201
|
Abstract
Autophagy is a conserved, self-degradation system that is critical for maintaining cellular homeostasis during stress conditions. Dysregulated autophagy has implications in health and disease. Specifically, in cancer, autophagy plays a dichotomous role by inhibiting tumor initiation but supporting tumor progression. Early results from clinical trials that repurposed hydroxychloroquine for cancer have suggested that autophagy inhibition may be a promising approach for advanced cancers. In this review of the literature, the authors present fundamental advances in the biology of autophagy, approaches to targeting autophagy, the preclinical rationale and clinical experience with hydroxychloroquine in cancer clinical trials, the potential role of autophagy in tumor immunity, and recent developments in next-generation autophagy inhibitors that have clinical potential. Autophagy is a promising target for drug development in cancer. Cancer 2018. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Angelique V Onorati
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matheus Dyczynski
- Department of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden
| | - Rani Ojha
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K Amaravadi
- Department of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
202
|
Marsh D, Dragich JM. Autophagy in mammalian neurodevelopment and implications for childhood neurological disorders. Neurosci Lett 2018; 697:29-33. [PMID: 29665429 DOI: 10.1016/j.neulet.2018.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 01/05/2023]
Abstract
Here we explore the neurodevelopmental aspects of macroautophagy (henceforth known as autophagy), the process by which cells remove and remodel their structure in a regulated and spatially restricted manner. Autophagy is a catabolic pathway in which cytosolic substances, such as protein complexes, lipids, and organelles, are engulfed by an autophagic vesicle. Degradation occurs once an autophagosome fuses with a lysosome, allowing the macromolecular cargo sequestered within the autophagic vesicle to be recycled. It is firmly established that autophagy plays a pivotal role in maintaining cellular homeostasis. Nevertheless, new evidence has emerged that the molecular mechanisms which regulate brain growth and neuronal connectivity involve autophagic processes. Our aim, as we endeavor to review data from model systems, is to show that autophagy performs a fundamental role in the development of the central nervous system (CNS). Moreover, we discuss human genetic data to underscore that mutations in autophagy-related genes are a contributing factor in childhood neurological disorders. To emphasize the importance of regulated vesicle transport pathways during the formation of the CNS, we discuss autophagy in relation to endosomal sorting to the lysosome, and explore how these mechanisms might intersect to regulate developmental events. We maintain that a deeper understanding of the function of autophagy in the CNS can shed new light on the biological basis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Derek Marsh
- Biology Department, Manhattan College, Riverdale, NY, United States
| | - Joanna M Dragich
- Biology Department, Manhattan College, Riverdale, NY, United States; Department of Neurology, Columbia University Medical Center, New York, NY, United States.
| |
Collapse
|
203
|
Kriegenburg F, Ungermann C, Reggiori F. Coordination of Autophagosome–Lysosome Fusion by Atg8 Family Members. Curr Biol 2018; 28:R512-R518. [DOI: 10.1016/j.cub.2018.02.034] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
204
|
Mastrodonato V, Morelli E, Vaccari T. How to use a multipurpose SNARE: The emerging role of Snap29 in cellular health. Cell Stress 2018; 2:72-81. [PMID: 31225470 PMCID: PMC6551745 DOI: 10.15698/cst2018.04.130] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Despite extensive study, regulation of membrane trafficking is incompletely understood. In particular, the specific role of SNARE (Soluble NSF Attachment REceptor) proteins for distinct trafficking steps and their mechanism of action, beyond the core function in membrane fusion, are still elusive. Snap29 is a SNARE protein related to Snap25 that gathered a lot of attention in recent years. Here, we review the study of Snap29 and its emerging involvement in autophagy, a self eating process that is key to cell adaptation to changing environments, and in other trafficking pathways. We also discuss Snap29 role in synaptic transmission and in cell division, which might extend the repertoire of SNARE-mediated functions. Finally, we present evidence connecting Snap29 to human disease, highlighting the importance of Snap29 function in tissue development and homeostasis.
Collapse
Affiliation(s)
| | - Elena Morelli
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Italy
| |
Collapse
|
205
|
Genetic aberrations in macroautophagy genes leading to diseases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018. [PMID: 29524522 DOI: 10.1016/j.bbamcr.2018.03.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The catabolic process of macroautophagy, through the rapid degradation of unwanted cellular components, is involved in a multitude of cellular and organismal functions that are essential to maintain homeostasis. Those functions include adaptation to starvation, cell development and differentiation, innate and adaptive immunity, tumor suppression, autophagic cell death, and maintenance of stem cell stemness. Not surprisingly, an impairment or block of macroautophagy can lead to severe pathologies. A still increasing number of reports, in particular, have revealed that mutations in the autophagy-related (ATG) genes, encoding the key players of macroautophagy, are either the cause or represent a risk factor for the development of several illnesses. The aim of this review is to provide a comprehensive overview of the diseases and disorders currently known that are or could be caused by mutations in core ATG proteins but also in the so-called autophagy receptors, which provide specificity to the process of macroautophagy. Our compendium underlines the medical relevance of this pathway and underscores the importance of the eventual development of therapeutic approaches aimed at modulating macroautophagy.
