201
|
Chatenay-Lapointe M, Shadel GS. Repression of mitochondrial translation, respiration and a metabolic cycle-regulated gene, SLF1, by the yeast Pumilio-family protein Puf3p. PLoS One 2011; 6:e20441. [PMID: 21655263 PMCID: PMC3105058 DOI: 10.1371/journal.pone.0020441] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/26/2011] [Indexed: 11/25/2022] Open
Abstract
Synthesis and assembly of the mitochondrial oxidative phosphorylation (OXPHOS) system requires genes located both in the nuclear and mitochondrial genomes, but how gene expression is coordinated between these two compartments is not fully understood. One level of control is through regulated expression mitochondrial ribosomal proteins and other factors required for mitochondrial translation and OXPHOS assembly, which are all products of nuclear genes that are subsequently imported into mitochondria. Interestingly, this cadre of genes in budding yeast has in common a 3′-UTR element that is bound by the Pumilio family protein, Puf3p, and is coordinately regulated under many conditions, including during the yeast metabolic cycle. Multiple functions have been assigned to Puf3p, including promoting mRNA degradation, localizing nucleus-encoded mitochondrial transcripts to the outer mitochondrial membrane, and facilitating mitochondria-cytoskeletal interactions and motility. Here we show that Puf3p has a general repressive effect on mitochondrial OXPHOS abundance, translation, and respiration that does not involve changes in overall mitochondrial biogenesis and largely independent of TORC1-mitochondrial signaling. We also identified the cytoplasmic translation factor Slf1p as yeast metabolic cycle-regulated gene that is repressed by Puf3p at the post-transcriptional level and promotes respiration and extension of yeast chronological life span when over-expressed. Altogether, these results should facilitate future studies on which of the many functions of Puf3p is most relevant for regulating mitochondrial gene expression and the role of nuclear-mitochondrial communication in aging and longevity.
Collapse
Affiliation(s)
- Marc Chatenay-Lapointe
- Department of Pathology, Yale University School of Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
202
|
Abstract
The innate immune system has a key role in the mammalian immune response. Recent research has demonstrated that mitochondria participate in a broad range of innate immune pathways, functioning as signalling platforms and contributing to effector responses. In addition to regulating antiviral signalling, mounting evidence suggests that mitochondria facilitate antibacterial immunity by generating reactive oxygen species and contribute to innate immune activation following cellular damage and stress. Therefore, in addition to their well-appreciated roles in cellular metabolism and programmed cell death, mitochondria appear to function as centrally positioned hubs in the innate immune system. Here, we review the emerging knowledge about the roles of mitochondria in innate immunity.
Collapse
Affiliation(s)
- A Phillip West
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
203
|
Minczuk M, He J, Duch AM, Ettema TJ, Chlebowski A, Dzionek K, Nijtmans LGJ, Huynen MA, Holt IJ. TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res 2011; 39:4284-99. [PMID: 21278163 PMCID: PMC3105396 DOI: 10.1093/nar/gkq1224] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 11/14/2022] Open
Abstract
Here we show that c17orf42, hereafter TEFM (transcription elongation factor of mitochondria), makes a critical contribution to mitochondrial transcription. Inactivation of TEFM in cells by RNA interference results in respiratory incompetence owing to decreased levels of H- and L-strand promoter-distal mitochondrial transcripts. Affinity purification of TEFM from human mitochondria yielded a complex comprising mitochondrial transcripts, mitochondrial RNA polymerase (POLRMT), pentatricopeptide repeat domain 3 protein (PTCD3), and a putative DEAD-box RNA helicase, DHX30. After RNase treatment only POLRMT remained associated with TEFM, and in human cultured cells TEFM formed foci coincident with newly synthesized mitochondrial RNA. Based on deletion mutants, TEFM interacts with the catalytic region of POLRMT, and in vitro TEFM enhanced POLRMT processivity on ss- and dsDNA templates. TEFM contains two HhH motifs and a Ribonuclease H fold, similar to the nuclear transcription elongation regulator Spt6. These findings lead us to propose that TEFM is a mitochondrial transcription elongation factor.
Collapse
Affiliation(s)
- Michal Minczuk
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK, Center for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre CMBI 260 Box 9101, Nijmegen 6500 HB, The Netherlands, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland and Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Jiuya He
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK, Center for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre CMBI 260 Box 9101, Nijmegen 6500 HB, The Netherlands, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland and Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Anna M. Duch
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK, Center for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre CMBI 260 Box 9101, Nijmegen 6500 HB, The Netherlands, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland and Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Thijs J. Ettema
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK, Center for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre CMBI 260 Box 9101, Nijmegen 6500 HB, The Netherlands, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland and Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Aleksander Chlebowski
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK, Center for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre CMBI 260 Box 9101, Nijmegen 6500 HB, The Netherlands, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland and Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Karol Dzionek
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK, Center for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre CMBI 260 Box 9101, Nijmegen 6500 HB, The Netherlands, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland and Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Leo G. J. Nijtmans
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK, Center for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre CMBI 260 Box 9101, Nijmegen 6500 HB, The Netherlands, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland and Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Martijn A. Huynen
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK, Center for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre CMBI 260 Box 9101, Nijmegen 6500 HB, The Netherlands, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland and Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Ian J. Holt
- MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK, Center for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre CMBI 260 Box 9101, Nijmegen 6500 HB, The Netherlands, Institute of Genetics and Biotechnology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland and Department of Paediatrics, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
204
|
Han B, Izumi H, Yasuniwa Y, Akiyama M, Yamaguchi T, Fujimoto N, Matsumoto T, Wu B, Tanimoto A, Sasaguri Y, Kohno K. Human mitochondrial transcription factor A functions in both nuclei and mitochondria and regulates cancer cell growth. Biochem Biophys Res Commun 2011; 408:45-51. [PMID: 21453679 DOI: 10.1016/j.bbrc.2011.03.114] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 10/18/2022]
Abstract
Mitochondrial transcription factor A (mtTFA) is one of the high mobility group protein family and is required for both transcription from and maintenance of mitochondrial genomes. However, the roles of mtTFA have not been extensively studied in cancer cells. Here, we firstly reported the nuclear localization of mtTFA. The proportion of nuclear-localized mtTFA varied among different cancer cells. Some mtTFA binds tightly to the nuclear chromatin. DNA microarray and chromatin immunoprecipitation assays showed that mtTFA can regulate the expression of nuclear genes. Overexpression of mtTFA enhanced the growth of cancer cell lines, whereas downregulation of mtTFA inhibited their growth by regulating mtTFA target genes, such as baculoviral IAP repeat-containing 5 (BIRC5; also known as survivin). Knockdown of mtTFA expression induced p21-dependent G1 cell cycle arrest. These results imply that mtTFA functions in both nuclei and mitochondria to promote cell growth.
Collapse
Affiliation(s)
- Bin Han
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan. ; Department of Urology, School of Medicine, University of Occupational and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Jiang H, Sun W, Wang Z, Zhang J, Chen D, Murchie AIH. Identification and characterization of the mitochondrial RNA polymerase and transcription factor in the fission yeast Schizosaccharomyces pombe. Nucleic Acids Res 2011; 39:5119-30. [PMID: 21357609 PMCID: PMC3130274 DOI: 10.1093/nar/gkr103] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have characterized the mitochondrial transcription factor (Mtf1) and RNA polymerase (Rpo41) of Schizosaccharomyces pombe. Deletion mutants show Mtf1 or Rpo41 to be essential for cell growth, cell morphology and mitochondrial membrane potential. Overexpression of Mtf1 and Rpo41 can induce mitochondrial transcription. Mtf1 and Rpo41 can bind and transcribe mitochondrial promoters in vitro and the initiating nucleotides were the same in vivo and in vitro. Mtf1 is required for efficient transcription. We discuss the functional differences between Mtf1 and Rpo41 of S. pombe with Saccharomyces cerevisiae and higher organisms. In contrast to S. cerevisiae, the established model for mitochondrial transcription, S. pombe, a petite-negative yeast, resembles higher organisms that cannot tolerate the loss of mitochondrial function. The S. pombe and human mitochondrial genomes are similar in size and much smaller than that of S. cerevisiae. This is an important first step in the development of S. pombe as an alternative and complementary model system for molecular genetic and biochemical studies of mitochondrial transcription and mitochondrial–nuclear interactions. This is the first systematic study of the cellular function and biochemistry of Rpo41 and Mtf1 in S. pombe.
Collapse
Affiliation(s)
- Hengyi Jiang
- School of Pharmacy, Fudan University, Zhang Heng Road 826, Pudong, Postcode 201203, Shanghai, China
| | | | | | | | | | | |
Collapse
|
206
|
Landerer E, Villegas J, Burzio VA, Oliveira L, Villota C, Lopez C, Restovic F, Martinez R, Castillo O, Burzio LO. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells. Cell Oncol (Dordr) 2011; 34:297-305. [PMID: 21347712 DOI: 10.1007/s13402-011-0018-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND We have previously shown a differential expression of a family of mitochondrial ncRNAs in normal and cancer cells. Normal proliferating cells and cancer cells express the sense mitochondrial ncRNA (SncmtRNA). In addition, while normal proliferating cells express two antisense mitochondrial ncRNAs (ASncmtRNAs-1 and -2), these transcripts seem to be universally down-regulated in cancer cells. In situ hybridization (ISH) of some normal and cancer tissues reveals nuclear localization of these transcripts suggesting that they are exported from mitochondria. METHODS FISH and confocal microscopy, in situ digestion with RNase previous to ISH and electron microscopy ISH was employed to confirm the extra-mitochondrial localization of the SncmtRNA and the ASncmtRNAs in normal proliferating and cancer cells of human and mouse. RESULTS In normal human kidney and mouse testis the SncmtRNA and the ASncmtRNAs were found outside the organelle and especially localized in the nucleus associated to heterochromatin. In cancer cells, only the SncmtRNA was expressed and was found associated to heterochromatin and nucleoli. CONCLUSION The ubiquitous localization of these mitochondrial transcripts in the nucleus suggests that they are new players in the mitochondrial-nuclear communication pathway or retrograde signaling. Down regulation of the ASncmtRNAs seems to be an important step on neoplastic transformation and cancer progression.
