201
|
Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair DA, Tsai LH. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 2007; 26:3169-79. [PMID: 17581637 PMCID: PMC1914106 DOI: 10.1038/sj.emboj.7601758] [Citation(s) in RCA: 817] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 05/22/2007] [Indexed: 01/10/2023] Open
Abstract
A progressive loss of neurons with age underlies a variety of debilitating neurological disorders, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), yet few effective treatments are currently available. The SIR2 gene promotes longevity in a variety of organisms and may underlie the health benefits of caloric restriction, a diet that delays aging and neurodegeneration in mammals. Here, we report that a human homologue of SIR2, SIRT1, is upregulated in mouse models for AD, ALS and in primary neurons challenged with neurotoxic insults. In cell-based models for AD/tauopathies and ALS, SIRT1 and resveratrol, a SIRT1-activating molecule, both promote neuronal survival. In the inducible p25 transgenic mouse, a model of AD and tauopathies, resveratrol reduced neurodegeneration in the hippocampus, prevented learning impairment, and decreased the acetylation of the known SIRT1 substrates PGC-1alpha and p53. Furthermore, injection of SIRT1 lentivirus in the hippocampus of p25 transgenic mice conferred significant protection against neurodegeneration. Thus, SIRT1 constitutes a unique molecular link between aging and human neurodegenerative disorders and provides a promising avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Dohoon Kim
- Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Minh Dang Nguyen
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Matthew M Dobbin
- Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA
| | - Andre Fischer
- Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA
| | - Farahnaz Sananbenesi
- Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA
| | - Joseph T Rodgers
- Dana Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Boston, MA, USA
| | - Ivana Delalle
- Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA
| | - Joseph A Baur
- Department of Pathology and Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Guangchao Sui
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Sean M Armour
- Department of Pathology and Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Pere Puigserver
- Dana Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Boston, MA, USA
| | - David A Sinclair
- Department of Pathology and Paul F Glenn Laboratories for the Biological Mechanisms of Aging, Harvard Medical School, Boston, MA, USA
| | - Li-Huei Tsai
- Howard Hughes Medical Institute, Picower Insitute for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, MA, USA
| |
Collapse
|
202
|
Hawasli AH, Benavides DR, Nguyen C, Kansy JW, Hayashi K, Chambon P, Greengard P, Powell CM, Cooper DC, Bibb JA. Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci 2007; 10:880-886. [PMID: 17529984 PMCID: PMC3910113 DOI: 10.1038/nn1914] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 05/03/2007] [Indexed: 12/30/2022]
Abstract
Learning is accompanied by modulation of postsynaptic signal transduction pathways in neurons. Although the neuronal protein kinase cyclin-dependent kinase 5 (Cdk5) has been implicated in cognitive disorders, its role in learning has been obscured by the perinatal lethality of constitutive knockout mice. Here we report that conditional knockout of Cdk5 in the adult mouse brain improved performance in spatial learning tasks and enhanced hippocampal long-term potentiation and NMDA receptor (NMDAR)-mediated excitatory postsynaptic currents. Enhanced synaptic plasticity in Cdk5 knockout mice was attributed to reduced NR2B degradation, which caused elevations in total, surface and synaptic NR2B subunit levels and current through NR2B-containing NMDARs. Cdk5 facilitated the degradation of NR2B by directly interacting with both it and its protease, calpain. These findings reveal a previously unknown mechanism by which Cdk5 facilitates calpain-mediated proteolysis of NR2B and may control synaptic plasticity and learning.
