201
|
Differential Masking of Natural Genetic Variation by miR-9a in Drosophila. Genetics 2015; 202:675-87. [PMID: 26614743 DOI: 10.1534/genetics.115.183822] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
Genetic variation is prevalent among individuals of the same species and yet the potential effects of genetic variation on developmental outcomes are frequently suppressed. Understanding the mechanisms that are responsible for this suppression is an important goal. Previously, we found that the microRNA miR-9a mitigates the impact of natural genetic variants that promote the development of scutellar bristles in adult Drosophila. Here we find that miR-9a does not affect the impact of genetic variants that inhibit the development of scutellar bristles. We show this using both directional and stabilizing selection in the laboratory. This specificity of action suggests that miR-9a does not interact with all functional classes of developmental genetic variants affecting sensory organ development. We also investigate the impact of miR-9a on a fitness trait, which is adult viability. At elevated physiological temperatures, miR-9a contributes to viability through masking genetic variants that hinder adult viability. We conclude that miR-9a activity in different developmental networks contributes to suppression of natural variants from perturbing development.
Collapse
|
202
|
Li J, Ma Z, Shi M, Malty RH, Aoki H, Minic Z, Phanse S, Jin K, Wall DP, Zhang Z, Urban AE, Hallmayer J, Babu M, Snyder M. Identification of Human Neuronal Protein Complexes Reveals Biochemical Activities and Convergent Mechanisms of Action in Autism Spectrum Disorders. Cell Syst 2015; 1:361-374. [PMID: 26949739 DOI: 10.1016/j.cels.2015.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The prevalence of autism spectrum disorders (ASDs) is rapidly growing, yet its molecular basis is poorly understood. We used a systems approach in which ASD candidate genes were mapped onto the ubiquitous human protein complexes and the resulting complexes were characterized. The studies revealed the role of histone deacetylases (HDAC1/2) in regulating the expression of ASD orthologs in the embryonic mouse brain. Proteome-wide screens for the co-complexed subunits with HDAC1 and six other key ASD proteins in neuronal cells revealed a protein interaction network, which displayed preferential expression in fetal brain development, exhibited increased deleterious mutations in ASD cases, and were strongly regulated by FMRP and MECP2 causal for Fragile X and Rett syndromes, respectively. Overall, our study reveals molecular components in ASD, suggests a shared mechanism between the syndromic and idiopathic forms of ASDs, and provides a systems framework for analyzing complex human diseases.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Genetics, Stanford Center for Genomics and Personalized Medicine, Stanford, California, 94305 USA
| | - Zhihai Ma
- Department of Genetics, Stanford Center for Genomics and Personalized Medicine, Stanford, California, 94305 USA
| | - Minyi Shi
- Department of Genetics, Stanford Center for Genomics and Personalized Medicine, Stanford, California, 94305 USA
| | - Ramy H Malty
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Zoran Minic
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Sadhna Phanse
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Ke Jin
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada; Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Dennis P Wall
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, 94305 USA; Department of Pediatrics, Stanford, California, 94305 USA
| | - Zhaolei Zhang
- Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Alexander E Urban
- Department of Genetics, Stanford Center for Genomics and Personalized Medicine, Stanford, California, 94305 USA; Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, 94305 USA
| | - Joachim Hallmayer
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, California, 94305 USA
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Saskatchewan S4S 0A2, Canada
| | - Michael Snyder
- Department of Genetics, Stanford Center for Genomics and Personalized Medicine, Stanford, California, 94305 USA
| |
Collapse
|
203
|
Skataric M, Nikolaev EV, Sontag ED. Fundamental limitation of the instantaneous approximation in fold-change detection models. IET Syst Biol 2015; 9:1-15. [PMID: 25569859 DOI: 10.1049/iet-syb.2014.0006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The phenomenon of fold-change detection, or scale-invariance, is exhibited by a variety of sensory systems, in both bacterial and eukaryotic signalling pathways. It has been often remarked in the systems biology literature that certain systems whose output variables respond at a faster time scale than internal components give rise to an approximate scale-invariant behaviour, allowing approximate fold-change detection in stimuli. This study establishes a fundamental limitation of such a mechanism, showing that there is a minimal fold-change detection error that cannot be overcome, no matter how large the separation of time scales is. To illustrate this theoretically predicted limitation, the authors discuss two common biomolecular network motifs, an incoherent feedforward loop and a feedback system, as well as a published model of the chemotaxis signalling pathway of Dictyostelium discoideum.
Collapse
Affiliation(s)
- Maja Skataric
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854-8019, USA
| | - Evgeni V Nikolaev
- Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA
| | - Eduardo D Sontag
- Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA.
| |
Collapse
|
204
|
Võsa U, Esko T, Kasela S, Annilo T. Altered Gene Expression Associated with microRNA Binding Site Polymorphisms. PLoS One 2015; 10:e0141351. [PMID: 26496489 PMCID: PMC4619707 DOI: 10.1371/journal.pone.0141351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/06/2015] [Indexed: 02/03/2023] Open
Abstract
Allele-specific gene expression associated with genetic variation in regulatory regions can play an important role in the development of complex traits. We hypothesized that polymorphisms in microRNA (miRNA) response elements (MRE-SNPs) that either disrupt a miRNA binding site or create a new miRNA binding site can affect the allele-specific expression of target genes. By integrating public expression quantitative trait locus (eQTL) data, miRNA binding site predictions, small RNA sequencing, and Argonaute crosslinking immunoprecipitation (AGO-CLIP) datasets, we identified genetic variants that can affect gene expression by modulating miRNA binding efficiency. We also identified MRE-SNPs located in regions associated with complex traits, indicating possible causative mechanisms associated with these loci. The results of this study expand the current understanding of gene expression regulation and help to interpret the mechanisms underlying eQTL effects.
Collapse
Affiliation(s)
- Urmo Võsa
- Estonian Genome Center, University of Tartu, Riia 23b, 51010 Tartu, Estonia
- * E-mail:
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Riia 23b, 51010 Tartu, Estonia
- Division of Endocrinology, Children's Hospital, Boston, MA, United States of America
- Department of Genetics, Harvard Medical School, Boston, MA, United States of America
- Broad Institute, Cambridge, MA, United States of America
| | - Silva Kasela
- Estonian Genome Center, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| | - Tarmo Annilo
- Estonian Genome Center, University of Tartu, Riia 23b, 51010 Tartu, Estonia
| |
Collapse
|
205
|
Li J, Ding Q, Wang F, Zhang Y, Li H, Gao J. Integrative Analysis of mRNA and miRNA Expression Profiles of the Tuberous Root Development at Seedling Stages in Turnips. PLoS One 2015; 10:e0137983. [PMID: 26367742 PMCID: PMC4569476 DOI: 10.1371/journal.pone.0137983] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 08/24/2015] [Indexed: 11/18/2022] Open
Abstract
The tuberous root of Brassica rapa L. (turnip) is an important modified organ for nutrition storage. A better understanding of the molecular mechanisms involved in the process of tuberous root development is of great value in both economic and biological context. In this study, we analyzed the expression profiles of both mRNAs and miRNAs in tuberous roots at an early stage before cortex splitting (ES), cortex splitting stage (CSS), and secondary root thickening stage (RTS) in turnip based on high-throughput sequencing technology. A large number of differentially expressed genes (DEGs) and several differentially expressed miRNAs (DEMs) were identified. Based on the DEG analysis, we propose that metabolism is the dominant pathway in both tuberous root initiation and secondary thickening process. The plant hormone signal transduction pathway may play a predominant role in regulating tuberous root initiation, while the starch and sucrose metabolism may be more important for the secondary thickening process. These hypotheses were partially supported by sequential DEM analyses. Of all DEMs, miR156a, miR157a, and miR172a exhibited relatively high expression levels, and were differentially expressed in both tuberous root initiation and the secondary thickening process with the expression profiles negatively correlated with those of their target genes. Our results suggest that these miRNAs play important roles in tuberous root development in turnips.
Collapse
Affiliation(s)
- Jingjuan Li
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Qian Ding
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Fengde Wang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Yihui Zhang
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Huayin Li
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Jianwei Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| |
Collapse
|
206
|
Hsa-miR-19a is associated with lymph metastasis and mediates the TNF-α induced epithelial-to-mesenchymal transition in colorectal cancer. Sci Rep 2015; 5:13350. [PMID: 26302825 PMCID: PMC5388049 DOI: 10.1038/srep13350] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 07/24/2015] [Indexed: 12/14/2022] Open
Abstract
Lymph node metastasis is an important factor determining the outcome of colorectal cancer. Although epithelial-to-mesenchymal transition (EMT), TNF-α and microRNA (miRNA) have been found to play important roles in lymph node metastasis, the underlying molecular mechanism remains unclear. Here we reported that high expression of microRNA-19a (miR-19a) was associated with lymph node metastasis and played an important role in TNF-α-induced EMT in colorectal cancer (CRC) cells. We analyzed miR-19a expression in surgical tissue specimens from 11 CRC patients and 275 formalin-fixed, paraffin-embedded CRC patients. We found that miR-19a was up-regulated in CRC tissues and high expression of miR-19a was significantly associated with lymph node metastasis. We further analyzed miR-19a lymph node metastasis signature in an external validation cohort of 311 CRC cases of the TCGA. MiR-19a was found to be significantly associated with lymph node metastasis in rectal cancer. In vitro, we showed that overexpression of miR-19a in human CRC cell lines promoted cell invasion and EMT. Furthermore, miR-19a was up-regulated by TNF-α and miR-19a was required for TNF-α-induced EMT and metastasis in CRC cells. Collectively, miR-19a played an important role in mediating EMT and metastatic behavior in CRC. It may serve as a potential marker of lymph node metastasis.