Collapse
|
206
|
Kumar S, Jain A, Farzam F, Jia J, Gu Y, Choi SW, Mudd MH, Claude-Taupin A, Wester MJ, Lidke KA, Rusten TE, Deretic V. Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins. J Cell Biol 2018; 217:997-1013. [PMID: 29420192 PMCID: PMC5839791 DOI: 10.1083/jcb.201708039] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/12/2017] [Accepted: 12/22/2017] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a conserved eukaryotic process with metabolic, immune, and general homeostatic functions in mammalian cells. Mammalian autophagosomes fuse with lysosomes in a SNARE-driven process that includes syntaxin 17 (Stx17). How Stx17 translocates to autophagosomes is unknown. In this study, we show that the mechanism of Stx17 recruitment to autophagosomes in human cells entails the small guanosine triphosphatase IRGM. Stx17 directly interacts with IRGM, and efficient Stx17 recruitment to autophagosomes requires IRGM. Both IRGM and Stx17 directly interact with mammalian Atg8 proteins, thus being guided to autophagosomes. We also show that Stx17 is significant in defense against infectious agents and that Stx17-IRGM interaction is targeted by an HIV virulence factor Nef.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Ashish Jain
- Department of Molecular Cell Biology, Centre for Cancer Biomedicine, University of Oslo and Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Farzin Farzam
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM
| | - Jingyue Jia
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Yuexi Gu
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Seong Won Choi
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michal H Mudd
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Aurore Claude-Taupin
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael J Wester
- Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM
| | - Tor-Erik Rusten
- Department of Molecular Cell Biology, Centre for Cancer Biomedicine, University of Oslo and Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | - Vojo Deretic
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
207
|
Zhi X, Feng W, Rong Y, Liu R. Anatomy of autophagy: from the beginning to the end. Cell Mol Life Sci 2018; 75:815-831. [PMID: 28939950 PMCID: PMC11105611 DOI: 10.1007/s00018-017-2657-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
Autophagy is a highly regulated process in eukaryotes to maintain homeostasis and manage stress responses. Understanding the regulatory mechanisms and key players involved in autophagy will provide critical insights into disease-related pathogenesis and potential clinical treatments. In this review, we describe the hallmark events involved in autophagy, from its initiation, to the final destruction of engulfed targets. Furthermore, based on structural and biochemical data, we evaluate the roles of key players in these processes and provide rationale as to how they control autophagic events in a highly ordered manner.
Collapse
Affiliation(s)
- Xiaoyong Zhi
- Department of Food Science, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenzhi Feng
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yueguang Rong
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.
| | - Rong Liu
- Department of Food Science, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
208
|
The IAP family member BRUCE regulates autophagosome-lysosome fusion. Nat Commun 2018; 9:599. [PMID: 29426817 PMCID: PMC5807552 DOI: 10.1038/s41467-018-02823-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/02/2018] [Indexed: 11/22/2022] Open
Abstract
Autophagy has an important role in cellular homeostasis by degrading and recycling cytotoxic components. Ubiquitination is known to target cargoes for autophagy; however, key components of this pathway remain elusive. Here we performed an RNAi screen to uncover ubiquitin modifiers that are required for starvation-induced macroautophagy in mammalian cells. Our screen uncovered BRUCE/Apollon/Birc6, an IAP protein, as a new autophagy regulator. Depletion of BRUCE leads to defective fusion of autophagosomes and lysosomes. Mechanistically, BRUCE selectively interacts with two ATG8 members GABARAP and GABARAPL1, as well as with Syntaxin 17, which are all critical regulators of autophagosome–lysosome fusion. In addition, BRUCE colocalizes with LAMP2. Interestingly, a non-catalytic N-terminal BRUCE fragment that is sufficient to bind GABARAP/GABARAPL1 and Syntaxin 17, and to colocalize with LAMP2, rescues autolysosome formation in Bruce−/− cells. Thus, BRUCE promotes autolysosome formation independently of its ubiquitin-conjugating activity and is a regulator of both macroautophagy and apoptosis. The inhibitor of apoptosis (IAP) protein, BRUCE is known to ubiquitinate apoptosis regulators for proteasomal degradation. Here the authors show that BRUCE provides a bridge between LAMP2 on lysosomes and Atg8 family proteins on autophagosomes to support autophagosome-lysosome fusion.
Collapse
|
209
|
Piano Mortari E, Folgiero V, Marcellini V, Romania P, Bellacchio E, D'Alicandro V, Bocci C, Carrozzo R, Martinelli D, Petrini S, Axiotis E, Farroni C, Locatelli F, Schara U, Pilz D, Jungbluth H, Dionisi-Vici C, Carsetti R. The Vici syndrome protein EPG5 regulates intracellular nucleic acid trafficking linking autophagy to innate and adaptive immunity. Autophagy 2018; 14:22-37. [PMID: 29130391 PMCID: PMC5846549 DOI: 10.1080/15548627.2017.1389356] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 09/19/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022] Open
Abstract
Vici syndrome is a human inherited multi-system disorder caused by recessive mutations in EPG5, encoding the EPG5 protein that mediates the fusion of autophagosomes with lysosomes. Immunodeficiency characterized by lack of memory B cells and increased susceptibility to infection is an integral part of the condition, but the role of EPG5 in the immune system remains unknown. Here we show that EPG5 is indispensable for the transport of the TLR9 ligand CpG to the late endosomal-lysosomal compartment, and for TLR9-initiated signaling, a step essential for the survival of human memory B cells and their ultimate differentiation into plasma cells. Moreover, the predicted structure of EPG5 includes a membrane remodeling domain and a karyopherin-like domain, thus explaining its function as a carrier between separate vesicular compartments. Our findings indicate that EPG5, by controlling nucleic acids intracellular trafficking, links macroautophagy/autophagy to innate and adaptive immunity.
