201
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 386] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
202
|
Brewster AS, Chen XS. Insights into the MCM functional mechanism: lessons learned from the archaeal MCM complex. Crit Rev Biochem Mol Biol 2010; 45:243-56. [PMID: 20441442 PMCID: PMC2953368 DOI: 10.3109/10409238.2010.484836] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The helicase function of the minichromosome maintenance protein (MCM) is essential for genomic DNA replication in archaea and eukaryotes. There has been rapid progress in studies of the structure and function of MCM proteins from different organisms, leading to better understanding of the MCM helicase mechanism. Because there are a number of excellent reviews on this topic, we will use this review to summarize some of the recent progress, with particular focus on the structural aspects of MCM and their implications for helicase function. Given the hexameric and double hexameric architecture observed by X-ray crystallography and electron microscopy of MCMs from archaeal and eukaryotic cells, we summarize and discuss possible unwinding modes by either a hexameric or a double hexameric helicase. Additionally, our recent crystal structure of a full length archaeal MCM has provided structural information on an intact, multi-domain MCM protein, which includes the salient features of four unusual beta-hairpins from each monomer, and the side channels of a hexamer/double hexamer. These new structural data enable a closer examination of the structural basis of the unwinding mechanisms by MCM.
Collapse
Affiliation(s)
- Aaron S. Brewster
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojiang S. Chen
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
203
|
Abstract
Replication fork helicases unwind DNA at a replication fork, providing polymerases with single-stranded DNA templates for replication. In bacteria, DnaB unwinds DNA at a replication fork, while in archaeal and eukaryotic organisms the Mcm proteins catalyze replication fork unwinding. Unwinding in archaea is catalyzed by a single Mcm protein that forms multimeric rings, whereas eukaryotic helicase activity is catalyzed by the heterohexameric Mcm2-7 complex acting in concert with Cdc45 and the GINS complex. A subcomplex of eukaryotic Mcm proteins, the Mcm4,6,7 complex, unwinds DNA in vitro, and studies of this assembly reveal insight into the mechanism of the eukaryotic Mcm helicase. Detailed methods for the investigation of replication fork helicase mechanism are described in this chapter. Described herein are methods for the design of DNA substrates for unwinding and branch migration studies, annealing DNA, purifying replication fork helicase proteins, and analyzing DNA unwinding activity.
Collapse
|
204
|
Numata Y, Ishihara S, Hasegawa N, Nozaki N, Ishimi Y. Interaction of human MCM2-7 proteins with TIM, TIPIN and Rb. ACTA ACUST UNITED AC 2010; 147:917-27. [DOI: 10.1093/jb/mvq028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
205
|
Bochman ML, Schwacha A. The Saccharomyces cerevisiae Mcm6/2 and Mcm5/3 ATPase active sites contribute to the function of the putative Mcm2-7 'gate'. Nucleic Acids Res 2010; 38:6078-88. [PMID: 20484375 PMCID: PMC2952866 DOI: 10.1093/nar/gkq422] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mcm2-7 complex is the eukaryotic replicative helicase, a toroidal AAA+ molecular motor that uses adenosine triphosphate (ATP) binding and hydrolysis to separate duplex DNA strands during replication. This heterohexameric helicase contains six different and essential subunits (Mcm2 through Mcm7), with the corresponding dimer interfaces forming ATPase active sites from conserved motifs of adjacent subunits. As all other known hexameric helicases are formed from six identical subunits, the function of the unique heterohexameric organization of Mcm2-7 is of particular interest. Indeed, prior work using mutations in the conserved Walker A box ATPase structural motif strongly suggests that individual ATPase active sites contribute differentially to Mcm2-7 activity. Although only a specific subset of active sites is required for helicase activity, another ATPase active site (Mcm2/5) may serve as a reversible ATP-dependent discontinuity (‘gate’) within the hexameric ring structure. This study analyzes the contribution that two other structural motifs, the Walker B box and arginine finger, make to each Mcm2-7 ATPase active site. Mutational analysis of these motifs not only confirms that Mcm ATPase active sites contribute unequally to activity but implicates the involvement of at least two additional active sites (Mcm5/3 and 6/2) in modulating the activity of the putative Mcm2/5 gate.
Collapse
Affiliation(s)
- Matthew L Bochman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
206
|
Joly N, Buck M. Engineered interfaces of an AAA+ ATPase reveal a new nucleotide-dependent coordination mechanism. J Biol Chem 2010; 285:15178-15186. [PMID: 20197281 PMCID: PMC2865273 DOI: 10.1074/jbc.m110.103150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/01/2010] [Indexed: 11/06/2022] Open
Abstract
Homohexameric ring AAA(+) ATPases are found in all kingdoms of life and are involved in all cellular processes. To accommodate the large spectrum of substrates, the conserved AAA(+) core has become specialized through the insertion of specific substrate-binding motifs. Given their critical roles in cellular function, understanding the nucleotide-driven mechanisms of action is of wide importance. For one type of member AAA(+) protein (phage shock protein F, PspF), we identified and established the functional significance of strategically placed arginine and glutamate residues that form interacting pairs in response to nucleotide binding. We show that these interactions are critical for "cis" and "trans" subunit communication, which support coordination between subunits for nucleotide-dependent substrate remodeling. Using an allele-specific suppression approach for ATPase and substrate remodeling, we demonstrate that the targeted residues directly interact and are unlikely to make any other pairwise critical interactions. We then propose a mechanistic rationale by which the nucleotide-bound state of adjacent subunits can be sensed without direct involvement of R-finger residues. As the structural AAA(+) core is conserved, we propose that the functional networks established here could serve as a template to identify similar residue pairs in other AAA(+) proteins.