Collapse
|
207
|
Riesco-Eizaguirre G, Wert-Lamas L, Perales-Patón J, Sastre-Perona A, Fernández LP, Santisteban P. The miR-146b-3p/PAX8/NIS Regulatory Circuit Modulates the Differentiation Phenotype and Function of Thyroid Cells during Carcinogenesis. Cancer Res 2015; 75:4119-30. [PMID: 26282166 DOI: 10.1158/0008-5472.can-14-3547] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/13/2015] [Indexed: 11/16/2022]
Abstract
The presence of differentiated thyroid cells in thyroid cancer is critical for the antitumor response to radioactive iodide treatment, and loss of the differentiated phenotype is a key hallmark of iodide-refractory metastatic disease. The role of microRNAs (miRNA) in fine-tuning gene expression has become a major regulatory mechanism by which developmental and pathologic processes occur. In this study, we performed next-generation sequencing and expression analysis of eight papillary thyroid carcinomas (PTC) to comprehensively characterize miRNAs involved in loss of differentiation. We found that only a small set of abundant miRNAs is differentially expressed between PTC tissue and normal tissue from the same patient. In addition, we integrated computational prediction of potential targets and mRNA sequencing and identified a master miRNA regulatory network involved in essential biologic processes such as thyroid differentiation. Both mature products of mir-146b (miR-146b-5p and -3p) were among the most abundantly expressed miRNAs in tumors. Specifically, we found that miR-146b-3p binds to the 3'-untranslated region of PAX8 and sodium/iodide symporter (NIS), leading to impaired protein translation and a subsequent reduction in iodide uptake. Furthermore, our findings show that miR-146b and PAX8 regulate each other and share common target genes, thus highlighting a novel regulatory circuit that governs the differentiated phenotype of PTC. In conclusion, our study has uncovered the existence of a miR-146b-3p/PAX8/NIS regulatory circuit that may be exploited therapeutically to modulate thyroid cell differentiation and iodide uptake for improved treatment of advanced thyroid cancer.
Collapse
Affiliation(s)
- Garcilaso Riesco-Eizaguirre
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain. Servicio de Endocrinología y Nutrición, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain. Servicio de Endocrinología Hospital Universitario de Móstoles, Madrid, Spain
| | - León Wert-Lamas
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Javier Perales-Patón
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain. Translational Bioinformatics Unit, Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Sastre-Perona
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Lara P Fernández
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
208
|
Li Y, Liang C, Easterbrook S, Luo J, Zhang Z. Investigating the functional implications of reinforcing feedback loops in transcriptional regulatory networks. MOLECULAR BIOSYSTEMS 2015; 10:3238-48. [PMID: 25286350 DOI: 10.1039/c4mb00526k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) and microRNAs (miRNAs) can jointly regulate transcriptional networks in the form of recurrent circuits or motifs. A motif can be divided into a feedforward loop (FFL) and a feedback loop (FBL). Incoherent FFLs have been the recent focus due to their potential to dampen gene expression noise in maintaining physiological norms. However, a cell is not only able to manage noise but also able to exploit it during development or tumorigenesis to initiate radical transformation such as cell differentiation or metastasis. A plausible mechanism may involve reinforcing FBLs (rFBLs), which amplify changes to a sufficient level in order to complete the state transition. To study the behaviour of rFBLs, we developed a novel theoretical framework based on biochemical kinetics. The proposed rFBL follows a parsimonious design, involving two TFs and two miRNAs. A simulation study based on our model suggested that a system with rFBLs is robust to only a certain level of fluctuation but prone to a complete paradigm shift when the change exceeds a threshold level. To investigate the natural occurrence of rFBLs, we performed a rigorous network motif analysis using a recently available TF/miRNA regulatory network from the Encyclopedia of DNA Elements (ENCODE). Our analysis suggested that the rFBL is significantly depleted in the observed network. Nonetheless, we identified 9 rFBL instances. Among them, we found a double-rFBL involving three TFs SUZ12/BCLAF1/ZBTB33 and three miRNAs miR-9/19a/129-5p, which together serve as an intriguing toggle switch between nerve development and telomere maintenance. Additionally, we investigated the interactions implicated in the rFBLs using expression profiles of cancer patients from The Cancer Genome Atlas (TCGA). Together, we provided a novel and comprehensive view of the profound impacts of rFBLs and highlighted several TFs and miRNAs as the leverage points for potential therapeutic targets in cancers due to their eminent roles in the identified rFBLs.
Collapse
Affiliation(s)
- Yue Li
- Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada.
| | | | | | | | | |
Collapse
|
209
|
Zhang G, Shi H, Wang L, Zhou M, Wang Z, Liu X, Cheng L, Li W, Li X. MicroRNA and transcription factor mediated regulatory network analysis reveals critical regulators and regulatory modules in myocardial infarction. PLoS One 2015; 10:e0135339. [PMID: 26258537 PMCID: PMC4530868 DOI: 10.1371/journal.pone.0135339] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/21/2015] [Indexed: 11/19/2022] Open
Abstract
Myocardial infarction (MI) is a severe coronary artery disease and a leading cause of mortality and morbidity worldwide. However, the molecular mechanisms of MI have yet to be fully elucidated. In this study, we compiled MI-related genes, MI-related microRNAs (miRNAs) and known human transcription factors (TFs), and we then identified 1,232 feed-forward loops (FFLs) among these miRNAs, TFs and their co-regulated target genes through integrating target prediction. By merging these FFLs, the first miRNA and TF mediated regulatory network for MI was constructed, from which four regulators (SP1, ESR1, miR-21-5p and miR-155-5p) and three regulatory modules that might play crucial roles in MI were then identified. Furthermore, based on the miRNA and TF mediated regulatory network and literature survey, we proposed a pathway model for miR-21-5p, the miR-29 family and SP1 to demonstrate their potential co-regulatory mechanisms in cardiac fibrosis, apoptosis and angiogenesis. The majority of the regulatory relations in the model were confirmed by previous studies, which demonstrated the reliability and validity of this miRNA and TF mediated regulatory network. Our study will aid in deciphering the complex regulatory mechanisms involved in MI and provide putative therapeutic targets for MI.
Collapse
Affiliation(s)
- Guangde Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Lin Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Meng Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Zhenzhen Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xiaoxia Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Weimin Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
- * E-mail: (XQL); (WML)
| | - Xueqi Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
- * E-mail: (XQL); (WML)
| |
Collapse
|
210
|
Burke SL, Hammell M, Ambros V. Robust Distal Tip Cell Pathfinding in the Face of Temperature Stress Is Ensured by Two Conserved microRNAS in Caenorhabditis elegans. Genetics 2015; 200:1201-18. [PMID: 26078280 PMCID: PMC4574240 DOI: 10.1534/genetics.115.179184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/10/2015] [Indexed: 12/26/2022] Open
Abstract
Biological robustness, the ability of an organism to maintain a steady-state output as genetic or environmental inputs change, is critical for proper development. MicroRNAs have been implicated in biological robustness mechanisms through their post-transcriptional regulation of genes and gene networks. Previous research has illustrated examples of microRNAs promoting robustness as part of feedback loops and genetic switches and by buffering noisy gene expression resulting from environmental and/or internal changes. Here we show that the evolutionarily conserved microRNAs mir-34 and mir-83 (homolog of mammalian mir-29) contribute to the robust migration pattern of the distal tip cells in Caenorhabditis elegans by specifically protecting against stress from temperature changes. Furthermore, our results indicate that mir-34 and mir-83 may modulate the integrin signaling involved in distal tip cell migration by potentially targeting the GTPase cdc-42 and the beta-integrin pat-3. Our findings suggest a role for mir-34 and mir-83 in integrin-controlled cell migrations that may be conserved through higher organisms. They also provide yet another example of microRNA-based developmental robustness in response to a specific environmental stress, rapid temperature fluctuations.
Collapse
Affiliation(s)
- Samantha L Burke
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Molly Hammell
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
211
|
Ahmadi M, Jafari R, Marashi SA, Farazmand A. Evidence for the relationship between the regulatory effects of microRNAs and attack robustness of biological networks. Comput Biol Med 2015; 63:83-91. [DOI: 10.1016/j.compbiomed.2015.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/09/2015] [Accepted: 05/11/2015] [Indexed: 10/23/2022]
|
212
|
Bosch PJ, Benton MC, Macartney-Coxson D, Kivell BM. mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats. BMC Neurosci 2015; 16:43. [PMID: 26188473 PMCID: PMC4506769 DOI: 10.1186/s12868-015-0186-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/14/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Methamphetamine is a highly addictive central nervous system stimulant with increasing levels of abuse worldwide. Alterations to mRNA and miRNA expression within the mesolimbic system can affect addiction-like behaviors and thus play a role in the development of drug addiction. While many studies have investigated the effects of high-dose methamphetamine, and identified neurotoxic effects, few have looked at the role that persistent changes in gene regulation play following methamphetamine self-administration. Therefore, the aim of this study was to identify RNA changes in the ventral tegmental area following methamphetamine self-administration. We performed microarray analyses on RNA extracted from the ventral tegmental area of Sprague-Dawley rats following methamphetamine self-administration training (2 h/day) and 14 days of abstinence. RESULTS We identified 78 miRNA and 150 mRNA transcripts that were differentially expressed (fdr adjusted p < 0.05, absolute log2 fold change >0.5); these included genes not previously associated with addiction (miR-125a-5p, miR-145 and Foxa1), loci encoding receptors related to drug addiction behaviors and genes with previously recognized roles in addiction such as miR-124, miR-181a, DAT and Ret. CONCLUSION This study provides insight into the effects of methamphetamine on RNA expression in a key brain region associated with addiction, highlighting the possibility that persistent changes in the expression of genes with both known and previously unknown roles in addiction occur.
Collapse
Affiliation(s)
- P J Bosch
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, PO Box 600, Wellington, 6140, New Zealand.
| | - M C Benton
- Institute of Environmental Science and Research, Wellington, New Zealand.
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - D Macartney-Coxson
- Institute of Environmental Science and Research, Wellington, New Zealand.
| | - B M Kivell
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, PO Box 600, Wellington, 6140, New Zealand.
| |
Collapse
|
213
|
|
214
|
Bertoli G, Cava C, Castiglioni I. MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer. Theranostics 2015; 5:1122-43. [PMID: 26199650 PMCID: PMC4508501 DOI: 10.7150/thno.11543] [Citation(s) in RCA: 598] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is involved in the initiation and progression of several human cancers, including breast cancer (BC), as strong evidence has been found that miRNAs can act as oncogenes or tumor suppressor genes. This review presents the state of the art on the role of miRNAs in the diagnosis, prognosis, and therapy of BC. Based on the results obtained in the last decade, some miRNAs are emerging as biomarkers of BC for diagnosis (i.e., miR-9, miR-10b, and miR-17-5p), prognosis (i.e., miR-148a and miR-335), and prediction of therapeutic outcomes (i.e., miR-30c, miR-187, and miR-339-5p) and have important roles in the control of BC hallmark functions such as invasion, metastasis, proliferation, resting death, apoptosis, and genomic instability. Other miRNAs are of interest as new, easily accessible, affordable, non-invasive tools for the personalized management of patients with BC because they are circulating in body fluids (e.g., miR-155 and miR-210). In particular, circulating multiple miRNA profiles are showing better diagnostic and prognostic performance as well as better sensitivity than individual miRNAs in BC. New miRNA-based drugs are also promising therapy for BC (e.g., miR-9, miR-21, miR34a, miR145, and miR150), and other miRNAs are showing a fundamental role in modulation of the response to other non-miRNA treatments, being able to increase their efficacy (e.g., miR-21, miR34a, miR195, miR200c, and miR203 in combination with chemotherapy).
