201
|
Brown TA, Tkachuk AN, Clayton DA. Mitochondrial Transcription Factor A (TFAM) Binds to RNA Containing 4-Way Junctions and Mitochondrial tRNA. PLoS One 2015; 10:e0142436. [PMID: 26545237 PMCID: PMC4636309 DOI: 10.1371/journal.pone.0142436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/21/2015] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is maintained within nucleoprotein complexes known as nucleoids. These structures are highly condensed by the DNA packaging protein, mitochondrial Transcription Factor A (TFAM). Nucleoids also include RNA, RNA:DNA hybrids, and are associated with proteins involved with RNA processing and mitochondrial ribosome biogenesis. Here we characterize the ability of TFAM to bind various RNA containing substrates in order to determine their role in TFAM distribution and function within the nucleoid. We find that TFAM binds to RNA-containing 4-way junctions but does not bind appreciably to RNA hairpins, internal loops, or linear RNA:DNA hybrids. Therefore the RNA within nucleoids largely excludes TFAM, and its distribution is not grossly altered with removal of RNA. Within the cell, TFAM binds to mitochondrial tRNAs, consistent with our RNA 4-way junction data. Kinetic binding assays and RNase-insensitive TFAM distribution indicate that DNA remains the preferred substrate within the nucleoid. However, TFAM binds to tRNA with nanomolar affinity and these complexes are not rare. TFAM-immunoprecipitated tRNAs have processed ends, suggesting that binding is not specific to RNA precursors. The amount of each immunoprecipitated tRNA is not well correlated with tRNA celluar abundance, indicating unequal TFAM binding preferences. TFAM-mt-tRNA interaction suggests potentially new functions for this protein.
Collapse
Affiliation(s)
- Timothy A. Brown
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
- * E-mail:
| | - Ariana N. Tkachuk
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| | - David A. Clayton
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, United States of America
| |
Collapse
|
202
|
Chen W, Lu J, Qin Y, Wang J, Tian Y, Shi D, Wang S, Xiao Y, Dai M, Liu L, Wei G, Wu T, Jin B, Xiao X, Kang TB, Huang W, Deng W. Ret finger protein-like 3 promotes tumor cell growth by activating telomerase reverse transcriptase expression in human lung cancer cells. Oncotarget 2015; 5:11909-23. [PMID: 25481043 PMCID: PMC4322990 DOI: 10.18632/oncotarget.2557] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/01/2014] [Indexed: 12/23/2022] Open
Abstract
In this study, we identified ret finger protein-like 3 (RFPL3) as a hTERT promoter binding protein in lung cancer cells. The high hTERT promoter-binding activity of RFPL3 was detected in lung cancer cells compared to normal cells. Chromatin immunoprecipitation confirmed RFPL3 as a tumor-specific hTERT promoter binding protein. Overexpression of RFPL3 activated hTERT promoter and up-regulated hTERT expression and telomerase activity. Inhibition of RFPL3 expression by siRNA suppressed hTERT promoter activation and telomerase activity. Inhibition of RFPL3 by siRNA or shRNA also significantly inhibited tumor cell growth in vitro and in a xenograft mouse model in vivo. Immunohistochemical analysis of 181 human lung adenocarcinomas specimens showed a significant correlation between RFPL3 and hTERT expression. The overexpression of RFPL3 was also associated significantly with lymph node metastasis. Univariate and multivariate Cox model analyses of NSCLC clinical specimens revealed a strong correlation between RFPL3 expression and overall survival. These results demonstrate that RFPL3 is an important cellular factor which promotes lung cancer growth by activating hTERT expression and may be a potential novel therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Wangbing Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China. Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjun Lu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Qin
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jingshu Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yun Tian
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Dingbo Shi
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Shusen Wang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yao Xiao
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Meng Dai
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Lu Liu
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Guo Wei
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Taihua Wu
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Bilian Jin
- Institute of Cancer Stem Cell & The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Xiangsheng Xiao
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Tie-Bang Kang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China. State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China. State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| |
Collapse
|
203
|
Kasashima K, Endo H. Interaction of human mitochondrial transcription factor A in mitochondria: its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015; 20:1017-27. [DOI: 10.1111/gtc.12306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/08/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Katsumi Kasashima
- Department of Biochemistry; Jichi Medical University; 3311-1 Yakushiji Shimotsuke Tochigi 329-0498 Japan
| | - Hitoshi Endo
- Department of Biochemistry; Jichi Medical University; 3311-1 Yakushiji Shimotsuke Tochigi 329-0498 Japan
| |
Collapse
|
204
|
Picca A, Lezza AMS. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion 2015; 25:67-75. [PMID: 26437364 DOI: 10.1016/j.mito.2015.10.001] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 11/24/2022]
Abstract
Mitochondrial biogenesis is regulated to adapt mitochondrial population to cell energy demands. Mitochondrial transcription factor A (TFAM) performs several functions for mtDNA and interactions between TFAM and mtDNA participate to regulation of mitochondrial biogenesis. Such interactions are modulated through different mechanisms: regulation of TFAM expression and turnover, modulation of TFAM binding activity to mtDNA through post-translational modifications and differential affinity of TFAM, occurrence of TFAM sliding on mtDNA filaments and of cooperative binding among TFAM molecules, modulation of protein-protein interactions. The tissue-specific regulation of mitochondrial biogenesis in aging and calorie restriction (CR) highlights the relevance of modulation of TFAM-mtDNA interactions.
Collapse
Affiliation(s)
- Anna Picca
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125, Bari, Italy
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125, Bari, Italy.
| |
Collapse
|
205
|
Cervellati C, Sticozzi C, Romani A, Belmonte G, De Rasmo D, Signorile A, Cervellati F, Milanese C, Mastroberardino PG, Pecorelli A, Savelli V, Forman HJ, Hayek J, Valacchi G. Impaired enzymatic defensive activity, mitochondrial dysfunction and proteasome activation are involved in RTT cell oxidative damage. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2066-74. [DOI: 10.1016/j.bbadis.2015.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/07/2015] [Accepted: 07/15/2015] [Indexed: 12/16/2022]
|
206
|
Al-Furoukh N, Ianni A, Nolte H, Hölper S, Krüger M, Wanrooij S, Braun T. ClpX stimulates the mitochondrial unfolded protein response (UPRmt) in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2580-91. [DOI: 10.1016/j.bbamcr.2015.06.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/09/2015] [Accepted: 06/27/2015] [Indexed: 02/06/2023]
|
207
|
Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res Rev 2015; 23:56-66. [PMID: 25578288 DOI: 10.1016/j.arr.2014.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/23/2014] [Accepted: 12/27/2014] [Indexed: 11/23/2022]
Abstract
Mitochondria have been implicated in the ageing process and the lifespan modulation of model organisms. Mitochondria are the main providers of energy in eukaryotic cells but also represent both a major source of reactive oxygen species and targets for protein oxidative damage. Since protein damage can impair mitochondrial function, mitochondrial proteases are critically important for protein maintenance and elimination of oxidized protein. In the mitochondrial matrix, protein quality control is mainly achieved by the Lon and Clp proteases which are also key players in damaged mitochondrial proteins degradation. Accumulation of damaged macromolecules resulting from oxidative stress and failure of protein maintenance constitutes a hallmark of cellular and organismal ageing and is believed to participate to the age-related decline of cellular function. Hence, age-related impairment of mitochondrial protein quality control may therefore contribute to the age-associated build-up of oxidized protein and alterations of mitochondrial redox and protein homeostasis.