Collapse
|
207
|
Sun W, Wang Z, Jiang H, Zhang J, Bähler J, Chen D, Murchie AIH. A novel function of the mitochondrial transcription factor Mtf1 in fission yeast; Mtf1 regulates the nuclear transcription of srk1. Nucleic Acids Res 2010; 39:2690-700. [PMID: 21138961 PMCID: PMC3074130 DOI: 10.1093/nar/gkq1179] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In eukaryotic cells, Mtf1 and its homologues function as mitochondrial transcription factors for the mitochondrial RNA polymerase in the mitochondrion. Here we show that in fission yeast Mtf1 exerts a non-mitochondrial function as a nuclear factor that regulates transcription of srk1, which is a kinase involved in the stress response and cell cycle progression. We first found Mtf1 expression in the nucleus. A ChIP-chip approach identified srk1 as a putative Mtf1 target gene. Over expression of Mtf1 induced transcription of the srk1 gene and Mtf1 deletion led to a reduction in transcription of the srk1 gene in vivo. Mtf1 overexpression causes cell elongation in a srk1 dependent manner. Mtf1 overexpression can cause cytoplasmic accumulation of Cdc25. We also provide biochemical evidence that Mtf1 binds to the upstream sequence of srk1. This is the first evidence that a mitochondrial transcription factor Mtf1 can regulate a nuclear gene. Mtf1 may also have a role in cell cycle progression.
Collapse
Affiliation(s)
- Wenxia Sun
- Institute of Biomedical Science, Fudan University, Yi Xue Yuan Road 138, 200032 Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
208
|
Francione LM, Annesley SJ, Carilla-Latorre S, Escalante R, Fisher PR. The Dictyostelium model for mitochondrial disease. Semin Cell Dev Biol 2010; 22:120-30. [PMID: 21129494 DOI: 10.1016/j.semcdb.2010.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 11/19/2010] [Accepted: 11/24/2010] [Indexed: 12/31/2022]
Abstract
Mitochondrial diseases are a diverse family of genetic disorders caused by mutations affecting mitochondrial proteins encoded in either the nuclear or the mitochondrial genome. By impairing mitochondrial oxidative phosphorylation, they compromise cellular energy production and the downstream consequences in humans are a bewilderingly complex array of signs and symptoms that can affect any of the major organ systems in unpredictable combinations. This complexity and unpredictability has limited our understanding of the cytopathological consequences of mitochondrial dysfunction. By contrast, in Dictyostelium the mitochondrial disease phenotypes are consistent, measurable "readouts" of dysregulated intracellular signalling pathways. When the underlying genetic defects would produce coordinate, generalized deficiencies in multiple mitochondrial respiratory complexes, the disease phenotypes are mediated by chronic activation of an energy-sensing protein kinase, AMP-activated protein kinase (AMPK). This chronic AMPK hyperactivity maintains mitochondrial mass and cellular ATP concentrations at normal levels, but chronically impairs growth, cell cycle progression, multicellular development, photosensory and thermosensory signal transduction. It also causes the cells to support greater proliferation of the intracellular bacterial pathogen, Legionella pneumophila. Notably however, phagocytic and macropinocytic nutrient uptake are impervious both to AMPK signalling and to these types of mitochondrial dysfunction. Surprisingly, a Complex I-specific deficiency (midA knockout) not only causes the foregoing AMPK-mediated defects, but also produces a dramatic deficit in endocytic nutrient uptake accompanied by an additional secondary defect in growth. More restricted and specific phenotypic outcomes are produced by knocking out genes for nuclear-encoded mitochondrial proteins that are not required for respiration. The Dictyostelium model for mitochondrial disease has thus revealed consistent patterns of sublethal dysregulation of intracellular signalling pathways that are produced by different types of underlying mitochondrial dysfunction.
Collapse
|
209
|
Chueh FY, Leong KF, Yu CL. Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells. Biochem Biophys Res Commun 2010; 402:778-83. [PMID: 21036145 PMCID: PMC3032423 DOI: 10.1016/j.bbrc.2010.10.112] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/24/2010] [Indexed: 01/07/2023]
Abstract
Signal transducers and activators of transcription (STATs) were first identified as key signaling molecules in response to cytokines. Constitutive STAT activation also has been widely implicated in oncogenesis. We analyzed STAT5-associated proteins in a leukemic T cell line LSTRA, which exhibits constitutive tyrosine phosphorylation and activation of STAT5. A cellular protein was found to specifically interact with STAT5 in LSTRA cells by co-immunoprecipitation. Sequencing analysis and subsequent immunoblotting confirmed the identity of this STAT5-associated protein as the E2 component of mitochondrial pyruvate dehydrogenase complex (PDC-E2). Consistent with this interaction, both subcellular fractionation and immunofluorescence microscopy revealed mitochondrial localization of STAT5 in LSTRA cells. Mitochondrial localization of tyrosine-phosphorylated STAT5 also occurred in cytokine-stimulated cells. A time course experiment further demonstrated the transient kinetics of STAT5 mitochondrial translocation after cytokine stimulation. In contrast, cytokine-induced STAT1 and STAT3 activation did not result in their translocation into mitochondria. Furthermore, we showed that mitochondrial STAT5 bound to the D-loop regulatory region of mitochondrial DNA in vitro. It suggests a potential role of STAT5 in regulating the mitochondrial genome. Proliferative metabolism toward aerobic glycolysis is well known in cancer cells as the Warburg effect and is also observed in cytokine-stimulated cells. Our novel findings of cytokine-induced STAT5 translocation into mitochondria and its link to oncogenesis provide important insights into the underlying mechanisms of this characteristic metabolic shift.
Collapse
Affiliation(s)
- Fu-Yu Chueh
- Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - King-Fu Leong
- Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Chao-Lan Yu
- Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
210
|
Abstract
Human tyrosyl-DNA phosphodiesterase (TDP1) hydrolyzes the phosphodiester bond at a DNA 3'-end linked to a tyrosyl moiety and has been implicated in the repair of topoisomerase I (Top1)-DNA covalent complexes. TDP1 can also hydrolyze other 3'-end DNA alterations including 3'-phosphoglycolate and 3'-abasic sites, and exhibits 3'-nucleosidase activity indicating it may function as a general 3'-end-processing DNA repair enzyme. Here, using laser confocal microscopy, subcellular fractionation and biochemical analyses we demonstrate that a fraction of the TDP1 encoded by the nuclear TDP1 gene localizes to mitochondria. We also show that mitochondrial base excision repair depends on TDP1 activity and provide evidence that TDP1 is required for efficient repair of oxidative damage in mitochondrial DNA. Together, our findings provide evidence for TDP1 as a novel mitochondrial enzyme.
Collapse
|
211
|
Yao Y, Wang G, Li Z, Yan B, Guo Y, Jiang X, Xi Z. Mitochondrially localized EGFR is independent of its endocytosis and associates with cell viability. Acta Biochim Biophys Sin (Shanghai) 2010; 42:763-70. [PMID: 20929928 DOI: 10.1093/abbs/gmq090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The molecular mechanism underlying epidermal growth factor receptor (EGFR) localization in mitochondria remains largely unknown. Using immune electron microscopy, we validated that EGFR could be localized on either the outer or the inner membrane of mitochondria. Mutant receptor lacked amino acids 646-660 was flawed in migration onto the organelles, whereas the mutated receptor with a defective endocytosis showed a greater capability of moving onto mitochondria upon stimulation of epidermal growth factor (EGF). Gefitinib, an inhibitor of EGFR kinase, inhibited the receptor endocytosis after short time of treatment, yet, only reduced cell viability as well as the amount of mitochondrial EGFR after longer time of exposure. Moreover, the content of mitochondrial EGFR transfer was decreased when the cells were exposed to the apoptotic inducer etoposide. EGF-induced programmed cell death usually coincided with a decline in mitochondrial EGFR. These data indicated that the mitochondrial-localized EGFR is independent of its internalization and may be correlated with cell survival and participate in the ligand-induced programmed cell death.
Collapse
Affiliation(s)
- Yuan Yao
- Beijing JiShuiTan Hospital, Clinical Medical College of Peking University, China
| | | | | | | | | | | | | |
Collapse
|
212
|
Cline SD, Lodeiro MF, Marnett LJ, Cameron CE, Arnold JJ. Arrest of human mitochondrial RNA polymerase transcription by the biological aldehyde adduct of DNA, M1dG. Nucleic Acids Res 2010; 38:7546-57. [PMID: 20671026 PMCID: PMC2995074 DOI: 10.1093/nar/gkq656] [Citation(s) in RCA: 205] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/10/2010] [Accepted: 07/12/2010] [Indexed: 11/14/2022] Open
Abstract
The biological aldehydes, malondialdehyde and base propenal, react with DNA to form a prevalent guanine adduct, M(1)dG. The exocyclic ring of M(1)dG opens to the acyclic N(2)-OPdG structure when paired with C but remains closed in single-stranded DNA or when mispaired with T. M(1)dG is a target of nucleotide excision repair (NER); however, NER is absent in mitochondria. An in vitro transcription system with purified human mitochondrial RNA polymerase (POLRMT) and transcription factors, mtTFA and mtTFB2, was used to determine the effect of M(1)dG on POLRMT elongation. DNA templates contained a single adduct opposite either C or T downstream of either the light-strand (LSP) or heavy-strand (HSP1) promoter for POLRMT. M(1)dG in the transcribed strand arrested 60-90% POLRMT elongation complexes with greater arrest by the adduct when opposite T. POLRMT was more sensitive to N(2)-OPdG and M(1)dG after initiation at LSP, which suggests promoter-specific differences in the function of POLRMT complexes. A closed-ring analog of M(1)dG, PdG, blocked ≥95% of transcripts originating from either promoter regardless of base pairing, and the transcripts remained associated with POLRMT complexes after stalling at the adduct. This work suggests that persistent M(1)dG adducts in mitochondrial DNA hinder the transcription of mitochondrial genes.