Collapse
Affiliation(s)
| | | | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology (IBFM), National Research Council (CNR), Milan, Italy
| |
Collapse
|
215
|
Lin CC, Jiang W, Mitra R, Cheng F, Yu H, Zhao Z. Regulation rewiring analysis reveals mutual regulation between STAT1 and miR-155-5p in tumor immunosurveillance in seven major cancers. Sci Rep 2015; 5:12063. [PMID: 26156524 PMCID: PMC4496795 DOI: 10.1038/srep12063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/16/2015] [Indexed: 11/09/2022] Open
Abstract
Transcription factors (TFs) and microRNAs (miRNAs) form a gene regulatory network (GRN) at the transcriptional and post-transcriptional level in living cells. However, this network has not been well characterized, especially in regards to the mutual regulations between TFs and miRNAs in cancers. In this study, we collected those regulations inferred by ChIP-Seq or CLIP-Seq to construct the GRN formed by TFs, miRNAs, and target genes. To increase the reliability of the proposed network and examine the regulation activity of TFs and miRNAs, we further incorporated the mRNA and miRNA expression profiles in seven cancer types using The Cancer Genome Atlas data. We observed that regulation rewiring was prevalent during tumorigenesis and found that the rewired regulatory feedback loops formed by TFs and miRNAs were highly associated with cancer. Interestingly, we identified one regulatory feedback loop between STAT1 and miR-155-5p that is consistently activated in all seven cancer types with its function to regulate tumor-related biological processes. Our results provide insights on the losing equilibrium of the regulatory feedback loop between STAT1 and miR-155-5p influencing tumorigenesis.
Collapse
Affiliation(s)
- Chen-Ching Lin
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA
| | - Wei Jiang
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA
| | - Ramkrishna Mitra
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA
| | - Feixiong Cheng
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA
| | - Hui Yu
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA
| | - Zhongming Zhao
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA.,Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37203, USA
| |
Collapse
|
216
|
Ghanbari M, de Vries PS, de Looper H, Peters MJ, Schurmann C, Yaghootkar H, Dörr M, Frayling TM, Uitterlinden AG, Hofman A, van Meurs JBJ, Erkeland SJ, Franco OH, Dehghan A. A genetic variant in the seed region of miR-4513 shows pleiotropic effects on lipid and glucose homeostasis, blood pressure, and coronary artery disease. Hum Mutat 2015; 35:1524-31. [PMID: 25256095 DOI: 10.1002/humu.22706] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNA) play a crucial role in the regulation of diverse biological processes by post-transcriptional modulation of gene expression. Genetic polymorphisms in miRNA-related genes can potentially contribute to a wide range of phenotypes. The effect of such variants on cardiometabolic diseases has not yet been defined. We systematically investigated the association of genetic variants in the seed region of miRNAs with cardiometabolic phenotypes, using the thus far largest genome-wide association studies on 17 cardiometabolic traits/diseases. We found that rs2168518:G>A, a seed region variant of miR-4513, associates with fasting glucose, low-density lipoprotein-cholesterol, total cholesterol, systolic and diastolic blood pressure, and risk of coronary artery disease. We experimentally showed that miR-4513 expression is significantly reduced in the presence of the rs2168518 mutant allele. We sought to identify miR-4513 target genes that may mediate these associations and revealed five genes (PCSK1, BNC2, MTMR3, ANK3, and GOSR2) through which these effects might be taking place. Using luciferase reporter assays, we validated GOSR2 as a target of miR-4513 and further demonstrated that the miRNA-mediated regulation of this gene is changed by rs2168518. Our findings indicate a pleiotropic effect of miR-4513 on cardiometabolic phenotypes and may improve our understanding of the pathophysiology of cardiometabolic diseases.
Collapse
Affiliation(s)
- Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Masotti A, Donninelli G, Da Sacco L, Varano B, Del Cornò M, Gessani S. HIV-1 gp120 influences the expression of microRNAs in human monocyte-derived dendritic cells via STAT3 activation. BMC Genomics 2015; 16:480. [PMID: 26116514 PMCID: PMC4483217 DOI: 10.1186/s12864-015-1673-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/29/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND MicroRNAs (miRs) are an abundant class of small non-coding RNAs (~22 nt) that reprogram gene expression by targeting mRNA degradation and translational disruption. An emerging concept implicates miR coupling with transcription factors in myeloid cell development and function, thus contributing to host defense and inflammation. The important role that these molecules play in the pathogenesis of HIV-1 is only now emerging. RESULTS We provide evidence that exposure of monocyte-derived dendritic cells (MDDCs) to recombinant HIV-1 R5 gp120, but not to CCR5 natural ligand CCL4, influences the expression of a panel of miRs (i.e., miR-21, miR-155 and miR-181b) regulated by STAT3 and potentially targeting genes belonging to the STAT3 signaling pathway. The blockage of gp120-induced STAT3 activation impairs gp120 capacity to modulate the expression level of above mentioned miRs. Predictive analysis of miR putative targets emphasizes that these miRs share common target genes. Furthermore, gene ontology and pathway enrichment analysis outline that these genes mainly belong to biological processes related to regulation of transcription, in a complex network of interactions involving pathways relevant to HIV-DC interaction. CONCLUSIONS Overall, these results point to gp120-triggered modulation of miR expression via STAT3 activation as a novel molecular mechanism exploited by HIV-1 to affect DC biology and thus modulate the immune response through complex regulatory loops involving, at the same time, miRs and transcription factors.
Collapse
Affiliation(s)
- Andrea Masotti
- Bambino Gesù Children's Hospital-IRCCS, Viale di San Paolo 15, 00146, Rome, Italy.
| | - Gloria Donninelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Letizia Da Sacco
- Bambino Gesù Children's Hospital-IRCCS, Viale di San Paolo 15, 00146, Rome, Italy.
| | - Barbara Varano
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Manuela Del Cornò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Sandra Gessani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
218
|
Abstract
Drug addiction is characterized by uncontrolled drug consumption and high rates of relapse to drug taking during periods of attempted abstinence. Addiction is now largely considered a disorder of experience-dependent neuroplasticity, driven by remodeling of synapses in reward and motivation relevant brain circuits in response to a history of prolonged drug intake. Alterations in gene expression play a central role in addiction-relevant neuroplasticity, but the mechanisms by which additive drugs remodel brain motivation circuits remains unclear. MicroRNAs (miRNAs) are a class of noncoding RNA that can regulate the expression of large numbers of protein-coding mRNA transcripts by binding to the 3' untranslated region (3' UTR) of target transcripts and blocking their translation into the encoded protein or triggering their destabilization and degradation. Emerging evidence has implicated miRNAs in regulating addiction-relevant neuroplasticity in the brain, and in controlling the motivational properties of cocaine and other drugs of abuse. Here, the role for miRNAs in regulating basic aspects of neuronal function is reviewed. The involvement of miRNAs in controlling the motivational properties of addictive drugs is also summarized. Finally, mechanisms by which miRNAs exert their actions on drug intake, when known, are considered.
Collapse
Affiliation(s)
- Paul J Kenny
- Laboratory of Behavioral & Molecular Neuroscience, Department of Pharmacology & Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
219
|
Wen J, Leucci E, Vendramin R, Kauppinen S, Lund AH, Krogh A, Parker BJ. Transcriptome dynamics of the microRNA inhibition response. Nucleic Acids Res 2015; 43:6207-21. [PMID: 26089393 PMCID: PMC4513874 DOI: 10.1093/nar/gkv603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We report a high-resolution time series study of transcriptome dynamics following antimiR-mediated inhibition of miR-9 in a Hodgkin lymphoma cell-line—the first such dynamic study of the microRNA inhibition response—revealing both general and specific aspects of the physiological response. We show miR-9 inhibition inducing a multiphasic transcriptome response, with a direct target perturbation before 4 h, earlier than previously reported, amplified by a downstream peak at ∼32 h consistent with an indirect response due to secondary coherent regulation. Predictive modelling indicates a major role for miR-9 in post-transcriptional control of RNA processing and RNA binding protein regulation. Cluster analysis identifies multiple co-regulated gene regulatory modules. Functionally, we observe a shift over time from mRNA processing at early time points to translation at later time points. We validate the key observations with independent time series qPCR and we experimentally validate key predicted miR-9 targets. Methodologically, we developed sensitive functional data analytic predictive methods to analyse the weak response inherent in microRNA inhibition experiments. The methods of this study will be applicable to similar high-resolution time series transcriptome analyses and provides the context for more accurate experimental design and interpretation of future microRNA inhibition studies.
Collapse
Affiliation(s)
- Jiayu Wen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Eleonora Leucci
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Center of Human Genetics, VIB, 3000 Leuven, Belgium
| | - Roberto Vendramin
- Laboratory for Molecular Cancer Biology, Center for the Biology of Disease, VIB, 3000 Leuven, Belgium; Laboratory for Molecular Cancer Biology, Center of Human Genetics, VIB, 3000 Leuven, Belgium
| | - Sakari Kauppinen
- Department of Haematology, Aalborg University Hospital, A.C. Meyers Vnge 15, 2450 Copenhagen SV, Denmark
| | - Anders H Lund
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Anders Krogh
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark
| | - Brian J Parker
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Ole Maaloes Vej 5, 2200 Copenhagen N, Denmark Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis street, #07-01, Singapore 138671
| |
Collapse
|
220
|
Bracken CP, Khew-Goodall Y, Goodall GJ. Network-Based Approaches to Understand the Roles of miR-200 and Other microRNAs in Cancer. Cancer Res 2015; 75:2594-9. [PMID: 26069247 DOI: 10.1158/0008-5472.can-15-0287] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/25/2015] [Indexed: 11/16/2022]
Abstract
microRNAs (miRNA) are well suited to the task of regulating gene expression networks, because any given miRNA has the capacity to target dozens, if not hundreds, of genes. The simultaneous targeting of multiple genes within a pathway may enable miRNAs to more strongly regulate the pathway, or to achieve more subtle control through the targeting of distinct subnetworks of genes. Therefore, as our capacity to discover miRNA targets en masse increases, so must our consideration of the complex networks in which these genes participate. We highlight recent studies in which the comprehensive identification of targets has been used to elucidate miRNA-regulated gene networks in cancer, focusing especially upon miRNAs such as members of the miR-200 family that regulate epithelial-mesenchymal transition (EMT), a reversible phenotypic switch whereby epithelial cells take on the more invasive properties of their mesenchymal counterparts. These studies have expanded our understanding of the roles of miRNAs in EMT, which were already known to form important regulatory loops with key transcription factors to regulate the epithelial or mesenchymal properties of cells.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia. Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia.