Collapse
|
208
|
Li S, Yang G. Hydrogen Sulfide Maintains Mitochondrial DNA Replication via Demethylation of TFAM. Antioxid Redox Signal 2015; 23:630-42. [PMID: 25758951 PMCID: PMC4554549 DOI: 10.1089/ars.2014.6186] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Hydrogen sulfide (H2S) exerts a wide range of actions in the body, especially in the modulation of mitochondrial functions. The normal replication of mitochondrial DNA (mtDNA) is critical for cellular energy metabolism and mitochondrial biogenesis. The aim of this study was to investigate whether H2S affects mtDNA replication and the underlying mechanisms. We hypothesize that H2S maintains mtDNA copy number via inhibition of Dnmt3a transcription and TFAM promoter methylation. RESULTS Here, we demonstrated that deficiency of cystathionine gamma-lyase (CSE), a major H2S-producing enzyme, reduces mtDNA copy number and mitochondrial contents, and it inhibits the expressions of mitochondrial transcription factor A (TFAM) and mitochondrial marker genes in both smooth muscle cells and aorta tissues from mice. Supply of exogenous H2S stimulated mtDNA copy number and strengthened the expressions of TFAM and mitochondrial marker genes. TFAM knockdown diminished H2S-enhanced mtDNA copy number. In addition, CSE deficiency induced the expression of DNA methyltransferase 3a (Dnmt3a) and TFAM promoter DNA methylation, and H2S repressed Dnmt3a expression, resulting in TFAM promoter demethylation. We further found that H2S S-sulfhydrates transcription repressor interferon regulatory factor 1 (IRF-1) and enhances the binding of IRF-1 with Dnmt3a promoter after reduced Dnmt3a transcription. H2S had little effects on the expression of Dnmt1 and Dnmt3b as well as on ten-eleven translocation methylcytosine dioxygenase 1, 2, and 3. INNOVATION A sufficient level of H2S is able to inhibit TFAM promoter methylation and maintain mtDNA copy number. CONCLUSION CSE/H2S system contributes to mtDNA replication and cellular bioenergetics and provides a novel therapeutic avenue for cardiovascular diseases.
Collapse
Affiliation(s)
- Shuangshuang Li
- 1 Cardiovascular and Metabolic Research Unit, Lakehead University , Thunder Bay, Ontario, Canada .,2 The School of Kinesiology, Lakehead University , Thunder Bay, Ontario, Canada
| | - Guangdong Yang
- 1 Cardiovascular and Metabolic Research Unit, Lakehead University , Thunder Bay, Ontario, Canada .,2 The School of Kinesiology, Lakehead University , Thunder Bay, Ontario, Canada
| |
Collapse
|
209
|
Liu Y, Lan L, Huang K, Wang R, Xu C, Shi Y, Wu X, Wu Z, Zhang J, Chen L, Wang L, Yu X, Zhu H, Lu B. Inhibition of Lon blocks cell proliferation, enhances chemosensitivity by promoting apoptosis and decreases cellular bioenergetics of bladder cancer: potential roles of Lon as a prognostic marker and therapeutic target in baldder cancer. Oncotarget 2015; 5:11209-24. [PMID: 25526030 PMCID: PMC4294382 DOI: 10.18632/oncotarget.2026] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/27/2014] [Indexed: 11/25/2022] Open
Abstract
ATP-dependent Lon protease within mitochondrial matrix contributes to the degradation of abnormal proteins. The oxidative or hypoxic stress which represents the stress phenotype of cancer leads to up-regulation of Lon. However, the role of Lon in bladder cancer remains undefined. Here, we found that Lon expression in bladder cancer tissues was significantly higher than those in noncancerous tissues; down-regulation of Lon in bladder cancer cells significantly blocked cancer cell proliferation via suppression c-Jun N-terminal kinase (JNK) phosphorylation due to decreased reactive oxygen species (ROS) production and enhanced the sensitivity of bladder cancer cells to chemotherapeutic agents by promoting apoptosis. We further found that Lon down-regulation in bladder cancer cells decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using extracellular flux analyzer. The tissue microarray (TMA) results showed that high expression of Lon was related to the T and TNM stage, as well as histological grade of bladder cancer patients. We also demonstrated that Lon was an independent prognostic factor for overall survival of bladder cancer. Taken together, our data suggest that Lon could serve as a potential diagnostic biomarker and therapeutic target for treatment of bladder cancer, as well as for prediction of the effectiveness of chemotherapy.
Collapse
Affiliation(s)
- Yongzhang Liu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linhua Lan
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kate Huang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongrong Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cuicui Xu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Shi
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyi Wu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhi Wu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiliang Zhang
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Chen
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lu Wang
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Yu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haibo Zhu
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Lu
- Protein Quality Control and Diseases Laboratory, Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
210
|
Lagouge M, Mourier A, Lee HJ, Spåhr H, Wai T, Kukat C, Silva Ramos E, Motori E, Busch JD, Siira S, German Mouse Clinic Consortium, Kremmer E, Filipovska A, Larsson NG. SLIRP Regulates the Rate of Mitochondrial Protein Synthesis and Protects LRPPRC from Degradation. PLoS Genet 2015; 11:e1005423. [PMID: 26247782 PMCID: PMC4527767 DOI: 10.1371/journal.pgen.1005423] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022] Open
Abstract
We have studied the in vivo role of SLIRP in regulation of mitochondrial DNA (mtDNA) gene expression and show here that it stabilizes its interacting partner protein LRPPRC by protecting it from degradation. Although SLIRP is completely dependent on LRPPRC for its stability, reduced levels of LRPPRC persist in the absence of SLIRP in vivo. Surprisingly, Slirp knockout mice are apparently healthy and only display a minor weight loss, despite a 50-70% reduction in the steady-state levels of mtDNA-encoded mRNAs. In contrast to LRPPRC, SLIRP is dispensable for polyadenylation of mtDNA-encoded mRNAs. Instead, deep RNA sequencing (RNAseq) of mitochondrial ribosomal fractions and additional molecular analyses show that SLIRP is required for proper association of mRNAs to the mitochondrial ribosome and efficient translation. Our findings thus establish distinct functions for SLIRP and LRPPRC within the LRPPRC-SLIRP complex, with a novel role for SLIRP in mitochondrial translation. Very surprisingly, our results also demonstrate that mammalian mitochondria have a great excess of transcripts under basal physiological conditions in vivo.
Collapse
Affiliation(s)
- Marie Lagouge
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Arnaud Mourier
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Hyun Ju Lee
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Henrik Spåhr
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Timothy Wai
- CECAD Research Center, University of Cologne, Cologne, Germany
| | - Christian Kukat
- FACS and Imaging facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Eduardo Silva Ramos
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Elisa Motori
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jakob D. Busch
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stefan Siira
- Harry Perkins Institute of Medical Research, Centre for Medical Research and School of Chemistry and Biochemistry, The University of Western Australia, Perth, Australia
| | - German Mouse Clinic Consortium
- German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Elisabeth Kremmer
- Helmholtz Zentrum München, Institute of Molecular Immunology, Munich, Germany
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Centre for Medical Research and School of Chemistry and Biochemistry, The University of Western Australia, Perth, Australia
- * E-mail: (AF); (NGL)
| | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
- * E-mail: (AF); (NGL)
| |
Collapse
|
211
|
Bahat A, Perlberg S, Melamed-Book N, Isaac S, Eden A, Lauria I, Langer T, Orly J. Transcriptional activation of LON Gene by a new form of mitochondrial stress: A role for the nuclear respiratory factor 2 in StAR overload response (SOR). Mol Cell Endocrinol 2015; 408:62-72. [PMID: 25724481 DOI: 10.1016/j.mce.2015.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 01/19/2023]
Abstract
High output of steroid hormone synthesis in steroidogenic cells of the adrenal cortex and the gonads requires the expression of the steroidogenic acute regulatory protein (StAR) that facilitates cholesterol mobilization to the mitochondrial inner membrane where the CYP11A1/P450scc enzyme complex converts the sterol to the first steroid. Earlier studies have shown that StAR is active while pausing on the cytosolic face of the outer mitochondrial membrane while subsequent import of the protein into the matrix terminates the cholesterol mobilization activity. Consequently, during repeated activity cycles, high level of post-active StAR accumulates in the mitochondrial matrix. To prevent functional damage due to such protein overload effect, StAR is degraded by a sequence of three to four ATP-dependent proteases of the mitochondria protein quality control system, including LON and the m-AAA membranous proteases AFG3L2 and SPG7/paraplegin. Furthermore, StAR expression in both peri-ovulatory ovarian cells, or under ectopic expression in cell line models, results in up to 3-fold enrichment of the mitochondrial proteases and their transcripts. We named this novel form of mitochondrial stress as StAR overload response (SOR). To better understand the SOR mechanism at the transcriptional level we analyzed first the unexplored properties of the proximal promoter of the LON gene. Our findings suggest that the human nuclear respiratory factor 2 (NRF-2), also known as GA binding protein (GABP), is responsible for 88% of the proximal promoter activity, including the observed increase of transcription in the presence of StAR. Further studies are expected to reveal if common transcriptional determinants coordinate the SOR induced transcription of all the genes encoding the SOR proteases.