Collapse
Affiliation(s)
- E. Piano Mortari
- B cell Physiopathology Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - V. Folgiero
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - V. Marcellini
- B cell Physiopathology Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - P. Romania
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - E. Bellacchio
- Division of Metabolism, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - V. D'Alicandro
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - C. Bocci
- B cell Physiopathology Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - R. Carrozzo
- Unit for Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - D. Martinelli
- Division of Metabolism, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - S. Petrini
- Confocal Microscopy core facility, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - E. Axiotis
- B cell Physiopathology Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - C. Farroni
- B cell Physiopathology Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - F. Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
- Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - U. Schara
- 41 Pediatric Neurology, University Childrens Hospital, University of Duisburg-Essen, Essen, Germany
| | - D.T. Pilz
- West of Scotland Genetics Service, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - H. Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's and St. Thomas' Hospital NHS Foundation Trust, London, UK
- Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, UK
- Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, UK
| | - C. Dionisi-Vici
- Division of Metabolism, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - R. Carsetti
- B cell Physiopathology Unit, Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
210
|
Hesketh GG, Wartosch L, Davis LJ, Bright NA, Luzio JP. The Lysosome and Intracellular Signalling. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2018; 57:151-180. [PMID: 30097775 DOI: 10.1007/978-3-319-96704-2_6] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In addition to being the terminal degradative compartment of the cell's endocytic and autophagic pathways, the lysosome is a multifunctional signalling hub integrating the cell's response to nutrient status and growth factor/hormone signalling. The cytosolic surface of the limiting membrane of the lysosome is the site of activation of the multiprotein complex mammalian target of rapamycin complex 1 (mTORC1), which phosphorylates numerous cell growth-related substrates, including transcription factor EB (TFEB). Under conditions in which mTORC1 is inhibited including starvation, TFEB becomes dephosphorylated and translocates to the nucleus where it functions as a master regulator of lysosome biogenesis. The signalling role of lysosomes is not limited to this pathway. They act as an intracellular Ca2+ store, which can release Ca2+ into the cytosol for both local effects on membrane fusion and pleiotropic effects within the cell. The relationship and crosstalk between the lysosomal and endoplasmic reticulum (ER) Ca2+ stores play a role in shaping intracellular Ca2+ signalling. Lysosomes also perform other signalling functions, which are discussed. Current views of the lysosomal compartment recognize its dynamic nature. It includes endolysosomes, autolysosome and storage lysosomes that are constantly engaged in fusion/fission events and lysosome regeneration. How signalling is affected by individual lysosomal organelles being at different stages of these processes and/or at different sites within the cell is poorly understood, but is discussed.
Collapse
Affiliation(s)
- Geoffrey G Hesketh
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Lena Wartosch
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, School of Clinical Medicine, Wellcome Trust/MRC Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Luther J Davis
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, School of Clinical Medicine, Wellcome Trust/MRC Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Nicholas A Bright
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, School of Clinical Medicine, Wellcome Trust/MRC Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - J Paul Luzio
- Department of Clinical Biochemistry and Cambridge Institute for Medical Research, School of Clinical Medicine, Wellcome Trust/MRC Building, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
211
|
Yu L, Chen Y, Tooze SA. Autophagy pathway: Cellular and molecular mechanisms. Autophagy 2017; 14:207-215. [PMID: 28933638 PMCID: PMC5902171 DOI: 10.1080/15548627.2017.1378838] [Citation(s) in RCA: 1056] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/04/2017] [Accepted: 09/07/2017] [Indexed: 02/06/2023] Open
Abstract
Macroautophagy/autophagy is an essential, conserved self-eating process that cells perform to allow degradation of intracellular components, including soluble proteins, aggregated proteins, organelles, macromolecular complexes, and foreign bodies. The process requires formation of a double-membrane structure containing the sequestered cytoplasmic material, the autophagosome, that ultimately fuses with the lysosome. This review will define this process and the cellular pathways required, from the formation of the double membrane to the fusion with lysosomes in molecular terms, and in particular highlight the recent progress in our understanding of this complex process.
Collapse
Affiliation(s)
- Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Chen
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Sharon A. Tooze
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
212
|
Systematic Analysis of Human Cells Lacking ATG8 Proteins Uncovers Roles for GABARAPs and the CCZ1/MON1 Regulator C18orf8/RMC1 in Macroautophagic and Selective Autophagic Flux. Mol Cell Biol 2017; 38:MCB.00392-17. [PMID: 29038162 DOI: 10.1128/mcb.00392-17] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/04/2017] [Indexed: 12/26/2022] Open
Abstract
Selective autophagy and macroautophagy sequester specific organelles/substrates or bulk cytoplasm, respectively, inside autophagosomes as cargo for delivery to lysosomes. The mammalian ATG8 orthologues (MAP1LC3A/B/C and GABARAP/L1/L2) are ubiquitin (UB)-like proteins conjugated to the autophagosome membrane and are thought to facilitate cargo receptor recruitment, vesicle maturation, and lysosomal fusion. To elucidate the molecular functions of the ATG8 proteins, we engineered cells lacking genes for each subfamily as well as all six mammalian ATG8s. Loss of GABARAPs alone attenuates autophagic flux basally and in response to macroautophagic or selective autophagic stimuli, including parkin-dependent mitophagy, and cells lacking all ATG8 proteins accumulate cytoplasmic UB aggregates, which are resolved following ectopic expression of individual GABARAPs. Autophagosomes from cells lacking GABARAPs had reduced lysosomal content by quantitative proteomics, consistent with fusion defects, but accumulated regulators of late endosome (LE)/autophagosome maturation. Through interaction proteomics of proteins accumulating in GABARAP/L1/L2-deficient cells, we identified C18orf8/RMC1 as a new subunit of the CCZ1-MON1 RAB7 guanine exchange factor (GEF) that positively regulates RAB7 recruitment to LE/autophagosomes. This work defines unique roles for GABARAP and LC3 subfamilies in macroautophagy and selective autophagy and demonstrates how analysis of autophagic machinery in the absence of flux can identify new regulatory circuits.