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia. School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia. Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia. School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
221
|
Tran NTL, DeLuccia L, McDonald AF, Huang CH. Cross-disciplinary detection and analysis of network motifs. Bioinform Biol Insights 2015; 9:49-60. [PMID: 25983553 PMCID: PMC4403903 DOI: 10.4137/bbi.s23619] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 11/30/2022] Open
Abstract
The detection of network motifs has recently become an important part of network analysis across all disciplines. In this work, we detected and analyzed network motifs from undirected and directed networks of several different disciplines, including biological network, social network, ecological network, as well as other networks such as airlines, power grid, and co-purchase of political books networks. Our analysis revealed that undirected networks are similar at the basic three and four nodes, while the analysis of directed networks revealed the distinction between networks of different disciplines. The study showed that larger motifs contained the three-node motif as a subgraph. Topological analysis revealed that similar networks have similar small motifs, but as the motif size increases, differences arise. Pearson correlation coefficient showed strong positive relationship between some undirected networks but inverse relationship between some directed networks. The study suggests that the three-node motif is a building block of larger motifs. It also suggests that undirected networks share similar low-level structures. Moreover, similar networks share similar small motifs, but larger motifs define the unique structure of individuals. Pearson correlation coefficient suggests that protein structure networks, dolphin social network, and co-authorships in network science belong to a superfamily. In addition, yeast protein–protein interaction network, primary school contact network, Zachary’s karate club network, and co-purchase of political books network can be classified into a superfamily.
Collapse
Affiliation(s)
- Ngoc Tam L Tran
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Luke DeLuccia
- Department of Computer Science, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Aidan F McDonald
- Department of Computer Science, University of Puget Sound, Tacoma, WA, USA
| | - Chun-Hsi Huang
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
222
|
Taki FA, Pan X, Zhang B. Revisiting Chaos Theorem to Understand the Nature of miRNAs in Response to Drugs of Abuse. J Cell Physiol 2015; 230:2857-68. [PMID: 25966899 DOI: 10.1002/jcp.25037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/05/2015] [Indexed: 11/08/2022]
Abstract
Just like Matryoshka dolls, biological systems follow a hierarchical order that is based on dynamic bidirectional communication among its components. In addition to the convoluted inter-relationships, the complexity of each component spans several folds. Therefore, it becomes rather challenging to investigate phenotypes resulting from these networks as it requires the integration of reductionistic and holistic approaches. One dynamic system is the transcriptome which comprises a variety of RNA species. Some, like microRNAs, have recently received a lot of attention. miRNAs are very pleiotropic and have been considered as therapeutic and diagnostic candidates in the biomedical fields. In this review, we survey miRNA profiles in response to drugs of abuse (DA) using 118 studies. After providing a summary of miRNAs related to substance use disorders (SUD), general patterns of miRNA signatures are compared among studies for single or multiple drugs of abuse. Then, current challenges and drawbacks in the field are discussed. Finally, we provide support for considering miRNAs as a chaotic system in normal versus disrupted states particularly in SUD and propose an integrative approach for studying and analyzing miRNA data.
Collapse
Affiliation(s)
- Faten A Taki
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Xiaoping Pan
- Department of Biology, East Carolina University, Greenville, North Carolina
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, North Carolina
| |
Collapse
|
223
|
Maity AK, Chaudhury P, Banik SK. Role of relaxation time scale in noisy signal transduction. PLoS One 2015; 10:e0123242. [PMID: 25955500 PMCID: PMC4425683 DOI: 10.1371/journal.pone.0123242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/28/2015] [Indexed: 11/18/2022] Open
Abstract
Intra-cellular fluctuations, mainly triggered by gene expression, are an inevitable phenomenon observed in living cells. It influences generation of phenotypic diversity in genetically identical cells. Such variation of cellular components is beneficial in some contexts but detrimental in others. To quantify the fluctuations in a gene product, we undertake an analytical scheme for studying few naturally abundant linear as well as branched chain network motifs. We solve the Langevin equations associated with each motif under the purview of linear noise approximation and derive the expressions for Fano factor and mutual information in close analytical form. Both quantifiable expressions exclusively depend on the relaxation time (decay rate constant) and steady state population of the network components. We investigate the effect of relaxation time constraints on Fano factor and mutual information to indentify a time scale domain where a network can recognize the fluctuations associated with the input signal more reliably. We also show how input population affects both quantities. We extend our calculation to long chain linear motif and show that with increasing chain length, the Fano factor value increases but the mutual information processing capability decreases. In this type of motif, the intermediate components act as a noise filter that tune up input fluctuations and maintain optimum fluctuations in the output. For branched chain motifs, both quantities vary within a large scale due to their network architecture and facilitate survival of living system in diverse environmental conditions.
Collapse
Affiliation(s)
| | | | - Suman K Banik
- Department of Chemistry, Bose Institute, Kolkata, India
- * E-mail:
| |
Collapse
|
224
|
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression and, therefore, biological processes in different tissues. A major function of miRNAs in adipose tissue is to stimulate or inhibit the differentiation of adipocytes, and to regulate specific metabolic and endocrine functions. Numerous miRNAs are present in human adipose tissue; however, the expression of only a few is altered in individuals with obesity and type 2 diabetes mellitus or are differentially expressed in various adipose depots. In humans, obesity is associated with chronic low-grade inflammation that is regulated by signal transduction networks, in which miRNAs, either directly or indirectly (through regulatory elements such as transcription factors), influence the expression and secretion of inflammatory proteins. In addition to their diverse effects on signalling, miRNAs and transcription factors can interact to amplify the inflammatory effect. Although additional miRNA signal networks in human adipose tissue are not yet known, similar regulatory circuits have been described in brown adipose tissue in mice. miRNAs can also be secreted from fat cells into the circulation and serve as markers of disturbed adipose tissue function. Given their role in regulating transcriptional networks, miRNAs in adipose tissue might offer tangible targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Peter Arner
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Agné Kulyté
- Lipid Laboratory, Department of Medicine Huddinge, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| |
Collapse
|
225
|
Figliuzzi M, De Martino A, Marinari E. RNA-based regulation: dynamics and response to perturbations of competing RNAs. Biophys J 2015; 107:1011-22. [PMID: 25140437 DOI: 10.1016/j.bpj.2014.06.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 06/03/2014] [Accepted: 06/24/2014] [Indexed: 12/14/2022] Open
Abstract
The observation that, through a titration mechanism, microRNAs (miRNAs) can act as mediators of effective interactions among their common targets (competing endogenous RNAs or ceRNAs) has brought forward the idea (i.e., the ceRNA hypothesis) that RNAs can regulate each other in extended cross-talk networks. Such an ability might play a major role in posttranscriptional regulation to shape a cell's protein repertoire. Recent work focusing on the emergent properties of the cross-talk networks has emphasized the high flexibility and selectivity that may be achieved at stationarity. On the other hand, dynamical aspects, possibly crucial on the relevant timescales, are far less clear. We have carried out a dynamical study of the ceRNA hypothesis on a model of posttranscriptional regulation. Sensitivity analysis shows that ceRNA cross-talk is dynamically extended, i.e., it may take place on timescales shorter than those required to achieve stationarity even in cases where no cross-talk occurs in the steady state, and is possibly amplified. In addition, in the case of large, transfection-like perturbations, the system may develop a strongly nonlinear, threshold response. Finally, we show that the ceRNA effect provides a very efficient way for a cell to achieve fast positive shifts in the level of a ceRNA when necessary. These results indicate that competition for miRNAs may indeed provide an elementary mechanism to achieve system-level regulatory effects on the transcriptome over physiologically relevant timescales.
Collapse
Affiliation(s)
- Matteo Figliuzzi
- Sorbonne Universités, Pierre-and-Marie-Curie University, University Paris-VI, Institut Calcul et Simulation, Paris, France; Sorbonne Universités, Pierre-and-Marie-Curie University, University Paris-VI, Unit of Mixed Research 7238, Computational and Quantitative Biology, Paris, France; Centre National de la Recherche Scientifique, Unit of Mixed Research 7238, Computational and Quantitative Biology, Paris, France; Dipartimento di Fisica, Sapienza Universitá di Roma, Rome, Italy
| | - Andrea De Martino
- Dipartimento di Fisica, Sapienza Universitá di Roma, Rome, Italy; The Institute for Chemico-Physical Processes, National Research Council, Unità di Roma-Sapienza, Rome, Italy; Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy.
| | - Enzo Marinari
- Dipartimento di Fisica, Sapienza Universitá di Roma, Rome, Italy; The Institute for Chemico-Physical Processes, National Research Council, Unità di Roma-Sapienza, Rome, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Rome, Italy
| |
Collapse
|
226
|
Lin Y, Sibanda VL, Zhang HM, Hu H, Liu H, Guo AY. MiRNA and TF co-regulatory network analysis for the pathology and recurrence of myocardial infarction. Sci Rep 2015; 5:9653. [PMID: 25867756 PMCID: PMC4394890 DOI: 10.1038/srep09653] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of death in the world and many genes are involved in it. Transcription factor (TFs) and microRNAs (miRNAs) are key regulators of gene expression. We hypothesized that miRNAs and TFs might play combinatory regulatory roles in MI. After collecting MI candidate genes and miRNAs from various resources, we constructed a comprehensive MI-specific miRNA-TF co-regulatory network by integrating predicted and experimentally validated TF and miRNA targets. We found some hub nodes (e.g. miR-16 and miR-26) in this network are important regulators, and the network can be severed as a bridge to interpret the associations of previous results, which is shown by the case of miR-29 in this study. We also constructed a regulatory network for MI recurrence and found several important genes (e.g. DAB2, BMP6, miR-320 and miR-103), the abnormal expressions of which may be potential regulatory mechanisms and markers of MI recurrence. At last we proposed a cellular model to discuss major TF and miRNA regulators with signaling pathways in MI. This study provides more details on gene expression regulation and regulators involved in MI progression and recurrence. It also linked up and interpreted many previous results.