Collapse
Affiliation(s)
- Assaf Bahat
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shira Perlberg
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Naomi Melamed-Book
- Bio-Imaging Unit at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sara Isaac
- Department of Cell & Developmental Biology at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Amir Eden
- Department of Cell & Developmental Biology at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ines Lauria
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Thomas Langer
- CECAD Research Center, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Joseph Orly
- Department of Biological Chemistry at the Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|
212
|
Mitochondrial DNA: A disposable genome? Biochim Biophys Acta Mol Basis Dis 2015; 1852:1805-9. [PMID: 26071375 DOI: 10.1016/j.bbadis.2015.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 01/21/2023]
Abstract
In mammalian cells, mitochondria are the only organelles besides the nucleus that house genomic DNA. The mammalian mitochondrial genome is represented by prokaryotic-type, circular, highly compacted DNA molecules. Today, more than a half-century after their discovery, the biology of these small and redundant molecules remains much less understood than that of their nuclear counterparts. One peculiarity of the mitochondrial genome that emerged in recent years is its disposable nature, as evidenced by cells abandoning a fraction of their mitochondrial DNA (mtDNA) in response to various stimuli with little or no physiological consequence. Here, we review some recent developments in the field of mtDNA biology and discuss emerging questions on the disposability and indispensability of mtDNA.
Collapse
|
213
|
Moustafa IM, Uchida A, Wang Y, Yennawar N, Cameron CE. Structural models of mammalian mitochondrial transcription factor B2. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:987-1002. [PMID: 26066983 DOI: 10.1016/j.bbagrm.2015.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 11/26/2022]
Abstract
Mammalian mitochondrial DNA (mtDNA) encodes 13 core proteins of oxidative phosphorylation, 12S and 16S ribosomal RNAs, and 22 transfer RNAs. Mutations and deletions of mtDNA and/or nuclear genes encoding mitochondrial proteins have been implicated in a wide range of diseases. Thus, cell survival and health of the organism require some steady-state level of the mitochondrial genome and its expression. In mammalian systems, the mitochondrial transcription factor B2 (mtTFB2 or TFB2M) is indispensable for transcription initiation. TFB2M along with two other proteins, mitochondrial RNA polymerase (mtRNAP or POLRMT) and mitochondrial transcription factor A (mtTFA or TFAM), are key components of the core mitochondrial transcription apparatus. Structural information for POLRMT and TFAM from humans is available; however, there is no available structure for TFB2M. In the present study, three-dimensional structure of TFB2M from humans was modeled using a combination of homology modeling and small-angle X-ray scattering (SAXS). The TFB2M structural model adds substantively to our understanding of TFB2M function. An explanation for the low or absent RNA methyltransferase activity is provided. A putative nucleic acid-binding site is revealed. The amino and carboxy termini, while likely lacking defined secondary structure, appear to adopt compact, globular conformations, thus "capping" the ends of the protein. Finally, sites of interaction of TFB2M with other factors, protein and/or nucleic acid, are suggested by the identification of species-specific clusters on the surface of the protein.
Collapse
Affiliation(s)
- Ibrahim M Moustafa
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Akira Uchida
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Yao Wang
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Neela Yennawar
- Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Craig E Cameron
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
214
|
Abstract
Recent advances in mitochondrial biology have revealed the high diversity and complexity of proteolytic enzymes that regulate mitochondrial function. We have classified mitochondrial proteases, or mitoproteases, on the basis of their function and location, and defined the human mitochondrial degradome as the complete set of mitoproteases that are encoded by the human genome. In addition to their nonspecific degradative functions, mitoproteases perform highly regulated proteolytic reactions that are important in mitochondrial function, integrity and homeostasis. These include protein synthesis, quality control, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Impaired or dysregulated function of mitoproteases is associated with ageing and with many pathological conditions such as neurodegenerative disorders, metabolic syndromes and cancer. A better understanding of the mitochondrial proteolytic landscape and its modulation may contribute to improving human lifespan and 'healthspan'.
Collapse
|
215
|
Bohovych I, Chan SS, Khalimonchuk O. Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. Antioxid Redox Signal 2015; 22:977-94. [PMID: 25546710 PMCID: PMC4390190 DOI: 10.1089/ars.2014.6199] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/20/2014] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Mitochondria are complex dynamic organelles pivotal for cellular physiology and human health. Failure to maintain mitochondrial health leads to numerous maladies that include late-onset neurodegenerative diseases and cardiovascular disorders. Furthermore, a decline in mitochondrial health is prevalent with aging. A set of evolutionary conserved mechanisms known as mitochondrial quality control (MQC) is involved in recognition and correction of the mitochondrial proteome. RECENT ADVANCES Here, we review current knowledge and latest developments in MQC. We particularly focus on the proteolytic aspect of MQC and its impact on health and aging. CRITICAL ISSUES While our knowledge about MQC is steadily growing, critical gaps remain in the mechanistic understanding of how MQC modules sense damage and preserve mitochondrial welfare, particularly in higher organisms. FUTURE DIRECTIONS Delineating how coordinated action of the MQC modules orchestrates physiological responses on both organellar and cellular levels will further elucidate the current picture of MQC's role and function in health, cellular stress, and degenerative diseases.
Collapse
Affiliation(s)
- Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Sherine S.L. Chan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska
- Nebraska Redox Biology Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
216
|
Mei H, Sun S, Bai Y, Chen Y, Chai R, Li H. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs. Cell Death Dis 2015; 6:e1710. [PMID: 25837486 PMCID: PMC4650546 DOI: 10.1038/cddis.2015.78] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 11/09/2022]
Abstract
Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors.
Collapse
Affiliation(s)
- H Mei
- Department of Otorhinolaryngology, Research Center, Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - S Sun
- Department of Otorhinolaryngology, Research Center, Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Y Bai
- Department of Otolaryngology, Children's Hospital, Chongqing Medical University, Chongqing 400014, China
| | - Y Chen
- Department of Otorhinolaryngology, Research Center, Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - R Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - H Li
- Department of Otorhinolaryngology, Research Center, Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| |
Collapse
|
217
|
Zhang F, Qi Y, Zhou K, Zhang G, Linask K, Xu H. The cAMP phosphodiesterase Prune localizes to the mitochondrial matrix and promotes mtDNA replication by stabilizing TFAM. EMBO Rep 2015; 16:520-7. [PMID: 25648146 PMCID: PMC4388618 DOI: 10.15252/embr.201439636] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
Compartmentalized cAMP signaling regulates mitochondrial dynamics, morphology, and oxidative phosphorylation. However, regulators of the mitochondrial cAMP pathway, and its broad impact on organelle function, remain to be explored. Here, we report that Drosophila Prune is a cyclic nucleotide phosphodiesterase that localizes to the mitochondrial matrix. Knocking down prune in cultured cells reduces mitochondrial transcription factor A (TFAM) and mitochondrial DNA (mtDNA) levels. Our data suggest that Prune stabilizes TFAM and promotes mitochondrial DNA (mtDNA) replication through downregulation of mitochondrial cAMP signaling. In addition, our work demonstrates the prevalence of mitochondrial cAMP signaling in metazoan and its new role in mitochondrial biogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- Laboratory of Molecular Genetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Yun Qi
- Laboratory of Molecular Genetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Kiet Zhou
- Laboratory of Molecular Genetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Guofeng Zhang
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Kaari Linask
- Laboratory of Molecular Genetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Hong Xu
- Laboratory of Molecular Genetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
218
|
Audano M, Ferrari A, Fiorino E, Kuenzl M, Caruso D, Mitro N, Crestani M, De Fabiani E. Energizing Genetics and Epi-genetics: Role in the Regulation of Mitochondrial Function. Curr Genomics 2015; 15:436-56. [PMID: 25646072 PMCID: PMC4311388 DOI: 10.2174/138920291506150106151119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/11/2014] [Accepted: 11/18/2014] [Indexed: 12/15/2022] Open
Abstract
Energy metabolism and mitochondrial function hold a core position in cellular homeostasis. Oxidative metabolism is regulated at multiple levels, ranging from gene transcription to allosteric modulation. To accomplish the fine tuning of these multiple regulatory circuits, the nuclear and mitochondrial compartments are tightly and reciprocally controlled. The fact that nuclear encoded factors, PPARγ coactivator 1α and mitochondrial transcription factor A, play pivotal roles in the regulation of oxidative metabolism and mitochondrial biogenesis is paradigmatic of this crosstalk. Here we provide an updated survey of the genetic and epigenetic mechanisms involved in the control of energy metabolism and mitochondrial function. Chromatin dynamics highly depends on post-translational modifications occurring at specific amino acids in histone proteins and other factors associated to nuclear DNA. In addition to the well characterized enzymes responsible for histone methylation/demethylation and acetylation/deacetylation, other factors have gone on the "metabolic stage". This is the case of the new class of α-ketoglutarate-regulated demethylases (Jumonji C domain containing demethylases) and of the NAD+-dependent deacetylases, also known as sirtuins. Moreover, unexpected features of the machineries involved in mitochondrial DNA (mtDNA) replication and transcription, mitochondrial RNA processing and maturation have recently emerged. Mutations or defects of any component of these machineries profoundly affect mitochondrial activity and oxidative metabolism. Finally, recent evidences support the importance of mtDNA packaging in replication and transcription. These observations, along with the discovery that non-classical CpG islands present in mtDNA undergo methylation, indicate that epigenetics also plays a role in the regulation of the mitochondrial genome function.
