201
|
Sabet Sarvestani F, Azarpira N. microRNAs Alterations of Myocardium and Brain Ischemia-Reperfusion Injury: Insight to Improve Infarction. Immunol Invest 2020; 51:51-72. [DOI: 10.1080/08820139.2020.1808672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
202
|
Zhao X, Li J, Ma J, Jiao C, Qiu X, Cui X, Wang D, Zhang H. MiR-124a Mediates the Impairment of Intestinal Epithelial Integrity by Targeting Aryl Hydrocarbon Receptor in Crohn's Disease. Inflammation 2020; 43:1862-1875. [PMID: 32607693 DOI: 10.1007/s10753-020-01259-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Growing evidence suggested that microRNAs (miRNAs) contributed to the progression of Crohn's disease (CD), but the exact physiological functions of many miRNAs in CD patients still remain illusive. In this study, we explore the potent pathogenicity of miRNAs in CD. Expressions of miRNAs and aryl hydrocarbon receptor (AHR) protein were determined in the colitic colon of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis mice and CD patients. Colitis was induced in wild-type (WT), miR-124a overexpression (miR-124a-Nju), and AHR knockout (AHR-/-) mice. Intestinal barrier function was evaluated in colitis mice and Caco2 monolayers. There was a negative relationship between miR-124a and AHR protein in inflamed colons from CD patients. MiR-124a-Nju and AHR-/- mice treated with TNBS had more severe intestinal inflammation than WT mice. Both miR-124a-Nju mice and AHR-/- mice underwent evident intestinal barrier destruction, and anti-miR-124a administration could reverse this dysfunction in miR-124a-Nju mice but not in AHR-/- mice. In vitro studies revealed that miR-124a mimics downregulated the expression of AHR and tight junction proteins and induced hyperpermeability by increasing miR-124a expression, which was abrogated by miR-124a inhibitor and AHR antagonist FICZ. This study suggests that miR-124a can induce intestinal inflammation and cause intestinal barrier dysfunction by supressing AHR.
Collapse
Affiliation(s)
- Xiaojing Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jiajia Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jingjing Ma
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Chunhua Jiao
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xinyun Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Xiufang Cui
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Di Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hongjie Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
203
|
Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2020; 101:1309-1370. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
204
|
Han Y, Feng J, Ren Y, Wu L, Li H, Liu J, Jin Y. Differential expression of microRNA between normally developed and underdeveloped female worms of Schistosoma japonicum. Vet Res 2020; 51:126. [PMID: 32977838 PMCID: PMC7519503 DOI: 10.1186/s13567-020-00851-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
Eggs produced by bisexual infected mature female worms (MF) of Schistosoma japonicum are important in the transmission of the parasite and responsible for the pathogenesis of schistosomiasis. The single-sex infected female worms (SF) cannot mature and do not produce normal eggs; also they do not induce severe damage to the host. In this study, the microRNA (miRNA) expression profiles of 25d MF and 25d SF were investigated through Solexa deep-sequencing technology to explore the developmental mechanisms of schistosome female worms. There were 36 differentially expressed miRNA, 20 up-regulated and 16 down-regulated found in MF/SF worms, including some development related miRNA such as bantam (ban), let-7, miR-124, miR-8, miR-1, miR-7. There were 166 target genes of up-regulated miRNA and 201 target genes of down-regulated miRNA after comparing the target gene prediction software results with RNA-Seq transcriptome results. Analysis of the target genes shows that different ones are involved in MF and SF worms in Gene Ontology terms, with a similar situation in KEGG. This observation indicates that different genes regulated by differentially expressed miRNA take part in MF and SF and lead to differential sexual status. This means that the sexual status of female worms is regulated by miRNA.
Collapse
Affiliation(s)
- Yu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China
| | - Jintao Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China
| | - Yuqi Ren
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China
| | - Luobin Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China.,College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Hao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China
| | - Jinming Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China
| | - Yamei Jin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, No.518, Ziyue Road, Minhang District, Shanghai, 200241, PR China.
| |
Collapse
|
205
|
Pascale E, Divisato G, Palladino R, Auriemma M, Ngalya EF, Caiazzo M. Noncoding RNAs and Midbrain DA Neurons: Novel Molecular Mechanisms and Therapeutic Targets in Health and Disease. Biomolecules 2020; 10:E1269. [PMID: 32899172 PMCID: PMC7563414 DOI: 10.3390/biom10091269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Midbrain dopamine neurons have crucial functions in motor and emotional control and their degeneration leads to several neurological dysfunctions such as Parkinson's disease, addiction, depression, schizophrenia, and others. Despite advances in the understanding of specific altered proteins and coding genes, little is known about cumulative changes in the transcriptional landscape of noncoding genes in midbrain dopamine neurons. Noncoding RNAs-specifically microRNAs and long noncoding RNAs-are emerging as crucial post-transcriptional regulators of gene expression in the brain. The identification of noncoding RNA networks underlying all stages of dopamine neuron development and plasticity is an essential step to deeply understand their physiological role and also their involvement in the etiology of dopaminergic diseases. Here, we provide an update about noncoding RNAs involved in dopaminergic development and metabolism, and the related evidence of these biomolecules for applications in potential treatments for dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Emilia Pascale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Giuseppina Divisato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Renata Palladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Margherita Auriemma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Edward Faustine Ngalya
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
| | - Massimiliano Caiazzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy; (E.P.); (G.D.); (R.P.); (M.A.); (E.F.N.)
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
206
|
Liu Z, Guo S, Sun H, Bai Y, Song Z, Liu X. Circular RNA CircHIPK3 Elevates CCND2 Expression and Promotes Cell Proliferation and Invasion Through miR-124 in Glioma. Front Genet 2020; 11:1013. [PMID: 33005182 PMCID: PMC7485042 DOI: 10.3389/fgene.2020.01013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
As a malignant tumor of the central nervous system, glioma exhibits high incidence and poor prognosis. Circular RNA HIPK3 (circHIPK3) is a circular RNA (circRNA) related to cancer progression. However, the role of circHIPK3 in gliomas remains unclear. The purpose of this study was to investigate the role of circHIPK3 in gliomas and its mechanism. The qRT-PCR method was used to determine the expression pattern of circHIPK3 in glioma cell lines. CCK-8 assay was used to detect cell proliferation. Cell migration and invasion were evaluated using the Transwell assay. Our results showed that circHIPK3 expression was significantly up-regulated in glioma tissues and cell lines. In vitro, the down-regulation of circHIPK3 significantly inhibited the proliferation, migration and invasion of glioma cells. Besides, we demonstrated that circHIPK3 acted as a sponge to absorb miR-124 and promoted CCND2 expression. In summary, our results indicated that circHIPK3 had carcinogenic effects by regulating the expression of CCND2 in glioma by sponging miR-124. These findings provided favorable evidence to reveal the role of circHIPK3 in the development of gliomas.
Collapse
Affiliation(s)
- Zengjin Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shewei Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yahui Bai
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenyu Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
207
|
Mallory MJ, McClory SP, Chatrikhi R, Gazzara MR, Ontiveros RJ, Lynch KW. Reciprocal regulation of hnRNP C and CELF2 through translation and transcription tunes splicing activity in T cells. Nucleic Acids Res 2020; 48:5710-5719. [PMID: 32338744 PMCID: PMC7261192 DOI: 10.1093/nar/gkaa295] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/23/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
RNA binding proteins (RBPs) frequently regulate the expression of other RBPs in mammalian cells. Such cross-regulation has been proposed to be important to control networks of coordinated gene expression; however, much remains to be understood about how such networks of cross-regulation are established and what the functional consequence is of coordinated or reciprocal expression of RBPs. Here we demonstrate that the RBPs CELF2 and hnRNP C regulate the expression of each other, such that depletion of one results in reduced expression of the other. Specifically, we show that loss of hnRNP C reduces the transcription of CELF2 mRNA, while loss of CELF2 results in decreased efficiency of hnRNP C translation. We further demonstrate that this reciprocal regulation serves to fine tune the splicing patterns of many downstream target genes. Together, this work reveals new activities of hnRNP C and CELF2, provides insight into a previously unrecognized gene regulatory network, and demonstrates how cross-regulation of RBPs functions to shape the cellular transcriptome.
Collapse
Affiliation(s)
- Michael J Mallory
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sean P McClory
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rakesh Chatrikhi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew R Gazzara
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Ontiveros
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
208
|
Miao J, Jing J, Shao Y, Sun H. MicroRNA-138 promotes neuroblastoma SH-SY5Y cell apoptosis by directly targeting DEK in Alzheimer's disease cell model. BMC Neurosci 2020; 21:33. [PMID: 32736520 PMCID: PMC7393818 DOI: 10.1186/s12868-020-00579-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neuro-degenerative disease with a major manifestation of dementia. MicroRNAs were reported to regulate the transcript expression in patients with Alzheimer's disease (AD). In this study, we investigated the roles of miR-138, a brain-enriched miRNA, in the AD cell model. METHODS The targets of miRNA-138 was predicted by bioinformatic analysis. The expression levels of DEK at both mRNA and protein levels were determined by qRT-PCR and Western blot, respectively. Luciferase assays were carried out to examine cell viabilities. Hoechst 33258 staining was used to detect cell apoptosis. RESULTS Our results demonstrated that the expression levels of miR-138 were increased in AD model, and DEK was a target of miR-138. Overexpression of miR-138 in SH-SY5Y cells obviously down-regulated the expression of DEK in SH-SY5Y cells, resulting in the inactivation of AKT and increased expression levels of proapoptotic caspase-3. MiR-138 mediated-suppression of DEK increased the susceptibility of cell apoptosis. CONCLUSIONS MicroRNA-138 promotes cell apoptosis of SH-SY5Y by targeting DEK in SH-SY5Y AD cell model. The regulation of miR-138 may contribute to AD via down-regulation of the DEK/AKT pathway.