Collapse
Affiliation(s)
- Ying Lin
- Hubei Bioinformatics &Molecular Imaging Key Laboratory, Department of Biomedical Engineering, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Vusumuzi Leroy Sibanda
- Hubei Bioinformatics &Molecular Imaging Key Laboratory, Department of Biomedical Engineering, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong-Mei Zhang
- Hubei Bioinformatics &Molecular Imaging Key Laboratory, Department of Biomedical Engineering, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Hu
- Hubei Bioinformatics &Molecular Imaging Key Laboratory, Department of Biomedical Engineering, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Liu
- Hubei Bioinformatics &Molecular Imaging Key Laboratory, Department of Biomedical Engineering, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - An-Yuan Guo
- Hubei Bioinformatics &Molecular Imaging Key Laboratory, Department of Biomedical Engineering, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
227
|
Mobuchon L, Marthey S, Boussaha M, Le Guillou S, Leroux C, Le Provost F. Annotation of the goat genome using next generation sequencing of microRNA expressed by the lactating mammary gland: comparison of three approaches. BMC Genomics 2015; 16:285. [PMID: 25888052 PMCID: PMC4430871 DOI: 10.1186/s12864-015-1471-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNA) are small endogenous non-coding RNA involved in the post-transcriptional regulation of specific mRNA targets. The first whole goat genome sequence became available in 2013, with few annotations. Our goal was to establish a list of the miRNA expressed in the mammary gland of lactating goats, thus enabling implementation of the goat miRNA repertoire and considerably enriching annotation of the goat genome. Results Here, we performed high throughput RNA sequencing on 10 lactating goat mammary glands. The bioinformatic detection of miRNA was carried out using miRDeep2 software. Three different methods were used to predict, quantify and annotate the sequenced reads. The first was a de novo approach based on the prediction of miRNA from the goat genome only. The second approach used bovine miRNA as an external reference whereas the last one used recently available goat miRNA. The three methods enabled the prediction and annotation of hundreds of miRNA, more than 95% were commonly identified. Using bovine miRNA, 1,178 distinct miRNA were detected, together with the annotation of 88 miRNA for which corresponding precursors could not be retrieved in the goat genome, and which were not detected using the de novo approach or with the use of goat miRNA. Each chromosomal coordinate of the precursors determined here were generated and depicted on a reference localisation map. Forty six goat miRNA clusters were also reported. The study revealed 263 precursors located in goat protein-coding genes, amongst which the location of 43 precursors was conserved between human, mouse and bovine, revealing potential new gene regulations in the goat mammary gland. Using the publicly available cattle QTL database, and cow precursors conserved in the goat and expressed in lactating mammary gland, 114 precursors were located within known QTL regions for milk production and composition. Conclusions The results reported here represent the first major identification study on miRNA expressed in the goat mammary gland at peak lactation. The elements generated by this study will now be used as references to decipher the regulation of miRNA expression in the goat mammary gland and to clarify their involvement in the lactation process. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1471-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lenha Mobuchon
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France. .,INRA, UMR1213 Herbivores, F-63122, Saint Genès Champanelle, France. .,Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000, Clermont-Ferrand, France.
| | - Sylvain Marthey
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France.
| | - Mekki Boussaha
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France.
| | - Sandrine Le Guillou
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France.
| | - Christine Leroux
- INRA, UMR1213 Herbivores, F-63122, Saint Genès Champanelle, France. .,Clermont Université, VetAgro Sup, UMR Herbivores, BP 10448, F-63000, Clermont-Ferrand, France.
| | - Fabienne Le Provost
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78350, Jouy-en-Josas, France.
| |
Collapse
|
228
|
Liang C, Li Y, Luo J, Zhang Z. A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human. Bioinformatics 2015; 31:2348-55. [DOI: 10.1093/bioinformatics/btv159] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/13/2015] [Indexed: 01/23/2023] Open
|
229
|
Metz GAS, Ng JWY, Kovalchuk I, Olson DM. Ancestral experience as a game changer in stress vulnerability and disease outcomes. Bioessays 2015; 37:602-11. [PMID: 25759985 DOI: 10.1002/bies.201400217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/13/2015] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
Abstract
Stress is one of the most powerful experiences to influence health and disease. Through epigenetic mechanisms, stress may generate a footprint that propagates to subsequent generations. Programming by prenatal stress or adverse experience in parents, grandparents, or earlier generations may thus be a critical determinant of lifetime health trajectories. Changes in regulation of microRNAs (miRNAs) by stress may enhance the vulnerability to certain pathogenic factors. This review explores the hypothesis that miRNAs represent stress-responsive elements in epigenetic regulation that are potentially heritable. Recent findings suggest that miRNAs are key players linking adverse early environments or ancestral stress with disease risk, thus they represent useful predictive disease biomarkers. Since miRNA signatures of disease are potentially heritable, big data management platforms will be vital to harness multi-generational information and capture succinct yet potent biomarkers capable of directing preventative treatments. This feature would offer a unique window of opportunity to advance personalized medicine.
Collapse
Affiliation(s)
- Gerlinde A S Metz
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jane W Y Ng
- Department of Pediatrics, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - David M Olson
- Departments of Obstetrics & Gynecology, Pediatrics and Physiology, University of Alberta, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
230
|
Towards the automatic classification of neurons. Trends Neurosci 2015; 38:307-18. [PMID: 25765323 DOI: 10.1016/j.tins.2015.02.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 11/23/2022]
Abstract
The classification of neurons into types has been much debated since the inception of modern neuroscience. Recent experimental advances are accelerating the pace of data collection. The resulting growth of information about morphological, physiological, and molecular properties encourages efforts to automate neuronal classification by powerful machine learning techniques. We review state-of-the-art analysis approaches and the availability of suitable data and resources, highlighting prominent challenges and opportunities. The effective solution of the neuronal classification problem will require continuous development of computational methods, high-throughput data production, and systematic metadata organization to enable cross-laboratory integration.
Collapse
|
231
|
Anderegg A, Awatramani R. Making a mes: A transcription factor-microRNA pair governs the size of the midbrain and the dopaminergic progenitor pool. NEUROGENESIS 2015; 2:e998101. [PMID: 27502145 PMCID: PMC4973584 DOI: 10.1080/23262133.2014.998101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 02/03/2023]
Abstract
Canonical Wnt signaling is critical for midbrain dopaminergic progenitor specification, proliferation, and neurogenesis. Yet mechanisms that control Wnt signaling remain to be fully elucidated. Wnt1 is a key ligand in the embryonic midbrain, and directs proliferation, survival, specification and neurogenesis. In a recent study, we reveal that the transcription factor Lmx1b promotes Wnt1/Wnt signaling, and dopaminergic progenitor expansion, consistent with earlier studies. Additionally, Lmx1b drives expression of a non-coding RNA called Rmst, which harbors miR135a2 in its last intron. miR135a2 in turn targets Lmx1b as well as several Wnt pathway targets. Conditional overexpression of miR135a2 in the midbrain, particularly during an early time, results in a decreased dopaminergic progenitor pool, and less dopaminergic neurons, consistent with decreased Wnt signaling. We propose a model in which Lmx1b and miR135a2 influence levels of Wnt1 and Wnt signaling, and expansion of the dopaminergic progenitor pool. Further loss of function experiments and biochemical validation of targets will be critical to verify this model. Wnt agonists have recently been utilized for programming stem cells toward a dopaminergic fate in vitro, highlighting the importance of agents that modulate the Wnt pathway.
Collapse
Affiliation(s)
- Angela Anderegg
- Department of Neurology; Northwestern University ; Chicago, IL USA
| | | |
Collapse
|
232
|
Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol 2015; 25:137-147. [PMID: 25484347 PMCID: PMC4344861 DOI: 10.1016/j.tcb.2014.11.004] [Citation(s) in RCA: 395] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/12/2022]
Abstract
Despite their clear importance as a class of regulatory molecules, pinpointing the relevance of individual miRNAs has been challenging. Studies querying miRNA functions by overexpressing or silencing specific miRNAs have yielded data that are often at odds with those collected from loss-of-functions models. In addition, knockout studies suggest that many conserved miRNAs are dispensable for animal development or viability. In this review, we discuss these observations in the context of our current knowledge of miRNA biology and review the evidence implicating miRNA-mediated gene regulation in the mechanisms that ensure biological robustness.
Collapse
Affiliation(s)
- Joana A Vidigal
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, 1275 York Avenue, New York, NY 10065, USA
| | - Andrea Ventura
- Memorial Sloan Kettering Cancer Center, Cancer Biology and Genetics Program, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
233
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, 18-23 nucleotides long, which act as post-transcriptional regulators of gene expression. miRNAs are strongly implicated in the pathogenesis of many common diseases, including IBDs. This review aims to outline the history, biogenesis and regulation of miRNAs. The role of miRNAs in the development and regulation of the innate and adaptive immune system is discussed, with a particular focus on mechanisms pertinent to IBD and the potential translational applications.
Collapse
Affiliation(s)
- R Kalla
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - N T Ventham
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - N A Kennedy
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - J F Quintana
- Centre for Immunity, Infection and Evolution, Ashworth laboratories, University of Edinburgh, Edinburgh, UK
| | - E R Nimmo
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - A H Buck
- Centre for Immunity, Infection and Evolution, Ashworth laboratories, University of Edinburgh, Edinburgh, UK
| | - J Satsangi
- Gastrointestinal Unit, Centre for Molecular Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| |
Collapse
|
234
|
microRNAs regulate cell-to-cell variability of endogenous target gene expression in developing mouse thymocytes. PLoS Genet 2015; 11:e1005020. [PMID: 25714103 PMCID: PMC4340958 DOI: 10.1371/journal.pgen.1005020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/22/2015] [Indexed: 11/22/2022] Open
Abstract
The development and homeostasis of multicellular organisms relies on gene regulation within individual constituent cells. Gene regulatory circuits that increase the robustness of gene expression frequently incorporate microRNAs as post-transcriptional regulators. Computational approaches, synthetic gene circuits and observations in model organisms predict that the co-regulation of microRNAs and their target mRNAs can reduce cell-to-cell variability in the expression of target genes. However, whether microRNAs directly regulate variability of endogenous gene expression remains to be tested in mammalian cells. Here we use quantitative flow cytometry to show that microRNAs impact on cell-to-cell variability of protein expression in developing mouse thymocytes. We find two distinct mechanisms that control variation in the activation-induced expression of the microRNA target CD69. First, the expression of miR-17 and miR-20a, two members of the miR-17-92 cluster, is co-regulated with the target mRNA Cd69 to form an activation-induced incoherent feed-forward loop. Another microRNA, miR-181a, acts at least in part upstream of the target mRNA Cd69 to modulate cellular responses to activation. The ability of microRNAs to render gene expression more uniform across mammalian cell populations may be important for normal development and for disease. microRNAs are integral to many developmental processes and may 'canalise' development by reducing cell-to-cell variation in gene expression. This idea is supported by computational studies that have modeled the impact of microRNAs on the expression of their targets and the construction of artificial incoherent feedforward loops using synthetic biology tools. Here we show that this interesting principle of microRNA regulation actually occurs in a mammalian developmental system. We examine cell-to-cell variation of protein expression in developing mouse thymocytes by quantitative flow cytometry and find that the absence of microRNAs results in increased cell-to-cell variation in the expression of the microRNA target Cd69. Mechanistically, T cell receptor signaling induces both Cd69 and miR-17 and miR-20a, two microRNAs that target Cd69. Co-regulation of microRNAs and their target mRNA dampens the expression of Cd69 and forms an incoherent feedforward loop that reduces cell-to-cell variation on CD69 expression. In addition, miR-181, which also targets Cd69 and is a known modulator of T cell receptor signaling, also affects cell-to-cell variation of CD69 expression. The ability of microRNAs to control the uniformity of gene expression across mammalian cell populations may be important for normal development and for disease.