Collapse
Affiliation(s)
- Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Alessandra Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Erika Fiorino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Martin Kuenzl
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Donatella Caruso
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Maurizio Crestani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| | - Emma De Fabiani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Italy
| |
Collapse
|
219
|
Szklarczyk R, Nooteboom M, Osiewacz HD. Control of mitochondrial integrity in ageing and disease. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130439. [PMID: 24864310 DOI: 10.1098/rstb.2013.0439] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Various molecular and cellular pathways are active in eukaryotes to control the quality and integrity of mitochondria. These pathways are involved in keeping a 'healthy' population of this essential organelle during the lifetime of the organism. Quality control (QC) systems counteract processes that lead to organellar dysfunction manifesting as degenerative diseases and ageing. We discuss disease- and ageing-related pathways involved in mitochondrial QC: mtDNA repair and reorganization, regeneration of oxidized amino acids, refolding and degradation of severely damaged proteins, degradation of whole mitochondria by mitophagy and finally programmed cell death. The control of the integrity of mtDNA and regulation of its expression is essential to remodel single proteins as well as mitochondrial complexes that determine mitochondrial functions. The redundancy of components, such as proteases, and the hierarchies of the QC raise questions about crosstalk between systems and their precise regulation. The understanding of the underlying mechanisms on the genomic, proteomic, organellar and cellular levels holds the key for the development of interventions for mitochondrial dysfunctions, degenerative processes, ageing and age-related diseases resulting from impairments of mitochondria.
Collapse
Affiliation(s)
- Radek Szklarczyk
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, 6200 MD Maastricht, The Netherlands
| | - Marco Nooteboom
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Heinz D Osiewacz
- Faculty for Biosciences and Cluster of Excellence 'Macromolecular Complexes', Goethe University, Molecular Developmental Biology, 60438 Frankfurt am Main, Germany
| |
Collapse
|
220
|
Strauss KA, Jinks RN, Puffenberger EG, Venkatesh S, Singh K, Cheng I, Mikita N, Thilagavathi J, Lee J, Sarafianos S, Benkert A, Koehler A, Zhu A, Trovillion V, McGlincy M, Morlet T, Deardorff M, Innes AM, Prasad C, Chudley AE, Lee INW, Suzuki CK. CODAS syndrome is associated with mutations of LONP1, encoding mitochondrial AAA+ Lon protease. Am J Hum Genet 2015; 96:121-35. [PMID: 25574826 DOI: 10.1016/j.ajhg.2014.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/05/2014] [Indexed: 12/30/2022] Open
Abstract
CODAS syndrome is a multi-system developmental disorder characterized by cerebral, ocular, dental, auricular, and skeletal anomalies. Using whole-exome and Sanger sequencing, we identified four LONP1 mutations inherited as homozygous or compound-heterozygous combinations among ten individuals with CODAS syndrome. The individuals come from three different ancestral backgrounds (Amish-Swiss from United States, n = 8; Mennonite-German from Canada, n = 1; mixed European from Canada, n = 1). LONP1 encodes Lon protease, a homohexameric enzyme that mediates protein quality control, respiratory-complex assembly, gene expression, and stress responses in mitochondria. All four pathogenic amino acid substitutions cluster within the AAA(+) domain at residues near the ATP-binding pocket. In biochemical assays, pathogenic Lon proteins show substrate-specific defects in ATP-dependent proteolysis. When expressed recombinantly in cells, all altered Lon proteins localize to mitochondria. The Old Order Amish Lon variant (LONP1 c.2161C>G[p.Arg721Gly]) homo-oligomerizes poorly in vitro. Lymphoblastoid cell lines generated from affected children have (1) swollen mitochondria with electron-dense inclusions and abnormal inner-membrane morphology; (2) aggregated MT-CO2, the mtDNA-encoded subunit II of cytochrome c oxidase; and (3) reduced spare respiratory capacity, leading to impaired mitochondrial proteostasis and function. CODAS syndrome is a distinct, autosomal-recessive, developmental disorder associated with dysfunction of the mitochondrial Lon protease.
Collapse
Affiliation(s)
- Kevin A Strauss
- Clinic for Special Children, Strasburg, PA 17579, USA; Lancaster General Hospital, Lancaster, PA 17602, USA; Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA.
| | - Robert N Jinks
- Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Erik G Puffenberger
- Clinic for Special Children, Strasburg, PA 17579, USA; Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Sundararajan Venkatesh
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Kamalendra Singh
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA; Department of Molecular Microbiology and Immunology, Christopher Bond Life Sciences Center, University of Missouri, Columbia, Columbia, MO 65201, USA
| | - Iteen Cheng
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Natalie Mikita
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jayapalraja Thilagavathi
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jae Lee
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Stefan Sarafianos
- Department of Molecular Microbiology and Immunology, Christopher Bond Life Sciences Center, University of Missouri, Columbia, Columbia, MO 65201, USA
| | - Abigail Benkert
- Clinic for Special Children, Strasburg, PA 17579, USA; Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Alanna Koehler
- Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Anni Zhu
- Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Victoria Trovillion
- Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Madeleine McGlincy
- Department of Biology and Biological Foundations of Behavior Program, Franklin and Marshall College, Lancaster, PA 17603, USA
| | - Thierry Morlet
- Auditory Physiology and Psychoacoustics Research Laboratory, duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Matthew Deardorff
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Chitra Prasad
- Medical Genetics Program, Department of Pediatrics, Children's Health Research Institute and Western University, London, ON N6C 2V5, Canada
| | - Albert E Chudley
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB R3A 1S1, Canada; Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3A 1S1, Canada
| | - Irene Nga Wing Lee
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Carolyn K Suzuki
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
221
|
Quirós PM, Bárcena C, López-Otín C. Lon protease: A key enzyme controlling mitochondrial bioenergetics in cancer. Mol Cell Oncol 2014; 1:e968505. [PMID: 27308364 PMCID: PMC4905204 DOI: 10.4161/23723548.2014.968505] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 08/14/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022]
Abstract
We have recently explored the in vivo functional and oncologic relevance of Lon protease (LONP1), an enzyme involved in mitochondrial quality control. We found that LONP1 is an essential protein for life and that it also performs a critical function in tumorigenesis by regulating the bioenergetics of cancer cells.