Collapse
Affiliation(s)
- Nicolas Joly
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Martin Buck
- Division of Biology, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
207
|
Wei Z, Liu C, Wu X, Xu N, Zhou B, Liang C, Zhu G. Characterization and structure determination of the Cdt1 binding domain of human minichromosome maintenance (Mcm) 6. J Biol Chem 2010; 285:12469-73. [PMID: 20202939 PMCID: PMC2857124 DOI: 10.1074/jbc.c109.094599] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/02/2010] [Indexed: 12/28/2022] Open
Abstract
The minichromosome maintenance (Mcm) 2-7 complex is the replicative helicase in eukaryotic species, and it plays essential roles in the initiation and elongation phases of DNA replication. During late M and early G(1), the Mcm2-7 complex is loaded onto chromatin to form prereplicative complex in a Cdt1-dependent manner. However, the detailed molecular mechanism of this loading process is still elusive. In this study, we demonstrate that the previously uncharacterized C-terminal domain of human Mcm6 is the Cdt1 binding domain (CBD) and present its high resolution NMR structure. The structure of CBD exhibits a typical "winged helix" fold that is generally involved in protein-nucleic acid interaction. Nevertheless, the CBD failed to interact with DNA in our studies, indicating that it is specific for protein-protein interaction. The CBD-Cdt1 interaction involves the helix-turn-helix motif of CBD. The results reported here provide insight into the molecular mechanism of Mcm2-7 chromatin loading and prereplicative complex assembly.
Collapse
Affiliation(s)
- Zhun Wei
- From the
Department of Physics and Shanghai Key Laboratory for Magnetic Resonance, East China Normal University, Shanghai 200062, China and
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Changdong Liu
- From the
Department of Physics and Shanghai Key Laboratory for Magnetic Resonance, East China Normal University, Shanghai 200062, China and
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xing Wu
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Naining Xu
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bo Zhou
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Chun Liang
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guang Zhu
- the
Department of Biochemistry and Center for Cancer Research, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
208
|
Kawakami H, Katayama T. DnaA, ORC, and Cdc6: similarity beyond the domains of life and diversity. Biochem Cell Biol 2010; 88:49-62. [PMID: 20130679 DOI: 10.1139/o09-154] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
To initiate chromosomal DNA replication, specific proteins bind to the replication origin region and form multimeric and dynamic complexes. Bacterial DnaA, the eukaryotic origin recognition complex (ORC), and Cdc6 proteins, most of which include an AAA+(-like) motif, play crucial roles in replication initiation. The importance of ATP binding and hydrolysis in these proteins has recently become recognized. ATP binding of Escherichia coli DnaA is required for the formation of the activated form of a DnaA multimer on the replication origin. The ATP-DnaA multimer can unwind duplex DNA in an origin-dependent manner, which is supported by various specific functions of several AAA+ motifs. DnaA-ATP hydrolysis is stimulated after initiation, repressing extra initiations, and sustaining once-per-cell cycle replication. ATP binding of ORC and Cdc6 in Saccharomyces cerevisiae is required for heteromultimeric complex formation and specific DNA binding. ATP hydrolysis of these proteins is important for the efficient loading of the minichromosome maintenance protein complex, a component of the putative replicative helicase. In this review, we discuss the roles of DnaA, ORC, and Cdc6 in replication initiation and its regulation. We also summarize the functional features of the AAA+ domains of these proteins, and the functional divergence of ORC in chromosomal dynamics.
Collapse
Affiliation(s)
- Hironori Kawakami
- Cold Spring Harbor Laboratory, 1 Bungtown Rd., Cold Spring Harbor, NY 11724, USA.
| | | |
Collapse
|
209
|
Van C, Yan S, Michael WM, Waga S, Cimprich KA. Continued primer synthesis at stalled replication forks contributes to checkpoint activation. ACTA ACUST UNITED AC 2010; 189:233-46. [PMID: 20385778 PMCID: PMC2856894 DOI: 10.1083/jcb.200909105] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
An increased number of primer–template junctions generated by PCNA, Pol-δ, and Pol-ε at stalled replication forks activates Chk1. Stalled replication forks activate and are stabilized by the ATR (ataxia-telangiectasia mutated and Rad3 related)-mediated checkpoint, but ultimately, they must also recover from the arrest. Although primed single-stranded DNA (ssDNA) is sufficient for checkpoint activation, it is still unknown how this signal is generated at a stalled replication fork. Furthermore, it is not clear how recovery and fork restart occur in higher eukaryotes. Using Xenopus laevis egg extracts, we show that DNA replication continues at a stalled fork through the synthesis and elongation of new primers independent of the checkpoint. This synthesis is dependent on the activity of proliferating cell nuclear antigen, Pol-δ, and Pol-ε, and it contributes to the phosphorylation of Chk1. We also used defined DNA structures to show that for a fixed amount of ssDNA, increasing the number of primer–template junctions strongly enhances Chk1 phosphorylation. These results suggest that new primers are synthesized at stalled replication forks by the leading and lagging strand polymerases and that accumulation of these primers may contribute to checkpoint activation.
Collapse
Affiliation(s)
- Christopher Van
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
210
|
Ilves I, Petojevic T, Pesavento JJ, Botchan MR. Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Mol Cell 2010; 37:247-58. [PMID: 20122406 DOI: 10.1016/j.molcel.2009.12.030] [Citation(s) in RCA: 441] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/02/2009] [Accepted: 12/15/2009] [Indexed: 11/27/2022]
Abstract
MCM2-7 proteins provide essential helicase functions in eukaryotes at chromosomal DNA replication forks. During the G1 phase of the cell cycle, they remain loaded on DNA but are inactive. We have used recombinant methods to show that the Drosophila MCM2-7 helicase is activated in complex with Cdc45 and the four GINS proteins (CMG complex). Biochemical activities of the MCM AAA+ motor are altered and enhanced through such associations: ATP hydrolysis rates are elevated by two orders of magnitude, helicase activity is robust on circular templates, and affinity for DNA substrates is improved. The GINS proteins contribute to DNA substrate affinity and bind specifically to the MCM4 subunit. All pairwise associations among GINS, MCMs, and Cdc45 were detected, but tight association takes place only in the CMG. The onset of DNA replication and unwinding may thus occur through allosteric changes in MCM2-7 affected by the association of these ancillary factors.
Collapse
Affiliation(s)
- Ivar Ilves
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
211
|
Abstract
Aberrant DNA replication is a major source of the mutations and chromosome rearrangements that are associated with pathological disorders. When replication is compromised, DNA becomes more prone to breakage. Secondary structures, highly transcribed DNA sequences and damaged DNA stall replication forks, which then require checkpoint factors and specialized enzymatic activities for their stabilization and subsequent advance. These mechanisms ensure that the local DNA damage response, which enables replication fork progression and DNA repair in S phase, is coupled with cell cycle transitions. The mechanisms that operate in eukaryotic cells to promote replication fork integrity and coordinate replication with other aspects of chromosome maintenance are becoming clear.