Collapse
|
213
|
Baron O, Boudi A, Dias C, Schilling M, Nölle A, Vizcay-Barrena G, Rattray I, Jungbluth H, Scheper W, Fleck RA, Bates GP, Fanto M. Stall in Canonical Autophagy-Lysosome Pathways Prompts Nucleophagy-Based Nuclear Breakdown in Neurodegeneration. Curr Biol 2017; 27:3626-3642.e6. [PMID: 29174892 PMCID: PMC5723708 DOI: 10.1016/j.cub.2017.10.054] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 09/19/2017] [Accepted: 10/20/2017] [Indexed: 12/31/2022]
Abstract
The terminal stages of neuronal degeneration and death in neurodegenerative diseases remain elusive. Autophagy is an essential catabolic process frequently failing in neurodegeneration. Selective autophagy routes have recently emerged, including nucleophagy, defined as degradation of nuclear components by autophagy. Here, we show that, in a mouse model for the polyglutamine disease dentatorubral-pallidoluysian atrophy (DRPLA), progressive acquirement of an ataxic phenotype is linked to severe cerebellar cellular pathology, characterized by nuclear degeneration through nucleophagy-based LaminB1 degradation and excretion. We find that canonical autophagy is stalled in DRPLA mice and in human fibroblasts from patients of DRPLA. This is evidenced by accumulation of p62 and downregulation of LC3-I/II conversion as well as reduced Tfeb expression. Chronic autophagy blockage in several conditions, including DRPLA and Vici syndrome, an early-onset autolysosomal pathology, leads to the activation of alternative clearance pathways including Golgi membrane-associated and nucleophagy-based LaminB1 degradation and excretion. The combination of these alternative pathways and canonical autophagy blockade, results in dramatic nuclear pathology with disruption of the nuclear organization, bringing about terminal cell atrophy and degeneration. Thus, our findings identify a novel progressive mechanism for the terminal phases of neuronal cell degeneration and death in human neurodegenerative diseases and provide a link between autophagy block, activation of alternative pathways for degradation, and excretion of cellular components.
Collapse
Affiliation(s)
- Olga Baron
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU London, UK
| | - Adel Boudi
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU London, UK
| | - Catarina Dias
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU London, UK
| | - Michael Schilling
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU London, UK
| | - Anna Nölle
- Department of Clinical Genetics and Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands; Department of Functional Genome Analysis, VU University, Amsterdam, the Netherlands
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, King's College London, SE1 1UL London, UK
| | - Ivan Rattray
- Department Medical and Molecular Genetics, School of Basic and Biomedical Sciences, King's College London, SE1 9RT London, UK
| | - Heinz Jungbluth
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU London, UK; Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK; Randall Division for Cell and Molecular Biophysics, Muscle Signaling Section, King's College London, London, UK
| | - Wiep Scheper
- Department of Clinical Genetics and Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands; Department of Functional Genome Analysis, VU University, Amsterdam, the Netherlands
| | - Roland A Fleck
- Centre for Ultrastructural Imaging, King's College London, SE1 1UL London, UK
| | - Gillian P Bates
- Department Medical and Molecular Genetics, School of Basic and Biomedical Sciences, King's College London, SE1 9RT London, UK; Sobell Department of Motor Neuroscience, UCL Institute of Neurology, WC1N 3BG London, UK
| | - Manolis Fanto
- Department of Basic and Clinical Neuroscience, King's College London, 125 Coldharbour Lane, SE5 9NU London, UK.
| |
Collapse
|
214
|
Wang T, Li L, Hong W. SNARE proteins in membrane trafficking. Traffic 2017; 18:767-775. [PMID: 28857378 DOI: 10.1111/tra.12524] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022]
Abstract
SNAREs are the core machinery mediating membrane fusion. In this review, we provide an update on the recent progress on SNAREs regulating membrane fusion events, especially the more detailed fusion processes dissected by well-developed biophysical methods and in vitro single molecule analysis approaches. We also briefly summarize the relevant research from Chinese laboratories and highlight the significant contributions on our understanding of SNARE-mediated membrane trafficking from scientists in China.
Collapse
Affiliation(s)
- Tuanlao Wang
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Liangcheng Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Wanjin Hong
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| |
Collapse
|
215
|
Liu K, Xing R, Jian Y, Gao Z, Ma X, Sun X, Li Y, Xu M, Wang X, Jing Y, Guo W, Yang C. WDR91 is a Rab7 effector required for neuronal development. J Cell Biol 2017; 216:3307-3321. [PMID: 28860274 PMCID: PMC5626554 DOI: 10.1083/jcb.201705151] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 12/22/2022] Open
Abstract
Early-to-late endosome conversion involves switching of early endosomes Rab5 and PtdIns3P to late endosomes Rab7 and PtdIns(3,5)P2. Liu et al. identify WDR91 as a Rab7 effector that couples Rab switching with PtdIns3P down-regulation on endosomes and show that WDR91 is essential for neuronal development. Early-to-late endosome conversion, which is essential for delivery of endosomal cargoes to lysosomes, requires switching of early endosome–specific Rab5 and PtdIns3P to late endosome–specific Rab7 and PtdIns(3,5)P2. In this study, we identify the WD40-repeat protein WDR91 as a Rab7 effector that couples Rab switching with PtdIns3P down-regulation on endosomes. Loss of WDR91 greatly increases endosomal PtdIns3P levels, arresting endosomes at an intermediate stage and blocking endosomal–lysosomal trafficking. WDR91 is recruited to endosomes by interacting with active guanosine triphosophate–Rab7 and inhibits Rab7-associated phosphatidylinositol 3-kinase activity. In mice, global Wdr91 knockout causes neonatal death, whereas brain-specific Wdr91 inactivation impairs brain development and causes postnatal death. Mouse neurons lacking Wdr91 accumulate giant intermediate endosomes and exhibit reduced neurite length and complexity. These phenotypes are rescued by WDR91 but not WDR91 mutants that cannot interact with Rab7. Thus, WDR91 serves as a Rab7 effector that is essential for neuronal development by facilitating endosome conversion in the endosome–lysosome pathway.