Collapse
Affiliation(s)
- Pedro M Quirós
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología; Universidad de Oviedo ; Oviedo, Spain
| | - Clea Bárcena
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología; Universidad de Oviedo ; Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología; Universidad de Oviedo ; Oviedo, Spain
| |
Collapse
|
222
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 740] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
223
|
Expression of mitochondrial regulators PGC1α and TFAM as putative markers of subtype and chemoresistance in epithelial ovarian carcinoma. PLoS One 2014; 9:e107109. [PMID: 25243473 PMCID: PMC4170973 DOI: 10.1371/journal.pone.0107109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 08/13/2014] [Indexed: 12/31/2022] Open
Abstract
Epithelial ovarian carcinoma (EOC), the major cause of gynaecological cancer death, is a heterogeneous disease classified into five subtypes. Each subtype has distinct clinical characteristics and is associated with different genetic risk factors and molecular events, but all are treated with surgery and platinum/taxane regimes. Tumour progression and chemoresistance is generally associated with major metabolic alterations, notably altered mitochondrial function(s). Here, we report for the first time that the expression of the mitochondrial regulators PGC1α and TFAM varies between EOC subtypes; furthermore, we have identified a profile in clear-cell carcinoma consisting of undetectability of PGC1α/TFAM, and low ERα/Ki-67. By contrast, high-grade serous carcinomas were characterised by a converse state of PGC1α/TFAM, ERα positivity and a high Ki-67 index. Interestingly, loss of PGC1α/TFAM and ERα was found also in a non-clear cell EOC cell line made highly resistant to platinum in vitro. Similar to clear-cell carcinomas, these resistant cells also showed accumulation of glycogen. Altogether, our data provide mechanistic insights into the chemoresistant nature of ovarian clear-cell carcinomas. Furthermore, these findings corroborate the need to take into account the diversity of EOC and to develop subtype specific treatment strategies.
Collapse
|
224
|
Gibellini L, Pinti M, Boraldi F, Giorgio V, Bernardi P, Bartolomeo R, Nasi M, De Biasi S, Missiroli S, Carnevale G, Losi L, Tesei A, Pinton P, Quaglino D, Cossarizza A. Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. FASEB J 2014; 28:5122-35. [DOI: 10.1096/fj.14-255869] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lara Gibellini
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Marcello Pinti
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Federica Boraldi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | | | - Paolo Bernardi
- Department of Biomedical SciencesUniversity of PadovaPaduaItaly
| | - Regina Bartolomeo
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sonia Missiroli
- Department of Morphology, Surgery, and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Lorena Losi
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Anna Tesei
- Biosciences LaboratoryIRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST)MeldolaItaly
| | - Paolo Pinton
- Department of Morphology, Surgery, and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Daniela Quaglino
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Andrea Cossarizza
- Department of Surgery, Medicine, Dentistry, and Morphological SciencesUniversity of Modena and Reggio EmiliaModenaItaly
- Dipartimento Sperimentale Interaziendale, Campus San LazzaroUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| |
Collapse
|
225
|
Hofer A, Wenz T. Post-translational modification of mitochondria as a novel mode of regulation. Exp Gerontol 2014; 56:202-20. [DOI: 10.1016/j.exger.2014.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/01/2014] [Accepted: 03/04/2014] [Indexed: 12/26/2022]
|
226
|
ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep 2014; 8:542-56. [PMID: 25017063 DOI: 10.1016/j.celrep.2014.06.018] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 03/19/2014] [Accepted: 06/12/2014] [Indexed: 12/22/2022] Open
Abstract
We generated mice deficient in Lon protease (LONP1), a major enzyme of the mitochondrial quality control machinery. Homozygous deletion of Lonp1 causes early embryonic lethality, whereas its haploinsufficiency protects against colorectal and skin tumors. Furthermore, LONP1 knockdown inhibits cellular proliferation and tumor and metastasis formation, whereas its overexpression increases tumorigenesis. Clinical studies indicate that high levels of LONP1 are a poor prognosis marker in human colorectal cancer and melanoma. Additionally, functional analyses show that LONP1 plays a key role in metabolic reprogramming by remodeling OXPHOS complexes and protecting against senescence. Our findings demonstrate the relevance of LONP1 for cellular and organismal viability and identify this protease as a central regulator of mitochondrial activity in oncogenesis.
Collapse
|
227
|
PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet 2014; 10:e1004279. [PMID: 24874806 PMCID: PMC4038460 DOI: 10.1371/journal.pgen.1004279] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Loss-of-function mutations in PINK1, which encodes a mitochondrially targeted serine/threonine kinase, result in an early-onset heritable form of Parkinson's disease. Previous work has shown that PINK1 is constitutively degraded in healthy cells, but selectively accumulates on the surface of depolarized mitochondria, thereby initiating their autophagic degradation. Although PINK1 is known to be a cleavage target of several mitochondrial proteases, whether these proteases account for the constitutive degradation of PINK1 in healthy mitochondria remains unclear. To explore the mechanism by which PINK1 is degraded, we performed a screen for mitochondrial proteases that influence PINK1 abundance in the fruit fly Drosophila melanogaster. We found that genetic perturbations targeting the matrix-localized protease Lon caused dramatic accumulation of processed PINK1 species in several mitochondrial compartments, including the matrix. Knockdown of Lon did not decrease mitochondrial membrane potential or trigger activation of the mitochondrial unfolded protein stress response (UPRmt), indicating that PINK1 accumulation in Lon-deficient animals is not a secondary consequence of mitochondrial depolarization or the UPRmt. Moreover, the influence of Lon on PINK1 abundance was highly specific, as Lon inactivation had little or no effect on the abundance of other mitochondrial proteins. Further studies indicated that the processed forms of PINK1 that accumulate upon Lon inactivation are capable of activating the PINK1-Parkin pathway in vivo. Our findings thus suggest that Lon plays an essential role in regulating the PINK1-Parkin pathway by promoting the degradation of PINK1 in the matrix of healthy mitochondria.
Collapse
|
228
|
Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM. Biochem Biophys Res Commun 2014; 450:166-71. [PMID: 24875355 DOI: 10.1016/j.bbrc.2014.05.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/19/2014] [Indexed: 11/23/2022]
Abstract
The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.
Collapse
|
229
|
Wang KZQ, Zhu J, Dagda RK, Uechi G, Cherra SJ, Gusdon AM, Balasubramani M, Chu CT. ERK-mediated phosphorylation of TFAM downregulates mitochondrial transcription: implications for Parkinson's disease. Mitochondrion 2014; 17:132-40. [PMID: 24768991 DOI: 10.1016/j.mito.2014.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/07/2014] [Accepted: 04/14/2014] [Indexed: 01/01/2023]
Abstract
Mitochondrial transcription factor A (TFAM) regulates mitochondrial biogenesis, which is downregulated by extracellular signal-regulated protein kinases (ERK1/2) in cells treated chronically with the complex I inhibitor 1-methyl-4-phenylpyridinium (MPP+). We utilized mass spectrometry to identify ERK1/2-dependent TFAM phosphorylation sites. Mutation of TFAM at serine 177 to mimic phosphorylation recapitulated the effects of MPP+ in decreasing the binding of TFAM to the light strand promoter, suppressing mitochondrial transcription. Mutant TFAM was unable to affect respiratory function or rescue the effects of MPP+ on respiratory complexes. These data disclose a novel mechanism by which ERK1/2 regulates mitochondrial function through direct phosphorylation of TFAM.
Collapse
Affiliation(s)
- Kent Z Q Wang
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jianhui Zhu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ruben K Dagda
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Guy Uechi
- The Genomics and Proteomics Core Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Salvatore J Cherra
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Aaron M Gusdon
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Manimalha Balasubramani
- The Genomics and Proteomics Core Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Charleen T Chu
- Department of Pathology, Division of Neuropathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; The Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA; The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
230
|
Santos JM, Mishra M, Kowluru RA. Posttranslational modification of mitochondrial transcription factor A in impaired mitochondria biogenesis: implications in diabetic retinopathy and metabolic memory phenomenon. Exp Eye Res 2014; 121:168-77. [PMID: 24607487 DOI: 10.1016/j.exer.2014.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/17/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial transcription factor A (TFAM) is one of the key regulators of the transcription of mtDNA. In diabetes, despite increase in gene transcripts of TFAM, its protein levels in the mitochondria are decreased and mitochondria copy numbers become subnormal. The aim of this study is to investigate the mechanism(s) responsible for decreased mitochondrial TFAM in diabetes. Using retinal endothelial cells, we have investigated the effect of overexpression of cytosolic chaperone, Hsp70, and TFAM on glucose-induced decrease in mitochondrial TFAM levels, and the transcription of mtDNA-encoded genes, NADH dehydrogenase subunit 6 (ND6) and cytochrome b (Cytb). To investigate the role of posttranslational modifications in subnormal mitochondrial TFAM, ubiquitination of TFAM was assessed, and the results were confirmed in the retina from streptozotocin-induced diabetic rats. While overexpression of Hsp70 failed to prevent glucose-induced decrease in mitochondrial TFAM and transcripts of ND6 and Cytb, overexpression of TFAM ameliorated decrease in its mitochondrial protein levels and transcriptional activity. TFAM was ubiquitinated by high glucose, and PYR-41, an inhibitor of ubiquitination, prevented TFAM ubiquitination and restored the transcriptional activity. Similarly, TFAM was ubiquitinated in the retina from diabetic rats, and it continued to be modified after reinstitution of normal glycemia. Our results clearly imply that the ubiquitination of TFAM impedes its transport to the mitochondria resulting in subnormal mtDNA transcription and mitochondria dysfunction, and inhibition of ubiquitination restores mitochondrial homeostasis. Reversal of hyperglycemia does not provide any benefit to TFAM ubiquitination. Thus, strategies targeting posttranslational modification could provide an avenue to preserve mitochondrial homeostasis, and inhibit the development/progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Julia M Santos
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA
| | - Manish Mishra
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA.