Collapse
Affiliation(s)
- Dana Branzei
- Fondazione IFOM, Istituto FIRC di Oncologia Molecolare, IFOM-IEO campus, Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
212
|
Abstract
The Mcm2-7 complex serves as the eukaryotic replicative helicase, the molecular motor that both unwinds duplex DNA and powers fork progression during DNA replication. Consistent with its central role in this process, much prior work has illustrated that Mcm2-7 loading and activation are landmark events in the regulation of DNA replication. Unlike any other hexameric helicase, Mcm2-7 is composed of six unique and essential subunits. Although the unusual oligomeric nature of this complex has long hampered biochemical investigations, recent advances with both the eukaryotic as well as the simpler archaeal Mcm complexes provide mechanistic insight into their function. In contrast to better-studied homohexameric helicases, evidence suggests that the six Mcm2-7 complex ATPase active sites are functionally distinct and are likely specialized to accommodate the regulatory constraints of the eukaryotic process.
Collapse
|
213
|
Abstract
Helicases are essential enzymes involved in all aspects of nucleic acid metabolism including DNA replication, repair, recombination, transcription, ribosome biogenesis and RNA processing, translation, and decay. They occur in vivo as part of molecular complexes that include the components required for each specific step of nucleic acid metabolism. The role of the helicases is to utilize the energy derived from nucleoside triphosphate hydrolysis to translocate along nucleic acid strands, unwind/separate the helical structure of double-stranded nucleic acid, and, in some cases, disrupt protein-nucleic acid interactions. Because of their essential function, helicases are ubiquitous and evolutionary conserved proteins. This chapter briefly highlights helicase structure and activities and provides examples of the helicases involved in nucleic acid metabolism.
Collapse
Affiliation(s)
- Mohamed Abdelhaleem
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
214
|
Abstract
The loading of replicative helicases onto DNA is tightly regulated in all organisms, yet the molecular mechanisms for this event remain poorly defined. Remus et al. (2009) provide important insights into helicase loading in eukaryotes, showing that the Mcm2-7 replicative helicase encircles double-stranded DNA as head-to-head double hexamers.
Collapse
Affiliation(s)
- Thomas J Takara
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
215
|
Remus D, Beuron F, Tolun G, Griffith JD, Morris EP, Diffley JFX. Concerted loading of Mcm2-7 double hexamers around DNA during DNA replication origin licensing. Cell 2009; 139:719-30. [PMID: 19896182 PMCID: PMC2804858 DOI: 10.1016/j.cell.2009.10.015] [Citation(s) in RCA: 525] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/05/2009] [Accepted: 09/24/2009] [Indexed: 01/06/2023]
Abstract
The licensing of eukaryotic DNA replication origins, which ensures once-per-cell-cycle replication, involves the loading of six related minichromosome maintenance proteins (Mcm2-7) into prereplicative complexes (pre-RCs). Mcm2-7 forms the core of the replicative DNA helicase, which is inactive in the pre-RC. The loading of Mcm2-7 onto DNA requires the origin recognition complex (ORC), Cdc6, and Cdt1, and depends on ATP. We have reconstituted Mcm2-7 loading with purified budding yeast proteins. Using biochemical approaches and electron microscopy, we show that single heptamers of Cdt1*Mcm2-7 are loaded cooperatively and result in association of stable, head-to-head Mcm2-7 double hexamers connected via their N-terminal rings. DNA runs through a central channel in the double hexamer, and, once loaded, Mcm2-7 can slide passively along double-stranded DNA. Our work has significant implications for understanding how eukaryotic DNA replication origins are chosen and licensed, how replisomes assemble during initiation, and how unwinding occurs during DNA replication.
Collapse
Affiliation(s)
- Dirk Remus
- Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms EN6 3LD, UK
| | | | | | | | | | | |
Collapse
|
216
|
A double-hexameric MCM2-7 complex is loaded onto origin DNA during licensing of eukaryotic DNA replication. Proc Natl Acad Sci U S A 2009; 106:20240-5. [PMID: 19910535 DOI: 10.1073/pnas.0911500106] [Citation(s) in RCA: 422] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During pre-replication complex (pre-RC) formation, origin recognition complex (ORC), Cdc6, and Cdt1 cooperatively load the 6-subunit mini chromosome maintenance (MCM2-7) complex onto DNA. Loading of MCM2-7 is a prerequisite for DNA licensing that restricts DNA replication to once per cell cycle. During S phase MCM2-7 functions as part of the replicative helicase but within the pre-RC MCM2-7 is inactive. The organization of replicative DNA helicases before and after loading onto DNA has been studied in bacteria and viruses but not eukaryotes and is of major importance for understanding the MCM2-7 loading mechanism and replisome assembly. Lack of an efficient reconstituted pre-RC system has hindered the detailed mechanistic and structural analysis of MCM2-7 loading for a long time. We have reconstituted Saccharomyces cerevisiae pre-RC formation with purified proteins and showed efficient loading of MCM2-7 onto origin DNA in vitro. MCM2-7 loading was found to be dependent on the presence of all pre-RC proteins, origin DNA, and ATP hydrolysis. The quaternary structure of MCM2-7 changes during pre-RC formation: MCM2-7 before loading is a single hexamer in solution but is transformed into a double-hexamer during pre-RC formation. Using electron microscopy (EM), we observed that loaded MCM2-7 encircles DNA. The loaded MCM2-7 complex can slide on DNA, and sliding is not directional. Our results provide key insights into mechanisms of pre-RC formation and have important implications for understanding the role of the MCM2-7 in establishment of bidirectional replication forks.
Collapse
|
217
|
Abstract
The eukaryotic MCM2-7 complex is recruited onto origins of replication during the G1 phase of the cell cycle and acts as the main helicase at the replication fork during the S phase. Over the last few years a number of structural reports on MCM proteins using both electron microscopy and protein crystallography have been published. The crystal structures of two (almost) full-length archaeal homologs provide the first atomic pictures of a MCM helicase. However one of the structures is at low resolution and the other is of an inactive MCM. Moreover, both proteins are monomeric in the crystal, whereas the activity of the complex is critically dependent on oligomerization. Lower resolution structures derived from electron microscopy studies are therefore crucial to complement the crystallographic analysis and to assemble the multimeric complex that is active in the cell. A critical analysis of all the structural results elucidates the potential conformational changes and dynamic behavior of MCM helicase to provide a first insight into the gamut of molecular configurations adopted during the processes of DNA melting and unwinding.