Collapse
Affiliation(s)
- Kai Liu
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Ruxiao Xing
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Youli Jian
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhiyang Gao
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinli Ma
- Graduate University of Chinese Academy of Sciences, Beijing, China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaojuan Sun
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Meng Xu
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Yudong Jing
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Weixiang Guo
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China .,State Key Laboratory of Natural Resource Conservation and Utilization in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
216
|
Jia R, Guardia CM, Pu J, Chen Y, Bonifacino JS. BORC coordinates encounter and fusion of lysosomes with autophagosomes. Autophagy 2017; 13:1648-1663. [PMID: 28825857 PMCID: PMC5640200 DOI: 10.1080/15548627.2017.1343768] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Whereas the mechanisms involved in autophagosome formation have been extensively studied for the past 2 decades, those responsible for autophagosome-lysosome fusion have only recently begun to garner attention. In this study, we report that the multisubunit BORC complex, previously implicated in kinesin-dependent movement of lysosomes toward the cell periphery, is required for efficient autophagosome-lysosome fusion. Knockout (KO) of BORC subunits causes not only juxtanuclear clustering of lysosomes, but also increased levels of the autophagy protein LC3B-II and the receptor SQSTM1. Increases in LC3B-II occur without changes in basal MTORC1 activity and autophagy initiation. Instead, LC3B-II accumulation largely results from decreased lysosomal degradation. Further experiments show that BORC KO impairs both the encounter and fusion of autophagosomes with lysosomes. Reduced encounters result from an inability of lysosomes to move toward the peripheral cytoplasm, where many autophagosomes are formed. However, BORC KO also reduces the recruitment of the HOPS tethering complex to lysosomes and assembly of the STX17-VAMP8-SNAP29 trans-SNARE complex involved in autophagosome-lysosome fusion. Through these dual roles, BORC integrates the kinesin-dependent movement of lysosomes toward autophagosomes with HOPS-dependent autophagosome-lysosome fusion. These findings reveal a requirement for lysosome dispersal in autophagy that is independent of changes in MTORC1 signaling, and identify BORC as a novel regulator of autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Rui Jia
- a Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , MD , USA
| | - Carlos M Guardia
- a Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , MD , USA
| | - Jing Pu
- a Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , MD , USA
| | - Yu Chen
- a Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , MD , USA
| | - Juan S Bonifacino
- a Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
217
|
Wu X, Zheng D, Qin Y, Liu Z, Zhang G, Zhu X, Zeng L, Liang Z. Nobiletin attenuates adverse cardiac remodeling after acute myocardial infarction in rats via restoring autophagy flux. Biochem Biophys Res Commun 2017; 492:262-268. [PMID: 28830813 DOI: 10.1016/j.bbrc.2017.08.064] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Our previous study showed that autophagy flux was impaired with sustained heart ischemia, which exacerbated adverse cardiac remodeling after acute myocardial infarction (AMI). Here we investigated whether Nobiletin, a citrus polymethoxylated flavonoids, could restore the autophagy flux and improve cardiac prognosis after AMI. AMI was induced by ligating left anterior descending (LAD) coronary artery in rats. Nobiletin improved the post-infarct cardiac dysfunction significantly and attenuated adverse cardiac remodeling. Meanwhile, Nobiletin protected H9C2 cells against oxygen glucose deprivation (OGD) in vitro. The impaired autophagy flux due to ischemia was ameliorated after Nobiletin treatment by testing the autophagy substrate, LC3BⅡ and P62 protein level both in vivo and in vitro. GFP-mRFP-LC3 adenovirus transfection also supported that Nobiletin restored the impaired autophagy flux. Specifically, the autophagy flux inhibitor, chloroquine, but not 3 MA, alleviated Nobiletin-mediated protection against OGD. Notably, Nobiletin does not affect the activation of classical upstream autophagy signaling pathways. However, Nobiletin increased the lysosome acidation which also supported that Nobiletin accelerated autophagy flux. Taken together, our findings suggested that Nobiletin restored impaired autophagy flux and protected against acute myocardial infarction, suggesting a potential role of autophagy flux in Nobiletin-mediated myocardial protection.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China; Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Dechong Zheng
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Yuyan Qin
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Zumei Liu
- National Engineering Research Center for Healthcare Devices, Guangzhou, 510500, PR China
| | - Guiping Zhang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China; Guangzhou Institute of Cardiovascular Disease, Guangzhou Key Laboratory of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Xiaoyan Zhu
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Lihuan Zeng
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| | - Zhenye Liang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, PR China
| |
Collapse
|
218
|
Hedberg-Oldfors C, Darin N, Oldfors A. Muscle pathology in Vici syndrome-A case study with a novel mutation in EPG5 and a summary of the literature. Neuromuscul Disord 2017; 27:771-776. [PMID: 28624465 DOI: 10.1016/j.nmd.2017.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/29/2017] [Accepted: 05/03/2017] [Indexed: 11/25/2022]
Abstract
Vici syndrome is a disorder characterized by myopathy, cardiomyopathy, agenesis of the corpus callosum, immunodeficiency, cataracts, hypopigmentation, microcephaly, gross developmental delay and failure to thrive. It is caused by mutations in EPG5, which encodes a protein involved in the autophagy pathway. Although myopathy is part of the syndrome, few publications have described the muscle pathology. We present a detailed morphological analysis in a boy with Vici syndrome due to a novel homozygous one-base deletion in EPG5 (c.784delA), and we review the histopathological findings from previous reports. Muscle biopsy was performed at three months of age and demonstrated small vacuolated fibers, frequently with internal nuclei, and expressing developmental and fast myosin isoforms. There was an increase in acid phosphatase activity in the small fibers, which also showed LAMP-2 upregulation, glycogen accumulation and contained numerous p62-positive inclusions and some lipid droplets. Electron microscopy demonstrated hypoplastic fibers with massive glycogen accumulation and extensive disorganization of the myofibrils. This study expands the muscle pathological features of Vici syndrome and demonstrates a pattern of vacuolar myopathy with glycogen storage and immature, hypoplastic and atrophic muscle fibers. Increased lysosomes and accumulation of p62 are in line with a disturbance of the autophagic pathway as an essential part of the pathogenesis.