| |
Collapse
|
231
|
Bezawork-Geleta A, Saiyed T, Dougan DA, Truscott KN. Mitochondrial matrix proteostasis is linked to hereditary paraganglioma: LON-mediated turnover of the human flavinylation factor SDH5 is regulated by its interaction with SDHA. FASEB J 2014; 28:1794-804. [PMID: 24414418 DOI: 10.1096/fj.13-242420] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Mutations in succinate dehydrogenase (SDH) subunits and assembly factors cause a range of clinical conditions. One such condition, hereditary paraganglioma 2 (PGL2), is caused by a G78R mutation in the assembly factor SDH5. Although SDH5(G78R) is deficient in its ability to promote SDHA flavinylation, it has remained unclear whether impairment to its import, structure, or stability contributes to its loss of function. Using import-chase analysis in human mitochondria isolated from HeLa cells, we found that the import and maturation of human SDH5(G78R) was normal, while its stability was reduced significantly, with ~25% of the protein remaining after 180 min compared to ~85% for the wild-type protein. Notably, the metabolic stability of SDH5(G78R) was restored to wild-type levels by depleting mitochondrial LON (LONM). Degradation of SDH5(G78R) by LONM was confirmed in vitro; however, in contrast to the in organello analysis, wild-type SDH5 was also rapidly degraded by LONM. SDH5 instability was confirmed in SDHA-depleted mitochondria. Blue native PAGE showed that imported SDH5(G78R) formed a transient complex with SDHA; however, this complex was stabilized in LONM depleted mitochondria. These data demonstrate that SDH5 is protected from LONM-mediated degradation in mitochondria by its stable interaction with SDHA, a state that is dysregulated in PGL2.
Collapse
Affiliation(s)
- Ayenachew Bezawork-Geleta
- 2Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Australia. K.N.T.,
| | | | | | | |
Collapse
|
232
|
Morozov YI, Agaronyan K, Cheung ACM, Anikin M, Cramer P, Temiakov D. A novel intermediate in transcription initiation by human mitochondrial RNA polymerase. Nucleic Acids Res 2014; 42:3884-93. [PMID: 24393772 PMCID: PMC3973326 DOI: 10.1093/nar/gkt1356] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The mitochondrial genome is transcribed by a single-subunit T7 phage-like RNA polymerase (mtRNAP), structurally unrelated to cellular RNAPs. In higher eukaryotes, mtRNAP requires two transcription factors for efficient initiation-TFAM, a major nucleoid protein, and TFB2M, a transient component of mtRNAP catalytic site. The mechanisms behind assembly of the mitochondrial transcription machinery and its regulation are poorly understood. We isolated and identified a previously unknown human mitochondrial transcription intermediate-a pre-initiation complex that includes mtRNAP, TFAM and promoter DNA. Using protein-protein cross-linking, we demonstrate that human TFAM binds to the N-terminal domain of mtRNAP, which results in bending of the promoter DNA around mtRNAP. The subsequent recruitment of TFB2M induces promoter melting and formation of an open initiation complex. Our data indicate that the pre-initiation complex is likely to be an important target for transcription regulation and provide basis for further structural, biochemical and biophysical studies of mitochondrial transcription.
Collapse
Affiliation(s)
- Yaroslav I Morozov
- Department of Cell Biology, School of Osteopathic Medicine, Rowan University, Medical Center Dr, Stratford, NJ 08084, USA and Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
233
|
Baldelli S, Lettieri Barbato D, Tatulli G, Aquilano K, Ciriolo MR. The role of nNOS and PGC-1α in skeletal muscle cells. J Cell Sci 2014; 127:4813-20. [DOI: 10.1242/jcs.154229] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuronal nitric oxide synthase (nNOS) and peroxisome proliferator activated receptor γ co-activator 1α (PGC-1α) are two fundamental factors involved in the regulation of skeletal muscle cell metabolism. nNOS exists as several alternatively spliced variants, each having a specific pattern of subcellular localisation. Nitric oxide (NO) functions as a second messenger in signal transduction pathways that lead to the expression of metabolic genes involved in oxidative metabolism, vasodilatation and skeletal muscle contraction. PGC-1α is a transcriptional coactivator and represents a master regulator of mitochondrial biogenesis by promoting the transcription of mitochondrial genes. PGC-1α can be induced during physical exercise, and it plays a key role in coordinating the oxidation of intracellular fatty acids with mitochondrial remodelling. Several lines of evidence demonstrate that NO could act as a key regulator of PGC-1α expression; however, the link between nNOS and PGC-1α in skeletal muscle remains only poorly understood. In this Commentary, we review important metabolic pathways that are governed by nNOS and PGC-1α, and aim to highlight how they might intersect and cooperatively regulate skeletal muscle mitochondrial and lipid energetic metabolism and contraction.
Collapse
|
234
|
Deceglie S, Lionetti C, Stewart JB, Habermann B, Roberti M, Cantatore P, Loguercio Polosa P. Characterization of the sea urchin mitochondrial transcription factor A reveals unusual features. Mitochondrion 2014; 14:34-41. [DOI: 10.1016/j.mito.2013.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 09/27/2013] [Accepted: 10/22/2013] [Indexed: 11/25/2022]
|
235
|
Sharma NK, Lebedeva M, Thomas T, Kovalenko OA, Stumpf JD, Shadel GS, Santos JH. Intrinsic mitochondrial DNA repair defects in Ataxia Telangiectasia. DNA Repair (Amst) 2014; 13:22-31. [PMID: 24342190 PMCID: PMC6211587 DOI: 10.1016/j.dnarep.2013.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/12/2013] [Accepted: 11/26/2013] [Indexed: 12/28/2022]
Abstract
Ataxia Telangiectasia (A-T) is a progressive childhood disorder characterized most notably by cerebellar degeneration and predisposition to cancer. A-T is caused by mutations in the kinase ATM, a master regulator of the DNA double-strand break response. In addition to DNA-damage signaling defects, A-T cells display mitochondrial dysfunction that is thought to contribute to A-T pathogenesis. However, the molecular mechanism leading to mitochondrial dysfunction in A-T remains unclear. Here, we show that lack of ATM leads to reduced mitochondrial DNA (mtDNA) integrity and mitochondrial dysfunction, which are associated to defective mtDNA repair. While protein levels of mtDNA repair proteins are essentially normal, in the absence of ATM levels specifically of DNA ligase III (Lig3), the only DNA ligase working in mitochondria is reduced. The reduction of Lig3 is observed in different A-T patient cells, in brain and pre-B cells derived from ATM knockout mice as well as upon transient or stable knockdown of ATM. Furthermore, pharmacological inhibition of Lig3 in wild type cells phenocopies the mtDNA repair defects observed in A-T patient cells. As targeted deletion of LIG3 in the central nervous system causes debilitating ataxia in mice, reduced Lig3 protein levels and the consequent mtDNA repair defect may contribute to A-T neurodegeneration. A-T is thus the first disease characterized by diminished Lig3.