Collapse
Affiliation(s)
- Ammar H Hawasli
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - David R Benavides
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Chan Nguyen
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Janice W Kansy
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Kanehiro Hayashi
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, Centre Universitaire de Strasbourg, France
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | - Craig M Powell
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - Donald C Cooper
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | - James A Bibb
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| |
Collapse
|
203
|
Holahan MR, Honegger KS, Tabatadze N, Routtenberg A. GAP-43 gene expression regulates information storage. Learn Mem 2007; 14:407-15. [PMID: 17554085 PMCID: PMC1896091 DOI: 10.1101/lm.581907] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous reports have shown that overexpression of the growth- and plasticity-associated protein GAP-43 improves memory. However, the relation between the levels of this protein to memory enhancement remains unknown. Here, we studied this issue in transgenic mice (G-Phos) overexpressing native, chick GAP-43. These G-Phos mice could be divided at the behavioral level into "spatial bright" and "spatial dull" groups based on their performance on two hidden platform water maze tasks. G-Phos dull mice showed both acquisition and retention deficits on the fixed hidden platform task, but were able to learn a visible platform task. G-Phos bright mice showed memory enhancement relative to wild type on the more difficult movable hidden platform spatial memory task. In the hippocampus, the G-Phos dull group showed a 50% greater transgenic GAP-43 protein level and a twofold elevated transgenic GAP-43 mRNA level than that measured in the G-Phos bright group. Unexpectedly, the dull group also showed an 80% reduction in hippocampal Tau1 staining. The high levels of GAP-43 seen here leading to memory impairment find its histochemical and behavioral parallel in the observation of Rekart et al. (Neuroscience 126: 579-584) who described elevated levels of GAP-43 protein in the hippocampus of Alzheimer's patients. The present data suggest that moderate overexpression of a phosphorylatable plasticity-related protein can enhance memory, while excessive overexpression may produce a "neuroplasticity burden" leading to degenerative and hypertrophic events culminating in memory dysfunction.
Collapse
Affiliation(s)
- Matthew R. Holahan
- Departments of Psychology and Neurobiology and Physiology in the Northwestern University Interdepartmental Neuroscience (NUIN) Program, Northwestern University, Evanston, Illinois 60208, USA
- Corresponding authors.E-mail ; fax (613) 520-3667.E-mail ; fax (847) 491-3557
| | - Kyle S. Honegger
- Departments of Psychology and Neurobiology and Physiology in the Northwestern University Interdepartmental Neuroscience (NUIN) Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Nino Tabatadze
- Departments of Psychology and Neurobiology and Physiology in the Northwestern University Interdepartmental Neuroscience (NUIN) Program, Northwestern University, Evanston, Illinois 60208, USA
| | - Aryeh Routtenberg
- Departments of Psychology and Neurobiology and Physiology in the Northwestern University Interdepartmental Neuroscience (NUIN) Program, Northwestern University, Evanston, Illinois 60208, USA
- Corresponding authors.E-mail ; fax (613) 520-3667.E-mail ; fax (847) 491-3557
| |
Collapse
|
204
|
Wang Y, White MG, Akay C, Chodroff RA, Robinson J, Lindl KA, Dichter MA, Qian Y, Mao Z, Kolson DL, Jordan-Sciutto KL. Activation of cyclin-dependent kinase 5 by calpains contributes to human immunodeficiency virus-induced neurotoxicity. J Neurochem 2007; 103:439-55. [PMID: 17897354 DOI: 10.1111/j.1471-4159.2007.04746.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Although the specific mechanism of neuronal damage in human immunodeficiency virus (HIV) -associated dementia is not known, a prominent role for NMDA receptor (NMDAR)-induced excitotoxicity has been demonstrated in neurons exposed to HIV-infected/activated macrophages. We hypothesized NMDAR-mediated activation of the calcium-dependent protease, calpain, would contribute to cell death by induction of cyclin-dependent kinase 5 (CDK5) activity. Using an in vitro model of HIV neurotoxicity, in which primary rat cortical cultures are exposed to supernatants from primary human HIV-infected macrophages, we have observed increased calpain-dependent cleavage of the CDK5 regulatory subunit, p35, to the constitutively active isoform, p25. Formation of p25 is dependent upon NMDAR activation and calpain activity and is coincident with increased CDK5 activity in this model. Further, inhibition of CDK5 by roscovitine provided neuroprotection in our in vitro model. Consistent with our observations in vitro, we have observed a significant increase in calpain activity and p25 levels in midfrontal cortex of patients infected with HIV, particularly those with HIV-associated cognitive impairment. Taken together, our data suggest calpain activation of CDK5, a pathway activated in HIV-infected individuals, can mediate neuronal damage and death in a model of HIV-induced neurotoxicity.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Mangan KP, Levenson JM. Turning back the clock on neurodegeneration. Cell 2007; 129:851-3. [PMID: 17540162 DOI: 10.1016/j.cell.2007.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Does neuronal loss associated with dementia necessarily impair the ability to learn new information and recall old memories? In a recent report in Nature, Fischer et al. (2007) show that the ability to learn and remember can be reestablished in a mouse model of dementia through either environmental enrichment or chronic treatment with an inhibitor of histone deacetylase.