Collapse
Affiliation(s)
| | - Niklas Darin
- Department of Pediatrics, University of Gothenburg, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Pathology and Genetics, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
219
|
Anding AL, Baehrecke EH. Cleaning House: Selective Autophagy of Organelles. Dev Cell 2017; 41:10-22. [PMID: 28399394 DOI: 10.1016/j.devcel.2017.02.016] [Citation(s) in RCA: 449] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 12/12/2016] [Accepted: 02/16/2017] [Indexed: 10/19/2022]
Abstract
The selective clearance of organelles by autophagy is critical for the regulation of cellular homeostasis in organisms from yeast to humans. Removal of damaged organelles clears the cell of potentially toxic byproducts and enables reuse of organelle components for bioenergetics. Thus, defects in organelle clearance may be detrimental to the health of the cells, contributing to cancer, neurodegeneration, and inflammatory diseases. Organelle-specific autophagy can clear mitochondria, peroxisomes, lysosomes, ER, chloroplasts, and the nucleus. Here, we review our understanding of the mechanisms that regulate the clearance of organelles by autophagy and highlight gaps in our knowledge of these processes.
Collapse
Affiliation(s)
- Allyson L Anding
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
220
|
Hori I, Otomo T, Nakashima M, Miya F, Negishi Y, Shiraishi H, Nonoda Y, Magara S, Tohyama J, Okamoto N, Kumagai T, Shimoda K, Yukitake Y, Kajikawa D, Morio T, Hattori A, Nakagawa M, Ando N, Nishino I, Kato M, Tsunoda T, Saitsu H, Kanemura Y, Yamasaki M, Kosaki K, Matsumoto N, Yoshimori T, Saitoh S. Defects in autophagosome-lysosome fusion underlie Vici syndrome, a neurodevelopmental disorder with multisystem involvement. Sci Rep 2017; 7:3552. [PMID: 28615637 PMCID: PMC5471274 DOI: 10.1038/s41598-017-02840-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023] Open
Abstract
Vici syndrome (VICIS) is a rare, autosomal recessive neurodevelopmental disorder with multisystem involvement characterized by agenesis of the corpus callosum, cataracts, cardiomyopathy, combined immunodeficiency, developmental delay, and hypopigmentation. Mutations in EPG5, a gene that encodes a key autophagy regulator, have been shown to cause VICIS, however, the precise pathomechanism underlying VICIS is yet to be clarified. Here, we describe detailed clinical (including brain MRI and muscle biopsy) and genetic features of nine Japanese patients with VICIS. Genetic dissection of these nine patients from seven families identified 14 causative mutations in EPG5. These included five nonsense, two frameshift, three splicing, one missense, and one multi-exon deletion mutations, and two initiation codon variants. Furthermore, cultured skin fibroblasts (SFs) from two affected patients demonstrated partial autophagic dysfunction. To investigate the function of EPG5, siRNA based EPG5 knock-down, and CRISPR/Cas9 mediated EPG5 knock-out HeLa cells were generated. EPG5-depleted cells exhibited a complete block of autophagic flux caused by defective autophagosome-lysosome fusion. Unexpectedly, endocytic degradation was normal in both VICIS SFs and EPG5 depleted cells, suggesting that EPG5 function is limited to the regulation of autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Ikumi Hori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takanobu Otomo
- Department of Genetics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Research Center for Autophagy, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yutaka Negishi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Yutaka Nonoda
- Department of Pediatrics, Kitasato University School of Medicine, Sagamihara, 252-0373, Japan
| | - Shinichi Magara
- Department of Pediatrics, Epilepsy Center, Nishi-Niigata Chuo National Hospital, Niigata, 950-2085, Japan
| | - Jun Tohyama
- Department of Pediatrics, Epilepsy Center, Nishi-Niigata Chuo National Hospital, Niigata, 950-2085, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, 594-1101, Japan
| | - Takeshi Kumagai
- Department of Pediatrics, Wakayama Medical University, Wakayama, 641-8509, Japan
| | - Konomi Shimoda
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yoshiya Yukitake
- Department of Neonatology, Ibaraki Children's Hospital, Mito, 311-4145, Japan
| | - Daigo Kajikawa
- Department of Child Health, Faculty of Medicine, Tsukuba University, Tsukuba, 305-8576, Japan
| | - Tomohiro Morio
- Department of Pediatrics, Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| | - Ayako Hattori
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Motoo Nakagawa
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Naoki Ando
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
- Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Yonehiro Kanemura
- Division of Regenerative Medicine, Institute for Clinical Research, Osaka National Hospital, National Hospital Organization, Osaka, 540-0006, Japan
- Department of Neurosurgery, Osaka National Hospital, National Hospital Organization, Osaka, 540-0006, Japan
| | - Mami Yamasaki
- Department of Neurosurgery, Takatsuki General Hospital, Osaka, 569-1192, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
- Research Center for Autophagy, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.
| |
Collapse
|
221
|
Uematsu M, Nishimura T, Sakamaki Y, Yamamoto H, Mizushima N. Accumulation of undegraded autophagosomes by expression of dominant-negative STX17 (syntaxin 17) mutants. Autophagy 2017; 13:1452-1464. [PMID: 28598244 DOI: 10.1080/15548627.2017.1327940] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Macroautophagy/autophagy, which is one of the main degradation systems in the cell, is mediated by a specialized organelle, the autophagosome. Purification of autophagosomes before fusion with lysosomes is important for both mechanistic and physiological studies of the autophagosome. Here, we report a simple method to accumulate undigested autophagosomes. Overexpression of the autophagosomal Qa-SNARE STX17 (syntaxin 17) lacking the N-terminal domain (NTD) or N-terminally tagged GFP-STX17 causes accumulation of autophagosomes. A HeLa cell line, which expresses GFP-STX17ΔNTD or full-length GFP-STX17 under the control of the tetracycline-responsive promoter, accumulates a large number of undigested autophagosomes devoid of lysosomal markers or early autophagy factors upon treatment with doxycycline. Using this inducible cell line, nascent autophagosomes can be easily purified by OptiPrep density-gradient centrifugation and immunoprecipitation. This novel method should be useful for further characterization of nascent autophagosomes.