Collapse
Affiliation(s)
- Nilesh K Sharma
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States
| | - Maria Lebedeva
- Department of Genetics, Yale School of Medicine, 310 Cedar Street, BML 371, New Haven, CT 06520, United States
| | - Terace Thomas
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States
| | - Olga A Kovalenko
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States
| | - Jeffrey D Stumpf
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences (NIEHS), 111 TW Alexander Drive, Building 101, Durham, NC 27709, United States
| | - Gerald S Shadel
- Department of Genetics, Yale School of Medicine, 310 Cedar Street, BML 371, New Haven, CT 06520, United States; Department of Pathology, Yale School of Medicine, 310 Cedar Street, BML 371, New Haven, CT 06520, United States
| | - Janine H Santos
- Department of Pharmacology and Physiology, New Jersey Medical School of UMDNJ, 185 South Orange Avenue, Medical Sciences Building, Newark, NJ 07103, United States.
| |
Collapse
|
236
|
Bayot A, Gareil M, Chavatte L, Hamon MP, L'Hermitte-Stead C, Beaumatin F, Priault M, Rustin P, Lombès A, Friguet B, Bulteau AL. Effect of Lon protease knockdown on mitochondrial function in HeLa cells. Biochimie 2013; 100:38-47. [PMID: 24355201 DOI: 10.1016/j.biochi.2013.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/04/2013] [Indexed: 11/16/2022]
Abstract
ATP-dependent proteases are currently emerging as key regulators of mitochondrial functions. Among these proteolytic systems, Lon protease is involved in the control of selective protein turnover in the mitochondrial matrix. In the absence of Lon, yeast cells have been shown to accumulate electron-dense inclusion bodies in the matrix space, to loose integrity of mitochondrial genome and to be respiratory deficient. In order to address the role of Lon in mitochondrial functionality in human cells, we have set up a HeLa cell line stably transfected with a vector expressing a shRNA under the control of a promoter which is inducible with doxycycline. We have demonstrated that reduction of Lon protease results in a mild phenotype in this cell line in contrast with what have been observed in other cell types such as WI-38 fibroblasts. Nevertheless, deficiency in Lon protease led to an increase in ROS production and to an accumulation of carbonylated protein in the mitochondria. Our study suggests that Lon protease has a wide variety of targets and is likely to play different roles depending of the cell type.
Collapse
Affiliation(s)
- Aurélien Bayot
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France; Inserm, Hopital Robert Debré, 75019 Paris, France
| | - Monique Gareil
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Laurent Chavatte
- Centre de recherche de Gif-sur-Yvette, FRC 3115, Centre de Génétique Moléculaire, CNRS, UPR3404, 91198 Gif-sur-Yvette Cedex, France
| | - Marie-Paule Hamon
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | | | - Florian Beaumatin
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS, Université Bordeaux 2, France
| | - Muriel Priault
- Institut de Biochimie et Génétique Cellulaires, UMR 5095, CNRS, Université Bordeaux 2, France
| | | | - Anne Lombès
- Inserm, Institut Cochin, 75014 Paris, France
| | - Bertrand Friguet
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France.
| | - Anne-Laure Bulteau
- UR4 - Vieillissement, Stress, Inflammation, Sorbonne Universités, UPMC Univ Paris 06, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
237
|
Abstract
Stemming from the pioneering studies of bioenergetics in the 1950s, 1960s, and 1970s, mitochondria have become ingrained in the collective psyche of scientists as the "powerhouses" of the cell. While this remains a worthy moniker, more recent efforts have revealed that these organelles are home to a vast array of metabolic and signaling processes and possess a proteomic landscape that is both highly varied and largely uncharted. As mitochondrial dysfunction is increasingly being implicated in a spectrum of human diseases, it is imperative that we construct a more complete framework of these organelles by systematically defining the functions of their component parts. Powerful new approaches in biochemistry and systems biology are helping to fill in the gaps.
Collapse
Affiliation(s)
- David J. Pagliarini
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
238
|
Lefkimmiatis K, Leronni D, Hofer AM. The inner and outer compartments of mitochondria are sites of distinct cAMP/PKA signaling dynamics. ACTA ACUST UNITED AC 2013; 202:453-62. [PMID: 23897891 PMCID: PMC3734087 DOI: 10.1083/jcb.201303159] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
FRET-based sensors for cAMP and PKA activity reveal that mitochondrial subcompartments host segregated cAMP cascades with distinct functional and kinetic signatures. Cyclic AMP (cAMP)-dependent phosphorylation has been reported to exert biological effects in both the mitochondrial matrix and outer mitochondrial membrane (OMM). However, the kinetics, targets, and effectors of the cAMP cascade in these organellar domains remain largely undefined. Here we used sensitive FRET-based sensors to monitor cAMP and protein kinase A (PKA) activity in different mitochondrial compartments in real time. We found that cytosolic cAMP did not enter the matrix, except during mitochondrial permeability transition. Bicarbonate treatment (expected to activate matrix-bound soluble adenylyl cyclase) increased intramitochondrial cAMP, but along with membrane-permeant cAMP analogues, failed to induce measureable matrix PKA activity. In contrast, the OMM proved to be a domain of exceptionally persistent cAMP-dependent PKA activity. Although cAMP signaling events measured on the OMM mirrored those of the cytosol, PKA phosphorylation at the OMM endured longer as a consequence of diminished control by local phosphatases. Our findings demonstrate that mitochondria host segregated cAMP cascades with distinct functional and kinetic signatures.
Collapse
Affiliation(s)
- Konstantinos Lefkimmiatis
- VA Boston Healthcare System and 2 Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, West Roxbury, MA 02132, USA.
| | | | | |
Collapse
|
239
|
Kasashima K, Nagao Y, Endo H. Dynamic regulation of mitochondrial genome maintenance in germ cells. Reprod Med Biol 2013; 13:11-20. [PMID: 24482608 PMCID: PMC3890057 DOI: 10.1007/s12522-013-0162-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/04/2013] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play a crucial role in the development and function of germ cells. Mitochondria contain a maternally inherited genome that should be transmitted to offspring without reactive oxygen species‐induced damage during germ line development. Germ cells are also involved in the mitochondrial DNA (mtDNA) bottleneck; thus, the appropriate regulation of mtDNA in these cells is very important for this characteristic transmission. In this review, we focused on unique regulation of the mitochondrial genome in animal germ cells; paternal elimination and the mtDNA bottleneck in females. We also summarized the mitochondrial nucleoid factors involved in various mtDNA regulation pathways. Among them, mitochondrial transcription factor A (TFAM), which has pleiotropic and essential roles in mtDNA maintenance, appears to have putative roles in germ cell regulation.
Collapse
Affiliation(s)
- Katsumi Kasashima
- Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 Japan
| | - Yasumitsu Nagao
- Center for Experimental Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498 Japan
| | - Hitoshi Endo
- Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498 Japan
| |
Collapse
|
240
|
Dominy JE, Puigserver P. Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harb Perspect Biol 2013; 5:5/7/a015008. [PMID: 23818499 DOI: 10.1101/cshperspect.a015008] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The dynamics of mitochondrial biogenesis and function is a complex interplay of cellular and molecular processes that ultimately shape bioenergetics capacity. Mitochondrial mass, by itself, represents the net balance between rates of biogenesis and degradation. Mitochondrial biogenesis is dependent on different signaling cascades and transcriptional complexes that promote the formation and assembly of mitochondria--a process that is heavily dependent on timely and coordinated transcriptional control of genes encoding for mitochondrial proteins. In this article, we discuss the major signals and transcriptional complexes, programming mitochondrial biogenesis, and bioenergetic activity. This regulatory network represents a new therapeutic window into the treatment of the wide spectrum of mitochondrial and neurodegenerative diseases characterized by dysregulation of mitochondrial dynamics and bioenergetic deficiencies.