Collapse
Affiliation(s)
- Kile P Mangan
- Department of Physiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53719, USA
| | | |
Collapse
|
206
|
Abstract
A study in Nature by Fischer et al. shows that environmental enrichment or increasing histone acetylation rescue the ability to form new memories and re-establish access to remote memories even in the presence of brain degeneration. Chromatin remodeling may be the final gate environmental enrichment opens to enhance plasticity and represents a promising target for therapeutical intervention in neurodegenerative diseases.
Collapse
|
207
|
Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH. Recovery of learning and memory is associated with chromatin remodelling. Nature 2007; 447:178-82. [PMID: 17468743 DOI: 10.1038/nature05772] [Citation(s) in RCA: 893] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Accepted: 03/23/2007] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases of the central nervous system are often associated with impaired learning and memory, eventually leading to dementia. An important aspect in pre-clinical research is the exploration of strategies to re-establish learning ability and access to long-term memories. By using a mouse model that allows temporally and spatially restricted induction of neuronal loss, we show here that environmental enrichment reinstated learning behaviour and re-established access to long-term memories after significant brain atrophy and neuronal loss had already occurred. Environmental enrichment correlated with chromatin modifications (increased histone-tail acetylation). Moreover, increased histone acetylation by inhibitors of histone deacetylases induced sprouting of dendrites, an increased number of synapses, and reinstated learning behaviour and access to long-term memories. These data suggest that inhibition of histone deacetylases might be a suitable therapeutic avenue for neurodegenerative diseases associated with learning and memory impairment, and raises the possibility of recovery of long-term memories in patients with dementia.
Collapse
Affiliation(s)
- Andre Fischer
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | | | | | |
Collapse
|
208
|
|
209
|
Avraham E, Rott R, Liani E, Szargel R, Engelender S. Phosphorylation of Parkin by the Cyclin-dependent Kinase 5 at the Linker Region Modulates Its Ubiquitin-Ligase Activity and Aggregation. J Biol Chem 2007; 282:12842-50. [PMID: 17327227 DOI: 10.1074/jbc.m608243200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutations in Parkin are responsible for a large percentage of autosomal recessive juvenile parkinsonism cases. Parkin displays ubiquitin-ligase activity and protects against cell death promoted by several insults. Therefore, regulation of Parkin activities is important for understanding the dopaminergic cell death observed in Parkinson disease. We now report that cyclin-dependent kinase 5 (Cdk5) phosphorylates Parkin both in vitro and in vivo. We found that highly specific Cdk5 inhibitors and a dominant negative Cdk5 construct inhibited Parkin phosphorylation, suggesting that a significant portion of Parkin is phosphorylated by Cdk5. Parkin interacts with Cdk5 as observed by co-immunoprecipitation experiments of transfected cells and rat brains. Phosphorylation by Cdk5 decreased the auto-ubiquitylation of Parkin both in vitro and in vivo. We identified Ser-131 located at the linker region of Parkin as the major Cdk5 phosphorylation site. The Cdk5 phosphorylation-deficient S131A Parkin mutant displayed a higher auto-ubiquitylation level and increased ubiquitylation activity toward its substrates synphilin-1 and p38. Additionally, the S131A Parkin mutant more significantly accumulated into inclusions in human dopaminergic cells when compared with the wild-type Parkin. Furthermore, S131A Parkin mutant increased the formation of synphilin-1/alpha-synuclein inclusions, suggesting that the levels of Parkin phosphorylation and ubiquitylation may modulate the formation of inclusion bodies relevant to the disease. The data indicate that Cdk5 is a new regulator of the Parkin ubiquitin-ligase activity and modulates its ability to accumulate into and modify inclusions. Phosphorylation by Cdk5 may contribute to the accumulation of toxic Parkin substrates and decrease the ability of dopaminergic cells to cope with toxic insults in Parkinson disease.