Collapse
Affiliation(s)
- Masaaki Uematsu
- a Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine , The University of Tokyo , Tokyo , Japan
| | - Taki Nishimura
- a Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine , The University of Tokyo , Tokyo , Japan
| | - Yuriko Sakamaki
- b Research Center for Medical and Dental Sciences , Tokyo Medical and Dental University , Tokyo , Japan
| | - Hayashi Yamamoto
- a Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine , The University of Tokyo , Tokyo , Japan
| | - Noboru Mizushima
- a Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine , The University of Tokyo , Tokyo , Japan
| |
Collapse
|
222
|
Lőrincz P, Tóth S, Benkő P, Lakatos Z, Boda A, Glatz G, Zobel M, Bisi S, Hegedűs K, Takáts S, Scita G, Juhász G. Rab2 promotes autophagic and endocytic lysosomal degradation. J Cell Biol 2017; 216:1937-1947. [PMID: 28483915 PMCID: PMC5496615 DOI: 10.1083/jcb.201611027] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/24/2017] [Accepted: 04/21/2017] [Indexed: 11/22/2022] Open
Abstract
Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes. Lőrincz et al. show that Rab2 is critical for the delivery of autophagic and endocytic cargo to lysosomes and for their degradation, and that it promotes autophagosome–lysosome fusion. The results suggest Rab2 and Rab7 coordinately promote autophagic and endosomal degradation and lysosome function. Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster. We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes.
Collapse
Affiliation(s)
- Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Sarolta Tóth
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Péter Benkő
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Zsolt Lakatos
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Attila Boda
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Gábor Glatz
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Martina Zobel
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), Milan 20139, Italy
| | - Sara Bisi
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), Milan 20139, Italy
| | - Krisztina Hegedűs
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Szabolcs Takáts
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Giorgio Scita
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), Milan 20139, Italy.,Department of Oncology and Hemato-Oncology, School of Medicine, University of Milan, Milan 20122, Italy
| | - Gábor Juhász
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary .,Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged H-6726, Hungary
| |
Collapse
|
223
|
Abstract
Macroautophagy (autophagy) is a highly conserved intracellular degradation system that is essential for homeostasis in eukaryotic cells. Due to the wide variety of the cytoplasmic targets of autophagy, its dysregulation is associated with many diseases in humans, such as neurodegenerative diseases, heart disease and cancer. During autophagy, cytoplasmic materials are sequestered by the autophagosome - a double-membraned structure - and transported to the lysosome for digestion. The specific stages of autophagy are induction, formation of the isolation membrane (phagophore), formation and maturation of the autophagosome and, finally, fusion with a late endosome or lysosome. Although there are significant insights into each of these steps, the mechanisms of autophagosome-lysosome fusion are least understood, although there have been several recent advances. In this Commentary, we will summarize the current knowledge regarding autophagosome-lysosome fusion, focusing on mammals, and discuss the remaining questions and future directions of the field.
Collapse
Affiliation(s)
- Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, 565-0871 Osaka, Japan.,Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, 565-0871 Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, 565-0871 Osaka, Japan .,Laboratory of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, 565-0871 Osaka University, Osaka, Japan
| |
Collapse
|
224
|
Mizushima N. The exponential growth of autophagy‐related research: from the humble yeast to the Nobel Prize. FEBS Lett 2017; 591:681-689. [DOI: 10.1002/1873-3468.12594] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 01/29/2023]
Affiliation(s)
- Noboru Mizushima
- Department of Biochemistry and Molecular Biology Graduate School of Medicine The University of Tokyo Japan
| |
Collapse
|
225
|
Reggiori F, Ungermann C. Autophagosome Maturation and Fusion. J Mol Biol 2017; 429:486-496. [DOI: 10.1016/j.jmb.2017.01.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 02/07/2023]
|
226
|
Borland H, Vilhardt F. Prelysosomal Compartments in the Unconventional Secretion of Amyloidogenic Seeds. Int J Mol Sci 2017; 18:ijms18010227. [PMID: 28124989 PMCID: PMC5297856 DOI: 10.3390/ijms18010227] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
A mechanistic link between neuron-to-neuron transmission of secreted amyloid and propagation of protein malconformation cytopathology and disease has recently been uncovered in animal models. An enormous interest in the unconventional secretion of amyloids from neurons has followed. Amphisomes and late endosomes are the penultimate maturation products of the autophagosomal and endosomal pathways, respectively, and normally fuse with lysosomes for degradation. However, under conditions of perturbed membrane trafficking and/or lysosomal deficiency, prelysosomal compartments may instead fuse with the plasma membrane to release any contained amyloid. After a brief introduction to the endosomal and autophagosomal pathways, we discuss the evidence for autophagosomal secretion (exophagy) of amyloids, with a comparative emphasis on Aβ1-42 and α-synuclein, as luminal and cytosolic amyloids, respectively. The ESCRT-mediated import of cytosolic amyloid into late endosomal exosomes, a known vehicle of transmission of macromolecules between cells, is also reviewed. Finally, mechanisms of lysosomal dysfunction, deficiency, and exocytosis are exemplified in the context of genetically identified risk factors, mainly for Parkinson's disease. Exocytosis of prelysosomal or lysosomal organelles is a last resort for clearance of cytotoxic material and alleviates cytopathy. However, they also represent a vehicle for the concentration, posttranslational modification, and secretion of amyloid seeds.