Collapse
Affiliation(s)
- Jin Miao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Laboratory Animal Center, Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Jin Jing
- Laboratory Animal Center, Nantong University, Nantong, 226000, Jiangsu, People's Republic of China
| | - Yixiang Shao
- Laboratory Animal Center, Nantong University, Nantong, 226000, Jiangsu, People's Republic of China.
| | - Huaichang Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
209
|
Xiao QX, Cheng CX, Deng R, Liu Q, Ren YB, He L, Yu FX, Zhang Y. LncRNA-MYL2-2 and miR-124-3p Are Associated with Perioperative Neurocognitive Disorders in Patients after Cardiac Surgery. J INVEST SURG 2020; 34:1297-1303. [PMID: 32727232 DOI: 10.1080/08941939.2020.1797949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) resulting from cardiac surgery is a complication with high morbidity and mortality. However, the pathogenesis is unknown. METHODS For the sake of investigating the risk factors and mechanism of PND, we collected the characteristics and neurological scores of patients undergoing cardiac surgery in the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University and Affiliated Hospital of Southwest Medical University from Jan 1, 2016 to Dec 11, 2018. RESULTS We found that age and left atrial thrombus are independent risk factors for PND after cardiac surgery. Furthermore, the serum of 29 patients was collected on the 7th day after cardiac surgery for detecting the expression of lncRNA-MYL2-2 and miR-124-3p. Increased lncRNA-MYL2-2 and decreased miR-124-3p in serum were associated with the decline of patients' cognition. CONCLUSIONS LncRNA-MYL2-2 and miRNA-124-3p may jointly participate in the occurrence and development of PND after cardiac surgery. These important findings are advantaged to further understand the pathogenesis of PND and prevent it, provide new biomarkers for the diagnosis and monitoring of PND.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Chun-Xia Cheng
- Department of Ultrasound, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Deng
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Qing Liu
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ying-Bo Ren
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Li He
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Feng-Xu Yu
- Department of Cardiothoracic Surgery, Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Ying Zhang
- Department of Anesthesiology, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
210
|
Tian Y, Tian Y, Tu Y, Zhang G, Zeng X, Lin J, Ai M, Mao Z, Zheng R, Yuan Y. microRNA-124 inhibits stem-like properties and enhances radiosensitivity in nasopharyngeal carcinoma cells via direct repression of expression of JAMA. J Cell Mol Med 2020; 24:9533-9544. [PMID: 32681617 PMCID: PMC7520313 DOI: 10.1111/jcmm.15177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 01/30/2023] Open
Abstract
Cancer stem cells (CSCs) are a source of tumour recurrence in patients with nasopharyngeal carcinoma (NPC); however, the function of microRNA‐124 (miR‐124) in NPC CSCs has not been clearly defined. In this study, we investigated the role of miR‐124 in NPC CSCs. qRT‐PCR was performed to measure miR‐124 expression in NPC tissues and cell lines and the effects of miR‐124 on stem‐like properties and radiosensitivity of NPC cells measured. Luciferase reporter assays and rescue experiments were used to investigate the interaction of miR‐124 with the 3′UTR of junctional adhesion molecule A (JAMA). Finally, we examined the effects of miR‐124 in an animal model and clinical samples. Down‐regulation of miR‐124 was detected in cancer tissues and was inversely associated with tumour stage and lymph node metastasis. Overexpression of miR‐124 inhibited stemness properties and enhanced radiosensitivity of NPC cells in vitro and in vivo via targeting JAMA. Up‐regulation of miR‐124 was correlated with superior overall survival of patients with NPC. Our study demonstrates that miR‐124 can inhibit stem‐like properties and enhance radiosensitivity by directly targeting JAMA in NPC. These findings provide novel insights into the molecular mechanisms underlying therapy failure in NPC.
Collapse
Affiliation(s)
- Yunhong Tian
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yunming Tian
- Department of Radiation Oncology, Hui Zhou Municipal Central Hospital, Huizhou, China
| | - Yinuo Tu
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Guoqian Zhang
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Xing Zeng
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jie Lin
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Meiling Ai
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Zixu Mao
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ronghui Zheng
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Yawei Yuan
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
211
|
Dash S, Balasubramaniam M, Martínez-Rivera FJ, Godino A, Peck EG, Patnaik S, Suar M, Calipari ES, Nestler EJ, Villalta F, Dash C, Pandhare J. Cocaine-regulated microRNA miR-124 controls poly (ADP-ribose) polymerase-1 expression in neuronal cells. Sci Rep 2020; 10:11197. [PMID: 32641757 PMCID: PMC7343862 DOI: 10.1038/s41598-020-68144-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
MiR-124 is a highly expressed miRNA in the brain and regulates genes involved in neuronal function. We report that miR-124 post-transcriptionally regulates PARP-1. We have identified a highly conserved binding site of miR-124 in the 3'-untranslated region (3'UTR) of Parp-1 mRNA. We demonstrate that miR-124 directly binds to the Parp-1 3'UTR and mutations in the seed sequences abrogate binding between the two RNA molecules. Luciferase reporter assay revealed that miR-124 post-transcriptionally regulates Parp-1 3'UTR activity in a dopaminergic neuronal cell model. Interestingly, the binding region of miR-124 in Parp-1 3'UTR overlapped with the target sequence of miR-125b, another post-transcriptional regulator of Parp-1. Our results from titration and pull-down studies revealed that miR-124 binds to Parp-1 3'UTR with greater affinity and confers a dominant post-transcriptional inhibition compared to miR-125b. Interestingly, acute or chronic cocaine exposure downregulated miR-124 levels concomitant with upregulation of PARP-1 protein in dopaminergic-like neuronal cells in culture. Levels of miR-124 were also downregulated upon acute or chronic cocaine exposure in the mouse nucleus accumbens (NAc)-a key reward region of brain. Time-course studies revealed that cocaine treatment persistently downregulated miR-124 in NAc. Consistent with this finding, miR-124 expression was also significantly reduced in the NAc of animals conditioned for cocaine place preference. Collectively, these studies identify Parp-1 as a direct target of miR-124 in neuronal cells, establish miR-124 as a cocaine-regulated miRNA in the mouse NAc, and highlight a novel pathway underlying the molecular effects of cocaine.
Collapse
Affiliation(s)
- Sabyasachi Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Old Hospital Bldg-CAHDR, Room 5023, 1005 Dr. DB Todd Jr Blvd., Nashville, TN, 37208, USA
- Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN, 37208, USA
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, 37208, USA
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha, India
| | - Muthukumar Balasubramaniam
- Center for AIDS Health Disparities Research, Meharry Medical College, Old Hospital Bldg-CAHDR, Room 5023, 1005 Dr. DB Todd Jr Blvd., Nashville, TN, 37208, USA
- Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN, 37208, USA
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, 37208, USA
| | - Freddyson J Martínez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emily G Peck
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha, India
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Fernando Villalta
- Center for AIDS Health Disparities Research, Meharry Medical College, Old Hospital Bldg-CAHDR, Room 5023, 1005 Dr. DB Todd Jr Blvd., Nashville, TN, 37208, USA
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Chandravanu Dash
- Center for AIDS Health Disparities Research, Meharry Medical College, Old Hospital Bldg-CAHDR, Room 5023, 1005 Dr. DB Todd Jr Blvd., Nashville, TN, 37208, USA.
- Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN, 37208, USA.
- Department of Biochemistry, Cancer Biology, Pharmacology and Neuroscience, Meharry Medical College, Nashville, TN, 37208, USA.
| | - Jui Pandhare
- Center for AIDS Health Disparities Research, Meharry Medical College, Old Hospital Bldg-CAHDR, Room 5023, 1005 Dr. DB Todd Jr Blvd., Nashville, TN, 37208, USA.
- Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN, 37208, USA.
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, 37208, USA.
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, Nashville, TN, 37208, USA.
| |
Collapse
|
212
|
Kim KY, Kim YR, Choi KW, Lee M, Lee S, Im W, Shin JY, Kim JY, Hong YH, Kim M, Kim JI, Sung JJ. Downregulated miR-18b-5p triggers apoptosis by inhibition of calcium signaling and neuronal cell differentiation in transgenic SOD1 (G93A) mice and SOD1 (G17S and G86S) ALS patients. Transl Neurodegener 2020; 9:23. [PMID: 32605607 PMCID: PMC7328278 DOI: 10.1186/s40035-020-00203-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 06/01/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous non-coding RNAs that regulate gene expression at the post-transcriptional level and are key modulators in neurodegenerative diseases. Overexpressed miRNAs play an important role in ALS; however, the pathogenic mechanisms of deregulated miRNAs are still unclear. METHODS We aimed to assess the dysfunction of RNAs or miRNAs in fALS (SOD1 mutations). We compared the RNA-seq of subcellular fractions in NSC-34 WT (hSOD1) and MT (hSOD1 (G93A)) cells to find altered RNAs or miRNAs. We identified that Hif1α and Mef2c were upregulated, and Mctp1 and Rarb were downregulated in the cytoplasm of NSC-34 MT cells. RESULTS SOD1 mutations decreased the level of miR-18b-5p. Induced Hif1α which is the target for miR-18b increased Mef2c expression as a transcription factor. Mef2c upregulated miR-206 as a transcription factor. Inhibition of Mctp1 and Rarb which are targets of miR-206 induces intracellular Ca2+ levels and reduces cell differentiation, respectively. We confirmed that miR-18b-5p pathway was also observed in G93A Tg, fALS (G86S) patient, and iPSC-derived motor neurons from fALS (G17S) patient. CONCLUSIONS Our data indicate that SOD1 mutation decreases miR-18b-5p, which sequentially regulates Hif1α, Mef2c, miR-206, Mctp1 and Rarb in fALS-linked SOD1 mutation. These results provide new insights into the downregulation of miR-18b-5p dependent pathogenic mechanisms of ALS.
Collapse
Affiliation(s)
- Ki Yoon Kim
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Yu Ri Kim
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Kyung Won Choi
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Mijung Lee
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Somyung Lee
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Je-Young Shin
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Jin Young Kim
- Division of Mass Spectrometry Research, Korea Basic Science Institute, Daejun, South Korea
| | - Yoon Ho Hong
- Department of Neurology, Seoul National University Seoul Metropolitan Government Boramae Medical Center, Seoul, South Korea
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Joon Sung
- Department of Neurology, Seoul National University Hospital 28 yongon-Dong, Chongno-gu, Seoul, 110-744, Republic of Korea.
| |
Collapse
|
213
|
Tian Y, Wen H, Qi X, Zhang X, Sun Y, Li J, He F, Zhang M, Zhang K, Yang W, Huang Z, Ren Y, Li Y. Alternative splicing (AS) mechanism plays important roles in response to different salinity environments in spotted sea bass. Int J Biol Macromol 2020; 155:50-60. [DOI: 10.1016/j.ijbiomac.2020.03.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/12/2023]
|
214
|
mRNA Profiling for miR-124-mediated Repair in Spinal Cord Injury. Neuroscience 2020; 438:158-168. [DOI: 10.1016/j.neuroscience.2020.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
|
215
|
Zhang X, Wang H, Sun Y, Qi M, Li W, Zhang Z, Zhang XE, Cui Z. Enterovirus A71 Oncolysis of Malignant Gliomas. Mol Ther 2020; 28:1533-1546. [PMID: 32304669 PMCID: PMC7264442 DOI: 10.1016/j.ymthe.2020.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/25/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Malignant gliomas, the most lethal type of primary brain tumor, continue to be a major therapeutic challenge. Here, we found that enterovirus A71 (EV-A71) can be developed as a novel oncolytic agent against malignant gliomas. EV-A71 preferentially infected and killed malignant glioma cells relative to normal glial cells. The virus receptor human scavenger receptor class B, member 2 (SCARB2), and phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1)-mediated cell death were involved in EV-A71-induced oncolysis. In mice with implanted subcutaneous gliomas, intraneoplastic inoculation of EV-A71 caused significant tumor growth inhibition. Furthermore, in mice bearing intracranial orthotopic gliomas, intraneoplastic inoculation of EV-A71 substantially prolonged survival. By insertion of brain-specific microRNA-124 (miR124) response elements into the viral genome, we improved the tumor specificity of EV-A71 oncolytic therapy by reducing its neurotoxicity while maintaining its replication potential and oncolytic capacity in gliomas. Our study reveals that EV-A71 is a potent oncolytic agent against malignant gliomas and may have a role in treating this tumor in the clinical setting.