Collapse
|
218
|
Remus D, Diffley JFX. Eukaryotic DNA replication control: lock and load, then fire. Curr Opin Cell Biol 2009; 21:771-7. [PMID: 19767190 DOI: 10.1016/j.ceb.2009.08.002] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 08/22/2009] [Indexed: 10/20/2022]
Abstract
The initiation of chromosomal DNA replication involves initiator proteins that recruit and load hexameric DNA helicases at replication origins. This helicase loading step is tightly regulated in bacteria and eukaryotes. In contrast to the situation in bacteria, the eukaryotic helicase is loaded in an inactive form. This extra 'lock and load' mechanism in eukaryotes allows regulation of a second step, helicase activation. The temporal separation of helicase loading and activation is crucial for the coordination of DNA replication with cell growth and extracellular signals, the prevention of re-replication and the control of origin activity in response to replication stress. Initiator proteins in bacteria and eukaryotes are structurally homologous; yet the replicative helicases they load are unrelated. Understanding how these helicases are loaded and how they act during unwinding may have important implications for understanding how DNA replication is regulated in different domains of life.
Collapse
Affiliation(s)
- Dirk Remus
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | | |
Collapse
|
219
|
Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc Natl Acad Sci U S A 2009; 106:15628-32. [PMID: 19805216 DOI: 10.1073/pnas.0908039106] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, the activation of the prereplicative complex and assembly of an active DNA unwinding complex are critical but poorly understood steps required for the initiation of DNA replication. In this report, we have used bimolecular fluorescence complementation assays in HeLa cells to examine the interactions between Cdc45, Mcm2-7, and the GINS complex (collectively called the CMG complex), which seem to play a key role in the formation and progression of replication forks. Interactions between the CMG components were observed only after the G(1)/S transition of the cell cycle and were abolished by treatment of cells with either a CDK inhibitor or siRNA against the Cdc7 kinase. Stable association of CMG required all three components of the CMG complex as well as RecQL4, Ctf4/And-1, and Mcm10. Surprisingly, depletion of TopBP1, a homologue of Dpb11 that plays an essential role in the chromatin loading of Cdc45 and GINS in yeast cells, did not significantly affect CMG complex formation. These results suggest that the proteins involved in the assembly of initiation complexes in human cells may differ somewhat from those in yeast systems.
Collapse
|
220
|
Langston LD, Indiani C, O’Donnell M. Whither the replisome: emerging perspectives on the dynamic nature of the DNA replication machinery. Cell Cycle 2009; 8:2686-91. [PMID: 19652539 PMCID: PMC2945305 DOI: 10.4161/cc.8.17.9390] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Replisomes were originally thought to be multi-protein machines with a stabile and defined structure during replication. Discovery that replisomes repeatedly discard sliding clamps and assemble a new clamp to start each Okazaki fragment provided the first hint that the replisome structure changes during replication. Recent studies reveal that the replisome is more dynamic than ever thought possible. Replisomes can utilize many different polymerases; the helicase is regulated to travel at widely different speeds; leading and lagging strands need not always act in a coupled fashion with DNA loops; and the replication fork does not always exhibit semi-discontinuous replication. We review some of these findings here and discuss their implications for cell physiology as well as enzyme mechanism.
Collapse
Affiliation(s)
- Lance D. Langston
- The Rockefeller University and HHMI, 1230 York Avenue, Box 228, NY, NY 10065
| | - Chiara Indiani
- The Rockefeller University and HHMI, 1230 York Avenue, Box 228, NY, NY 10065
| | - Mike O’Donnell
- The Rockefeller University and HHMI, 1230 York Avenue, Box 228, NY, NY 10065
| |
Collapse
|
221
|
Bruck I, Kaplan D. Dbf4-Cdc7 phosphorylation of Mcm2 is required for cell growth. J Biol Chem 2009; 284:28823-31. [PMID: 19692334 DOI: 10.1074/jbc.m109.039123] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Dbf4-Cdc7 kinase (DDK) is required for the activation of the origins of replication, and DDK phosphorylates Mcm2 in vitro. We find that budding yeast Cdc7 alone exists in solution as a weakly active multimer. Dbf4 forms a likely heterodimer with Cdc7, and this species phosphorylates Mcm2 with substantially higher specific activity. Dbf4 alone binds tightly to Mcm2, whereas Cdc7 alone binds weakly to Mcm2, suggesting that Dbf4 recruits Cdc7 to phosphorylate Mcm2. DDK phosphorylates two serine residues of Mcm2 near the N terminus of the protein, Ser-164 and Ser-170. Expression of mcm2-S170A is lethal to yeast cells that lack endogenous MCM2 (mcm2Delta); however, this lethality is rescued in cells harboring the DDK bypass mutant mcm5-bob1. We conclude that DDK phosphorylation of Mcm2 is required for cell growth.
Collapse
Affiliation(s)
- Irina Bruck
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
222
|
Stead BE, Sorbara CD, Brandl CJ, Davey MJ. ATP binding and hydrolysis by Mcm2 regulate DNA binding by Mcm complexes. J Mol Biol 2009; 391:301-13. [PMID: 19540846 PMCID: PMC5154746 DOI: 10.1016/j.jmb.2009.06.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 06/10/2009] [Accepted: 06/16/2009] [Indexed: 01/20/2023]
Abstract
The essential minichromosome maintenance (Mcm) proteins Mcm2 through Mcm7 likely comprise the replicative helicase in eukaryotes. In addition to Mcm2-7, other subcomplexes, including one comprising Mcm4, Mcm6, and Mcm7, unwind DNA. Using Mcm4/6/7 as a tool, we reveal a role for nucleotide binding by Saccharomyces cerevisiae Mcm2 in modulating DNA binding by Mcm complexes. Previous studies have shown that Mcm2 inhibits DNA unwinding by Mcm4/6/7. Here, we show that interaction of Mcm2 and Mcm4/6/7 is not sufficient for inhibition; rather, Mcm2 requires nucleotides for its regulatory role. An Mcm2 mutant that is defective for ATP hydrolysis (K549A), as well as ATP analogues, was used to show that ADP binding by Mcm2 is required to inhibit DNA binding and unwinding by Mcm4/6/7. This Mcm2-mediated regulation of Mcm4/6/7 is independent of Mcm3/5. Furthermore, the importance of ATP hydrolysis by Mcm2 to the regulation of the native complex was apparent from the altered DNA binding properties of Mcm2(KA)-7. Moreover, together with the finding that Mcm2(K549A) does not support yeast viability, these results indicate that the nucleotide-bound state of Mcm2 is critical in regulating the activities of Mcm4/6/7 and Mcm2-7 complexes.
