seoul National University, Seoul Korea
| |
Collapse
|
249
|
Gracey Maniar LE, Maniar JM, Chen ZY, Lu J, Fire AZ, Kay MA. Minicircle DNA vectors achieve sustained expression reflected by active chromatin and transcriptional level. Mol Ther 2012. [PMID: 23183534 DOI: 10.1038/mt.2012.244] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Current efforts in nonviral gene therapy are plagued by a pervasive difficulty in sustaining therapeutic levels of delivered transgenes. Minicircles (plasmid derivatives with the same expression cassette but lacking a bacterial backbone) show sustained expression and hold promise for therapeutic use where persistent transgene expression is required. To characterize the widely-observed silencing process affecting expression of foreign DNA in mammals, we used a system in which mouse liver presented with either plasmid or minicircle consistently silences plasmid but not minicircle expression. We found that preferential silencing of plasmid DNA occurs at a nuclear stage that precedes transport of mRNA to the cytoplasm, evident from a consistent >25-fold minicircle/plasmid transcript difference observed in both nuclear and total RNA. Among possible mechanisms of nuclear silencing, our data favor chromatin-linked transcriptional blockage rather than targeted degradation, aberrant processing, or compromised mRNA transport. In particular, we observe dramatic enrichment of H3K27 trimethylation on plasmid sequences. Also, it appears that Pol II can engage the modified plasmid chromatin, potentially in a manner that is not productive in the synthesis of high levels of new transcript. We outline a scenario in which sustained differences at the chromatin level cooperate to determine the activity of foreign DNA.
Collapse
Affiliation(s)
- Lia E Gracey Maniar
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
250
|
Yun J, Johnson JL, Hanigan CL, Locasale JW. Interactions between epigenetics and metabolism in cancers. Front Oncol 2012; 2:163. [PMID: 23162793 PMCID: PMC3498627 DOI: 10.3389/fonc.2012.00163] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/24/2012] [Indexed: 12/31/2022] Open
Abstract
Cancer progression is accompanied by widespread transcriptional changes and metabolic alterations. While it is widely accepted that the origin of cancer can be traced to the mutations that accumulate over time, relatively recent evidence favors a similarly fundamental role for alterations in the epigenome during tumorigenesis. Changes in epigenetics that arise from post-translational modifications of histones and DNA are exploited by cancer cells to upregulate and/or downregulate the expression levels of oncogenes and tumor suppressors, respectively. Although the mechanisms behind these modifications, in particular how they lead to gene silencing and activation, are still being understood, most of the enzymatic machinery of epigenetics require metabolites as substrates or cofactors. As a result, their activities can be influenced by the metabolic state of the cell. The purpose of this review is to give an overview of cancer epigenetics and metabolism and provide examples of where they converge.
Collapse
Affiliation(s)
- Jihye Yun
- Department of Systems Biology, Harvard Medical School Boston, MA, USA
| | | | | | | |
Collapse
|