Collapse
Affiliation(s)
- Eyal Avraham
- Department of Pharmacology, The B. Rappaport Faculty of Medicine and Institute of Medical Research, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
210
|
Wang JW, Imai Y, Lu B. Activation of PAR-1 kinase and stimulation of tau phosphorylation by diverse signals require the tumor suppressor protein LKB1. J Neurosci 2007; 27:574-81. [PMID: 17234589 PMCID: PMC6672797 DOI: 10.1523/jneurosci.5094-06.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aberrant phosphorylation of tau is associated with a number of neurodegenerative diseases, including Alzheimer's disease (AD). The molecular mechanisms by which tau phosphorylation is regulated under normal and disease conditions are not well understood. Microtubule affinity regulating kinase (MARK) and PAR-1 have been identified as physiological tau kinases, and aberrant phosphorylation of MARK/PAR-1 target sites in tau has been observed in AD patients and animal models. Here we show that phosphorylation of PAR-1 by the tumor suppressor protein LKB1 is required for PAR-1 activation, which in turn promotes tau phosphorylation in Drosophila. Diverse stress stimuli, such as high osmolarity and overexpression of the human beta-amyloid precursor protein, can promote PAR-1 activation and tau phosphorylation in an LKB1-dependent manner. These results reveal a new function for the tumor suppressor protein LKB1 in a signaling cascade through which the phosphorylation and function of tau is regulated by diverse signals under physiological and pathological conditions.
Collapse
Affiliation(s)
- Ji-Wu Wang
- Department of Pathology, Stanford University School of Medicine, and Geriatric Research, Education, and Clinical Center/Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Yuzuru Imai
- Department of Pathology, Stanford University School of Medicine, and Geriatric Research, Education, and Clinical Center/Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| | - Bingwei Lu
- Department of Pathology, Stanford University School of Medicine, and Geriatric Research, Education, and Clinical Center/Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304
| |
Collapse
|
211
|
Kamei H, Saito T, Ozawa M, Fujita Y, Asada A, Bibb JA, Saido TC, Sorimachi H, Hisanaga SI. Suppression of Calpain-dependent Cleavage of the CDK5 Activator p35 to p25 by Site-specific Phosphorylation. J Biol Chem 2007; 282:1687-94. [PMID: 17121855 DOI: 10.1074/jbc.m610541200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdk5 is a proline-directed Ser/Thr protein kinase predominantly expressed in postmitotic neurons together with its activator, p35. N-terminal truncation of p35 to p25 by calpain results in deregulation of Cdk5 and contributes to neuronal cell death associated with several neurodegenerative diseases. Previously we reported that p35 occurred as a phosphoprotein, phospho-p35 levels changed with neuronal maturation, and that phosphorylation of p35 affected its vulnerability to calpain cleavage. Here, we identify the p35 residues Ser(8) and Thr(138) as the major sites of phosphorylation by Cdk5. Mutagenesis of these sites to unphosphorylatable Ala increased susceptibility to calpain in cultured cells and neurons while changing them to phosphomimetic glutamate-attenuated cleavage. Furthermore, phosphorylation state-specific antibodies to these sites revealed that Thr(138) was dephosphorylated in adult rat, although both Ser(8) and Thr(138) were phosphorylated in prenatal brains. In cultured neurons, inhibition of protein phosphatases converted phosho-Ser(8) p35 to dual phospho-Ser(8)/Thr(138) p35 and conferred resistance to calpain cleavage. These results suggest phosphorylation of Thr(138) predominantly defines the susceptibility of p35 to calpain-dependent cleavage and that dephosphorylation of this site is a critical determinant of Cdk5-p25-induced cell death associated with neurodegeneration.