Collapse
Affiliation(s)
- Brent E. Stead
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Catherine D. Sorbara
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Christopher J. Brandl
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Megan J. Davey
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
223
|
Chuang LC, Teixeira LK, Wohlschlegel JA, Henze M, Yates JR, Méndez J, Reed SI. Phosphorylation of Mcm2 by Cdc7 promotes pre-replication complex assembly during cell-cycle re-entry. Mol Cell 2009; 35:206-16. [PMID: 19647517 PMCID: PMC2725784 DOI: 10.1016/j.molcel.2009.06.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 04/21/2009] [Accepted: 06/10/2009] [Indexed: 01/16/2023]
Abstract
Cyclin E has been shown to have a role in pre-replication complex (Pre-RC) assembly in cells re-entering the cell cycle from quiescence. The assembly of the pre-RC, which involves the loading of six MCM subunits (Mcm2-7), is a prerequisite for DNA replication. We found that cyclin E, through activation of Cdk2, promotes Mcm2 loading onto chromatin. This function is mediated in part by promoting the accumulation of Cdc7 messenger RNA and protein, which then phosphorylates Mcm2. Consistent with this, a phosphomimetic mutant of Mcm2 can bypass the requirement for Cdc7 in terms of Mcm2 loading. Furthermore, ectopic expression of both Cdc6 and Cdc7 can rescue the MCM loading defect associated with expression of dominant-negative Cdk2. These results are consistent with a role for cyclin E-Cdk2 in promoting the accumulation of Cdc6 and Cdc7, which is required for Mcm2 loading when cells re-enter the cell cycle from quiescence.
Collapse
Affiliation(s)
- Li-Chiou Chuang
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Leonardo K. Teixeira
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - James A. Wohlschlegel
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Martha Henze
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | - Juan Méndez
- DNA replication Group, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Melchor Fernandez Almagro 3, E-28029 Madrid, Spain
| | - Steven I. Reed
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
224
|
Abstract
The Cdc (cell division cycle) 45 protein has a central role in the regulation of the initiation and elongation stages of eukaryotic chromosomal DNA replication. In addition, it is the main target for a Chk1 (checkpoint kinase 1)-dependent Cdc25/CDK2 (cyclin-dependent kinase 2)-independent DNA damage checkpoint signal transduction pathway following low doses of BPDE (benzo[a]pyrene dihydrodiol epoxide) treatment, which causes DNA damage similar to UV-induced adducts. Cdc45 interacts physically and functionally with the putative eukaryotic replicative DNA helicase, the MCM (mini-chromosome maintenance) complex, and forms a helicase active ‘supercomplex’, the CMG [Cdc45–MCM2–7–GINS (go-ichi-ni-san)] complex. These known protein–protein interactions, as well as unknown interactions and post-translational modifications, may be important for the regulation of Cdc45 and the initiation of DNA replication following DNA damage. Future studies will help to elucidate the molecular basis of this newly identified S-phase checkpoint pathway which has Cdc45 as a target.
Collapse
|
225
|
The direct binding of Mrc1, a checkpoint mediator, to Mcm6, a replication helicase, is essential for the replication checkpoint against methyl methanesulfonate-induced stress. Mol Cell Biol 2009; 29:5008-19. [PMID: 19620285 DOI: 10.1128/mcb.01934-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mrc1 plays a role in mediating the DNA replication checkpoint. We surveyed replication elongation proteins that interact directly with Mrc1 and identified a replicative helicase, Mcm6, as a specific Mrc1-binding protein. The central portion of Mrc1, containing a conserved coiled-coil region, was found to be essential for interaction with the 168-amino-acid C-terminal region of Mcm6, and introduction of two amino acid substitutions in this C-terminal region abolished the interaction with Mrc1 in vivo. An mcm6 mutant bearing these substitutions showed a severe defect in DNA replication checkpoint activation in response to stress caused by methyl methanesulfonate. Interestingly, the mutant did not show any defect in DNA replication checkpoint activation in response to hydroxyurea treatment. The phenotype of the mcm6 mutant was suppressed when the mutant protein was physically fused with Mrc1. These results strongly suggest for the first time that an Mcm helicase acts as a checkpoint sensor for methyl methanesulfonate-induced DNA damage through direct binding to the replication checkpoint mediator Mrc1.
Collapse
|
226
|
Shultz RW, Lee TJ, Allen GC, Thompson WF, Hanley-Bowdoin L. Dynamic localization of the DNA replication proteins MCM5 and MCM7 in plants. PLANT PHYSIOLOGY 2009; 150:658-69. [PMID: 19357199 PMCID: PMC2689970 DOI: 10.1104/pp.109.136614] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 04/02/2009] [Indexed: 05/21/2023]
Abstract
Genome integrity in eukaryotes depends on licensing mechanisms that prevent loading of the minichromosome maintenance complex (MCM2-7) onto replicated DNA during S phase. Although the principle of licensing appears to be conserved across all eukaryotes, the mechanisms that control it vary, and it is not clear how licensing is regulated in plants. In this work, we demonstrate that subunits of the MCM2-7 complex are coordinately expressed during Arabidopsis (Arabidopsis thaliana) development and are abundant in proliferating and endocycling tissues, indicative of a role in DNA replication. We show that endogenous MCM5 and MCM7 proteins are localized in the nucleus during G1, S, and G2 phases of the cell cycle and are released into the cytoplasmic compartment during mitosis. We also show that MCM5 and MCM7 are topologically constrained on DNA and that the MCM complex is stable under high-salt conditions. Our results are consistent with a conserved replicative helicase function for the MCM complex in plants but not with the idea that plants resemble budding yeast by actively exporting the MCM complex from the nucleus to prevent unauthorized origin licensing and rereplication during S phase. Instead, our data show that, like other higher eukaryotes, the MCM complex in plants remains in the nucleus throughout most of the cell cycle and is only dispersed in mitotic cells.