Collapse
Affiliation(s)
- Susan D Cline
- Division of Basic Medical Sciences, Mercer University School of Medicine, Mercer, GA 31207, USA.
| | | | | | | | | |
Collapse
|
213
|
Verge B, Alonso Y, Valero J, Miralles C, Vilella E, Martorell L. Mitochondrial DNA (mtDNA) and schizophrenia. Eur Psychiatry 2010; 26:45-56. [PMID: 20980130 DOI: 10.1016/j.eurpsy.2010.08.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/17/2010] [Accepted: 08/22/2010] [Indexed: 11/16/2022] Open
Abstract
The poorly understood aetiology of schizophrenia is known to involve a major genetic contribution even though the genetic factors remain elusive. Most genetic studies are based on Mendelian rules and focus on the nuclear genome, but current studies indicate that other genetic mechanisms are probably involved. This review focuses on mitochondrial DNA (mtDNA), a maternally inherited, 16.6-Kb molecule crucial for energy production that is implicated in numerous human traits and disorders. The aim of this review is to summarise the studies that have explored mtDNA in schizophrenia patients and those which provide evidence for its implication in this illness. Alterations in mitochondrial morphometry, brain energy metabolism, and enzymatic activity in the mitochondrial respiratory chain suggest a mitochondrial dysfunction in schizophrenia that could be related to the genetic characteristics of mtDNA. Moreover, evidence of maternal inheritance and the presence of schizophrenia symptoms in patients suffering from a mitochondrial disorder related to an mtDNA mutation suggest that mtDNA is involved in schizophrenia. The association of specific variants has been reported at the molecular level; however, additional studies are needed to determine whether the mitochondrial genome is involved in schizophrenia.
Collapse
Affiliation(s)
- B Verge
- Unitat de Psiquiatria, Facultat de Medicina i Ciències de la Salut, Hospital Psiquiàtric, Universitari Institut Pere Mata, IISPV, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Reus, Spain
| | | | | | | | | | | |
Collapse
|
214
|
Pereira F, Carneiro J, Matthiesen R, van Asch B, Pinto N, Gusmão L, Amorim A. Identification of species by multiplex analysis of variable-length sequences. Nucleic Acids Res 2010; 38:e203. [PMID: 20923781 PMCID: PMC3001097 DOI: 10.1093/nar/gkq865] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The quest for a universal and efficient method of identifying species has been a longstanding challenge in biology. Here, we show that accurate identification of species in all domains of life can be accomplished by multiplex analysis of variable-length sequences containing multiple insertion/deletion variants. The new method, called SPInDel, is able to discriminate 93.3% of eukaryotic species from 18 taxonomic groups. We also demonstrate that the identification of prokaryotic and viral species with numeric profiles of fragment lengths is generally straightforward. A computational platform is presented to facilitate the planning of projects and includes a large data set with nearly 1800 numeric profiles for species in all domains of life (1556 for eukaryotes, 105 for prokaryotes and 130 for viruses). Finally, a SPInDel profiling kit for discrimination of 10 mammalian species was successfully validated on highly processed food products with species mixtures and proved to be easily adaptable to multiple screening procedures routinely used in molecular biology laboratories. These results suggest that SPInDel is a reliable and cost-effective method for broad-spectrum species identification that is appropriate for use in suboptimal samples and is amenable to different high-throughput genotyping platforms without the need for DNA sequencing.
Collapse
Affiliation(s)
- Filipe Pereira
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), R. Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
215
|
Wang G, Chen HW, Oktay Y, Zhang J, Allen EL, Smith GM, Fan KC, Hong JS, French SW, McCaffery JM, Lightowlers RN, Morse HC, Koehler CM, Teitell MA. PNPASE regulates RNA import into mitochondria. Cell 2010; 142:456-67. [PMID: 20691904 PMCID: PMC2921675 DOI: 10.1016/j.cell.2010.06.035] [Citation(s) in RCA: 289] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/20/2010] [Accepted: 05/13/2010] [Indexed: 02/04/2023]
Abstract
RNA import into mammalian mitochondria is considered essential for replication, transcription, and translation of the mitochondrial genome but the pathway(s) and factors that control this import are poorly understood. Previously, we localized polynucleotide phosphorylase (PNPASE), a 3' --> 5' exoribonuclease and poly-A polymerase, in the mitochondrial intermembrane space, a location lacking resident RNAs. Here, we show a new role for PNPASE in regulating the import of nuclear-encoded RNAs into the mitochondrial matrix. PNPASE reduction impaired mitochondrial RNA processing and polycistronic transcripts accumulated. Augmented import of RNase P, 5S rRNA, and MRP RNAs depended on PNPASE expression and PNPASE-imported RNA interactions were identified. PNPASE RNA processing and import activities were separable and a mitochondrial RNA targeting signal was isolated that enabled RNA import in a PNPASE-dependent manner. Combined, these data strongly support an unanticipated role for PNPASE in mediating the translocation of RNAs into mitochondria.
Collapse
Affiliation(s)
- Geng Wang
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095
| | - Hsiao-Wen Chen
- Center for Molecular and Mitochondrial Medicine and Genetics, University of California at Irvine, Irvine, CA 92697
| | - Yavuz Oktay
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095
| | - Jin Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Eric L. Allen
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Geoffrey M. Smith
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Kelly C. Fan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Jason S. Hong
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Samuel W. French
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - J. Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | - Robert N. Lightowlers
- Mitochondrial Research Group, Institute for Ageing and Health, Newcastle University, Newcastle upon the Tyne, UK
| | - Herbert C. Morse
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Carla M. Koehler
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095
| | - Michael A. Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California at Los Angeles, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, Broad Stem Cell Research Center, California NanoSystems Institute, and Center for Cell Control, University of California at Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
216
|
Core human mitochondrial transcription apparatus is a regulated two-component system in vitro. Proc Natl Acad Sci U S A 2010; 107:12133-8. [PMID: 20562347 DOI: 10.1073/pnas.0910581107] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The core human mitochondrial transcription apparatus is currently regarded as an obligate three-component system comprising the bacteriophage T7-related mitochondrial RNA polymerase, the rRNA methyltransferase-related transcription factor, h-mtTFB2, and the high mobility group box transcription/DNA-packaging factor, h-mtTFA/TFAM. Using a faithful recombinant human mitochondrial transcription system from Escherichia coli, we demonstrate that specific initiation from the mtDNA promoters, LSP and HSP1, only requires mitochondrial RNA polymerase and h-mtTFB2 in vitro. When h-mtTFA is added to these basal components, LSP exhibits a much lower threshold for activation and a larger amplitude response than HSP1. In addition, when LSP and HSP1 are together on the same transcription template, h-mtTFA-independent transcription from HSP1 and h-mtTFA-dependent transcription from both promoters is enhanced and a higher concentration of h-mtTFA is required to stimulate HSP1. Promoter competition experiments revealed that, in addition to LSP competing transcription components away from HSP1, additional cis-acting signals are involved in these aspects of promoter regulation. Based on these results, we speculate that the human mitochondrial transcription system may have evolved to differentially regulate transcription initiation and transcription-primed mtDNA replication in response to the amount of h-mtTFA associated with nucleoids, which could begin to explain the heterogeneity of nucleoid structure and activity in vivo. Furthermore, this study sheds new light on the evolution of mitochondrial transcription components by showing that the human system is a regulated two-component system in vitro, and thus more akin to that of budding yeast than thought previously.
Collapse
|
217
|
Van Dang C, McMahon SB. Emerging Concepts in the Analysis of Transcriptional Targets of the MYC Oncoprotein: Are the Targets Targetable? Genes Cancer 2010; 1:560-567. [PMID: 21533016 PMCID: PMC3083113 DOI: 10.1177/1947601910379011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activation of the MYC oncoprotein is among the most ubiquitous events in human cancer. MYC functions in part as a sequence-specific regulator of transcription. Although early searches for direct downstream target genes that explain MYC's potent biological activity were met with enthusiasm, the postgenomic decade has brought the realization that MYC regulates the transcription of not just a manageably small handful of target genes but instead up to 15% of all active loci. As the dust has begun to settle, two important concepts have emerged that reignite hope that understanding MYC's downstream targets might still prove valuable for defining critical nodes for therapeutic intervention in cancer patients. First, it is now clear that MYC target genes are not a random sampling of the cellular transcriptome but instead fall into specific, critical biochemical pathways such as metabolism, chromatin structure, and protein translation. In retrospect, we should not have been surprised to discover that MYC rewires cell physiology in a manner designed to provide the tumor cell with greater biosynthetic properties. However, the specific details that have emerged from these studies are likely to guide the development of new clinical tools and strategies. This raises the second concept that instills renewed optimism regarding MYC target genes. It is now clear that not all MYC target genes are of equal functional relevance. Thus, it may be possible to discern, from among the thousands of potential MYC target genes, those whose inhibition will truly debilitate the tumor cell. In short, targeting the targets may ultimately be a realistic approach after all.
Collapse
Affiliation(s)
- Chi Van Dang
- Kimmel Cancer Center, Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | |
Collapse
|
218
|
Shutt TE, Shadel GS. A compendium of human mitochondrial gene expression machinery with links to disease. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:360-79. [PMID: 20544879 PMCID: PMC2886302 DOI: 10.1002/em.20571] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Mammalian mitochondrial DNA encodes 37 essential genes required for ATP production via oxidative phosphorylation, instability or misregulation of which is associated with human diseases and aging. Other than the mtDNA-encoded RNA species (13 mRNAs, 12S and 16S rRNAs, and 22 tRNAs), the remaining factors needed for mitochondrial gene expression (i.e., transcription, RNA processing/modification, and translation), including a dedicated set of mitochondrial ribosomal proteins, are products of nuclear genes that are imported into the mitochondrial matrix. Herein, we inventory the human mitochondrial gene expression machinery, and, while doing so, we highlight specific associations of these regulatory factors with human disease. Major new breakthroughs have been made recently in this burgeoning area that set the stage for exciting future studies on the key outstanding issue of how mitochondrial gene expression is regulated differentially in vivo. This should promote a greater understanding of why mtDNA mutations and dysfunction cause the complex and tissue-specific pathology characteristic of mitochondrial disease states and how mitochondrial dysfunction contributes to more common human pathology and aging.