Collapse
Affiliation(s)
- Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hanzhong Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuhan Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Qi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
216
|
Li X, Pritykin Y, Concepcion CP, Lu Y, La Rocca G, Zhang M, King B, Cook PJ, Au YW, Popow O, Paulo JA, Otis HG, Mastroleo C, Ogrodowski P, Schreiner R, Haigis KM, Betel D, Leslie CS, Ventura A. High-Resolution In Vivo Identification of miRNA Targets by Halo-Enhanced Ago2 Pull-Down. Mol Cell 2020; 79:167-179.e11. [PMID: 32497496 DOI: 10.1016/j.molcel.2020.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/18/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022]
Abstract
The identification of microRNA (miRNA) targets by Ago2 crosslinking-immunoprecipitation (CLIP) methods has provided major insights into the biology of this important class of non-coding RNAs. However, these methods are technically challenging and not easily applicable to an in vivo setting. To overcome these limitations and facilitate the investigation of miRNA functions in vivo, we have developed a method based on a genetically engineered mouse harboring a conditional Halo-Ago2 allele expressed from the endogenous Ago2 locus. By using a resin conjugated to the HaloTag ligand, Ago2-miRNA-mRNA complexes can be purified from cells and tissues expressing the endogenous Halo-Ago2 allele. We demonstrate the reproducibility and sensitivity of this method in mouse embryonic stem cells, developing embryos, adult tissues, and autochthonous mouse models of human brain and lung cancers. This method and the datasets we have generated will facilitate the characterization of miRNA-mRNA networks in vivo under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaoyi Li
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yuri Pritykin
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carla P Concepcion
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yuheng Lu
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gaspare La Rocca
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Minsi Zhang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bryan King
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peter J Cook
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Yu Wah Au
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Internal Medicine (Nephrology), Leiden University Medical Center, Zuid-Holland, 2333 ZA, the Netherlands
| | - Olesja Popow
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hannah G Otis
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Chiara Mastroleo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paul Ogrodowski
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ryan Schreiner
- Margaret Dyson Vision Research Institute, Department of Ophthalmology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Doron Betel
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA; Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Andrea Ventura
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
217
|
Madrer N, Soreq H. Cholino-ncRNAs modulate sex-specific- and age-related acetylcholine signals. FEBS Lett 2020; 594:2185-2198. [PMID: 32330292 PMCID: PMC7496432 DOI: 10.1002/1873-3468.13789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Acetylcholine (ACh) signaling orchestrates mammalian movement, mental capacities, and inflammation. Dysregulated ACh signaling associates with many human mental disorders and neurodegeneration in an individual‐, sex‐, and tissue‐related manner. Moreover, aged patients under anticholinergic therapy show increased risk of dementia, but the underlying molecular mechanisms are incompletely understood. Here, we report that certain cholinergic‐targeting noncoding RNAs, named Cholino‐noncoding RNAs (ncRNAs), can modulate ACh signaling, agonistically or antagonistically, via distinct direct and indirect mechanisms and at different timescales. Cholino‐ncRNAs include both small microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). The former may attenuate translation and/or induce destruction of target mRNAs that code for either ACh‐signaling proteins or transcription factors controlling the expression of cholinergic genes. lncRNAs may block miRNAs via ‘sponging’ events or by competitive binding to the cholinergic target mRNAs. Also, single nucleotide polymorphisms in either Cholino‐ncRNAs or in their recognition sites in the ACh‐signaling associated genes may modify ACh signaling‐regulated processes. Taken together, both inherited and acquired changes in the function of Cholino‐ncRNAs impact ACh‐related deficiencies, opening new venues for individual, sex‐related, and age‐specific oriented research, diagnosis, and therapeutics.
Collapse
Affiliation(s)
- Nimrod Madrer
- The Life Sciences Institute and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Israel
| | - Hermona Soreq
- The Life Sciences Institute and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
218
|
Brain microRNAs dysregulation: Implication for missplicing and abnormal post-translational modifications of tau protein in Alzheimer’s disease and related tauopathies. Pharmacol Res 2020; 155:104729. [DOI: 10.1016/j.phrs.2020.104729] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 02/01/2020] [Accepted: 02/26/2020] [Indexed: 12/16/2022]
|
219
|
A functional SNP in MIR124-1, a brain expressed miRNA gene, is associated with aggressiveness in a Colombian sample. Eur Psychiatry 2020; 30:499-503. [DOI: 10.1016/j.eurpsy.2015.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/12/2022] Open
Abstract
AbstractBackground:Interpersonal violence and suicide are among the main causes of mortality and morbidity around the world. In several developing countries, such as Colombia, they are among the first five entities of public health concern. Aggressiveness is an important endophenotype for aggression and suicidal behavior, having a heritability of around 50%. Exploration of classical candidate genes, involved in serotoninergic and dopaminergic neurotransmission, has identified few consistent risk factors for aggressiveness. miRNAs are a novel class of molecules with a growing role in normal neural function and neuropsychiatric disorders; of special interest, miR-124 is a brain-specific miRNA that is key for neuronal plasticity. We evaluated the hypothesis that a functional polymorphism in MIR124-1 gene might be associated with aggressiveness in a Colombian sample.Methods:The Spanish adaptation of the refined version of the Aggression Questionnaire and the abbreviated Barratt Impulsiveness Scale were applied to 170 young subjects. The functional SNP in MIR124-1 (rs531564) was genotyped by a TaqMan assay.Results:We found a significant association between the MIR124-1 and aggressiveness in our sample, with G/G carriers having lower scores (P = 0.01). This association seemed to be specific for aggressiveness, as it was not significant for impulsiveness.Conclusions:We showed for the first time the association of a functional polymorphism in MIR124-1 and aggressiveness. Known targets of miR-124 (such as BDNF and DRD4 genes) could explain the effect of this miRNA on behavior. A future analysis of additional novel functional polymorphisms in other brain expressed miRNAs could be useful for a deeper understanding of aggression in humans.
Collapse
|
220
|
Fochi S, Lorenzi P, Galasso M, Stefani C, Trabetti E, Zipeto D, Romanelli MG. The Emerging Role of the RBM20 and PTBP1 Ribonucleoproteins in Heart Development and Cardiovascular Diseases. Genes (Basel) 2020; 11:genes11040402. [PMID: 32276354 PMCID: PMC7230170 DOI: 10.3390/genes11040402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing is a regulatory mechanism essential for cell differentiation and tissue organization. More than 90% of human genes are regulated by alternative splicing events, which participate in cell fate determination. The general mechanisms of splicing events are well known, whereas only recently have deep-sequencing, high throughput analyses and animal models provided novel information on the network of functionally coordinated, tissue-specific, alternatively spliced exons. Heart development and cardiac tissue differentiation require thoroughly regulated splicing events. The ribonucleoprotein RBM20 is a key regulator of the alternative splicing events required for functional and structural heart properties, such as the expression of TTN isoforms. Recently, the polypyrimidine tract-binding protein PTBP1 has been demonstrated to participate with RBM20 in regulating splicing events. In this review, we summarize the updated knowledge relative to RBM20 and PTBP1 structure and molecular function; their role in alternative splicing mechanisms involved in the heart development and function; RBM20 mutations associated with idiopathic dilated cardiovascular disease (DCM); and the consequences of RBM20-altered expression or dysfunction. Furthermore, we discuss the possible application of targeting RBM20 in new approaches in heart therapies.
Collapse
|
221
|
Park HR, Sun R, Panganiban RA, Christiani DC, Lu Q. MicroRNA-124 Reduces Arsenic-induced Endoplasmic Reticulum Stress and Neurotoxicity and is Linked with Neurodevelopment in Children. Sci Rep 2020; 10:5934. [PMID: 32246005 PMCID: PMC7125130 DOI: 10.1038/s41598-020-62594-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/09/2020] [Indexed: 12/11/2022] Open
Abstract
Arsenic (As) exposure adversely affects neurodevelopment in children. Accumulation of misfolded proteins in cells exposed to As leads to endoplasmic reticulum (ER) stress response, which, if not relieved, results in cell death. Despite the potential role of ER stress for As-induced neurotoxicity, the underlying mechanisms remain poorly understood. Here we aimed to investigate the roles of microRNA(miR)-124, a novel ER stress suppressor, in As-induced ER stress response and cytotoxicity in neural cells. We further aimed to link these in vitro findings to neurodevelopmental outcomes in children who were exposed to As. Using Quantitative RT-PCR and Cyquant assay, we showed that miR-124 protects against As-induced cytotoxicity in neural cells with concomitant suppression of As-induced ER stress. In addition, As-induced cytotoxicity was exacerbated in miR-124 knockout cells generated by CRISPR-based gene editing compared scramble control. Furthermore, we identified two miR-124 SNPs rs67543816 (p = 0.0003) and rs35418153 (p = 0.0004) that are significantly associated with a mental composite score calculated from the Bayley Scales of Infant Development III in Bangladesh children. Our study reveals As-induced ER stress as a crucial mechanism underlying the toxic effects of As on neural cell function and neurodevelopment and identifies miR-124 as a potential preventative and therapeutic target against detrimental effects of As exposure in children.