Collapse
|
235
|
Ryan B, Joilin G, Williams JM. Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Front Mol Neurosci 2015; 8:4. [PMID: 25755632 PMCID: PMC4337328 DOI: 10.3389/fnmol.2015.00004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/04/2015] [Indexed: 12/24/2022] Open
Abstract
Long-term potentiation (LTP) is a form of synaptic plasticity that is an excellent model for the molecular mechanisms that underlie memory. LTP, like memory, is persistent, and both are widely believed to be maintained by a coordinated genomic response. Recently, a novel class of non-coding RNA, microRNA, has been implicated in the regulation of LTP. MicroRNA negatively regulate protein synthesis by binding to specific messenger RNA response elements. The aim of this review is to summarize experimental evidence for the proposal that microRNA play a major role in the regulation of LTP. We discuss a growing body of research which indicates that specific microRNA regulate synaptic proteins relevant to LTP maintenance, as well as studies that have reported differential expression of microRNA in response to LTP induction. We conclude that microRNA are ideally suited to contribute to the regulation of LTP-related gene expression; microRNA are pleiotropic, synaptically located, tightly regulated, and function in response to synaptic activity. The potential impact of microRNA on LTP maintenance as regulators of gene expression is enormous.
Collapse
Affiliation(s)
- Brigid Ryan
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| | - Greig Joilin
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| | - Joanna M Williams
- Brain Health Research Centre, University of Otago, Dunedin New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago, Dunedin New Zealand
| |
Collapse
|
236
|
Welch JD, Baran-Gale J, Perou CM, Sethupathy P, Prins JF. Pseudogenes transcribed in breast invasive carcinoma show subtype-specific expression and ceRNA potential. BMC Genomics 2015; 16:113. [PMID: 25765044 PMCID: PMC4344757 DOI: 10.1186/s12864-015-1227-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
Background Recent studies have shown that some pseudogenes are transcribed and contribute to cancer when dysregulated. In particular, pseudogene transcripts can function as competing endogenous RNAs (ceRNAs). The high similarity of gene and pseudogene nucleotide sequence has hindered experimental investigation of these mechanisms using RNA-seq. Furthermore, previous studies of pseudogenes in breast cancer have not integrated miRNA expression data in order to perform large-scale analysis of ceRNA potential. Thus, knowledge of both pseudogene ceRNA function and the role of pseudogene expression in cancer are restricted to isolated examples. Results To investigate whether transcribed pseudogenes play a pervasive regulatory role in cancer, we developed a novel bioinformatic method for measuring pseudogene transcription from RNA-seq data. We applied this method to 819 breast cancer samples from The Cancer Genome Atlas (TCGA) project. We then clustered the samples using pseudogene expression levels and integrated sample-paired pseudogene, gene and miRNA expression data with miRNA target prediction to determine whether more pseudogenes have ceRNA potential than expected by chance. Conclusions Our analysis identifies with high confidence a set of 440 pseudogenes that are transcribed in breast cancer tissue. Of this set, 309 pseudogenes exhibit significant differential expression among breast cancer subtypes. Hierarchical clustering using only pseudogene expression levels accurately separates tumor samples from normal samples and discriminates the Basal subtype from the Luminal and Her2 subtypes. Correlation analysis shows more positively correlated pseudogene-parent gene pairs and negatively correlated pseudogene-miRNA pairs than expected by chance. Furthermore, 177 transcribed pseudogenes possess binding sites for co-expressed miRNAs that are also predicted to target their parent genes. Taken together, these results increase the catalog of putative pseudogene ceRNAs and suggest that pseudogene transcription in breast cancer may play a larger role than previously appreciated. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1227-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joshua D Welch
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jeanette Baran-Gale
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Charles M Perou
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Praveen Sethupathy
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jan F Prins
- Curriculum in Bioinformatics and Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. .,Department of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
237
|
The miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth in epithelial tumor cell lines. Sci Rep 2015; 5:8428. [PMID: 25673149 PMCID: PMC4325331 DOI: 10.1038/srep08428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/15/2015] [Indexed: 11/08/2022] Open
Abstract
In epithelial cells, miRNA-199a-5p/-3p and Brm, a catalytic subunit of the SWI/SNF complex were previously shown to form a double-negative feedback loop through EGR1, by which human cancer cell lines tend to fall into either of the steady states, types 1 [miR-199a(−)/Brm(+)/EGR1(−)] and 2 [miR-199a(+)/Brm (−)/EGR1(+)]. We show here, that type 2 cells, unlike type 1, failed to form colonies in soft agar, and that CD44, MET, CAV1 and CAV2 (miR-199a targets), all of which function as plasma membrane sensors and can co-localize in caveolae, are expressed specifically in type 1 cells. Single knockdown of any of them suppressed anchorage-independent growth of type 1 cells, indicating that the miR-199a/Brm/EGR1 axis is a determinant of anchorage-independent growth. Importantly, two coherent feedforward loops are integrated into this axis, supporting the robustness of type 1-specific gene expression and exemplifying how the miRNA-target gene relationship can be stably sustained in a variety of epithelial tumors.
Collapse
|
238
|
Aure MR, Jernström S, Krohn M, Vollan HKM, Due EU, Rødland E, Kåresen R, Ram P, Lu Y, Mills GB, Sahlberg KK, Børresen-Dale AL, Lingjærde OC, Kristensen VN. Integrated analysis reveals microRNA networks coordinately expressed with key proteins in breast cancer. Genome Med 2015; 7:21. [PMID: 25873999 PMCID: PMC4396592 DOI: 10.1186/s13073-015-0135-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/19/2015] [Indexed: 01/20/2023] Open
Abstract
Background The role played by microRNAs in the deregulation of protein expression in breast cancer is only partly understood. To gain insight, the combined effect of microRNA and mRNA expression on protein expression was investigated in three independent data sets. Methods Protein expression was modeled as a multilinear function of powers of mRNA and microRNA expression. The model was first applied to mRNA and protein expression for 105 selected cancer-associated genes and to genome-wide microRNA expression from 283 breast tumors. The model considered both the effect of one microRNA at a time and all microRNAs combined. In the latter case the Lasso penalized regression method was applied to detect the simultaneous effect of multiple microRNAs. Results An interactome map for breast cancer representing all direct and indirect associations between the expression of microRNAs and proteins was derived. A pattern of extensive coordination between microRNA and protein expression in breast cancer emerges, with multiple clusters of microRNAs being associated with multiple clusters of proteins. Results were subsequently validated in two independent breast cancer data sets. A number of the microRNA-protein associations were functionally validated in a breast cancer cell line. Conclusions A comprehensive map is derived for the co-expression in breast cancer of microRNAs and 105 proteins with known roles in cancer, after filtering out the in-cis effect of mRNA expression. The analysis suggests that group action by several microRNAs to deregulate the expression of proteins is a common modus operandi in breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13073-015-0135-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miriam Ragle Aure
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, 0310 Norway ; K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, 0316 Norway
| | - Sandra Jernström
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, 0310 Norway ; K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, 0316 Norway
| | - Marit Krohn
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, 0310 Norway ; K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, 0316 Norway
| | - Hans Kristian Moen Vollan
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, 0310 Norway ; K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, 0316 Norway ; Department of Oncology, Division of Surgery, Cancer and Transplantation, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, 0310 Norway
| | - Eldri U Due
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, 0310 Norway ; K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, 0316 Norway
| | - Einar Rødland
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, 0310 Norway ; Centre for Cancer Biomedicine, University of Oslo, Oslo, 0316 Norway ; Department of Computer Science, University of Oslo, Oslo, 0316 Norway
| | - Rolf Kåresen
- Institute of Clinical Medicine, University of Oslo, Oslo, 0316 Norway
| | | | - Prahlad Ram
- Department of Systems Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030 USA
| | - Yiling Lu
- Department of Systems Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030 USA
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030 USA
| | - Kristine Kleivi Sahlberg
- K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, 0316 Norway ; Department of Research, Vestre Viken Hospital Trust, Drammen, 3004 Norway
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, 0310 Norway ; K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, 0316 Norway
| | - Ole Christian Lingjærde
- K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, 0316 Norway ; Centre for Cancer Biomedicine, University of Oslo, Oslo, 0316 Norway ; Department of Computer Science, University of Oslo, Oslo, 0316 Norway
| | - Vessela N Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, 0310 Norway ; K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, 0316 Norway ; Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, 1478 Norway
| |
Collapse
|
239
|
Li Y, Jiang Y, Chen H, Liao W, Li Z, Weiss R, Xie Z. Modular construction of mammalian gene circuits using TALE transcriptional repressors. Nat Chem Biol 2015; 11:207-213. [PMID: 25643171 PMCID: PMC4333066 DOI: 10.1038/nchembio.1736] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 11/25/2014] [Indexed: 01/14/2023]
Abstract
An important goal of synthetic biology is the rational design and predictable implementation of synthetic gene circuits using standardized and interchangeable parts. However, engineering of complex circuits in mammalian cells is currently limited by the availability of well-characterized and orthogonal transcriptional repressors. Here, we introduce a library of 26 reversible transcription activator-like effector repressors (TALERs) that bind newly designed hybrid promoters and exert transcriptional repression through steric hindrance of key transcriptional initiation elements. We demonstrate that using the input-output transfer curves of our TALERs enables accurate prediction of the behavior of modularly assembled TALER cascade and switch circuits. We also show that TALER switches employing feedback regulation exhibit improved accuracy for microRNA-based HeLa cancer cell classification versus HEK293 cells. Our TALER library is a valuable toolkit for modular engineering of synthetic circuits, enabling programmable manipulation of mammalian cells and helping elucidate design principles of coupled transcriptional and microRNA-mediated post-transcriptional regulation.