Collapse
Affiliation(s)
- Randall W Shultz
- Department of Molecular and Structural Biochemistry , North Carolina State University, Raleigh, North Carolina 27695-7651, USA.
| | | | | | | | | |
Collapse
|
227
|
Yao NY, O'Donnell M. Replisome structure and conformational dynamics underlie fork progression past obstacles. Curr Opin Cell Biol 2009; 21:336-43. [PMID: 19375905 PMCID: PMC3732650 DOI: 10.1016/j.ceb.2009.02.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/24/2009] [Indexed: 11/29/2022]
Abstract
Replisomes are multiprotein complexes that unzip the parental helix and duplicate the separated strands during genome replication. The antiparallel structure of DNA poses unique geometric constraints to the process, and the replisome has evolved unique dynamic features that solve this problem. Interestingly, the solution to duplex DNA replication has been co-opted to solve many other important problems that replisomes must contend with during the duplication of long chromosomes. For example, along its path the replisome will encounter lesions and DNA-bound proteins. Recent studies show that the replisome can circumvent lesions on either strand, using the strategy normally applied to the lagging strand synthesis. Circumventing lesions can also be assisted by other proteins that transiently become a part of the replisome. The replisome must also contend with DNA-binding proteins and recent studies reveal a fascinating process that enables it to bypass RNA polymerase without stopping.
Collapse
Affiliation(s)
- Nina Y Yao
- Rockefeller University, Howard Hughes Medical Institute, 1230 York Avenue, New York, NY 10065, United States
| | | |
Collapse
|
228
|
Samuels M, Gulati G, Shin JH, Opara R, McSweeney E, Sekedat M, Long S, Kelman Z, Jeruzalmi D. A biochemically active MCM-like helicase in Bacillus cereus. Nucleic Acids Res 2009; 37:4441-52. [PMID: 19474351 PMCID: PMC2715239 DOI: 10.1093/nar/gkp376] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The mini-chromosome maintenance (MCM) proteins serve as the replicative helicases in archaea and eukaryotes. Interestingly, an MCM homolog was identified, by BLAST analysis, within a phage integrated in the bacterium Bacillus cereus (Bc). BcMCM is only related to the AAA region of MCM-helicases; the typical amino-terminus is missing and is replaced by a segment with weak homology to primases. We show that BcMCM displays 3′→5′ helicase and ssDNA-stimulated ATPase activity, properties that arise from its conserved AAA domain. Isolated BcMCM is a monomer in solution but likely forms the functional oligomer in vivo. We found that the BcMCM amino-terminus can bind ssDNA and harbors a zinc atom, both hallmarks of the typical MCM amino-terminus. No BcMCM-catalyzed primase activity could be detected. We propose that the divergent amino-terminus of BcMCM is a paralog of the corresponding region of MCM-helicases. A divergent amino terminus makes BcMCM a useful model for typical MCM-helicases since it accomplishes the same function using an apparently unrelated structure.
Collapse
Affiliation(s)
- Martin Samuels
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
229
|
Ishimi Y, Sugiyama T, Nakaya R, Kanamori M, Kohno T, Enomoto T, Chino M. Effect of heliquinomycin on the activity of human minichromosome maintenance 4/6/7 helicase. FEBS J 2009; 276:3382-91. [PMID: 19438708 DOI: 10.1111/j.1742-4658.2009.07064.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The antibiotic heliquinomycin, which inhibits cellular DNA replication at a half-maximal inhibitory concentration (IC(50)) of 1.4-4 microM, was found to inhibit the DNA helicase activity of the human minichromosome maintenance (MCM) 4/6/7 complex at an IC(50) value of 2.4 microM. In contrast, 14 microM heliquinomycin did not inhibit significantly either the DNA helicase activity of the SV40 T antigen and Werner protein or the oligonucleotide displacement activity of human replication protein A. At IC(50) values of 25 and 6.5 microM, heliquinomycin inhibited the RNA priming and DNA polymerization activities, respectively, of human DNA polymerase-alpha/primase. Thus, of the enzymes studied, the MCM4/6/7 complex was the most sensitive to heliquinomycin; this suggests that MCM helicase is one of the main targets of heliquinomycin in vivo. It was observed that heliquinomycin did not inhibit the ATPase activity of the MCM4/6/7 complex to a great extent in the absence of single-stranded DNA. In contrast, heliquinomycin at an IC(50) value of 5.2 microM inhibited the ATPase activity of the MCM4/6/7 complex in the presence of single-stranded DNA. This suggests that heliquinomycin interferes with the interaction of the MCM4/6/7 complex with single-stranded DNA.
Collapse
|
230
|
Moser BA, Subramanian L, Chang YT, Noguchi C, Noguchi E, Nakamura TM. Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres. EMBO J 2009; 28:810-20. [PMID: 19214192 PMCID: PMC2670859 DOI: 10.1038/emboj.2009.31] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 01/20/2009] [Indexed: 11/08/2022] Open
Abstract
To maintain genomic integrity, telomeres must undergo switches from a protected state to an accessible state that allows telomerase recruitment. To better understand how telomere accessibility is regulated in fission yeast, we analysed cell cycle-dependent recruitment of telomere-specific proteins (telomerase Trt1, Taz1, Rap1, Pot1 and Stn1), DNA replication proteins (DNA polymerases, MCM, RPA), checkpoint protein Rad26 and DNA repair protein Nbs1 to telomeres. Quantitative chromatin immunoprecipitation studies revealed that MCM, Nbs1 and Stn1 could be recruited to telomeres in the absence of telomere replication in S-phase. In contrast, Trt1, Pot1, RPA and Rad26 failed to efficiently associate with telomeres unless telomeres are actively replicated. Unexpectedly, the leading strand DNA polymerase epsilon (Polepsilon) arrived at telomeres earlier than the lagging strand DNA polymerases alpha (Polalpha) and delta (Poldelta). Recruitment of RPA and Rad26 to telomeres matched arrival of DNA Polepsilon, whereas S-phase specific recruitment of Trt1, Pot1 and Stn1 matched arrival of DNA Polalpha. Thus, the conversion of telomere states involves an unanticipated intermediate step where lagging strand synthesis is delayed until telomerase is recruited.