Collapse
Affiliation(s)
- Hae-Ryung Park
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Ryan Sun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Ronald A Panganiban
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - David C Christiani
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Departments of Environmental Health, and Genetics & Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
222
|
Garcia CM, Toms SA. The Role of Circulating MicroRNA in Glioblastoma Liquid Biopsy. World Neurosurg 2020; 138:425-435. [PMID: 32251831 DOI: 10.1016/j.wneu.2020.03.128] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 12/29/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary malignancy of the central nervous system. The standard used to monitor disease progression and therapeutic response has been magnetic resonance imaging, which is usually obtained preoperatively and postoperatively. Patients with GBM are monitored every 2-3 months and scans are repeated until progression is detected. Sometimes there is an inability to detect tumor progression or difficulty in differentiating tumor progression from pseudoprogression. With the difficulty of distinguishing disease progression, as well as the cost of imaging, there may be a need for the existence of a noninvasive liquid biopsy. There is no reliable biomarker for GBM that can be used for liquid biopsy, but if one could be detected in serum or cerebrospinal fluid and vary with tumor burden, then, it could be developed into one. MicroRNAs (miRNAs) are short, single-stranded, noncoding RNAs that posttranscriptionally control gene expression. They play vital roles in tumor progression, migration, invasion, and stemness. Because miRNAs are secreted in stable forms in bodily fluid, either via extracellular vesicles or in cell-free form, they have great potential as biomarkers that can be used for liquid biopsy. Various miRNAs that are dysregulated in GBM have been identified in tissue, cerebrospinal fluid, and serum samples. There needs to be standardization of sample collection and quantification for both cell-free and exosomal-derived samples. Further studies need to be performed on larger cohorts to evaluate the sensitivity and specificity of not just miRNAs but most potential biomarkers.
Collapse
Affiliation(s)
- Catherine M Garcia
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Steven A Toms
- Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
223
|
Vuokila N, Aronica E, Korotkov A, van Vliet EA, Nuzhat S, Puhakka N, Pitkänen A. Chronic Regulation of miR-124-3p in the Perilesional Cortex after Experimental and Human TBI. Int J Mol Sci 2020; 21:ijms21072418. [PMID: 32244461 PMCID: PMC7177327 DOI: 10.3390/ijms21072418] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) dysregulates microRNAs, which are the master regulators of gene expression. Here we investigated the changes in a brain-enriched miR-124-3p, which is known to associate with major post-injury pathologies, such as neuroinflammation. RT-qPCR of the rat tissue sampled at 7 d and 3 months in the perilesional cortex adjacent to the necrotic lesion core (aPeCx) revealed downregulation of miR-124-3p at 7 d (fold-change (FC) 0.13, p < 0.05 compared with control) and 3 months (FC 0.40, p < 0.05) post-TBI. In situ hybridization confirmed the downregulation of miR-124-3p at 7 d and 3 months post-TBI in the aPeCx (both p < 0.01). RT-qPCR confirmed the upregulation of the miR-124-3p target Stat3 in the aPeCx at 7 d post-TBI (7-fold, p < 0.05). mRNA-Seq revealed 312 downregulated and 311 upregulated miR-124 targets (p < 0.05). To investigate whether experimental findings translated to humans, we performed in situ hybridization of miR-124-3p in temporal lobe autopsy samples of TBI patients. Our data revealed downregulation of miR-124-3p in individual neurons of cortical layer III. These findings indicate a persistent downregulation of miR-124-3p in the perilesional cortex that might contribute to post-injury neurodegeneration and inflammation.
Collapse
Affiliation(s)
- Niina Vuokila
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
| | - Eleonora Aronica
- Department of (Neuro)pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.A.); (A.K.); (E.A.v.V.)
- Stichting Epilepsie Instellingen Nederland (SEIN), 0397 Heemstede, The Netherlands
| | - Anatoly Korotkov
- Department of (Neuro)pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.A.); (A.K.); (E.A.v.V.)
| | - Erwin Alexander van Vliet
- Department of (Neuro)pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (E.A.); (A.K.); (E.A.v.V.)
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, P.O. Box 94246, 1090 GE Amsterdam, The Netherlands
| | - Salma Nuzhat
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
- Correspondence: ; Tel.: +358-40-861-4939
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (N.V.); (S.N.); (A.P.)
| |
Collapse
|
224
|
Yavarpour-Bali H, Ghasemi-Kasman M, Shojaei A. Direct reprogramming of terminally differentiated cells into neurons: A novel and promising strategy for Alzheimer's disease treatment. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109820. [PMID: 31743695 DOI: 10.1016/j.pnpbp.2019.109820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/17/2023]
Abstract
Glial activation is a common pathological process of the central nervous system (CNS) in disorders such as Alzheimer's disease (AD). Several approaches have been used to reduce the number of activated astrocytes and microglia in damaged areas. In recent years, various kinds of fully differentiated cells have been successfully reprogrammed to a desired type of cell in lesion areas. Interestingly, internal glial cells, including astrocytes and NG2 positive cells, were efficiently converted to neuroblasts and neurons by overexpression of some transcription factors (TFs) or microRNAs (miRNAs). Notably, some specific subtypes of neurons have been achieved by in vivo reprogramming and the resulting neurons were successfully integrated into local neuronal circuits. Furthermore, somatic cells from AD patients have been converted to functional neurons. Although direct reprogramming of a patient's own internal cells has revolutionized regenerative medicine, but there are some major obstacles that should be examined before using these induced cells in clinical therapies. In the present review article, we aim to discuss the current studies on in vitro and in vivo reprogramming of somatic cells to neurons using TFs, miRNAs or small molecules in healthy and AD patients.
Collapse
Affiliation(s)
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Amir Shojaei
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
225
|
Doxakis E. Cell-free microRNAs in Parkinson's disease: potential biomarkers that provide new insights into disease pathogenesis. Ageing Res Rev 2020; 58:101023. [PMID: 32001380 DOI: 10.1016/j.arr.2020.101023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are master post-transcriptional regulators of gene expression and their specific footprints reflect disease conditions. Over the last few years, several primary reports have described the deregulation of cell-free miRNAs in Parkinson's disease (PD), however, results have been rather inconsistent due to preanalytical and analytical challenges. This study integrated the data across twenty-four reports to identify steadily deregulated miRNAs that may assist in the path towards biomarker development and molecular characterization of the underlying pathology. Stringent KEGG pathway analysis of the miRNA targets revealed FoxO, Prolactin, TNF, and ErbB signaling pathways as the most significantly enriched categories while Gene Ontology analysis revealed that the protein targets are mostly associated with transcription. Chromosomal location of the consistently deregulated miRNAs revealed that over a third of them were clustered at the same location at Chr14q32 suggesting that they are co-regulated by specific transcription factors. This genomic region is inherently unstable due to expanded TGG repeats and responsible for human abnormalities. Stringent analysis of transcription factor sites surrounding the deregulated miRNAs revealed that CREB1, CEBPB and MAZ sites existed in approximately half of the miRNAs, including all of the miRNAs located at Chr14q32. Additional studies are now needed to determine the biomarker potential of the consistently deregulated miRNAs in PD and the therapeutic implications of these bioinformatics insights.
Collapse
|
226
|
Functional omics analyses reveal only minor effects of microRNAs on human somatic stem cell differentiation. Sci Rep 2020; 10:3284. [PMID: 32094412 PMCID: PMC7040006 DOI: 10.1038/s41598-020-60065-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/30/2020] [Indexed: 01/12/2023] Open
Abstract
The contribution of microRNA-mediated posttranscriptional regulation on the final proteome in differentiating cells remains elusive. Here, we evaluated the impact of microRNAs (miRNAs) on the proteome of human umbilical cord blood-derived unrestricted somatic stem cells (USSC) during retinoic acid (RA) differentiation by a systemic approach using next generation sequencing analysing mRNA and miRNA expression and quantitative mass spectrometry-based proteome analyses. Interestingly, regulation of mRNAs and their dedicated proteins highly correlated during RA-incubation. Additionally, RA-induced USSC demonstrated a clear separation from native USSC thereby shifting from a proliferating to a metabolic phenotype. Bioinformatic integration of up- and downregulated miRNAs and proteins initially implied a strong impact of the miRNome on the XXL-USSC proteome. However, quantitative proteome analysis of the miRNA contribution on the final proteome after ectopic overexpression of downregulated miR-27a-5p and miR-221-5p or inhibition of upregulated miR-34a-5p, respectively, followed by RA-induction revealed only minor proportions of differentially abundant proteins. In addition, only small overlaps of these regulated proteins with inversely abundant proteins in non-transfected RA-treated USSC were observed. Hence, mRNA transcription rather than miRNA-mediated regulation is the driving force for protein regulation upon RA-incubation, strongly suggesting that miRNAs are fine-tuning regulators rather than active primary switches during RA-induction of USSC.
Collapse
|
227
|
Endo M, Druso JE, Cerione RA. The two splice variant forms of Cdc42 exert distinct and essential functions in neurogenesis. J Biol Chem 2020; 295:4498-4512. [PMID: 32071086 DOI: 10.1074/jbc.ra119.011837] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/31/2020] [Indexed: 12/29/2022] Open
Abstract
The small GTPase cell division cycle 42 (CDC42) plays essential roles in neurogenesis and brain development. Previously, using murine embryonic P19 cells as a model system, we showed that CDC42 stimulates mTOR complex 1 (mTORC1) activity and thereby up-regulates transcription factors required for the formation of neural progenitor cells. However, paradoxically, although endogenous CDC42 is required for both the initial transition of undifferentiated P19 cells to neural progenitors and their ultimate terminal differentiation into neurons, ectopic CDC42 overexpression promotes only the first stage of neurogenesis (i.e. the formation of neuroprogenitors) and not the second phase (differentiation into neurons). Here, using both P19 cells and mouse embryonic stem cells, we resolve this paradox, demonstrating that two splice variants of CDC42, differing only in nine amino acid residues in their very C-terminal regions, play distinct roles in neurogenesis. We found that a CDC42 splice variant that has a ubiquitous tissue distribution, termed here as CDC42u, specifically drives the formation of neuroprogenitor cells, whereas a brain-specific CDC42 variant, CDC42b, is essential for promoting the transition of neuroprogenitor cells to neurons. We further show that the specific roles of CDC42u and CDC42b in neurogenesis are due to their opposing effects on mTORC1 activity. Specifically, CDC42u stimulated mTORC1 activity and thereby induced neuroprogenitor formation, whereas CDC42b worked together with activated CDC42-associated kinase (ACK) in down-regulating mTOR expression and promoting neuronal differentiation. These findings highlight the remarkable functional specificities of two highly similar CDC42 splice variants in regulating distinct stages of neurogenesis.