Collapse
Affiliation(s)
- Timothy E. Shutt
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New haven, CT 06520-8023
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208005, New haven, CT 06520-8005
| |
Collapse
|
219
|
Gohil VM, Nilsson R, Belcher-Timme CA, Luo B, Root DE, Mootha VK. Mitochondrial and nuclear genomic responses to loss of LRPPRC expression. J Biol Chem 2010; 285:13742-7. [PMID: 20220140 PMCID: PMC2859537 DOI: 10.1074/jbc.m109.098400] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/16/2010] [Indexed: 01/12/2023] Open
Abstract
Rapid advances in genotyping and sequencing technology have dramatically accelerated the discovery of genes underlying human disease. Elucidating the function of such genes and understanding their role in pathogenesis, however, remain challenging. Here, we introduce a genomic strategy to characterize such genes functionally, and we apply it to LRPPRC, a poorly studied gene that is mutated in Leigh syndrome, French-Canadian type (LSFC). We utilize RNA interference to engineer an allelic series of cellular models in which LRPPRC has been stably silenced to different levels of knockdown efficiency. We then combine genome-wide expression profiling with gene set enrichment analysis to identify cellular responses that correlate with the loss of LRPPRC. Using this strategy, we discovered a specific role for LRPPRC in the expression of all mitochondrial DNA-encoded mRNAs, but not the rRNAs, providing mechanistic insights into the enzymatic defects observed in the disease. Our analysis shows that nuclear genes encoding mitochondrial proteins are not collectively affected by the loss of LRPPRC. We do observe altered expression of genes related to hexose metabolism, prostaglandin synthesis, and glycosphingolipid biology that may either play an adaptive role in cell survival or contribute to pathogenesis. The combination of genetic perturbation, genomic profiling, and pathway analysis represents a generic strategy for understanding disease pathogenesis.
Collapse
Affiliation(s)
- Vishal M. Gohil
- From the Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
- the Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, and
- the Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02446
| | - Roland Nilsson
- From the Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
- the Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, and
- the Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02446
| | - Casey A. Belcher-Timme
- From the Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
- the Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, and
- the Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02446
| | - Biao Luo
- the Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, and
| | - David E. Root
- the Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, and
| | - Vamsi K. Mootha
- From the Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114
- the Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142, and
- the Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02446
| |
Collapse
|
220
|
Litonin D, Sologub M, Shi Y, Savkina M, Anikin M, Falkenberg M, Gustafsson CM, Temiakov D. Human mitochondrial transcription revisited: only TFAM and TFB2M are required for transcription of the mitochondrial genes in vitro. J Biol Chem 2010; 285:18129-33. [PMID: 20410300 DOI: 10.1074/jbc.c110.128918] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human mitochondrial transcription is driven by a single subunit RNA polymerase and a set of basal transcription factors. The development of a recombinant in vitro transcription system has allowed for a detailed molecular characterization of the individual components and their contribution to transcription initiation. We found that TFAM and TFB2M act synergistically and increase transcription efficiency 100-200-fold as compared with RNA polymerase alone. Both the light-strand promoter (LSP) and the HSP1 promoters displayed maximal levels of in vitro transcription when TFAM was present in an amount equimolar to the DNA template. Importantly, we did not detect any significant transcription activity in the presence of the TFB2M paralog, TFB1M, or when templates containing the putative HSP2 promoter were used. These data confirm previous observations that TFB1M does not function as a bona fide transcription factor and raise questions as to whether HSP2 serves as a functional promoter in vivo. In addition, we did not detect transcription stimulation by the ribosomal protein MRPL12. Thus, only two essential initiation factors, TFAM and TFB2M, and two promoters, LSP and HSP1, are required to drive transcription of the mitochondrial genome.
Collapse
Affiliation(s)
- Dmitry Litonin
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Mitochondrial translation and beyond: processes implicated in combined oxidative phosphorylation deficiencies. J Biomed Biotechnol 2010; 2010:737385. [PMID: 20396601 PMCID: PMC2854570 DOI: 10.1155/2010/737385] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Accepted: 01/29/2010] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases, which are amongst the most common inherited human diseases. These disorders are caused by defects in the oxidative phosphorylation (OXPHOS) system, which comprises five multisubunit enzyme complexes encoded by both the nuclear and the mitochondrial genomes. Due to the multitude of proteins and intricacy of the processes required for a properly functioning OXPHOS system, identifying the genetic defect that underlies an OXPHOS deficiency is not an easy task, especially in the case of combined OXPHOS defects. In the present communication we give an extensive overview of the proteins and processes (in)directly involved in mitochondrial translation and the biogenesis of the OXPHOS system and their roles in combined OXPHOS deficiencies. This knowledge is important for further research into the genetic causes, with the ultimate goal to effectively prevent and cure these complex and often devastating disorders.
Collapse
|
222
|
Gene expression patterns of oxidative phosphorylation complex I subunits are organized in clusters. PLoS One 2010; 5:e9985. [PMID: 20376309 PMCID: PMC2848612 DOI: 10.1371/journal.pone.0009985] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/11/2010] [Indexed: 11/19/2022] Open
Abstract
After the radiation of eukaryotes, the NUO operon, controlling the transcription of the NADH dehydrogenase complex of the oxidative phosphorylation system (OXPHOS complex I), was broken down and genes encoding this protein complex were dispersed across the nuclear genome. Seven genes, however, were retained in the genome of the mitochondrion, the ancient symbiote of eukaryotes. This division, in combination with the three-fold increase in subunit number from bacteria (N = ∼14) to man (N = 45), renders the transcription regulation of OXPHOS complex I a challenge. Recently bioinformatics analysis of the promoter regions of all OXPHOS genes in mammals supported patterns of co-regulation, suggesting that natural selection favored a mechanism facilitating the transcriptional regulatory control of genes encoding subunits of these large protein complexes. Here, using real time PCR of mitochondrial (mtDNA)- and nuclear DNA (nDNA)-encoded transcripts in a panel of 13 different human tissues, we show that the expression pattern of OXPHOS complex I genes is regulated in several clusters. Firstly, all mtDNA-encoded complex I subunits (N = 7) share a similar expression pattern, distinct from all tested nDNA-encoded subunits (N = 10). Secondly, two sub-clusters of nDNA-encoded transcripts with significantly different expression patterns were observed. Thirdly, the expression patterns of two nDNA-encoded genes, NDUFA4 and NDUFA5, notably diverged from the rest of the nDNA-encoded subunits, suggesting a certain degree of tissue specificity. Finally, the expression pattern of the mtDNA-encoded ND4L gene diverged from the rest of the tested mtDNA-encoded transcripts that are regulated by the same promoter, consistent with post-transcriptional regulation. These findings suggest, for the first time, that the regulation of complex I subunits expression in humans is complex rather than reflecting global co-regulation.
Collapse
|
223
|
Lodeiro MF, Uchida AU, Arnold JJ, Reynolds SL, Moustafa IM, Cameron CE. Identification of multiple rate-limiting steps during the human mitochondrial transcription cycle in vitro. J Biol Chem 2010; 285:16387-402. [PMID: 20351113 DOI: 10.1074/jbc.m109.092676] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reconstituted human mitochondrial transcription in vitro on DNA oligonucleotide templates representing the light strand and heavy strand-1 promoters using protein components (RNA polymerase and transcription factors A and B2) isolated from Escherichia coli. We show that 1 eq of each transcription factor and polymerase relative to the promoter is required to assemble a functional initiation complex. The light strand promoter is at least 2-fold more efficient than the heavy strand-1 promoter, but this difference cannot be explained solely by the differences in the interaction of the transcription machinery with the different promoters. In both cases, the rate-limiting step for production of the first phosphodiester bond is open complex formation. Open complex formation requires both transcription factors; however, steps immediately thereafter only require transcription factor B2. The concentration of nucleotide required for production of the first dinucleotide product is substantially higher than that required for subsequent cycles of nucleotide addition. In vitro, promoter-specific differences in post-initiation control of transcription exist, as well as a second rate-limiting step that controls conversion of the transcription initiation complex into a transcription elongation complex. Rate-limiting steps of the biochemical pathways are often those that are targeted for regulation. Like the more complex multisubunit transcription systems, multiple steps may exist for control of transcription in human mitochondria. The tools and mechanistic framework presented here will facilitate not only the discovery of mechanisms regulating human mitochondrial transcription but also interrogation of the structure, function, and mechanism of the complexes that are regulated during human mitochondrial transcription.
Collapse
Affiliation(s)
- Maria F Lodeiro
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
224
|
Animal models of mitochondrial DNA transactions in disease and ageing. Exp Gerontol 2010; 45:489-502. [PMID: 20123011 DOI: 10.1016/j.exger.2010.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Revised: 01/11/2010] [Accepted: 01/26/2010] [Indexed: 11/21/2022]
Abstract
Mitochondrial DNA (mtDNA) transactions, processes that include mtDNA replication, repair, recombination and transcription constitute the initial stages of mitochondrial biogenesis, and are at the core of understanding mitochondrial biology and medicine. All of the protein players are encoded in nuclear genes: some are proteins with well-known functions in the nucleus, others are well-known mitochondrial proteins now ascribed new functions, and still others are newly discovered factors. In this article we review recent advances in the field of mtDNA transactions with a special focus on physiological studies. In particular, we consider the expression of variant proteins, or altered expression of factors involved in these processes in powerful model organisms, such as Drosophila melanogaster and the mouse, which have promoted recognition of the broad relevance of oxidative phosphorylation defects resulting from improper maintenance of mtDNA. Furthermore, the animal models recapitulate many phenotypes related to human ageing and a variety of different diseases, a feature that has enhanced our understanding of, and inspired theories about, the molecular mechanisms of such biological processes.