Collapse
Affiliation(s)
- Bettina A Moser
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Lakxmi Subramanian
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Ya-Ting Chang
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Toru M Nakamura
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
231
|
Steere NA, Yamaguchi S, Andrews CA, Liachko I, Nakamura T, Shima N. Functional screen of human MCM2-7 variant alleles for disease-causing potential. Mutat Res 2009; 666:74-8. [PMID: 19481678 DOI: 10.1016/j.mrfmmm.2009.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/04/2009] [Accepted: 03/18/2009] [Indexed: 12/24/2022]
Abstract
Origin licensing builds a fundamental basis for genome stability in DNA replication. Recent studies reported that deregulation of origin licensing is associated with replication stress in precancerous lesions. The heterohexameric complex of minichromosome maintenance proteins (MCM2-7 complex) plays an essential role in origin licensing. Previously, we reported the recovery of the first viable Mcm mutant allele (named Mcm4(Chaos3)) in mice. The Mcm4(Chaos3) allele destabilizes the MCM2-7 complex, leading to chromosome instability and the formation of spontaneous tumors in Mcm4(Chaos3) homozygous mice. Supporting our finding, a recent study reported that mice with reduced expression of MCM2 die with lymphomas within the first few months after birth. These data strongly suggest that mutant Mcm2-7 genes are cancer-causing genes with nearly complete penetrance in mice. This could be the case for humans as well. Nevertheless, related investigations have not been undertaken due to the essential nature of the MCM2-7 genes. To circumvent this problem, we focused on the variant alleles of human MCM2-7 genes derived from single nucleotide polymorphisms. We created a total of 14 variant alleles in the corresponding genes in Saccharomyces cerevisiae. The phenotypic consequence was assayed for minichromosome loss, a surrogate phenotype for genome instability and cancer susceptibility. This screen identified a MCM5 variant allele with pathogenic potential. This allele deserves further investigations on its effect on cancer development in human populations.
Collapse
Affiliation(s)
- Nathan A Steere
- Department of Genetics, Cell Biology and Development, College of Biological Sciences,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, United States
| | | | | | | | | | | |
Collapse
|
232
|
Snyder M, Huang XY, Zhang JJ. The minichromosome maintenance proteins 2-7 (MCM2-7) are necessary for RNA polymerase II (Pol II)-mediated transcription. J Biol Chem 2009; 284:13466-13472. [PMID: 19318354 DOI: 10.1074/jbc.m809471200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MCM2-7 (minichromosome maintenance) proteins are a family of evolutionarily highly conserved proteins. They are essential for DNA replication in yeast and are considered to function as DNA helicases. However, it has long been shown that there is an overabundance of the MCM2-7 proteins when compared with the number of DNA replication origins in chromatin. It has been suggested that the MCM2-7 proteins may function in other biological processes that require the unwinding of the DNA helix. In this report, we show that RNA polymerase II (Pol II)-mediated transcription is dependent on MCM5 and MCM2 proteins. Furthermore, the MCM2-7 proteins are co-localized with RNA Pol II on chromatins of constitutively transcribing genes, and MCM5 is required for transcription elongation of RNA Pol II. Finally, we demonstrate that the integrity of the MCM2-7 hexamer complex and the DNA helicase domain in MCM5 are essential for the process of transcription.
Collapse
Affiliation(s)
- Marylynn Snyder
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10065
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10065
| | - J Jillian Zhang
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York 10065.
| |
Collapse
|
233
|
Dual DNA unwinding activities of the Rothmund-Thomson syndrome protein, RECQ4. EMBO J 2009; 28:568-77. [PMID: 19177149 DOI: 10.1038/emboj.2009.13] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Accepted: 01/08/2009] [Indexed: 12/23/2022] Open
Abstract
Human RECQ helicases have been linked to distinct clinical diseases with increased cancer rates and premature ageing. All RECQ proteins, except RECQ4, have been shown to be functional helicases. Mutations in RECQ4 lead to Rothmund-Thomson syndrome (RTS), and mouse models reveal that the conserved helicase motifs are required for avoidance of RTS. Furthermore, the amino (N) terminus of RECQ4 shares homology with yeast DNA replication initiation factor, Sld2, and is vital for embryonic development. Here, in contrast to previous reports, we show that RECQ4 exhibits DNA helicase activity. Importantly, two distinct regions of the protein, the conserved helicase motifs and the Sld2-like N-terminal domain, each independently promote ATP-dependent DNA unwinding. Taken together, our data provide the first biochemical clues underlying the molecular function of RECQ4 in DNA replication and genome maintenance.
Collapse
|
234
|
Pai CC, García I, Wang SW, Cotterill S, Macneill SA, Kearsey SE. GINS inactivation phenotypes reveal two pathways for chromatin association of replicative alpha and epsilon DNA polymerases in fission yeast. Mol Biol Cell 2008; 20:1213-22. [PMID: 19109429 DOI: 10.1091/mbc.e08-04-0429] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The tetrameric GINS complex, consisting of Sld5-Psf1-Psf2-Psf3, plays an essential role in the initiation and elongation steps of eukaryotic DNA replication, although its biochemical function is unclear. Here we investigate the function of GINS in fission yeast, using fusion of Psf1 and Psf2 subunits to a steroid hormone-binding domain (HBD) to make GINS function conditional on the presence of beta-estradiol. We show that inactivation of Psf1-HBD causes a tight but rapidly reversible DNA replication arrest phenotype. Inactivation of Psf2-HBD similarly blocks premeiotic DNA replication and leads to loss of nuclear localization of another GINS subunit, Psf3. Inactivation of GINS has distinct effects on the replication origin association and chromatin binding of two of the replicative DNA polymerases. Inactivation of Psf1 leads to loss of chromatin binding of DNA polymerase epsilon, and Cdc45 is similarly affected. In contrast, chromatin association of the catalytic subunit of DNA polymerase alpha is not affected by defective GINS function. We suggest that GINS functions in a pathway that involves Cdc45 and is necessary for DNA polymerase epsilon chromatin binding, but that a separate pathway sets up the chromatin association of DNA polymerase alpha.