Collapse
Affiliation(s)
- Makoto Endo
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Joseph E Druso
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | - Richard A Cerione
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853 .,Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853
| |
Collapse
|
228
|
Hou TY, Zhou Y, Zhu LS, Wang X, Pang P, Wang DQ, Liuyang ZY, Man H, Lu Y, Zhu LQ, Liu D. Correcting abnormalities in miR-124/PTPN1 signaling rescues tau pathology in Alzheimer's disease. J Neurochem 2020; 154:441-457. [PMID: 31951013 DOI: 10.1111/jnc.14961] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
MicroRNAs have been implicated in diverse physiological and pathological processes. We previously reported that aberrant microRNA-124 (miR-124)/non-receptor-type protein phosphatase 1 (PTPN1) signaling plays an important role in the synaptic disorders associated with Alzheimer's disease (AD). In this study, we further investigated the potential role of miR-124/PTPN1 in the tau pathology of AD. We first treated the mice with intra-hippocampal stereotactic injections. Then, we used quantitative real-time reverse transcription PCR (qRT-PCR) to detect the expression of microRNAs. Western blotting was used to measure the level of PTPN1, the level of tau protein, the phosphorylation of tau at AD-related sites, and alterations in the activity of glycogen synthase kinase 3β (GSK-3β) and protein phosphatase 2 (PP2A). Immunohistochemistry was also used to detect changes in tau phosphorylation levels at AD-related sites and somadendritic aggregation. Soluble and insoluble tau protein was separated by 70% formic acid (FA) extraction to examine tau solubility. Finally, behavioral experiments (including the Morris water maze, fear conditioning, and elevated plus maze) were performed to examine learning and memory ability and emotion-related behavior. We found that artificially replicating the abnormalities in miR-124/PTPN1 signaling induced AD-like tau pathology in the hippocampus of wild-type mice, including hyperphosphorylation at multiple sites, insolubility and somadendritic aggregation, as well as learning/memory deficits. We also found that disruption of miR-124/PTPN1 signaling was caused by the loss of RE1-silencing transcription factor protein, which can be initiated by Aβ insults or oxidative stress, as observed in the brains of P301S mice. Correcting the deregulation of miR-124/PTPN1 signaling rescued the tau pathology and learning/memory impairments in the P301S mice. We also found that miR-124/PTPN1 abnormalities induced activation of glycogen synthase kinase 3 (GSK-3) and inactivation of protein phosphatase 2A (PP2A) by promoting tyrosine phosphorylation, implicating an imbalance in tau kinase/phosphatase. Thus, targeting the miR-124/PTPN1 signaling pathway is a promising therapeutic strategy for AD.
Collapse
Affiliation(s)
- Tong-Yao Hou
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yang Zhou
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ling-Shuang Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiong Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Pei Pang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ding-Qi Wang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhen-Yu Liuyang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hengye Man
- Department of Biology, Boston University, Boston, MA, USA
| | - Youming Lu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Dan Liu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China.,The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, P.R. China.,Department of Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
229
|
Su X, Gu X, Zhang Z, Li W, Wang X. Retinoic acid receptor gamma is targeted by microRNA-124 and inhibits neurite outgrowth. Neuropharmacology 2020; 163:107657. [PMID: 31170403 DOI: 10.1016/j.neuropharm.2019.05.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Abstract
During brain development, neurite outgrowth is required for brain development and is regulated by many factors. All-trans retinoic acid (RA) is an important regulator of cell growth and differentiation. MicroRNA-124 (miR-124), a brain-specific microRNA, has been implicated in stimulating neurite growth. In this study, we found that retinoic acid receptor gamma (RARG) expression was decreased, whereas miR-124 expression was increased during neural differentiation in mouse Neuroblastoma (N2a) Cells, P19 embryonal carcinoma (P19) cells, and mouse brain, as detected by immunoblotting or RT-qPCR. And we proved that miR-124 inhibited RARG expression by binding to the 3' UTR of RARG with a luciferase reporter assay. Upregulation of miR-124 (using miR-124 overexpressing plasmid and miR-124 mimic) led to a significant decrease in RARG protein in N2a cells and primary neurons. Therefore, we asked whether and how the miR-124/RARG axis regulates neuronal outgrowth, which is poorly understood. Strikingly, RARG knockdown by shRNA stimulated neurite growth in N2a cells and primary neurons, whereas RARG overexpression (without 3' UTR) inhibited neurite growth in N2a cells, P19 cells, and primary neurons. Furthermore, RARG knockdown could partially eliminate neurite outgrowth defects caused by the inhibitor of miR-124, while RARG overexpression could reverse the neurite outgrowth enhancing effect of the upregulation of miR-124. Collectively, the data reveal that miR-124/RARG axis is critical for neurite outgrowth. RARG emerges as a new target regulated by miR-124 that modulates neurite outgrowth, providing a novel context in which these two molecules function.
Collapse
Affiliation(s)
- Xiaohong Su
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xi Gu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhiduo Zhang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weipeng Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuemin Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
230
|
PRAS40 hyperexpression promotes hepatocarcinogenesis. EBioMedicine 2020; 51:102604. [PMID: 31901857 PMCID: PMC6950779 DOI: 10.1016/j.ebiom.2019.102604] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/03/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers, whereas the molecular mechanism remains largely unknown. PRAS40 (encoded by AKT1S1) phosphorylation was increased in human melanoma, prostate cancer and lung cancer specimens, which was considered as the results of Akt activation. However the mechanism in detail and its role in HCC stay elusive. Methods PRAS40 expression and phosphorylation were analyzed in HCC specimens, and the survival rates of patients were investigated. Functional analyses of PRAS40 in HCC were performed in vivo and in vitro. The miR-124-3p binding sites in PRAS40 were investigated using luciferase assay. MiR-124-3p expression in HCC specimens was examined by In Situ hybridization, and the correlation to PRAS40 level was evaluated. Findings The phosphorylation, protein and mRNA levels of PRAS40 were increased significantly in HCC specimens from our cohorts and TCGA database, which was positively correlated to the poor prognosis of HCC patients. Compared to Akt1s1+/+ mice, hepatocarcinogenesis was suppressed in Akt1s1−/− mice, and the activation of Akt was impaired. PRAS40 depletion resulted in the inhibition of HCC cellular proliferation. Tumor suppressor miR-124-3p was found to downregulate PRAS40 expression by targeting its 3′UTR. MiR-124-3p levels were inversely correlated to PRAS40 protein and phosphorylation levels in HCC specimens. The proliferation inhibition by miR-124-3p mimics was partially reversed by exogenous PRAS40 introduction in HCC cells. Interpretation PRAS40 hyperexpression induced by loss of miR-124-3p contributes to PRAS40 hyperphosphorylation and hepatocarcinogenesis. These results could be expected to offer novel clues for understanding hepatocarcinogenesis and developing approaches.
Collapse
|
231
|
Yoshino Y, Dwivedi Y. Non-Coding RNAs in Psychiatric Disorders and Suicidal Behavior. Front Psychiatry 2020; 11:543893. [PMID: 33101077 PMCID: PMC7522197 DOI: 10.3389/fpsyt.2020.543893] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
It is well known that only a small proportion of the human genome code for proteins; the rest belong to the family of RNAs that do not code for protein and are known as non-coding RNAs (ncRNAs). ncRNAs are further divided into two subclasses based on size: 1) long non-coding RNAs (lncRNAs; >200 nucleotides) and 2) small RNAs (<200 nucleotides). Small RNAs contain various family members that include microRNAs (miRNAs), small interfering RNAs (siRNAs), piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), and small nuclear RNAs (snRNAs). The roles of ncRNAs, especially lncRNAs and miRNAs, are well documented in brain development, homeostasis, stress responses, and neural plasticity. It has also been reported that ncRNAs can influence the development of psychiatric disorders including schizophrenia, major depressive disorder, and bipolar disorder. More recently, their roles are being investigated in suicidal behavior. In this article, we have comprehensively reviewed the findings of lncRNA and miRNA expression changes and their functions in various psychiatric disorders including suicidal behavior. We primarily focused on studies that have been done in postmortem human brain. In addition, we have briefly reviewed the role of other small RNAs (e.g. piwiRNA, siRNA, snRNA, and snoRNAs) and their expression changes in psychiatric illnesses.
Collapse
Affiliation(s)
- Yuta Yoshino
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
232
|
You Q, Gong Q, Han YQ, Pi R, Du YJ, Dong SZ. Role of miR-124 in the regulation of retinoic acid-induced Neuro-2A cell differentiation. Neural Regen Res 2020; 15:1133-1139. [PMID: 31823894 PMCID: PMC7034285 DOI: 10.4103/1673-5374.270417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid can cause many types of cells, including mouse neuroblastoma Neuro-2A cells, to differentiate into neurons. However, it is still unknown whether microRNAs (miRNAs) play a role in this neuronal differentiation. To address this issue, real-time polymerase chain reaction assays were used to detect the expression of several differentiation-related miRNAs during the differentiation of retinoic acid-treated Neuro-2A cells. The results revealed that miR-124 and miR-9 were upregulated, while miR-125b was downregulated in retinoic acid-treated Neuro-2A cells. To identify the miRNA that may play a key role, miR-124 expression was regulated by transfection of miRNA mimics or inhibitors. Morphological analysis results showed that inhibition of miR-124 expression reversed the effects of retinoic acid on neurite outgrowth. Moreover, miR-124 overexpression alone caused Neuro-2A cells to differentiate into neurons, and its inhibitor could block this effect. These results suggest that miR-124 plays an important role in retinoic acid-induced differentiation of Neuro-2A cells.