Collapse
Affiliation(s)
- John E Dominy
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
241
|
Goard CA, Schimmer AD. Mitochondrial matrix proteases as novel therapeutic targets in malignancy. Oncogene 2013; 33:2690-9. [PMID: 23770858 DOI: 10.1038/onc.2013.228] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/23/2013] [Accepted: 04/30/2013] [Indexed: 12/30/2022]
Abstract
Although mitochondrial function is often altered in cancer, it remains essential for tumor viability. Tight control of protein homeostasis is required for the maintenance of mitochondrial function, and the mitochondrial matrix houses several coordinated protein quality control systems. These include three evolutionarily conserved proteases of the AAA+ superfamily-the Lon, ClpXP and m-AAA proteases. In humans, these proteases are proposed to degrade, process and chaperone the assembly of mitochondrial proteins in the matrix and inner membrane involved in oxidative phosphorylation, mitochondrial protein synthesis, mitochondrial network dynamics and nucleoid function. In addition, these proteases are upregulated by a variety of mitochondrial stressors, including oxidative stress, unfolded protein stress and imbalances in respiratory complex assembly. Given that tumor cells must survive and proliferate under dynamic cellular stress conditions, dysregulation of mitochondrial protein quality control systems may provide a selective advantage. The association of mitochondrial matrix AAA+ proteases with cancer and their potential for therapeutic modulation therefore warrant further consideration. Although our current knowledge of the endogenous human substrates of these proteases is limited, we highlight functional insights gained from cultured human cells, protease-deficient mouse models and other eukaryotic model organisms. We also review the consequences of disrupting mitochondrial matrix AAA+ proteases through genetic and pharmacological approaches, along with implications of these studies on the potential of these proteases as anticancer therapeutic targets.
Collapse
Affiliation(s)
- C A Goard
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - A D Schimmer
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
242
|
Bestwick ML, Shadel GS. Accessorizing the human mitochondrial transcription machinery. Trends Biochem Sci 2013; 38:283-91. [PMID: 23632312 PMCID: PMC3698603 DOI: 10.1016/j.tibs.2013.03.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/18/2013] [Accepted: 03/26/2013] [Indexed: 12/29/2022]
Abstract
The human genome comprises large chromosomes in the nucleus and mitochondrial DNA (mtDNA) housed in the dynamic mitochondrial network. Human cells contain up to thousands of copies of the double-stranded, circular mtDNA molecule that encodes essential subunits of the oxidative phosphorylation complexes and the rRNAs and tRNAs needed to translate these in the organelle matrix. Transcription of human mtDNA is directed by a single-subunit RNA polymerase, POLRMT, which requires two primary transcription factors, TFB2M (transcription factor B2, mitochondrial) and TFAM (transcription factor A, mitochondrial), to achieve basal regulation of the system. Here, we review recent advances in understanding the structure and function of the primary human transcription machinery and the other factors that facilitate steps in transcription beyond initiation and provide more intricate control over the system.
Collapse
Affiliation(s)
- Megan L. Bestwick
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
243
|
Kukat C, Larsson NG. mtDNA makes a U-turn for the mitochondrial nucleoid. Trends Cell Biol 2013; 23:457-63. [PMID: 23721879 DOI: 10.1016/j.tcb.2013.04.009] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 11/29/2022]
Abstract
Mitochondria contain mtDNA derived from the ancestral endosymbiont genome. Important subunits of the oxidative phosphorylation system, which supplies cells with the energy currency ATP, are encoded by mtDNA. A naked mtDNA molecule is longer than a typical mitochondrion and is therefore compacted in vivo to form a nucleoprotein complex, denoted the mitochondrial nucleoid. Mitochondrial transcription factor A (TFAM) is the main factor packaging mtDNA into nucleoids and is also essential for mtDNA transcription initiation. The crystal structure of TFAM shows that it bends mtDNA in a sharp U-turn, which likely provides the structural basis for its dual functions. Super-resolution imaging studies have revealed that the nucleoid has an average diameter of ∼100nm and frequently contains a single copy of mtDNA. In this review the structure of the mitochondrial nucleoid and its possible regulatory roles in mtDNA expression will be discussed.
Collapse
Affiliation(s)
- Christian Kukat
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany
| | | |
Collapse
|
244
|
Jain S, Rathore S, Asad M, Hossain ME, Sinha D, Datta G, Mohmmed A. The prokaryotic ClpQ protease plays a key role in growth and development of mitochondria in Plasmodium falciparum. Cell Microbiol 2013; 15:1660-73. [PMID: 23521916 DOI: 10.1111/cmi.12142] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/18/2013] [Accepted: 03/14/2013] [Indexed: 01/17/2023]
Abstract
The ATP-dependent ClpQY system is a prokaryotic proteasome-like multi-subunit machinery localized in the mitochondrion of malaria parasite. The ClpQY machinery consists of ClpQ threonine protease and ClpY ATPase. In the present study, we have assessed cellular effects of transient interference of PfClpQ protease activity in Plasmodium falciparum using a trans-dominant negative approach combined with FKBP degradation domain system. A proteolytically inactive mutant PfClpQ protein [PfClpQ(mut)] fused with FKBP degradation domain was expressed in parasites, which gets stabilized by Shield1 drug treatment. We show that the inactive PfClpQ(mut) interacts with wild-type PfClpQ and associates within multi-subunit complex in the parasite. Stabilization of the PfClpQ(mut) and its association in the protease machinery caused dominant negative effect in the transgenic parasites, which disrupted the growth cycle of asexual blood stage parasites. The mitochondria in these parasites showed abnormal morphology, these mitochondria were not able to grow and divide in the parasite. We further show that the dominant negative effect of PfClpQ(mut) disrupted transcription of mitochondrial genome encoded genes, which in turn blocked normal development and functioning of the mitochondria.
Collapse
Affiliation(s)
- Shaifali Jain
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110 067, India
| | | | | | | | | | | | | |
Collapse
|
245
|
U-turn DNA bending by human mitochondrial transcription factor A. Curr Opin Struct Biol 2013; 23:116-24. [PMID: 23333034 DOI: 10.1016/j.sbi.2012.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 02/03/2023]
Abstract
Transcription factor A (TFAM) is involved in the transcription regulation, maintenance and compaction of the mitochondrial genome. Recent structural data on TFAM showed its mode of operation and clarified previous biochemical and genetic results. In solution, TFAM is highly dynamic. According to crystal structures of its complex with the cognate light-strand promoter (LSP) binding sequence, it intertwines and dramatically bends DNA, thereby allowing interactions with the transcription initiation machinery. Recent studies have shown TFAM sliding on non-specific DNA, which induces compaction by increasing DNA flexibility. Finally, the structural localization of disease-related TFAM mutations suggests functional impairment at the molecular level.
Collapse
|
246
|
Bahat A, Perlberg S, Melamed-Book N, Lauria I, Langer T, Orly J. StAR enhances transcription of genes encoding the mitochondrial proteases involved in its own degradation. Mol Endocrinol 2013; 28:208-24. [PMID: 24422629 DOI: 10.1210/me.2013-1275] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroidogenic acute regulatory protein (StAR) is essential for steroid hormone synthesis in the adrenal cortex and the gonads. StAR activity facilitates the supply of cholesterol substrate into the inner mitochondrial membranes where conversion of the sterol to a steroid is catalyzed. Mitochondrial import terminates the cholesterol mobilization activity of StAR and leads to mounting accumulation of StAR in the mitochondrial matrix. Our studies suggest that to prevent mitochondrial impairment, StAR proteolysis is executed by at least 2 mitochondrial proteases, ie, the matrix LON protease and the inner membrane complexes of the metalloproteases AFG3L2 and AFG3L2:SPG7/paraplegin. Gonadotropin administration to prepubertal rats stimulated ovarian follicular development associated with increased expression of the mitochondrial protein quality control system. In addition, enrichment of LON and AFG3L2 is evident in StAR-expressing ovarian cells examined by confocal microscopy. Furthermore, reporter studies of the protease promoters examined in the heterologous cell model suggest that StAR expression stimulates up to a 3.5-fold increase in the protease gene transcription. Such effects are StAR-specific, are independent of StAR activity, and failed to occur upon expression of StAR mutants that do not enter the matrix. Taken together, the results of this study suggest the presence of a novel regulatory loop, whereby acute accumulation of an apparent nuisance protein in the matrix provokes a mitochondria to nucleus signaling that, in turn, activates selected transcription of genes encoding the enrichment of mitochondrial proteases relevant for enhanced clearance of StAR.
Collapse
Affiliation(s)
- Assaf Bahat
- Department of Biological Chemistry (A.B., S.P., J.O.) and Bio-Imaging Unit (N.M.-B.), The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel; and Institute for Genetics (I.L., T.L.), Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50931 Cologne, Germany
| | | | | | | | | | | |
Collapse
|