Collapse
Affiliation(s)
- Hirotsugu Kamei
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachiohji, Tokyo 192-0397, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Mizuno K, Plattner F, Peter Giese K. Expression of p25 impairs contextual learning but not latent inhibition in mice. Neuroreport 2006; 17:1903-5. [PMID: 17179867 DOI: 10.1097/wnr.0b013e328011c715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cyclin-dependent kinase 5 activator p25, which is derived from cleavage of p35, is thought to be formed in the brain of patients with Alzheimer's disease and schizophrenia. Female, but not male, transgenic mice expressing low levels of p25 have enhanced hippocampal long-term potentiation and improved spatial learning, raising the hypothesis that p25 may compensate for early learning deficits in Alzheimer's disease in a sex-dependent manner. Here, we show that low levels of p25 do not alter latent inhibition, a phenomenon that is impaired in patients with schizophrenia. We also demonstrate that contextual fear conditioning is impaired in female, but not in male, p25 transgenic mice. Thus, low levels of p25 are not always beneficial for learning as was previously hypothesized.
Collapse
Affiliation(s)
- Keiko Mizuno
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | |
Collapse
|
213
|
Cruz JC, Kim D, Moy LY, Dobbin MM, Sun X, Bronson RT, Tsai LH. p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. J Neurosci 2006; 26:10536-41. [PMID: 17035538 PMCID: PMC6674706 DOI: 10.1523/jneurosci.3133-06.2006] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aberrant processing of the amyloid precursor protein (APP) and the subsequent accumulation of amyloid beta (Abeta) peptide has been widely established as a central event in Alzheimer's disease (AD) pathogenesis. The sequential cleavage steps required for the generation of Abeta are well outlined; however, there is a relative dearth of knowledge pertaining to signaling pathways and molecular mechanisms that can modulate this process. Here, we demonstrate a novel role for p25/cyclin-dependent kinase 5 (Cdk5) in regulating APP processing, Abeta peptide generation, and intraneuronal Abeta accumulation in inducible p25 transgenic and compound PD-APP transgenic mouse models that demonstrate deregulated Cdk5 activity and a neurodegenerative phenotype. Induction of p25 resulted in enhanced forebrain Abeta levels before any evidence of neuropathology in these mice. Intracellular Abeta accumulated in perinuclear regions and distended axons within the forebrains of these mice. Evidence for modulations in axonal transport or beta-site APP cleaving enzyme 1 protein levels and activity are presented as mechanisms that may account for the Abeta accumulation caused by p25/Cdk5 deregulation. Collectively, these findings delineate a novel pathological mechanism involving aberrant APP processing by p25/Cdk5 and have important implications in AD pathogenesis.