Collapse
Affiliation(s)
- Qun You
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Qiang Gong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yu-Qiao Han
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Rou Pi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yi-Jie Du
- Department of Integrative Medicine, Huashan Hospital; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Su-Zhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
233
|
Li M, Wu P, Yang Z, Deng S, Ni L, Zhang Y, Jin L, Pan Y. miR-193a-5p promotes pancreatic cancer cell metastasis through SRSF6-mediated alternative splicing of OGDHL and ECM1. Am J Cancer Res 2020; 10:38-59. [PMID: 32064152 PMCID: PMC7017744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023] Open
Abstract
MicroRNAs (miRNAs) are short and non-coding RNAs binding to 3'UTR of target mRNAs to downregulate their expression. Recent studies have shown that miRNAs indirectly regulated alternative splicing (AS) by targeting splicing factors and caused shifts in splicing patterns of target genes. However, the roles of miRNA-regulating splicing factors in pancreatic cancer progression remain unknown. Herein, we reported that miR-193a-5p was markedly upregulated in pancreatic cancer tissues and cells and correlated with clinical outcomes of pancreatic cancer patients. Overexpression of miR-193a-5p contributed to the metastasis of pancreatic cancer cells both in vitro and in vivo. The mechanistic investigation suggested that miR-193a-5p modulated oxoglutarate dehydrogenase-like (OGDHL) and extracellular matrix protein 1 (ECM1) AS by targeting serine/arginine-rich splicing factor 6 (SRSF6), leading to the activation of the epithelial-to-mesenchymal transition (EMT) process. Together, our findings highlighted the role of miR-193a-5p-targeting SRSF6 in pancreatic cancer metastasis, which may serve as a novel target for pancreatic cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Manman Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| | - Pandi Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical UniversityNanjing 21008, PR China
| | - Siwei Deng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| | - Lingyu Ni
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University24 Tongjiaxiang Avenue, Nanjing, Jiangsu, PR China
| |
Collapse
|
234
|
Liew LC, Gailhouste L, Tan GC, Yamamoto Y, Takeshita F, Nakagama H, Ochiya T. MicroRNA-124a inhibits endoderm lineage commitment by targeting Sox17 and Gata6 in mouse embryonic stem cells. Stem Cells 2019; 38:504-515. [PMID: 31828873 PMCID: PMC7187259 DOI: 10.1002/stem.3136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023]
Abstract
The role of microRNAs (miRNAs) during mouse early development, especially in endoderm germ layer formation, is largely unknown. Here, via miRNA profiling during endoderm differentiation, we discovered that miR‐124a negatively regulates endoderm lineage commitment in mouse embryonic stem cells (mESCs). To further investigate the functional role of miR‐124a in early stages of differentiation, transfection of embryoid bodies with miR‐124a mimic was performed. We showed that overexpression of miR‐124a inhibits endoderm differentiation in vitro through targeting the 3′‐untranslated region (UTR) of Sox17 and Gata6, revealing the existence of interplay between miR‐124a and the Sox17/Gata6 transcription factors in hepato‐specific gene regulation. In addition, we presented a feasible in vivo system that utilizes teratoma and gene expression profiling from microarray to quantitatively evaluate the functional role of miRNA in lineage specification. We demonstrated that ectopic expression of miR‐124a in teratomas by intratumor delivery of miR‐124a mimic and Atelocollagen, significantly suppressed endoderm and mesoderm lineage differentiation while augmenting the differentiation into ectoderm lineage. Collectively, our findings suggest that miR‐124a plays a significant role in mESCs lineage commitment.
Collapse
Affiliation(s)
- Lee Chuen Liew
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Luc Gailhouste
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Liver Cancer Prevention Research Unit, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Fumitaka Takeshita
- Department of Functional Analysis, FIOC, National Cancer Center Research Institute, Tokyo, Japan
| | - Hitoshi Nakagama
- Department of Pathology, Immunology and Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,National Cancer Center, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.,Department of Molecular and Cellular Medicine, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
235
|
MicroRNA-22 exerts its neuroprotective and angiogenic functions via regulating PI3K/Akt signaling pathway in cerebral ischemia-reperfusion rats. J Neural Transm (Vienna) 2019; 127:35-44. [PMID: 31883035 DOI: 10.1007/s00702-019-02124-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/12/2019] [Indexed: 01/07/2023]
Abstract
The aims of this study were to study the effects of miR-2 on cerebral ischemia-reperfusion rats and to explore its further mechanism. Rats were assigned into sham, model, miR-22 control and miR-22 groups. Observation of neurological behaviors at 24 h after operation found that neurological functions were severely damaged in the model and miR-22 control groups and these damages were improved by miR-22. RT-PCR indicated that miR-22 mRNA level in the brain tissue was significantly decreased in the model and miR-22 control groups, but increased in the miR-22 group. TTC staining showed increased percentage of cerebral infarction volume in the model and miR-22 control groups and this increase was reduced by miR-22. Immunohistochemistry showed increased densities of CD34+ and VEGF+ microvessels in the cortex in the model and miR-22 control groups, which were further increased in the miR-22 group. ELISA showed increased serum VEGF and Ang-1 levels in the model and miR-22 control groups, which were also further increased in the miR-22 group. Western blot analysis showed increased phosphorylation level of PI3K and Akt in brain tissue in the model and miR-22 control groups, which were further increased in the miR-22 group. Administration of LY294002, a specific PI3K pathway inhibitor, significantly reversed all the effects of miR-22 on rats in the model group. miR-22 exerts its neuroprotective and angiogenic functions via the PI3K/Akt signaling pathway, at least partly, in rats under cerebral ischemia-reperfusion.
Collapse
|
236
|
Prodromidou K, Matsas R. Species-Specific miRNAs in Human Brain Development and Disease. Front Cell Neurosci 2019; 13:559. [PMID: 31920559 PMCID: PMC6930153 DOI: 10.3389/fncel.2019.00559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
Identification of the unique features of human brain development and function can be critical towards the elucidation of intricate processes such as higher cognitive functions and human-specific pathologies like neuropsychiatric and behavioral disorders. The developing primate and human central nervous system (CNS) are distinguished by expanded progenitor zones and a protracted time course of neurogenesis, leading to the expansion in brain size, prominent gyral anatomy, distinctive synaptic properties, and complex neural circuits. Comparative genomic studies have revealed that adaptations of brain capacities may be partly explained by human-specific genetic changes that impact the function of proteins associated with neocortical expansion, synaptic function, and language development. However, the formation of complex gene networks may be most relevant for brain evolution. Indeed, recent studies identified distinct human-specific gene expression patterns across developmental time occurring in brain regions linked to cognition. Interestingly, such modules show species-specific divergence and are enriched in genes associated with neuronal development and synapse formation whilst also being implicated in neuropsychiatric diseases. microRNAs represent a powerful component of gene-regulatory networks by promoting spatiotemporal post-transcriptional control of gene expression in the human and primate brain. It has also been suggested that the divergence in miRNA expression plays an important role in shaping gene expression divergence among species. Primate-specific and human-specific miRNAs are principally involved in progenitor proliferation and neurogenic processes but also associate with human cognition, and neurological disorders. Human embryonic or induced pluripotent stem cells and brain organoids, permitting experimental access to neural cells and differentiation stages that are otherwise difficult or impossible to reach in humans, are an essential means for studying species-specific brain miRNAs. Single-cell sequencing approaches can further decode refined miRNA-mRNA interactions during developmental transitions. Elucidating species-specific miRNA regulation will shed new light into the mechanisms that control spatiotemporal events during human brain development and disease, an important step towards fostering novel, holistic and effective therapeutic approaches for neural disorders. In this review, we discuss species-specific regulation of miRNA function, its contribution to the evolving features of the human brain and in neurological disease, with respect also to future therapeutic approaches.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
237
|
Su ZJ, Wang XY, Zhou C, Chai Z. Down-regulation of miR-3068-3p enhances kcnip4-regulated A-type potassium current to protect against glutamate-induced excitotoxicity. J Neurochem 2019; 153:617-630. [PMID: 31792968 DOI: 10.1111/jnc.14932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022]
Abstract
The main cause of excitotoxic neuronal death in ischemic stroke is the massive release of glutamate. Recently, microRNAs (miRNAs) have been found to play an essential role in stroke pathology, although the molecular mechanisms remain to be investigated. Here, to identify potential candidate miRNAs involved in excitotoxicity, we treated rat primary cortical neurons with glutamate and found that miR-3068-3p, a novel miRNA, was up-regulated. We hypothesized that restoring miR-3068-3p expression might influence the neuronal injury outcomes. The inhibition of miR-3068-3p, using tough decoy lentiviruses, significantly attenuated the effects of glutamate on neuronal viability and intracellular calcium overload. To unravel the mechanisms, we employed bioinformatics analysis and RNA sequencing to identify downstream target genes. Additional luciferase assays and western blots validated kcnip4, a Kv4-mediated A-type potassium current (IA ) regulator, as a direct target of miR-3068-3p. The inhibition of miR-3068-3p increased kcnip4 expression and vice versa. In addition, the knockdown of kcnip4 by shRNA abolished the protective effect of miR-3068-3p, and over-expressing kcnip4 alone was sufficient to play a neuroprotective role in excitotoxicity. Moreover the inhibition of miR-3068-3p enhanced the IA density, and the pharmacological inhibition of IA abrogated the protective role of miR-3068-3p inhibition and kcnip4 over-expression. Therefore, we conclude that inhibition of miR-3068-3p protects against excitotoxicity via its target gene, kcnip4, and kcnip4-regulated IA . Our data suggest that the miR-3068-3p/kcnip4 axis may serve as a novel target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zi-Jun Su
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xu-Yi Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Chen Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| | - Zhen Chai
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
238
|
The importance of long non-coding RNAs in neuropsychiatric disorders. Mol Aspects Med 2019; 70:127-140. [DOI: 10.1016/j.mam.2019.07.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/10/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022]
|
239
|
miR-124 and Parkinson's disease: A biomarker with therapeutic potential. Pharmacol Res 2019; 150:104515. [PMID: 31707035 DOI: 10.1016/j.phrs.2019.104515] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a multifactorial disorder, attributed to a complex interplay between genetic and epigenetic factors. Although the exact etiology of the disease remains elusive, dysregulation of signaling pathways implicated in cell survival, apoptosis, protein aggregation, mitochondrial dysfunction, autophagy, oxidative damage and neuroinflammation, contributes to its pathogenesis. MicroRNAs (miRs) are endogenous short non-coding RNA molecules that negatively regulate gene expression at a post-transcriptional level. MiR-124 is one of the most abundantly expressed miRs in the brain that participates in neurogenesis, synapse morphology, neurotransmission, inflammation, autophagy and mitochondrial function. Accumulating pre-clinical evidence shows that miR-124 may act through calpain 1/p25/cyclin-dependent kinases 5 (CDK5), nuclear factor-kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), Bcl-2-interacting mediator of cell death (Bim), 5' adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK)-mediated pathways to regulate cell survival, apoptosis, autophagy, mitochondrial dysfunction, oxidative damage and neuroinflammation in PD. Moreover, clinical evidence indicates that reduced plasma miR-124 levels may serve as a potential diagnostic biomarker in PD. This review provides an update of the pathogenic implication of miR-124 activity in PD and discusses its targeting potential for the development of future therapeutic strategies.