Collapse
|
225
|
Paratkar S, Patel SS. Mitochondrial transcription factor Mtf1 traps the unwound non-template strand to facilitate open complex formation. J Biol Chem 2009; 285:3949-3956. [PMID: 20008320 DOI: 10.1074/jbc.m109.050732] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The catalytic subunit of the mitochondrial (mt) RNA polymerase (RNAP) is highly homologous to the bacteriophage T7/T3 RNAP. Unlike the phage RNAP, however, the mtRNAP relies on accessory proteins to initiate promoter-specific transcription. Rpo41, the catalytic subunit of the Saccharomyces cerevisiae mtRNAP, requires Mtf1 for opening the duplex promoter. To elucidate the role of Mtf1 in promoter-specific DNA opening, we have mapped the structural organization of the mtRNAP using site-specific protein-DNA photo-cross-linking studies. Both Mtf1 and Rpo41 cross-linked to distinct sites on the promoter DNA, but the dominant cross-links were those of the Mtf1, which indicates a direct role of Mtf1 in promoter-specific binding and initiation. Strikingly, Mtf1 cross-linked with a high efficiency to the melted region of the promoter DNA, based on which we suggest that Mtf1 facilitates DNA melting by trapping the non-template strand in the unwound conformation. Additional strong cross-links of the Mtf1 were observed with the -8 to -10 base-paired region of the promoter. The cross-linking results were incorporated into a structural model of the mtRNAP-DNA, created from a homology model of the C-terminal domain of Rpo41 and the available structure of Mtf1. The promoter DNA is sandwiched between Mtf1 and Rpo41 in the structural model, and Mtf1 closely associates mainly with one face of the promoter across the entire nona-nucleotide consensus sequence. Overall, the studies reveal that in many ways the role of Mtf1 is analogous to the transcription factors of the multisubunit RNAPs, which provides an intriguing link between single- and multisubunit RNAPs.
Collapse
Affiliation(s)
- Swaroopa Paratkar
- From the Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854
| | - Smita S Patel
- From the Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854.
| |
Collapse
|
226
|
Sologub M, Litonin D, Anikin M, Mustaev A, Temiakov D. TFB2 is a transient component of the catalytic site of the human mitochondrial RNA polymerase. Cell 2009; 139:934-44. [PMID: 19945377 DOI: 10.1016/j.cell.2009.10.031] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/23/2009] [Accepted: 09/30/2009] [Indexed: 11/19/2022]
Abstract
Transcription in human mitochondria is carried out by a single-subunit, T7-like RNA polymerase assisted by several auxiliary factors. We demonstrate that an essential initiation factor, TFB2, forms a network of interactions with DNA near the transcription start site and facilitates promoter melting but may not be essential for promoter recognition. Unexpectedly, catalytic autolabeling reveals that TFB2 interacts with the priming substrate, suggesting that TFB2 acts as a transient component of the catalytic site of the initiation complex. Mapping of TFB2 identifies a region of its N-terminal domain that is involved in simultaneous interactions with the priming substrate and the templating (+1) DNA base. Our data indicate that the transcriptional machinery in human mitochondria has evolved into a system that combines features inherited from self-sufficient, T7-like RNA polymerase and those typically found in systems comprising cellular multi-subunit polymerases, and provide insights into the molecular mechanisms of transcription regulation in mitochondria.
Collapse
Affiliation(s)
- Marina Sologub
- Department of Cell Biology, UMDNJ, School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | | | | | | | | |
Collapse
|
227
|
The neurogenic basic helix-loop-helix transcription factor NeuroD6 concomitantly increases mitochondrial mass and regulates cytoskeletal organization in the early stages of neuronal differentiation. ASN Neuro 2009; 1:AN20090036. [PMID: 19743964 PMCID: PMC2785511 DOI: 10.1042/an20090036] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Mitochondria play a central role during neurogenesis by providing energy in the form of ATP for cytoskeletal remodelling, outgrowth of neuronal processes, growth cone activity and synaptic activity. However, the fundamental question of how differentiating neurons control mitochondrial biogenesis remains vastly unexplored. Since our previous studies have shown that the neurogenic bHLH (basic helix–loop–helix) transcription factor NeuroD6 is sufficient to induce differentiation of the neuronal progenitor-like PC12 cells and that it triggers expression of mitochondrial-related genes, we investigated whether NeuroD6 could modulate the mitochondrial biomass using our PC12-ND6 cellular paradigm. Using a combination of flow cytometry, confocal microscopy and mitochondrial fractionation, we demonstrate that NeuroD6 stimulates maximal mitochondrial mass at the lamellipodia stage, thus preceding axonal growth. NeuroD6 triggers remodelling of the actin and microtubule networks in conjunction with increased expression of the motor protein KIF5B, thus promoting mitochondrial movement in developing neurites with accumulation in growth cones. Maintenance of the NeuroD6-induced mitochondrial mass requires an intact cytoskeletal network, as its disruption severely reduces mitochondrial mass. The present study provides the first evidence that NeuroD6 plays an integrative role in co-ordinating increase in mitochondrial mass with cytoskeletal remodelling, suggestive of a role of this transcription factor as a co-regulator of neuronal differentiation and energy metabolism.
Collapse
Key Words
- COX, cytochrome c oxidase
- E, embryonic day
- ESC, embryonic stem cell
- F-actin, filamentous actin
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- MAP, microtubule-associated protein
- MMP, mitochondrial membrane potential
- MTG, MitoTracker® Green
- MTR, MitoTracker® Red
- NGF, nerve growth factor
- NRF, nuclear respiratory factor
- NeuroD family
- PDL, poly-d-lysine
- PGC-1, peroxisome-proliferator-activated receptor-γ co-activator-1
- SOD2, superoxide dismutase 2
- WGA, wheat germ agglutinin
- bHLH, basic helix–loop–helix
- basic helix–loop–helix transcription factor
- cytoskeletal remodelling
- mitochondrial biogenesis
- mtDNA, mitochondrial DNA
- neuronal differentiation
Collapse
|
228
|
Wong TS, Rajagopalan S, Freund SM, Rutherford TJ, Andreeva A, Townsley FM, Petrovich M, Fersht AR. Biophysical characterizations of human mitochondrial transcription factor A and its binding to tumor suppressor p53. Nucleic Acids Res 2009; 37:6765-83. [PMID: 19755502 PMCID: PMC2777442 DOI: 10.1093/nar/gkp750] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human mitochondrial transcription factor A (TFAM) is a multi-functional protein, involved in different aspects of maintaining mitochondrial genome integrity. In this report, we characterized TFAM and its interaction with tumor suppressor p53 using various biophysical methods. DNA-free TFAM is a thermally unstable protein that is in equilibrium between monomers and dimers. Self-association of TFAM is modulated by its basic C-terminal tail. The DNA-binding ability of TFAM is mainly contributed by its first HMG-box, while the second HMG-box has low-DNA-binding capability. We also obtained backbone resonance assignments from the NMR spectra of both HMG-boxes of TFAM. TFAM binds primarily to the N-terminal transactivation domain of p53, with a Kd of 1.95 ± 0.19 μM. The C-terminal regulatory domain of p53 provides a secondary binding site for TFAM. The TFAM–p53-binding interface involves both TAD1 and TAD2 sub-domains of p53. Helices α1 and α2 of the HMG-box constitute the main p53-binding region. Since both TFAM and p53 binds preferentially to distorted DNA, the TFAM–p53 interaction is implicated in DNA damage and repair. In addition, the DNA-binding mechanism of TFAM and biological relevance of the TFAM–p53 interaction are discussed.
Collapse
Affiliation(s)
- Tuck Seng Wong
- MRC Centre for Protein Engineering, Medical Research Council, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Interaction of mitochondrial thioredoxin with glucocorticoid receptor and NF-kappaB modulates glucocorticoid receptor and NF-kappaB signalling in HEK-293 cells. Biochem J 2009; 422:521-31. [PMID: 19570036 DOI: 10.1042/bj20090107] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trx2 (mitochondrial thioredoxin) is an antioxidant and anti-apoptotic factor essential for cell viability. Trx1 (cytoplasmic thioredoxin) is a co-factor and regulator of redox-sensitive transcription factors such as the GR (glucocorticoid receptor) and NF-kappaB (nuclear factor kappaB). Both transcription factors have been detected in mitochondria and a role in mitochondrial transcription regulation and apoptosis has been proposed. In the present study, we show using SPR (surface plasmon resonance) and immunoprecepitation that GR and the p65 subunit of NF-kappaB are Trx2-interacting proteins. The interaction of Trx2 with GR is independent of the presence of GR ligand and of redox conditions. The p65 subunit of NF-kappaB can interact with Trx2 in the oxidized, but not the reduced, form. Using HEK (human embryonic kidney)-293 cell lines with increased or decreased expression of Trx2, we show that Trx2 modulates transcription of GR and NF-kappaB reporter genes. Moreover, Trx2 overexpression modulates the mRNA levels of the COX1 (cytochrome oxidase subunit I) and Cytb (cytochrome b), which are known to be regulated by GR and NF-kappaB. Increased expression of Trx2 differentially affects the expression of Cytb. The glucocorticoid dexamethasone potentiates the expression of Cytb, whereas TNFalpha (tumour necrosis factor alpha) down-regulates it. These results suggest a regulatory role for Trx2 in GR and NF-kappaB signalling pathways.
Collapse
|
230
|
Baughman JM, Nilsson R, Gohil VM, Arlow DH, Gauhar Z, Mootha VK. A computational screen for regulators of oxidative phosphorylation implicates SLIRP in mitochondrial RNA homeostasis. PLoS Genet 2009; 5:e1000590. [PMID: 19680543 PMCID: PMC2721412 DOI: 10.1371/journal.pgen.1000590] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 07/09/2009] [Indexed: 11/18/2022] Open
Abstract
The human oxidative phosphorylation (OxPhos) system consists of approximately 90 proteins encoded by nuclear and mitochondrial genomes and serves as the primary cellular pathway for ATP biosynthesis. While the core protein machinery for OxPhos is well characterized, many of its assembly, maturation, and regulatory factors remain unknown. We exploited the tight transcriptional control of the genes encoding the core OxPhos machinery to identify novel regulators. We developed a computational procedure, which we call expression screening, which integrates information from thousands of microarray data sets in a principled manner to identify genes that are consistently co-expressed with a target pathway across biological contexts. We applied expression screening to predict dozens of novel regulators of OxPhos. For two candidate genes, CHCHD2 and SLIRP, we show that silencing with RNAi results in destabilization of OxPhos complexes and a marked loss of OxPhos enzymatic activity. Moreover, we show that SLIRP plays an essential role in maintaining mitochondrial-localized mRNA transcripts that encode OxPhos protein subunits. Our findings provide a catalogue of potential novel OxPhos regulators that advance our understanding of the coordination between nuclear and mitochondrial genomes for the regulation of cellular energy metabolism.