Collapse
Affiliation(s)
- Yinqing Li
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 40 Ames St, Cambridge MA 02142, USA
| | - Yun Jiang
- Bioinformatics Division/Center for Synthetic & Systems Biology, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, 100084, China
| | - He Chen
- Bioinformatics Division/Center for Synthetic & Systems Biology, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, 100084, China
| | - Weixi Liao
- Bioinformatics Division/Center for Synthetic & Systems Biology, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, 100084, China.,MOE Key Laboratory of Bioinformatics; Department of Automation, Tsinghua University, Beijing 100084, China
| | - Zhihua Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 935 Jiaoling Road, Kunming, Yunnan, 650118
| | - Ron Weiss
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 40 Ames St, Cambridge MA 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, 40 Ames St, Cambridge MA 02142, USA
| | - Zhen Xie
- Bioinformatics Division/Center for Synthetic & Systems Biology, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, 100084, China.,MOE Key Laboratory of Bioinformatics; Department of Automation, Tsinghua University, Beijing 100084, China
| |
Collapse
|
240
|
Zhang Y, Shen WL, Shi ML, Zhang LZ, Zhang Z, Li P, Xing LY, Luo FY, Sun Q, Zheng XF, Yang X, Zhao ZH. Involvement of aberrant miR-139/Jun feedback loop in human gastric cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:481-8. [PMID: 25499265 DOI: 10.1016/j.bbamcr.2014.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 01/07/2023]
Abstract
Accumulating evidence indicates that some miRNAs could form feedback loops with their targets to fine-tune tissue homeostasis, while disruption of these loops constitutes an essential step towards human tumorigenesis. In this study, we report the identification of a novel negative feedback loop formed between miR-139 and its oncogenic target Jun. In this loop, miR-139 could inhibit Jun expression by targeting a conserved site on its 3'-UTR, whereas Jun could induce miR-139 expression in a dose dependent manner through a distant upstream regulatory element. Interestingly, aberration in this loop was found in human gastric cancer, where miR-139 was down-regulated and inversely correlated with Jun expression. Further functional analysis showed that restored expression of miR-139 in gastric cancer cells significantly induces apoptosis, and inhibits cell migration and proliferation as well as tumour growth through targeting Jun. Thus, our data strongly suggests a role of aberrant miR-139/Jun negative feedback loop in the development of human gastric cancer and miR-139 as a potential therapeutic target for gastric cancer. Given that miR-139 and Jun are deregulated in many cancers, our findings here might have broader implication in other types of human cancers.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Biotechnology, Beijing 100071, China
| | | | - Ming-Lei Shi
- Institute of Biotechnology, Beijing 100071, China
| | - Le-Zhi Zhang
- Institute of Biotechnology, Beijing 100071, China
| | - Zhang Zhang
- Institute of Biotechnology, Beijing 100071, China
| | - Ping Li
- Institute of Biotechnology, Beijing 100071, China
| | - Ling-Yue Xing
- Institute of Biotechnology, Beijing 100071, China; School of Life Science, Anhui University, Hefei 230601, China
| | - Feng-Yan Luo
- Institute of Biotechnology, Beijing 100071, China
| | - Qiang Sun
- Institute of Biotechnology, Beijing 100071, China.
| | - Xiao-Fei Zheng
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing 100850, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing 100071, China.
| | - Zhi-Hu Zhao
- Institute of Biotechnology, Beijing 100071, China.
| |
Collapse
|
241
|
Joilin G, Guévremont D, Ryan B, Claudianos C, Cristino AS, Abraham WC, Williams JM. Rapid regulation of microRNA following induction of long-term potentiation in vivo. Front Mol Neurosci 2014; 7:98. [PMID: 25538559 PMCID: PMC4260481 DOI: 10.3389/fnmol.2014.00098] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 11/24/2014] [Indexed: 01/09/2023] Open
Abstract
Coordinated regulation of gene expression is essential for consolidation of the memory mechanism, long-term potentiation (LTP). Triggering of LTP by N-methyl-D-aspartate receptor (NMDAR) activation rapidly activates constitutive and inducible transcription factors, which promote expression of genes responsible for LTP maintenance. As microRNA (miRNA) coordinate expression of genes related through seed sites, we hypothesize that miRNA contribute to the regulation of the LTP-induced gene response. MiRNA function primarily as negative regulators of gene expression. As LTP induction promotes a generalized rapid up-regulation of gene expression, we predicted a complementary rapid down-regulation of miRNA levels. Accordingly, we carried out global miRNA expression profiling in the rat dentate gyrus 20 min post-LTP induction in vivo. Consistent with our hypothesis, we found a large number of differentially expressed miRNA, the majority down-regulated. Detailed analysis of miR-34a-5p and miR-132-3p revealed this down-regulation was transient and NMDAR-dependent, whereby block of NMDARs released an activity-associated inhibitory mechanism. Furthermore, down-regulation of mature miR-34a-5p and miR-132-3p occurred solely by post-transcriptional mechanisms, occurring despite an associated up-regulation of the pri-miR-132 transcript. To understand how down-regulation of miR-34a-5p and miR-132-3p intersects with the molecular events occurring following LTP, we used bioinformatics to identify potential targets. Previously validated targets included the key LTP-regulated genes Arc and glutamate receptor subunits. Predicted targets included the LTP-linked kinase, Mapk1, and neuropil-associated transcripts Hn1 and Klhl11, which were validated using luciferase reporter assays. Furthermore, we found that the level of p42-Mapk1, the protein encoded by the Mapk1 transcript, was up-regulated following LTP. Together, these data support the interpretation that miRNA, in particular miR-34a-5p and miR-132-3p, make a surprisingly rapid contribution to synaptic plasticity via dis-inhibition of translation of key plasticity-related molecules.
Collapse
Affiliation(s)
- Greig Joilin
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Diane Guévremont
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Brigid Ryan
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| | - Charles Claudianos
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia
| | - Wickliffe C Abraham
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Psychology, University of Otago Dunedin, New Zealand
| | - Joanna M Williams
- Brain Health Research Centre, University of Otago Dunedin, New Zealand ; Department of Anatomy, Otago School of Medical Sciences, University of Otago Dunedin, New Zealand
| |
Collapse
|
242
|
Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet 2014; 16:113-26. [PMID: 25488579 DOI: 10.1038/nrg3853] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Post-transcriptional gene regulation (PTGR) of mRNA turnover, localization and translation is mediated by microRNAs (miRNAs) and RNA-binding proteins (RBPs). These regulators exert their effects by binding to specific sequences within their target mRNAs. Increasing evidence suggests that competition for binding is a fundamental principle of PTGR. Not only can miRNAs be sequestered and neutralized by the targets with which they interact through a process termed 'sponging', but competition between binding sites on different RNAs may also lead to regulatory crosstalk between transcripts. Here, we quantitatively model competition effects under physiological conditions and review the role of endogenous sponges for PTGR in light of the key features that emerge.
Collapse
|
243
|
Nie W, Gu J, Wang Z, Li D, Guan X. The regulatory loop of COMP1 and HNF-4-miR-150-p27 in various signaling pathways. Oncol Lett 2014; 9:195-200. [PMID: 25435958 PMCID: PMC4247106 DOI: 10.3892/ol.2014.2643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 09/30/2014] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are short regulatory RNAs that negatively modulate protein expression at the post-transcriptional level. Additionally, they have been associated with the pathogenesis of a number of types of cancer. In the current study, two target sites for miR-150 were determined within the 3'-untranslated region of p27Kip1 (hereafter referred to as p27) mRNA, and it was determined that ectopic overexpression of miR-150 led directly to p27 downregulation in cancer cells. These findings indicate that miR-150 may be a novel regulator of p27 expression. In the databases of the University of California, Santa Cruz (UCSC) and Match online, two common transcription factors were identified for miR-150 and p27: Cooperates with myogenic proteins 1 (COMP1) and hepatocyte nuclear factor-4 (HNF-4). Using the Database for Annotation, Visualization, and Integrated Discovery (DAVID), it was determined that p27 is involved in pathways regulated by the target genes of miR-150. Therefore, these results suggest that there may be a regulatory loop between COMP1 and HNF-4-miR-150-p27. Additional functional studies are required to understand the molecular basis for the formation of this circuit loop, and provide an insight into the development of innovative therapies targeting specific tumor markers.
Collapse
Affiliation(s)
- Weiwei Nie
- Department of Medical Oncology, Jinling Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Jun Gu
- Department of Extramammary, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zexing Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Donghai Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China ; Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
244
|
Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ, Kaminski NE, Andersen ME. Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:1261-70. [PMID: 25117432 PMCID: PMC4256703 DOI: 10.1289/ehp.1408244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/12/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Increasingly, there is a move toward using in vitro toxicity testing to assess human health risk due to chemical exposure. As with in vivo toxicity testing, an important question for in vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations may show consistency with thresholds, but the main evidence has to come from mechanistic considerations. OBJECTIVES Cellular response behaviors depend on the molecular pathway and circuitry in the cell and the manner in which chemicals perturb these circuits. Understanding circuit structures that are inherently capable of resisting small perturbations and producing threshold responses is an important step towards mechanistically interpreting in vitro testing data. METHODS Here we have examined dose-response characteristics for several biochemical network motifs. These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. For each motif, we present biological examples and models to illustrate how thresholds arise from specific network structures. DISCUSSION AND CONCLUSION Integral feedback, feedforward, and transcritical bifurcation motifs can generate thresholds. Other motifs (e.g., proportional feedback and ultrasensitivity)produce responses where the slope in the low-dose region is small and stays close to the baseline. Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that network motifs provide a basis for understanding thresholds for cellular responses. Computational pathway modeling of these motifs and their combinations occurring in molecular signaling networks will be a key element in new risk assessment approaches based on in vitro cellular assays.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
245
|
Babenko O, Kovalchuk I, Metz GAS. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev 2014; 48:70-91. [PMID: 25464029 DOI: 10.1016/j.neubiorev.2014.11.013] [Citation(s) in RCA: 335] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/19/2014] [Accepted: 11/17/2014] [Indexed: 12/20/2022]
Abstract
Research efforts during the past decades have provided intriguing evidence suggesting that stressful experiences during pregnancy exert long-term consequences on the future mental wellbeing of both the mother and her baby. Recent human epidemiological and animal studies indicate that stressful experiences in utero or during early life may increase the risk of neurological and psychiatric disorders, arguably via altered epigenetic regulation. Epigenetic mechanisms, such as miRNA expression, DNA methylation, and histone modifications are prone to changes in response to stressful experiences and hostile environmental factors. Altered epigenetic regulation may potentially influence fetal endocrine programming and brain development across several generations. Only recently, however, more attention has been paid to possible transgenerational effects of stress. In this review we discuss the evidence of transgenerational epigenetic inheritance of stress exposure in human studies and animal models. We highlight the complex interplay between prenatal stress exposure, associated changes in miRNA expression and DNA methylation in placenta and brain and possible links to greater risks of schizophrenia, attention deficit hyperactivity disorder, autism, anxiety- or depression-related disorders later in life. Based on existing evidence, we propose that prenatal stress, through the generation of epigenetic alterations, becomes one of the most powerful influences on mental health in later life. The consideration of ancestral and prenatal stress effects on lifetime health trajectories is critical for improving strategies that support healthy development and successful aging.