Collapse
|
240
|
Whole-Transcriptome Analysis of APP/PS1 Mouse Brain and Identification of circRNA-miRNA-mRNA Networks to Investigate AD Pathogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:1049-1062. [PMID: 31786335 PMCID: PMC6906698 DOI: 10.1016/j.omtn.2019.10.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/10/2019] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer’s disease (AD) is one of the most common forms of dementia and is characterized by a progressive loss of cognition. A hallmark of AD is known to be the extensive distribution of neuronal tangles and amyloid plaques in the brain, but the molecular and cellular complexity of AD remains poorly elucidated, which limits the development of effective clinical treatments for AD. Accumulating evidence indicates that noncoding RNAs participate in AD-associated pathophysiology, but the details are largely unknown. Moreover, although recent studies have revealed a potential link between AD and circular RNA (circRNA)-associated competing endogenous RNA (ceRNA) networks, few genome-wide studies have identified putative circRNA-associated ceRNA pairs involved in AD. Here, we used deep RNA sequencing to systematically investigate circRNA-associated ceRNA mechanisms in the brain of AD model mice (APP/PS1). Our results identified 235, 30, and 1,202 significantly dysregulated circRNAs, microRNAs (miRNAs), and mRNAs, respectively, and we used the sequencing data to construct the most comprehensive circRNA-associated ceRNA networks to date in the APP/PS1 brain. Gene Ontology (GO) analysis revealed that the identified networks are involved in regulating AD development from distinct origins, such as from the dendrite (GO: 0030425) and the synapse (GO: 0045202). Following rigorous selection, the circRNA-associated ceRNA networks in this AD mouse model were discovered to be mainly involved in dendritic development and memory (Sorbs2) and mouse neural development (ALS2). This study presents the first systematic dissection of circRNA-associated ceRNA profiles in the APP/PS1 mouse brain, and the identified circRNA-associated ceRNA networks could provide insights that facilitate AD diagnosis and therapy in the future.
Collapse
|
241
|
Jedari B, Rahmani A, Naderi M, Nadri S. MicroRNA‐7 promotes neural differentiation of trabecular meshwork mesenchymal stem cell on nanofibrous scaffold. J Cell Biochem 2019; 121:2818-2827. [DOI: 10.1002/jcb.29513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Behrouz Jedari
- Department of Medical BiotechnologyZanjan University of Medical SciencesZanjan Iran
| | - Ali Rahmani
- Department of Medical NanotechnologyZanjan University of Medical SciencesZanjan Iran
| | - Mahmood Naderi
- Cell‐Based Therapies Research Center, Digestive Disease Research InstituteTehran University of Medical SciencesTehran Iran
| | - Samad Nadri
- Department of Medical NanotechnologyZanjan University of Medical SciencesZanjan Iran
- Zanjan Metabolic Diseases Research CenterZanjan University of Medical SciencesZanjan Iran
- Zanjan Pharmaceutical Nanotechnology Research CenterZanjan University of Medical SciencesZanjan Iran
| |
Collapse
|
242
|
Sunohara T, Morizane A, Matsuura S, Miyamoto S, Saito H, Takahashi J. MicroRNA-Based Separation of Cortico-Fugal Projection Neuron-Like Cells Derived From Embryonic Stem Cells. Front Neurosci 2019; 13:1141. [PMID: 31708734 PMCID: PMC6819314 DOI: 10.3389/fnins.2019.01141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/10/2019] [Indexed: 12/26/2022] Open
Abstract
The purification of pluripotent stem cell-derived cortico-fugal projection neurons (PSC-CFuPNs) is useful for disease modeling and cell therapies related to the dysfunction of cortical motor neurons, such as amyotrophic lateral sclerosis (ALS) or stroke. However, no CFuPN-specific surface markers for the purification are known. Recently, microRNAs (miRNAs) have been reported as alternatives to surface markers. Here, we investigated this possibility by applying the miRNA switch, an mRNA technology, to enrich PSC-CFuPNs. An array study of miRNAs in mouse fetal brain tissue revealed that CFuPNs highly express miRNA-124-3p at E14.5 and E16.5. In response, we designed a miRNA switched that responds to miRNA-124-3p and applied it to mouse embryonic stem cell (ESC)-derived cortical neurons. Flow cytometry and quantitative polymerase chain reaction (qPCR) analyses showed the miRNA-124-3p switch enriched CFuPN-like cells from this population. Immunocytechemical analysis confirmed vGlut1/Emx1/Bcl11b triple positive CFuPN-like cells were increased from 6.5 to 42%. Thus, our miRNA-124-3p switch can uniquely enrich live CFuPN-like cells from mouse ESC-derived cortical neurons.
Collapse
Affiliation(s)
- Tadashi Sunohara
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Satoshi Matsuura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirohide Saito
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
243
|
Aldave G, Gonzalez-Huarriz M, Rubio A, Romero JP, Ravi D, Miñana B, Cuadrado-Tejedor M, García-Osta A, Verhaak R, Xipell E, Martinez-Vélez N, de la Rocha AA, Puigdelloses M, García-Moure M, Marigil M, Gállego Pérez-Larraya J, Marín-Bejar O, Huarte M, Carro MS, Ferrarese R, Belda-Iniesta C, Ayuso A, Prat-Acín R, Pastor F, Díez-Valle R, Tejada S, Alonso MM. The aberrant splicing of BAF45d links splicing regulation and transcription in glioblastoma. Neuro Oncol 2019; 20:930-941. [PMID: 29373718 DOI: 10.1093/neuonc/noy007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Glioblastoma, the most aggressive primary brain tumor, is genetically heterogeneous. Alternative splicing (AS) plays a key role in numerous pathologies, including cancer. The objectives of our study were to determine whether aberrant AS could play a role in the malignant phenotype of glioma and to understand the mechanism underlying its aberrant regulation. Methods We obtained surgical samples from patients with glioblastoma who underwent 5-aminolevulinic fluorescence-guided surgery. Biopsies were taken from the tumor center as well as from adjacent normal-appearing tissue. We used a global splicing array to identify candidate genes aberrantly spliced in these glioblastoma samples. Mechanistic and functional studies were performed to elucidate the role of our top candidate splice variant, BAF45d, in glioblastoma. Results BAF45d is part of the switch/sucrose nonfermentable complex and plays a key role in the development of the CNS. The BAF45d/6A isoform is present in 85% of over 200 glioma samples that have been analyzed and contributes to the malignant glioma phenotype through the maintenance of an undifferentiated cellular state. We demonstrate that BAF45d splicing is mediated by polypyrimidine tract-binding protein 1 (PTBP1) and that BAF45d regulates PTBP1, uncovering a reciprocal interplay between RNA splicing regulation and transcription. Conclusions Our data indicate that AS is a mechanism that contributes to the malignant phenotype of glioblastoma. Understanding the consequences of this biological process will uncover new therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Guillermo Aldave
- Division of Pediatric Neurosurgery, Department of Surgery, Texas Children's Hospital, Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Marisol Gonzalez-Huarriz
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Navarra, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program in Solid Tumors, Foundation for Applied Medical Research, Pamplona, Navarra, Spain
| | - Angel Rubio
- CEIT and TECNUN, University of Navarra, San Sebastian, Spain
| | | | - Datta Ravi
- CEIT and TECNUN, University of Navarra, San Sebastian, Spain
| | - Belén Miñana
- Centre de Regulació Genòmica (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain, Universitat Pompeu-Fabra, Barcelona, Spain
| | - Mar Cuadrado-Tejedor
- Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research, University of Navarra, Pamplona, Spain.,Anatomy Department, School of Medicine, University of Navarra, Pamplona, Spain
| | - Ana García-Osta
- Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Roeland Verhaak
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Enric Xipell
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Navarra, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program in Solid Tumors, Foundation for Applied Medical Research, Pamplona, Navarra, Spain
| | - Naiara Martinez-Vélez
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Navarra, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program in Solid Tumors, Foundation for Applied Medical Research, Pamplona, Navarra, Spain
| | - Arlet Acanda de la Rocha
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Navarra, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program in Solid Tumors, Foundation for Applied Medical Research, Pamplona, Navarra, Spain
| | - Montserrat Puigdelloses
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Navarra, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program in Solid Tumors, Foundation for Applied Medical Research, Pamplona, Navarra, Spain
| | - Marc García-Moure
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Navarra, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program in Solid Tumors, Foundation for Applied Medical Research, Pamplona, Navarra, Spain
| | - Miguel Marigil
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Navarra, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program in Solid Tumors, Foundation for Applied Medical Research, Pamplona, Navarra, Spain
| | - Jaime Gállego Pérez-Larraya
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Navarra, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program in Solid Tumors, Foundation for Applied Medical Research, Pamplona, Navarra, Spain
| | - Oskar Marín-Bejar
- Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Maite Huarte
- Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Maria Stella Carro
- Department of Neurosurgery (Neurocenter) Universitätsklinikum Freiburg, Freiburg, Germany
| | - Roberto Ferrarese
- Department of Neurosurgery (Neurocenter) Universitätsklinikum Freiburg, Freiburg, Germany
| | | | - Angel Ayuso
- Fundación de Investigación HM Hospitales, Grupo HM, Spain.,Facultad de Medicina, Universidad CEU-San Pablo, Madrid, Spain
| | - Ricardo Prat-Acín
- Department of Neurosurgery, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Fernando Pastor
- Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program of Molecular Therapies, Aptamer Unit, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Ricardo Díez-Valle
- Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program in Solid Tumors, Foundation for Applied Medical Research, Pamplona, Navarra, Spain.,Department of Neurosurgery, University Hospital of Navarra, Pamplona, Navarra, Spain
| | - Sonia Tejada
- Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program in Solid Tumors, Foundation for Applied Medical Research, Pamplona, Navarra, Spain.,Department of Neurosurgery, University Hospital of Navarra, Pamplona, Navarra, Spain
| | - Marta M Alonso
- Department of Pediatrics, University Hospital of Navarra, Pamplona, Navarra, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Navarra, Spain.,Program in Solid Tumors, Foundation for Applied Medical Research, Pamplona, Navarra, Spain
| |
Collapse
|
244
|
Translating neural stem cells to neurons in the mammalian brain. Cell Death Differ 2019; 26:2495-2512. [PMID: 31551564 DOI: 10.1038/s41418-019-0411-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The mammalian neocortex underlies our perception of sensory information, performance of motor activities, and higher-order cognition. During mammalian embryogenesis, radial glial precursor cells sequentially give rise to diverse populations of excitatory cortical neurons, followed by astrocytes and oligodendrocytes. A subpopulation of these embryonic neural precursors persists into adulthood as neural stem cells, which give rise to inhibitory interneurons and glia. Although the intrinsic mechanisms instructing the genesis of these distinct progeny have been well-studied, most work to date has focused on transcriptional, epigenetic, and cell-cycle control. Recent studies, however, have shown that posttranscriptional mechanisms also regulate the cell fate choices of transcriptionally primed neural precursors during cortical development. These mechanisms are mediated primarily by RNA-binding proteins and microRNAs that coordinately regulate mRNA translation, stability, splicing, and localization. Together, these findings point to an extensive network of posttranscriptional control and provide insight into both normal cortical development and disease. They also add another layer of complexity to brain development and raise important biological questions for future investigation.