Collapse
Affiliation(s)
- Chen Chun Pai
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | | | | | | | | | | |
Collapse
|
235
|
Making copies of chromatin: the challenge of nucleosomal organization and epigenetic information. Trends Cell Biol 2008; 19:29-41. [PMID: 19027300 DOI: 10.1016/j.tcb.2008.10.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/22/2008] [Accepted: 10/23/2008] [Indexed: 12/18/2022]
Abstract
Understanding the basic mechanisms underlying chromatin dynamics during DNA replication in eukaryotic cells is of fundamental importance. Beyond DNA compaction, chromatin organization represents a means to regulate genome function. Thus, the inheritance and maintenance of the DNA sequence, along with its organization into chromatin, is central for eukaryotic life. To orchestrate DNA replication in the context of chromatin is a challenge, both in terms of accessibility to the compact structures and maintenance of chromatin organization. To meet the challenge of maintenance, cells have evolved efficient nucleosome dynamics involving assembly pathways and chromatin maturation mechanisms that restore chromatin organization in the wake of DNA replication. In this review, we describe our current knowledge concerning how these pathways operate at the nucleosomal level and highlight the key players, such as histone chaperones, chromatin remodelers or modifiers, involved in the process of chromatin duplication. Major advances have been made recently concerning de novo nucleosome assembly and our understanding of its coordination with recycling of parental histones is progressing. Insights into the transmission of chromatin-based information during replication have important implications in the field of epigenetics to fully comprehend how the epigenetic landscape might, or at times might not, be stably maintained in the face of dramatic changes in chromatin structure.
Collapse
|
236
|
Fox CA, Weinreich M. Beyond heterochromatin: SIR2 inhibits the initiation of DNA replication. Cell Cycle 2008; 7:3330-4. [PMID: 18948737 DOI: 10.4161/cc.7.21.6971] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Over the last decade, data have accumulated that support a role for chromatin structure in regulating the initiation of DNA replication and its timing during S-phase. However, the mechanisms underlying how chromatin structure influences replication initiation are not always understood. For example, in Drosophila histone acetylation at the ACE3 and Ori-beta sequences near one of the amplified chorion loci is correlated with ORC (origin recognition complex) binding and re-replication of this locus. Whether histone acetylation promotes ORC binding or some later step in replication is not known. In yeast, hypo-acetylated heterochromatin and telomeric regions replicate late in S-phase but the mechanisms that restrict the initiation of replication at these loci are not fully understood. Nonetheless, it seems likely that histone acetylation and other types of histone modification will significantly impact DNA replication. A recent study published in Molecular Cell reveals a role for the conserved NAD(+)-dependent histone deacetylase, Sir2, in inhibiting the assembly of the multiprotein complex necessary for the selection and activation of yeast replication origins. Here, we highlight key conclusions from this study, place them in perspective with earlier work, and outline important future questions.
Collapse
Affiliation(s)
- Catherine A Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | | |
Collapse
|
237
|
Kanter DM, Bruck I, Kaplan DL. Mcm subunits can assemble into two different active unwinding complexes. J Biol Chem 2008; 283:31172-82. [PMID: 18801730 DOI: 10.1074/jbc.m804686200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The replication fork helicase in eukaryotes is a large complex that is composed of Mcm2-7, Cdc45, and GINS. The Mcm2-7 proteins form a heterohexameric ring that hydrolyzes ATP and provide the motor function for this unwinding complex. A comprehensive study of how individual Mcm subunit biochemical activities relate to unwinding function has not been accomplished. We studied the mechanism of the Mcm4-Mcm6-Mcm7 complex, a useful model system because this complex has helicase activity in vitro. We separately purified each of three Mcm subunits until they were each nuclease-free, and we then examined the biochemical properties of different combinations of Mcm subunits. We found that Mcm4 and Mcm7 form an active unwinding assembly. The addition of Mcm6 to Mcm4/Mcm7 results in the formation of an active Mcm4/Mcm6/Mcm7 helicase assembly. The Mcm4-Mcm7 complex forms a ringed-shaped hexamer that unwinds DNA with 3' to 5' polarity by a steric exclusion mechanism, similar to Mcm4/Mcm6/Mcm7. The Mcm4-Mcm7 complex has a high level of ATPase activity that is further stimulated by DNA. The ability of different Mcm mixtures to form rings or exhibit DNA stimulation of ATPase activity correlates with the ability of these complexes to unwind DNA. The Mcm4/Mcm7 and Mcm4/Mcm6/Mcm7 assemblies can open to load onto circular DNA to initiate unwinding. We conclude that the Mcm subunits are surprisingly flexible and dynamic in their ability to interact with one another to form active unwinding complexes.
Collapse
Affiliation(s)
- Diane M Kanter
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | | | |
Collapse
|
238
|
Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability. Mol Cell Biol 2008; 28:5865-73. [PMID: 18662997 DOI: 10.1128/mcb.00161-08] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Mcm2-7 (minichromosome maintenance) complex is a toroidal AAA(+) ATPase and the putative eukaryotic replicative helicase. Unlike a typical homohexameric helicase, Mcm2-7 contains six distinct, essential, and evolutionarily conserved subunits. Precedence to other AAA(+) proteins suggests that Mcm ATPase active sites are formed combinatorially, with Walker A and B motifs contributed by one subunit and a catalytically essential arginine (arginine finger) contributed by the adjacent subunit. To test this prediction, we used copurification experiments to identify five distinct and stable Mcm dimer combinations as potential active sites; these subunit associations predict the architecture of the Mcm2-7 complex. Through the use of mutant subunits, we establish that at least three sites are active for ATP hydrolysis and have a canonical AAA(+) configuration. In isolation, these five active-site dimers have a wide range of ATPase activities. Using Walker B and arginine finger mutations in defined Mcm subunits, we demonstrate that these sites similarly make differential contributions toward viability and ATP hydrolysis within the intact hexamer. Our conclusions predict a structural discontinuity between Mcm2 and Mcm5 and demonstrate that in contrast to other hexameric helicases, the six Mcm2-7 active sites are functionally distinct.
Collapse
|