Collapse
Affiliation(s)
- Joshua M. Baughman
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roland Nilsson
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vishal M. Gohil
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel H. Arlow
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zareen Gauhar
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vamsi K. Mootha
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
231
|
Gershoni M, Templeton AR, Mishmar D. Mitochondrial bioenergetics as a major motive force of speciation. Bioessays 2009; 31:642-50. [DOI: 10.1002/bies.200800139] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
232
|
Gangelhoff TA, Mungalachetty PS, Nix JC, Churchill MEA. Structural analysis and DNA binding of the HMG domains of the human mitochondrial transcription factor A. Nucleic Acids Res 2009; 37:3153-64. [PMID: 19304746 PMCID: PMC2691818 DOI: 10.1093/nar/gkp157] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2008] [Revised: 02/23/2009] [Accepted: 02/24/2009] [Indexed: 11/20/2022] Open
Abstract
The mitochondrial transcription factor A (mtTFA) is central to assembly and initiation of the mitochondrial transcription complex. Human mtTFA (h-mtTFA) is a dual high mobility group box (HMGB) protein that binds site-specifically to the mitochondrial genome and demarcates the promoters for recruitment of h-mtTFB1, h-mtTFB2 and the mitochondrial RNA polymerase. The stoichiometry of h-mtTFA was found to be a monomer in the absence of DNA, whereas it formed a dimer in the complex with the light strand promoter (LSP) DNA. Each of the HMG boxes and the C-terminal tail were evaluated for their ability to bind to the LSP DNA. Removal of the C-terminal tail only slightly decreased nonsequence specific DNA binding, and box A, but not box B, was capable of binding to the LSP DNA. The X-ray crystal structure of h-mtTFA box B, at 1.35 A resolution, revealed the features of a noncanonical HMG box. Interactions of box B with other regions of h-mtTFA were observed. Together, these results provide an explanation for the unusual DNA-binding properties of box B and suggest possible roles for this domain in transcription complex assembly.
Collapse
Affiliation(s)
- Todd A. Gangelhoff
- Department of Pharmacology, Molecular Biology Program, University of Colorado Denver, School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045-0511 and Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Purnima S. Mungalachetty
- Department of Pharmacology, Molecular Biology Program, University of Colorado Denver, School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045-0511 and Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jay C. Nix
- Department of Pharmacology, Molecular Biology Program, University of Colorado Denver, School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045-0511 and Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Mair E. A. Churchill
- Department of Pharmacology, Molecular Biology Program, University of Colorado Denver, School of Medicine, 12801 East 17th Avenue, Aurora, CO 80045-0511 and Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
233
|
Wenz T, Luca C, Torraco A, Moraes CT. mTERF2 regulates oxidative phosphorylation by modulating mtDNA transcription. Cell Metab 2009; 9:499-511. [PMID: 19490905 PMCID: PMC2778471 DOI: 10.1016/j.cmet.2009.04.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 03/12/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
Regulation of mitochondrial protein expression is crucial for the function of the oxidative phosphorylation (OXPHOS) system. Although the basal machinery for mitochondrial transcription is known, the regulatory mechanisms are not completely understood. Here, we characterized mTERF2, a mitochondria-localized homolog of the mitochondrial transcription termination factor mTERF1. We show that inactivation of mTERF2 in the mouse results in a myopathy and memory deficits associated with decreased levels of mitochondrial transcripts and imbalanced tRNA pool. These aberrations were associated with decreased steady-state levels of OXPHOS proteins causing a decrease in respiratory function. mTERF2 binds to the mtDNA promoter region, suggesting that it affects transcription initiation. In vitro interaction studies suggest that mtDNA mediates interactions between mTERF2 and mTERF3. Our results indicate that mTERF1, mTERF2, and mTERF3 regulate transcription by acting in the same site in the mtDNA promoter region and thereby mediate fine-tuning of mitochondrial transcription and hence OXPHOS function.
Collapse
Affiliation(s)
- Tina Wenz
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Corneliu Luca
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Alessandra Torraco
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami School of Medicine, Miami, FL 33136, USA
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
234
|
White MM, Martin HR. Structure and conservation of tandem repeats in the mitochondrial DNA control region of the Least Brook lamprey (Lampetra aepyptera). J Mol Evol 2009; 68:715-23. [PMID: 19449051 DOI: 10.1007/s00239-009-9246-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/21/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
Tandemly repeated sequences are a common feature of vertebrate mitochondrial DNA control regions. However, questions still remain about their mode of evolution, function, and phylogenetic distribution. We report phylogenetic and geographic patterns of variation of control region repeat sequence and number in a nonparasitic lamprey, Lampetra aepyptera. A survey of populations from throughout the species' range revealed remarkably low repeat sequence polymorphism but some interpopulation variation in repeat number. The high sequence similarity extended to repeats observed in other species in the genus Lampetra and other lamprey genera. The very low levels of variation suggest a high copy turnover. Our data are consistent with the illegitimate elongation model of repeat gain and loss and further suggest that repeat change occurs at internal copies. However, the limited variation across some species of lamprey suggests that functional constraints may further limit variation.
Collapse
Affiliation(s)
- Matthew M White
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | | |
Collapse
|
235
|
Suissa S, Wang Z, Poole J, Wittkopp S, Feder J, Shutt TE, Wallace DC, Shadel GS, Mishmar D. Ancient mtDNA genetic variants modulate mtDNA transcription and replication. PLoS Genet 2009; 5:e1000474. [PMID: 19424428 PMCID: PMC2673036 DOI: 10.1371/journal.pgen.1000474] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 04/07/2009] [Indexed: 11/18/2022] Open
Abstract
Although the functional consequences of mitochondrial DNA (mtDNA) genetic backgrounds (haplotypes, haplogroups) have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened >2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74%) and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%). The variant defining Caucasian haplogroup J (C295T) increased the binding of TFAM (Electro Mobility Shift Assay) and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1), a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds) harboring haplogroup J mtDNA had a >2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mtDNA haplogroup-defining control region mutations, paving the path towards assessing the functionality of both fixed and un-fixed genetic variants in the mitochondrial genome.
Collapse
Affiliation(s)
- Sarit Suissa
- Department of Life Sciences and National Institute of Biotechnology (NIBN), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zhibo Wang
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jason Poole
- The Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, California, United States of America
- Nanogen, Inc., San Diego, California, United States of America
| | - Sharine Wittkopp
- The Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, California, United States of America
| | - Jeanette Feder
- Department of Life Sciences and National Institute of Biotechnology (NIBN), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Timothy E. Shutt
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Douglas C. Wallace
- The Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG), University of California Irvine, Irvine, California, United States of America
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dan Mishmar
- Department of Life Sciences and National Institute of Biotechnology (NIBN), Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
236
|
Cotney J, McKay SE, Shadel GS. Elucidation of separate, but collaborative functions of the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 in mitochondrial biogenesis reveals new insight into maternally inherited deafness. Hum Mol Genet 2009; 18:2670-82. [PMID: 19417006 DOI: 10.1093/hmg/ddp208] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial biogenesis is controlled by signaling networks that relay information to and from the organelles. However, key mitochondrial factors that mediate such pathways and how they contribute to human disease are not understood fully. Here we demonstrate that the rRNA methyltransferase-related human mitochondrial transcription factors B1 and B2 are key downstream effectors of mitochondrial biogenesis that perform unique, yet cooperative functions. The primary function of h-mtTFB2 is mtDNA transcription and maintenance, which is independent of its rRNA methyltransferase activity, while that of h-mtTFB1 is mitochondrial 12S rRNA methylation needed for normal mitochondrial translation, metabolism and cell growth. Over-expression of h-mtTFB1 causes 12S rRNA hypermethylation, aberrant mitochondrial biogenesis and increased sorbitol-induced cell death. These phenotypes are recapitulated in cells harboring the pathogenic A1555G mtDNA mutation, implicating a deleterious rRNA methylation-dependent retrograde signal in maternally inherited deafness pathology and shedding significant insight into how h-mtTFB1 acts as a nuclear modifier of this disease.
Collapse
Affiliation(s)
- Justin Cotney
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, PO Box 208023, New Haven, CT 06520-8023, USA
| | | | | |
Collapse
|
237
|
Lebedeva MA, Eaton JS, Shadel GS. Loss of p53 causes mitochondrial DNA depletion and altered mitochondrial reactive oxygen species homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1787:328-34. [PMID: 19413947 PMCID: PMC2680458 DOI: 10.1016/j.bbabio.2009.01.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 12/12/2008] [Accepted: 01/12/2009] [Indexed: 11/16/2022]
Abstract
In addition to its central role in cellular stress signaling, the tumor suppressor p53 modulates mitochondrial respiration through its nuclear transcription factor activity and localizes to mitochondria, where it enhances apoptosis and suppresses mitochondrial DNA (mtDNA) mutagenesis. Here we demonstrate a new conserved role for p53 in mtDNA copy number maintenance and mitochondrial reactive oxygen species (ROS) homeostasis. In mammals, mtDNA is present at thousands of copies per cell and is essential for normal development and cell function. We show that p53 null mouse and p53 knockdown human primary fibroblasts exhibit mtDNA depletion and decreased mitochondrial mass under normal culture growth conditions. This is accompanied by a reduction of the p53R2 subunit of ribonucleotide reductase mRNA and protein and of mitochondrial transcription factor A (mtTFA) at the protein level only. Finally, p53-depleted cells exhibit significant disruption of cellular ROS homeostasis, characterized by reduced mitochondrial and cellular superoxide levels and increased cellular hydrogen peroxide. Altogether, these results elucidate additional mitochondria-related functions for p53 and implicate mtDNA depletion and ROS alterations as potentially relevant to cellular transformation, cancer cell phenotypes, and the Warburg Effect.