Collapse
Affiliation(s)
- Helena Borland
- Department of Neurodegeneration In Vitro, H. Lundbeck A/S, 2500 Valby, Denmark.
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200N Copenhagen, Denmark.
| |
Collapse
|
227
|
Tammineni P, Ye X, Feng T, Aikal D, Cai Q. Impaired retrograde transport of axonal autophagosomes contributes to autophagic stress in Alzheimer's disease neurons. eLife 2017; 6. [PMID: 28085665 PMCID: PMC5235353 DOI: 10.7554/elife.21776] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
Neurons face unique challenges of transporting nascent autophagic vacuoles (AVs) from distal axons toward the soma, where mature lysosomes are mainly located. Autophagy defects have been linked to Alzheimer’s disease (AD). However, the mechanisms underlying altered autophagy remain unknown. Here, we demonstrate that defective retrograde transport contributes to autophagic stress in AD axons. Amphisomes predominantly accumulate at axonal terminals of mutant hAPP mice and AD patient brains. Amyloid-β (Aβ) oligomers associate with AVs in AD axons and interact with dynein motors. This interaction impairs dynein recruitment to amphisomes through competitive interruption of dynein-Snapin motor-adaptor coupling, thus immobilizing them in distal axons. Consistently, deletion of Snapin in mice causes AD-like axonal autophagic stress, whereas overexpressing Snapin in hAPP neurons reduces autophagic accumulation at presynaptic terminals by enhancing AV retrograde transport. Altogether, our study provides new mechanistic insight into AD-associated autophagic stress, thus establishing a foundation for ameliorating axonal pathology in AD. DOI:http://dx.doi.org/10.7554/eLife.21776.001 Alzheimer’s disease is the result of protein fragments called amyloid-β peptides accumulating in the brain and forming clumps. These protein “aggregates” disrupt cellular activities and cause serious problems. To combat this process, healthy cells use a process called autophagy to destroy aggregated proteins. The aggregates are first loaded into structures called autophagosomes that then fuse with cell compartments called lysosomes, which contain enzymes that can break down the proteins. Brain cells called neurons have an unusual shape with branch-like structures and a long projection called an axon that all form off the main cell body. Autophagosomes predominantly form in the axons and need to move toward the cell body where the lysosomes are found. A motor protein called dynein drives the movement of autophagosomes by interacting with an adaptor protein known as Snapin on the surface of these structures. Autophagosomes tend to accumulate within the neurons of individuals with Alzheimer’s disease, but it is not known why. Cai et al. examined the ability of autophagosomes to move to the cell body of neurons from a mouse model of Alzheimer’s disease in which human amyloid-β peptides accumulate in the brain, and in the brains of human patients with Alzheimer’s disease. The experiments show that autophagosomes predominantly accumulate in the axons and at the ends of axons during Alzheimer’s disease. Amyloid-β aggregates associate with autophagosomes in the axons and interact with dynein motors. This disrupts the interaction between dynein and Snapin and impairs dynein binding to the autophagosomes, trapping the autophagosomes in the axons. Increasing the production of Snapin proteins inside the mouse neurons enhances dynein binding to autophagosomes and thus helps these structures move to the cell body. The next step is to investigate whether increasing the ability of autophagosomes to move to the cell body reduces the symptoms of Alzheimer’s disease in the mutant mice. This will help to build a foundation for the future development of new strategies to treat Alzheimer’s disease and other neurodegenerative disorders that are caused by protein aggregates. DOI:http://dx.doi.org/10.7554/eLife.21776.002
Collapse
Affiliation(s)
- Prasad Tammineni
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Xuan Ye
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Tuancheng Feng
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Daniyal Aikal
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Qian Cai
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, United States
| |
Collapse
|
228
|
Eliopoulos AG, Havaki S, Gorgoulis VG. DNA Damage Response and Autophagy: A Meaningful Partnership. Front Genet 2016; 7:204. [PMID: 27917193 PMCID: PMC5116470 DOI: 10.3389/fgene.2016.00204] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/02/2016] [Indexed: 01/07/2023] Open
Abstract
Autophagy and the DNA damage response (DDR) are biological processes essential for cellular and organismal homeostasis. Herein, we summarize and discuss emerging evidence linking DDR to autophagy. We highlight published data suggesting that autophagy is activated by DNA damage and is required for several functional outcomes of DDR signaling, including repair of DNA lesions, senescence, cell death, and cytokine secretion. Uncovering the mechanisms by which autophagy and DDR are intertwined provides novel insight into the pathobiology of conditions associated with accumulation of DNA damage, including cancer and aging, and novel concepts for the development of improved therapeutic strategies against these pathologies.
Collapse
Affiliation(s)
- Aristides G Eliopoulos
- Molecular and Cellular Biology Laboratory, Division of Basic Sciences, Medical School, University of CreteHeraklion, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology HellasHeraklion, Greece
| | - Sophia Havaki
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of AthensAthens, Greece; Faculty Institute of Cancer Sciences, Manchester Academic Health Sciences Centre, University of ManchesterManchester, UK; Biomedical Research Foundation of the Academy of AthensAthens, Greece
| |
Collapse
|
229
|
Ma D, Xue Y, Zhang Y, Sun Y, Meng A, Liu F. The rising zebrafish research in China: Meeting report of the 3rd Chinese Zebrafish Principal Investigator Meeting & the Inaugural Meeting of China Zebrafish Society. J Genet Genomics 2016; 43:617-620. [PMID: 27769691 DOI: 10.1016/j.jgg.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Affiliation(s)
- Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Xue
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, China Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|