Collapse
|
245
|
MiR-124 suppression in the prefrontal cortex reduces depression-like behavior in mice. Biosci Rep 2019; 39:BSR20190186. [PMID: 31431514 PMCID: PMC6744582 DOI: 10.1042/bsr20190186] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/30/2019] [Accepted: 08/19/2019] [Indexed: 02/04/2023] Open
Abstract
Depression is a potentially life-threatening mental disorder with unknown etiology. Several microRNAs (miRNAs) have been shown to play critical roles in the etiology of depression. Here, we aim to elucidate the anti-depressive behavior of miR-124 suppression in prefrontal cortex (PFC). Quantitative real-time PCR (RT-PCR) was used to evaluate the expression of miR-124 and SIRT1 in the PFC of a chronic unpredictable mild stress (CUMS) model. The PFC of C57BL/6J mice was bilaterally injected with lentiviral vectors (LV) for ectopic expression of SIRT1, miR-124, or miR-124 inhibitor (si-miR-124). The anti-depressive behavior was observed after injection of LV-SIRT1 or LV-si-miR-124 into the PFC, using behavior tests including latency to feed, food and water intake, sucrose preference test, and forced swimming test. MiR-124 overexpression and inhibition resulted in upregulation and down-regulation of SIRT1 and cyclic AMP responsive element binding protein 1 (CREB1), respectively. MiR-124 overexpression exacerbated depression-like behaviors and decreased SIRT1. Further, dual-luciferase assay confirmed that SIRT1 was a target of miR-124. Taken together, a potential molecular regulation of miR-124 on SIRT1 is revealed by our study and miR-124 suppression in PFC is a potential strategy to reduce depression-like behavior.
Collapse
|
246
|
Bauer PO, Dunmore JH, Sasaguri H, Matoska V. Neurons Induced From Fibroblasts of c9ALS/FTD Patients Reproduce the Pathology Seen in the Central Nervous System. Front Neurosci 2019; 13:935. [PMID: 31551693 PMCID: PMC6743368 DOI: 10.3389/fnins.2019.00935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are incurable neurodegenerative conditions. A non-coding hexanucleotide (GGGGCC) repeat expansion in the c9orf72 gene is the most common genetic cause of ALS/FTD. We present a cellular model of c9ALS/FTD where induced neurons (iNeurons) are generated within 2 weeks by direct conversion of patients‘ dermal fibroblasts through down-regulation of polypyrimidine-tract-binding protein 1 (PTB1). While sense (S) and anti-sense (AS) intranuclear RNA foci were observed in both fibroblasts and iNeurons, the accumulation of (S) and (AS) repeat-associated non-ATG translation (RANT) products were detected only in iNeurons. Importantly, anti-sense oligonucleotides (ASOs) against the (S) repeat transcript lead to decreased (S) RNA foci staining and a reduction of the corresponding RANT products without affecting its (AS) counterparts. ASOs treatment also rescued the cell viability upon stressful stimulus. The results indicate that iNeurons is an advantageous model that not only recapitulates c9ALS/FTD hallmark features but can also help uncover promising therapeutics.
Collapse
Affiliation(s)
- Peter O Bauer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States.,Bioinova, Ltd., Prague, Czechia.,Department of Clinical Biochemistry, Hematology and Immunology, Na Homolce Hospital, Prague, Czechia
| | - Judith H Dunmore
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Hiroki Sasaguri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Vaclav Matoska
- Department of Clinical Biochemistry, Hematology and Immunology, Na Homolce Hospital, Prague, Czechia
| |
Collapse
|
247
|
Wohl SG, Hooper MJ, Reh TA. MicroRNAs miR-25, let-7 and miR-124 regulate the neurogenic potential of Müller glia in mice. Development 2019; 146:dev179556. [PMID: 31383796 PMCID: PMC6765125 DOI: 10.1242/dev.179556] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/24/2019] [Indexed: 12/21/2022]
Abstract
Müller glial cells (MG) generate retinal progenitor (RPC)-like cells after injury in non-mammalian species, although this does not occur in the mammalian retina. Studies have profiled gene expression in these cells to define genes that may be relevant to their differences in neurogenic potential. However, less is known about differences in micro-RNA (miRNA) expression. In this study, we compared miRNAs from RPCs and MG to identify miRNAs more highly expressed in RPCs, and others more highly expressed in MG. To determine whether these miRNAs are relevant to the difference in neurogenic potential between these two cell types, we tested them in dissociated cultures of MG using either mimics or antagomiRs to increase or reduce expression, respectively. Among the miRNAs tested, miR-25 and miR-124 overexpression, or let-7 antagonism, induced Ascl1 expression and conversion of ∼40% of mature MG into a neuronal/RPC phenotype. Our results suggest that the differences in miRNA expression between MG and RPCs contribute to their difference in neurogenic potential, and that manipulations in miRNAs provide a new tool with which to reprogram MG for retinal regeneration.
Collapse
Affiliation(s)
- Stefanie G Wohl
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, WA 98195, USA
- Department of Biological and Vision Sciences, The State University of New York, College of Optometry, New York, NY 10036, USA
| | - Marcus J Hooper
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
248
|
Jia X, Wang X, Guo X, Ji J, Lou G, Zhao J, Zhou W, Guo M, Zhang M, Li C, Tai S, Yu S. MicroRNA-124: An emerging therapeutic target in cancer. Cancer Med 2019; 8:5638-5650. [PMID: 31389160 PMCID: PMC6745873 DOI: 10.1002/cam4.2489] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are noncoding single-stranded RNAs, approximately 20-24 nucleotides in length, known as powerful posttranscriptional regulators. miRNAs play important regulatory roles in cellular processes by changing messenger RNA expression and are widely involved in human diseases, including tumors. It has been reported in the literature that miRNAs have a precise role in cell proliferation, programmed cell death, differentiation, and expression of coding genes. MicroRNA-124 (miR-124) has reduced exparession in various human neoplasms and is believed to be related to the occurrence, development, and prognosis of malignant tumors. In our review, we focus on the specific molecular functions of miR-124 and the downstream gene targets in major cancers, which provide preclinical evidence for the treatment of human cancer. Although some obstacles exist, miR-124 is still attracting intensive research focus as a promising and effective anticancer weapon.
Collapse
Affiliation(s)
- Xinqi Jia
- Department of Hepatopancreatobiliary SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xu Wang
- Department of NeurologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaorong Guo
- Department of PathologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Jingjing Ji
- Department of PathologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Ge Lou
- Department of PathologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Junjie Zhao
- Department of Hepatopancreatobiliary SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Wenjia Zhou
- Department of Hepatopancreatobiliary SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Mian Guo
- Department of Neurosurgerythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Maomao Zhang
- Key Laboratory of Myocardial IschemiaDepartment of Cardiologythe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chao Li
- Department of Orthopedicsthe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Sheng Tai
- Department of Hepatopancreatobiliary SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shan Yu
- Department of PathologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
249
|
Kahanovitch U, Patterson KC, Hernandez R, Olsen ML. Glial Dysfunction in MeCP2 Deficiency Models: Implications for Rett Syndrome. Int J Mol Sci 2019; 20:ijms20153813. [PMID: 31387202 PMCID: PMC6696322 DOI: 10.3390/ijms20153813] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT) is a rare, X-linked neurodevelopmental disorder typically affecting females, resulting in a range of symptoms including autistic features, intellectual impairment, motor deterioration, and autonomic abnormalities. RTT is primarily caused by the genetic mutation of the Mecp2 gene. Initially considered a neuronal disease, recent research shows that glial dysfunction contributes to the RTT disease phenotype. In the following manuscript, we review the evidence regarding glial dysfunction and its effects on disease etiology.
Collapse
Affiliation(s)
- Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA
| | - Kelsey C Patterson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA
| | - Raymundo Hernandez
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA
- Graduate Program in Translational Biology Medicine and Health, Virginia Tech, Roanoke, VL 24014, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic and State University, Life Sciences I Building Room 212, 970 Washington St. SW, Blacksburg, VA 24061, USA.
| |
Collapse
|
250
|
Roballo KCS, da Silveira JC, Bressan FF, de Souza AF, Pereira VM, Porras JEP, Rós FA, Pulz LH, Strefezzi RDF, Martins DDS, Meirelles FV, Ambrósio CE. Neurons-derived extracellular vesicles promote neural differentiation of ADSCs: a model to prevent peripheral nerve degeneration. Sci Rep 2019; 9:11213. [PMID: 31371742 PMCID: PMC6671995 DOI: 10.1038/s41598-019-47229-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
Potential mechanisms involved in neural differentiation of adipocyte derived stem cells (ADSCs) are still unclear. In the present study, extracellular vesicles (EVs) were tested as a potential mechanism involved in the neuronal differentiation of stem cells. In order to address this, ADSCs and neurons (BRC) were established in primary culture and co-culture at three timepoints. Furthermore, we evaluated protein and transcript levels of differentiated ADSCs from the same timepoints, to confirm phenotype change to neuronal linage. Importantly, neuron-derived EVs cargo and EVs originated from co-culture were analyzed and tested in terms of function, such as gene expression and microRNA levels related to the adult neurogenesis process. Ideal neuron-like cells were identified and, therefore, we speculated the in vivo function of these cells in acute sciatic nerve injury. Overall, our data demonstrated that ADSCs in indirect contact with neurons differentiated into neuron-like cells. Neuron-derived EVs appear to play an important role in this process carrying SNAP25, miR-132 and miR-9. Additionally, in vivo neuron-like cells helped in microenvironment modulation probably preventing peripheral nerve injury degeneration. Consequently, our findings provide new insight of future methods of ADSC induction into neuronal linage to be applied in peripheral nerve (PN) injury.
Collapse
Affiliation(s)
- Kelly Cristine Santos Roballo
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Juliano Coelho da Silveira
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil.
| | - Fabiana Fernandes Bressan
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Aline Fernanda de Souza
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Vitoria Mattos Pereira
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Jorge Eliecer Pinzon Porras
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil.,Faculty of Veterinary Medicine and Animal Science, Department of Posgraduation, University National of Columbia, Bogota, Colombia
| | - Felipe Augusto Rós
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Lidia Hildebrand Pulz
- Experimental and Comparative Pathology Department, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Orlando Marques de Paiva, 87 - Butantã, 05508-010, São Paulo, SP, Brazil
| | - Ricardo de Francisco Strefezzi
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil.,Experimental and Comparative Pathology Department, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Orlando Marques de Paiva, 87 - Butantã, 05508-010, São Paulo, SP, Brazil
| | - Daniele Dos Santos Martins
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Flavio Vieira Meirelles
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Carlos Eduardo Ambrósio
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| |
Collapse
|