Collapse
Affiliation(s)
- Maria A. Lebedeva
- Departments of Pathology and Genetics, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT 06520-8023
| | - Jana S. Eaton
- Departments of Pathology and Genetics, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT 06520-8023
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA. Current address: Marinus Pharmaceuticals, Branford, CT
| | - Gerald S. Shadel
- Departments of Pathology and Genetics, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT 06520-8023
| |
Collapse
|
238
|
Sologub MY, Kochetkov SN, Temiakov DE. Transcription and its regulation in mammalian and human mitochondria. Mol Biol 2009. [DOI: 10.1134/s0026893309020034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
239
|
Roberti M, Polosa PL, Bruni F, Manzari C, Deceglie S, Gadaleta MN, Cantatore P. The MTERF family proteins: mitochondrial transcription regulators and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:303-11. [PMID: 19366610 DOI: 10.1016/j.bbabio.2009.01.013] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 11/17/2022]
Abstract
The MTERF family is a wide protein family, identified in Metazoa and plants, which consists of 4 subfamilies named MTERF1-4. Proteins belonging to this family are localized in mitochondria and show a modular architecture based on repetitions of a 30 amino acid module, the mTERF motif, containing leucine zipper-like heptads. The MTERF family includes the characterized transcription termination factors human mTERF, sea urchin mtDBP and Drosophila DmTTF. In vitro and in vivo studies show that these factors play different roles which are not restricted to transcription termination, but concern also transcription initiation and the control of mtDNA replication. The multiplicity of functions could be related to the differences in the gene organization of the mitochondrial genomes. Studies on the function of human and Drosophila MTERF3 factor showed that the protein acts as negative regulator of mitochondrial transcription, possibly in cooperation with other still unknown factors. The complete elucidation of the role of the MTERF family members will contribute to the unraveling of the molecular mechanisms of mtDNA transcription and replication.
Collapse
Affiliation(s)
- Marina Roberti
- Dipartimento di Biochimica e Biologia Molecolare Ernesto Quagliariello, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
240
|
Pan Y, Shadel GS. Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging (Albany NY) 2009; 1:131-45. [PMID: 20157595 PMCID: PMC2815770 DOI: 10.18632/aging.100016] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 01/26/2009] [Indexed: 12/23/2022]
Abstract
The nutrient-sensing target of rapamycin (TOR) pathway appears to have a conserved role in regulating life span. This signaling network is complex, with many downstream physiological outputs, and thus the mechanisms underlying its age-related effects have not been elucidated fully. We demonstrated previously that reduced TOR signaling (intor1Delta strains) extends yeast chronological life span (CLS) by increasing mitochondrial oxygen consumption, in part, by up-regulating translation of mtDNA-encoded oxidative phosphorylation (OXPHOS) subunits. Here, we have examined in greater detail how TOR signaling influences mitochondrial function and CLS and the role of the Sch9p kinase in the TOR-mitochondria pathway. As is the case for oxygen consumption, mitochondrial translation is elevated in tor1Delta strains only during active growth and early stationary phase growth points. This is accompanied by a corresponding increase in the abundance of both mtDNA-encoded and nucleus-encoded OXPHOS subunits per mitochondrial mass. However, this increased OXPHOS complex density is not associated with more mitochondria/cell or cellular ATP and leads to an overall decrease in membrane potential, suggesting that TOR signaling may influence respiration uncoupling. Finally, we document that the Sch9p kinase is a key downstream effector of OXPHOS, ROS and CLS in the TOR-mitochondria pathway. Altogether, our results demonstrate that TOR signaling has a global role in regulating mitochondrial proteome dynamics and function that is important for its role in aging and provide compelling evidence for involvement of a "mitochondrial pre-conditioning" effect in CLS determination.
Collapse
Affiliation(s)
- Yong Pan
- Department of Pathology, Yale University School of Medicine, New Haven CT 06520, USA
| | | |
Collapse
|
241
|
Vercauteren K, Gleyzer N, Scarpulla RC. Short hairpin RNA-mediated silencing of PRC (PGC-1-related coactivator) results in a severe respiratory chain deficiency associated with the proliferation of aberrant mitochondria. J Biol Chem 2009; 284:2307-19. [PMID: 19036724 PMCID: PMC2629116 DOI: 10.1074/jbc.m806434200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/03/2008] [Indexed: 11/06/2022] Open
Abstract
PRC, a member of the PGC-1 coactivator family, is responsive to serum growth factors and up-regulated in proliferating cells. Here, we investigated its in vivo role by stably silencing PRC expression with two different short hairpin RNAs (shRNA1 and shRNA4) that were lentivirally introduced into U2OS cells. shRNA1 transductants exhibited nearly complete knockdown of PRC protein, whereas shRNA4 transductants expressed PRC protein at approximately 15% of the control level. Complete PRC silencing by shRNA1 resulted in a severe inhibition of respiratory growth; reduced expression of respiratory protein subunits from complexes I, II, III, and IV; markedly lower complex I and IV respiratory enzyme levels; and diminished mitochondrial ATP production. Surprisingly, shRNA1 transductants exhibited a striking proliferation of abnormal mitochondria that were devoid of organized cristae and displayed severe membrane abnormalities. Although shRNA4 transductants had normal respiratory subunit expression and a moderately diminished respiratory growth rate, both transductants showed markedly reduced growth on glucose accompanied by inhibition of G1/S cell cycle progression. Microarray analysis revealed striking overlaps in the genes affected by PRC silencing in the two transductants, and the functional identities of these overlapping genes were consistent with the observed mitochondrial and cell growth phenotypes. The consistency between phenotype and PRC expression levels in the two independent transductant lines argues that the defects result from PRC silencing and not from off target effects. These results support a role for PRC in the integration of pathways directing mitochondrial respiratory function and cell growth.
Collapse
Affiliation(s)
- Kristel Vercauteren
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
242
|
Tang GQ, Paratkar S, Patel SS. Fluorescence mapping of the open complex of yeast mitochondrial RNA polymerase. J Biol Chem 2008; 284:5514-22. [PMID: 19116203 DOI: 10.1074/jbc.m807880200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial RNA polymerase (mtRNAP) of Saccharomyces cerevisiae, consisting of a complex of Rpo41 and Mtf1, is homologous to the phage single polypeptide T7/T3 RNA polymerases. The yeast mtRNAP recognizes a conserved nonanucleotide sequence to initiate specific transcription. In this work, we have defined the region of the nonanucleotide that is melted by the mtRNAP using 2-aminopurine (2AP) fluorescence that is sensitive to changes in base stacking interactions. We show that mtRNAP spontaneously melts the promoter from -4 to +2 forming a bubble around the transcription start site at +1. The location and size of the DNA bubble in this open complex of the mtRNAP closely resembles that of the T7 RNA polymerase. We show that DNA melting requires the simultaneous presence of Rpo41 and Mtf1. Adding the initiating nucleotide ATP does not expand the size of the initially melted DNA, but the initiating nucleotide differentially affects base stacking interactions at -1 and -2. Thus, the promoter structure upstream of the transcription start site is slightly rearranged during early initiation from its structure in the pre-initiation stage. Unlike on the duplex promoter, Rpo41 alone was able to form a competent open complex on a pre-melted promoter. The results indicate that Rpo41 contains the elements for recognizing the melted promoter through interactions with the template strand. We propose that Mtf1 plays a role in base pair disruption during the early stages of open complex formation.
Collapse
Affiliation(s)
- Guo-Qing Tang
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
243
|
Psarra AMG, Sekeris CE. Glucocorticoid receptors and other nuclear transcription factors in mitochondria and possible functions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:431-6. [PMID: 19100710 DOI: 10.1016/j.bbabio.2008.11.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/17/2008] [Accepted: 11/24/2008] [Indexed: 11/16/2022]
Abstract
The central role of mitochondria in basic physiological processes has rendered this organelle a receiver and integrator of multiple regulatory signals. Steroid and thyroid hormones are major modulators of mitochondrial functions and the question arises as to how these molecules act at the molecular level. The detection in mitochondria of steroid and thyroid hormone receptors suggested their direct action on mitochondrial functions within the context of the organelle. The interaction of the receptors with regulatory elements of the mitochondrial genome and the activation of gene transcription underlies the hormonal stimulation of energy yield. Glucocorticoid activation of hepatocyte RNA synthesis is one of the experimental models exploited in this respect. Furthermore, the interaction of the receptors with apoptotic/antiapoptotic factors is possibly associated with the survival-death effects of the hormones. In addition to the steroid/thyroid hormone receptors, several other receptors belonging to the superfamily of nuclear receptors, as well as transcription factors with well defined nuclear actions, have been found in mitochondria. How these molecules act and interact and how they can affect the broad spectrum of mitochondrial functions is an emerging exciting field.
Collapse
Affiliation(s)
- Anna-Maria G Psarra
- Biomedical Research Foundation, Academy of Athens, Center for Basic Research, 4 Soranou Efesiou, 11527, Athens, Greece
| | | |
Collapse
|
244
|
Scarpulla RC. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci 2008; 1147:321-34. [PMID: 19076454 PMCID: PMC2853241 DOI: 10.1196/annals.1427.006] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Expression of the respiratory apparatus depends on both nuclear and mitochondrial genes. Although these genes are sequestered in distinct cellular organelles, their transcription relies on nucleus-encoded factors. Certain of these factors are directed to the mitochondria, where they sponsor the bi-directional transcription of mitochondrial DNA. Others act on nuclear genes that encode the majority of the respiratory subunits and many other gene products required for the assembly and function of the respiratory chain. The nuclear respiratory factors, NRF-1 and NRF-2, contribute to the expression of respiratory subunits and mitochondrial transcription factors and thus have been implicated in nucleo-mitochondrial interactions. In addition, coactivators of the PGC-1 family serve as mediators between the environment and the transcriptional machinery governing mitochondrial biogenesis. One family member, peroxisome proliferator-activated receptor gamma coactivator PGC-1-related coactivator (PRC), is an immediate early gene product that is rapidly induced by mitogenic signals in the absence of de novo protein synthesis. Like other PGC-1 family members, PRC binds NRF-1 and activates NRF-1 target genes. In addition, PRC complexes with NRF-2 and HCF-1 (host cell factor-1) in the activation of NRF-2-dependent promoters. HCF-1 functions in cell-cycle progression and has been identified as an NRF-2 coactivator. The association of these factors with PRC is suggestive of a role for the complex in cell growth. Finally, shRNA-mediated knock down of PRC expression results in a complex phenotype that includes the inhibition of respiratory growth on galactose and the loss of respiratory complexes. Thus, PRC may help integrate the expression of the respiratory apparatus with the cell proliferative program.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, IL 60611, USA.
| |
Collapse
|
245
|
Vempati UD, Torraco A, Moraes CT. Mouse models of oxidative phosphorylation dysfunction and disease. Methods 2008; 46:241-7. [PMID: 18848991 PMCID: PMC2652743 DOI: 10.1016/j.ymeth.2008.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 08/28/2008] [Accepted: 09/12/2008] [Indexed: 11/23/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) deficiency results in a number of human diseases, affecting at least one in 5000 of the general population. Altering the function of genes by mutations are central to our understanding their function. Prior to the development of gene targeting, this approach was limited to rare spontaneous mutations that resulted in a phenotype. Since its discovery, targeted mutagenesis of the mouse germline has proved to be a powerful approach to understand the in vivo function of genes. Gene targeting has yielded remarkable understanding of the role of several gene products in the OXPHOS system. We provide a "tool box" of mouse models with OXPHOS defects that could be used to answer diverse scientific questions.