Collapse
Affiliation(s)
- Olena Babenko
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4; Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| | - Gerlinde A S Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive, Lethbridge, AB, Canada T1K 3M4
| |
Collapse
|
246
|
Yin K, Hacia JG, Zhong Z, Paine ML. Genome-wide analysis of miRNA and mRNA transcriptomes during amelogenesis. BMC Genomics 2014; 15:998. [PMID: 25406666 PMCID: PMC4254193 DOI: 10.1186/1471-2164-15-998] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/23/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the rodent incisor during amelogenesis, as ameloblast cells transition from secretory stage to maturation stage, their morphology and transcriptome profiles change dramatically. Prior whole genome transcriptome analysis has given a broad picture of the molecular activities dominating both stages of amelogenesis, but this type of analysis has not included miRNA transcript profiling. In this study, we set out to document which miRNAs and corresponding target genes change significantly as ameloblasts transition from secretory- to maturation-stage amelogenesis. RESULTS Total RNA samples from both secretory- and maturation-stage rat enamel organs were subjected to genome-wide miRNA and mRNA transcript profiling. We identified 59 miRNAs that were differentially expressed at the maturation stage relative to the secretory stage of enamel development (False Discovery Rate (FDR)<0.05, fold change (FC)≥1.8). In parallel, transcriptome profiling experiments identified 1,729 mRNA transcripts that were differentially expressed in the maturation stage compared to the secretory stage (FDR<0.05, FC≥1.8). Based on bioinformatics analyses, 5.8% (629 total) of these differentially expressed genes (DEGS) were highlighted as being the potential targets of 59 miRNAs that were differentially expressed in the opposite direction, in the same tissue samples. Although the number of predicted target DEGs was not higher than baseline expectations generated by examination of stably expressed miRNAs, Gene Ontology (GO) analysis showed that these 629 DEGS were enriched for ion transport, pH regulation, calcium handling, endocytotic, and apoptotic activities. Seven differentially expressed miRNAs (miR-21, miR-31, miR-488, miR-153, miR-135b, miR-135a and miR298) in secretory- and/or maturation-stage enamel organs were confirmed by in situ hybridization. Further, we used luciferase reporter assays to provide evidence that two of these differentially expressed miRNAs, miR-153 and miR-31, are potential regulators for their predicated target mRNAs, Lamp1 (miR-153) and Tfrc (miR-31). CONCLUSIONS In conclusion, these data indicate that miRNAs exhibit a dynamic expression pattern during the transition from secretory-stage to maturation-stage tooth enamel formation. Although they represent only one of numerous mechanisms influencing gene activities, miRNAs specific to the maturation stage could be involved in regulating several key processes of enamel maturation by influencing mRNA stability and translation.
Collapse
Affiliation(s)
- Kaifeng Yin
- />Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA 90033 USA
| | - Joseph G Hacia
- />Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSA140, Los Angeles, CA 90033 USA
| | - Zhe Zhong
- />Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA 90033 USA
| | - Michael L Paine
- />Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, CSA103, Los Angeles, CA 90033 USA
| |
Collapse
|
247
|
Li X, Feng R, Huang C, Wang H, Wang J, Zhang Z, Yan H, Wen T. MicroRNA-351 regulates TMEM 59 (DCF1) expression and mediates neural stem cell morphogenesis. RNA Biol 2014; 9:292-301. [DOI: 10.4161/rna.19100] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
248
|
Siegal ML, Leu JY. On the Nature and Evolutionary Impact of Phenotypic Robustness Mechanisms. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2014; 45:496-517. [PMID: 26034410 PMCID: PMC4448758 DOI: 10.1146/annurev-ecolsys-120213-091705] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biologists have long observed that physiological and developmental processes are insensitive, or robust, to many genetic and environmental perturbations. A complete understanding of the evolutionary causes and consequences of this robustness is lacking. Recent progress has been made in uncovering the regulatory mechanisms that underlie environmental robustness in particular. Less is known about robustness to the effects of mutations, and indeed the evolution of mutational robustness remains a controversial topic. The controversy has spread to related topics, in particular the evolutionary relevance of cryptic genetic variation. This review aims to synthesize current understanding of robustness mechanisms and to cut through the controversy by shedding light on what is and is not known about mutational robustness. Some studies have confused mutational robustness with non-additive interactions between mutations (epistasis). We conclude that a profitable way forward is to focus investigations (and rhetoric) less on mutational robustness and more on epistasis.
Collapse
Affiliation(s)
- Mark L Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003;
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529;
| |
Collapse
|
249
|
Leotta M, Biamonte L, Raimondi L, Ronchetti D, Di Martino MT, Botta C, Leone E, Pitari MR, Neri A, Giordano A, Tagliaferri P, Tassone P, Amodio N. A p53-dependent tumor suppressor network is induced by selective miR-125a-5p inhibition in multiple myeloma cells. J Cell Physiol 2014; 229:2106-16. [PMID: 24819167 DOI: 10.1002/jcp.24669] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/31/2014] [Accepted: 05/09/2014] [Indexed: 02/06/2023]
Abstract
The analysis of deregulated microRNAs (miRNAs) is emerging as a novel approach to disclose the regulation of tumor suppressor or tumor promoting pathways in tumor cells. Targeting aberrantly expressed miRNAs is therefore a promising strategy for cancer treatment. By miRNA profiling of primary plasma cells from multiple myeloma (MM) patients, we previously reported increased miR-125a-5p levels associated to specific molecular subgroups. On these premises, we aimed at investigating the biological effects triggered by miR-125a-5p modulation in MM cells. Expression of p53 pathway-related genes was down-regulated in MM cells transfected with miR-125a-5p mimics. Luciferase reporter assays confirmed specific p53 targeting at 3'UTR level by miR-125a-5p mimics. Interestingly, bone marrow stromal cells (BMSCs) affected the miR-125a-5p/p53 axis, since adhesion of MM cells to BMSCs strongly up-regulated miR-125a-5p levels, while reduced p53 expression. Moreover, ectopic miR-125a-5p reduced, while miR-125-5p inhibitors promoted, the expression of tumor suppressor miR-192 and miR-194, transcriptionally regulated by p53. Lentiviral-mediated stable inhibition of miR-125a-5p expression in wild-type p53 MM cells dampened cell growth, increased apoptosis and reduced cell migration. Importantly, inhibition of in vitro MM cell proliferation and migration was also achieved by synthetic miR-125a-5p inhibitors and was potentiated by the co-expression of miR-192 or miR-194. Taken together, our data indicate that miR-125a-5p antagonism results in the activation of p53 pathway in MM cells, underlying the crucial role of this miRNA in the biopathology of MM and providing the molecular rationale for the combinatory use of miR-125a inhibitors and miR-192 or miR-194 mimics for MM treatment.
Collapse
Affiliation(s)
- Marzia Leotta
- Department of Experimental and Clinical Medicine, Magna Graecia University, Medical Oncology Unit, T. Campanella Cancer Center, Salvatore Venuta University Campus, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Ortega M, Bhatnagar H, Lin AP, Wang L, Aster JC, Sill H, Aguiar RCT. A microRNA-mediated regulatory loop modulates NOTCH and MYC oncogenic signals in B- and T-cell malignancies. Leukemia 2014; 29:968-76. [PMID: 25311243 PMCID: PMC4391979 DOI: 10.1038/leu.2014.302] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/26/2014] [Accepted: 10/07/2014] [Indexed: 12/28/2022]
Abstract
Growing evidence suggests that microRNAs facilitate the cross-talk between transcriptional modules and signal transduction pathways. MYC and NOTCH1 contribute to the pathogenesis of lymphoid malignancies. NOTCH induces MYC, connecting two signaling programs that enhance oncogenicity. Here we show that this relationship is bidirectional and that MYC, via a microRNA intermediary, modulates NOTCH. MicroRNA-30a, a member of family of microRNAs that are transcriptionally suppressed by MYC, directly binds to and inhibits NOTCH1 and NOTCH2 expression. Using a murine model and genetically modified human cell lines, we confirmed that microRNA-30a influences NOTCH expression in a MYC-dependent fashion. In turn, through genetic modulation, we demonstrated that intracellular NOTCH1 and NOTCH2, by inducing MYC, suppressed microRNA-30a. Conversely, pharmacological inhibition of NOTCH decreased MYC expression, and ultimately de-repressedmicroRNA-30a. Examination of genetic models of gain and loss of microRNA-30a in diffuse large B-cell lymphoma (DLBCL) and T-acute lymphoblastic leukemia (T-ALL) cells suggested a tumor suppressive role for this microRNA. Finally, the activity of the microRNA-30a-NOTCH-MYC loop was validated in primary DLBCL and T-ALL samples. These data define the presence of a microRNA-mediated regulatory circuitry that may modulate the oncogenic signals originating from NOTCH and MYC.
Collapse
Affiliation(s)
- M Ortega
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - H Bhatnagar
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - A-P Lin
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - L Wang
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - H Sill
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - R C T Aguiar
- 1] Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [2] Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA [3] Greehey Children's Cancer Research Institute, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA [4] South Texas Veterans Health Care System, Audie Murphy VA Hospital, San Antonio, TX, USA
| |
Collapse
|