Collapse
Affiliation(s)
| | | | - Carlos T. Moraes
- Department of Neurology, University of Miami, USA
- Department of Cell Biology & Anatomy, University of Miami, USA
| |
Collapse
|
246
|
O'Farrell HC, Xu Z, Culver GM, Rife JP. Sequence and structural evolution of the KsgA/Dim1 methyltransferase family. BMC Res Notes 2008; 1:108. [PMID: 18959795 PMCID: PMC2614427 DOI: 10.1186/1756-0500-1-108] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 10/29/2008] [Indexed: 11/10/2022] Open
Abstract
Background One of the 60 or so genes conserved in all domains of life is the ksgA/dim1 orthologous group. Enzymes from this family perform the same post-transcriptional nucleotide modification in ribosome biogenesis, irrespective of organism. Despite this common function, divergence has enabled some family members to adopt new and sometimes radically different functions. For example, in S. cerevisiae Dim1 performs two distinct functions in ribosome biogenesis, while human mtTFB is not only an rRNA methyltransferase in the mitochondria but also a mitochondrial transcription factor. Thus, these proteins offer an unprecedented opportunity to study evolutionary aspects of structure/function relationships, especially with respect to our recently published work on the binding mode of a KsgA family member to its 30S subunit substrate. Here we compare and contrast KsgA orthologs from bacteria, eukaryotes, and mitochondria as well as the paralogous ErmC enzyme. Results By using structure and sequence comparisons in concert with a unified ribosome binding model, we have identified regions of the orthologs that are likely related to gains of function beyond the common methyltransferase function. There are core regions common to the entire enzyme class that are associated with ribosome binding, an event required in rRNA methylation activity, and regions that are conserved in subgroups that are presumably related to non-methyltransferase functions. Conclusion The ancient protein KsgA/Dim1 has adapted to cellular roles beyond that of merely an rRNA methyltransferase. These results provide a structural foundation for analysis of multiple aspects of ribosome biogenesis and mitochondrial transcription.
Collapse
Affiliation(s)
- Heather C O'Farrell
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23219, USA.
| | | | | | | |
Collapse
|
247
|
Zhang H, Pommier Y. Mitochondrial topoisomerase I sites in the regulatory D-loop region of mitochondrial DNA. Biochemistry 2008; 47:11196-203. [PMID: 18826252 PMCID: PMC2597090 DOI: 10.1021/bi800774b] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mitochondrial DNA (mtDNA) is required for mitochondrial activities because it encodes key proteins for oxidative phosphorylation and the production of cellular ATP. We previously reported the existence of a specific mitochondrial topoisomerase gene, Top1mt, in all vertebrates. The corresponding polypeptide contains an N-terminal mitochondrial targeting sequence and is otherwise highly homologous to the nuclear topoisomerase I (Top1). In this study, we provide biochemical evidence of the presence of an endogenous Top1mt polypeptide in human mitochondria. Using novel antibodies against Top1mt, we detected the corresponding 70 kDa polypeptide in mitochondria but not in nuclear fractions. This polypeptide could be trapped to form covalent complexes with mtDNA when mitochondria from human cells were treated with camptothecin. Mapping of Top1mt sites in the regulatory D-loop region of mtDNA in mitochondria revealed the presence of an asymmetric cluster of Top1mt sites confined to a 150 bp segment downstream from, and adjacent to, the site at which replication is prematurely terminated, generating an approximately 650-base (7S DNA) product that forms the mitochondrial D-loop. Moreover, we show that inhibition of Top1mt by camptothecin reduces the level of formation of the 7S DNA. These results suggest novel roles for Top1mt in regulating mtDNA replication.
Collapse
Affiliation(s)
- Hongliang Zhang
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4255, USA
| | | |
Collapse
|
248
|
Rorbach J, Richter R, Wessels HJ, Wydro M, Pekalski M, Farhoud M, Kühl I, Gaisne M, Bonnefoy N, Smeitink JA, Lightowlers RN, Chrzanowska-Lightowlers ZM. The human mitochondrial ribosome recycling factor is essential for cell viability. Nucleic Acids Res 2008; 36:5787-99. [PMID: 18782833 PMCID: PMC2566884 DOI: 10.1093/nar/gkn576] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 08/12/2008] [Accepted: 08/27/2008] [Indexed: 01/24/2023] Open
Abstract
The molecular mechanism of human mitochondrial translation has yet to be fully described. We are particularly interested in understanding the process of translational termination and ribosome recycling in the mitochondrion. Several candidates have been implicated, for which subcellular localization and characterization have not been reported. Here, we show that the putative mitochondrial recycling factor, mtRRF, is indeed a mitochondrial protein. Expression of human mtRRF in fission yeast devoid of endogenous mitochondrial recycling factor suppresses the respiratory phenotype. Further, human mtRRF is able to associate with Escherichia coli ribosomes in vitro and can associate with mitoribosomes in vivo. Depletion of mtRRF in human cell lines is lethal, initially causing profound mitochondrial dysmorphism, aggregation of mitoribosomes, elevated mitochondrial superoxide production and eventual loss of OXPHOS complexes. Finally, mtRRF was shown to co-immunoprecipitate a large number of mitoribosomal proteins attached to other mitochondrial proteins, including putative members of the mitochondrial nucleoid.
Collapse
Affiliation(s)
- Joanna Rorbach
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK and Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Ricarda Richter
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK and Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Hans J. Wessels
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK and Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Mateusz Wydro
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK and Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Marcin Pekalski
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK and Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Murtada Farhoud
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK and Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Inge Kühl
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK and Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Mauricette Gaisne
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK and Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Nathalie Bonnefoy
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK and Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Jan A. Smeitink
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK and Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Robert N. Lightowlers
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK and Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| | - Zofia M.A. Chrzanowska-Lightowlers
- Mitochondrial Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK, Nijmegen Centre for Mitochondrial Disorders, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, The Netherlands, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK and Centre de Génétique Moléculaire, CNRS Batiment 26, Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France
| |
Collapse
|
249
|
Bonawitz ND, Chatenay-Lapointe M, Wearn CM, Shadel GS. Expression of the rDNA-encoded mitochondrial protein Tar1p is stringently controlled and responds differentially to mitochondrial respiratory demand and dysfunction. Curr Genet 2008; 54:83-94. [PMID: 18622616 PMCID: PMC2799293 DOI: 10.1007/s00294-008-0203-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/20/2008] [Accepted: 06/25/2008] [Indexed: 11/25/2022]
Abstract
The novel yeast protein Tar1p is encoded on the anti-sense strand of the multi-copy nuclear 25S rRNA gene, localizes to mitochondria, and partially suppresses the mitochondrial RNA polymerase mutant, rpo41-R129D. However, the function of Tar1p in mitochondria and how its expression is regulated are currently unknown. Here we report that Tar1p is subject to glucose repression and is up-regulated during post-diauxic shift in glucose medium and in glycerol medium, conditions requiring elevated mitochondrial respiration. However, Tar1p expression is down-regulated in response to mitochondrial dysfunction caused by the rpo41-R129D mutation or in strains lacking respiration. Furthermore, in contrast to the previously reported beneficial effects of moderate over-expression of Tar1p in the rpo41-R129D strain, higher-level over-expression exacerbates the ROS-derived phenotypes of this mutant, including decreased respiration and life span. Finally, two-hybrid screening and in vitro-binding studies revealed a physical interaction between Tar1p and Coq5p, an enzyme involved in synthesizing the mitochondrial electron carrier and antioxidant, coenzyme Q. We propose that Tar1p expression is induced under respiratory conditions to maintain oxidative phosphorylation capacity, but that its levels in mitochondria are typically low and stringently controlled. Furthermore, we speculate that Tar1p is down-regulated when respiration is defective to prevent deleterious ROS-dependent consequences of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Nicholas D. Bonawitz
- Department of Pathology and Genetics, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT 06520-8023, USA. Graduate Program in Genetics and Molecular Biology, Emory University School of Medicine, Altanta, GA, USA
| | - Marc Chatenay-Lapointe
- Department of Pathology and Genetics, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT 06520-8023, USA. Graduate Program in Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher M. Wearn
- Department of Biochemistry, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA
| | - Gerald S. Shadel
- Department of Pathology and Genetics, Yale University School of Medicine, 310 Cedar Street, P.O. Box 208023, New Haven, CT 06520-8023, USA
| |
Collapse
|
250
|
Diaz F, Moraes CT. Mitochondrial biogenesis and turnover. Cell Calcium 2008; 44:24-35. [PMID: 18395251 PMCID: PMC3175594 DOI: 10.1016/j.ceca.2007.12.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 11/17/2022]
Abstract
Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last 20 years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium-dependent protein kinases that in turn activate transcription factors and coactivators such as PGC-1alpha that regulates the expression of genes coding for mitochondrial components. In addition, mitochondrial biogenesis involves the balance of mitochondrial fission-fusion. Mitochondrial malfunction or defects in any of the many pathways involved in mitochondrial biogenesis can lead to degenerative diseases and possibly play an important part in aging.
Collapse
Affiliation(s)
- Francisca Diaz
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Fl 33136, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, Fl 33136, USA
- Department of Cell Biology and Anatomy, University of Miami, Miller School of Medicine, Miami, Fl 33136, USA
| |
Collapse
|