Collapse
Affiliation(s)
- Jonathan C. Cruz
- Department of Pathology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, and
| | - Dohoon Kim
- Department of Pathology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, and
| | - Lily Y. Moy
- Department of Pathology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, and
| | - Matthew M. Dobbin
- Department of Pathology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, and
| | - Xiaoyan Sun
- Center for Neurologic Diseases, Brigham and Women's Hospital, Program in Neuroscience, and
| | - Roderick T. Bronson
- Rodent Histopathology Core, Harvard Medical School, Boston, Massachusetts 02115
| | - Li-Huei Tsai
- Department of Pathology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts 02115, and
| |
Collapse
|
214
|
García-Bonilla L, Burda J, Piñeiro D, Ayuso I, Gómez-Calcerrada M, Salinas M. Calpain-induced proteolysis after transient global cerebral ischemia and ischemic tolerance in a rat model. Neurochem Res 2006; 31:1433-41. [PMID: 17089194 DOI: 10.1007/s11064-006-9195-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 10/05/2006] [Indexed: 12/16/2022]
Abstract
The activation of the [Ca(2+)]-dependent cysteine protease calpain plays an important role in ischemic injury. Here, the levels of two calpain-specific substrates, p35 protein and eukaryotic initiation factor 4G (eIF4G), as well as its physiological regulator calpastatin, were investigated in a rat model of transient global cerebral ischemia with or without ischemic tolerance (IT). Extracts of the cerebral cortex, whole hippocampus and hippocampal subregions after 30 min of ischemia and different reperfusion times (30 min and 4 h) were used. In rats without IT, the p35 levels slightly decreased after ischemia or reperfusion, whereas the levels of p25 (the truncated form of p35) were much higher than those in sham control rats after ischemia and remained elevated during reperfusion. The eIF4G levels deeply diminished after reperfusion and the decrease was significantly greater in CA1 and the rest of the hippocampus than in the cortex. By contrast, the calpastatin levels did not significantly decrease during ischemia or early reperfusion, but were upregulated after 4 h of reperfusion in the cortex. Although IT did not promote significant changes in p35 and p25 levels, it induced a slight increase in calpastatin and eIF4G levels in the hippocampal subregions after 4 h of reperfusion.
Collapse
Affiliation(s)
- L García-Bonilla
- Servicio de Bioquímica, Departamento de Investigación, Hospital Ramón y Cajal, Ctra Colmenar Km 9, 28034, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
215
|
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase with a multitude of functions. Although Cdk5 is widely expressed, it has been studied most extensively in neurons. Since its initial characterization, the fundamental contribution of Cdk5 to an impressive range of neuronal processes has become clear. These phenomena include neural development, dopaminergic function and neurodegeneration. Data from different fields have recently converged to provide evidence for the participation of Cdk5 in synaptic plasticity, learning and memory. In this review, we consider recent data implicating Cdk5 in molecular and cellular mechanisms underlying synaptic plasticity. We relate these findings to its emerging role in learning and memory. Particular attention is paid to the activation of Cdk5 by p25, which enhances hippocampal synaptic plasticity and memory, and suggests formation of p25 as a physiological process regulating synaptic plasticity and memory.
Collapse
Affiliation(s)
- Marco Angelo
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | | | |
Collapse
|
216
|
Cheung ZH, Fu AKY, Ip NY. Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases. Neuron 2006; 50:13-8. [PMID: 16600851 DOI: 10.1016/j.neuron.2006.02.024] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Accumulating evidence indicates that cyclin dependent kinase 5 (Cdk5), through phosphorylating a plethora of pre- and postsynaptic proteins, functions as an essential modulator of synaptic transmission. Recent advances in the field of Cdk5 research have not only consolidated the in vivo importance of Cdk5 in neurotransmission but also suggest a pivotal role of Cdk5 in the regulation of higher cognitive functions and neurodegenerative diseases. In this review, we will discuss the recent findings on the emanating role of Cdk5 as a regulator of synaptic functions and plasticity.
Collapse
Affiliation(s)
- Zelda H Cheung
- Department of Biochemistry, Biotechnology Research Institute and Molecular Neuroscience Center, Hong Kong University of Science and Technology, Hong Kong, China
| | | | | |
Collapse
|
217
|
Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B, Hardeland R. Melatonin in Alzheimer's disease and other neurodegenerative disorders. Behav Brain Funct 2006; 2:15. [PMID: 16674804 PMCID: PMC1483829 DOI: 10.1186/1744-9081-2-15] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 05/04/2006] [Indexed: 12/15/2022] Open
Abstract
Increased oxidative stress and mitochondrial dysfunction have been identified as common pathophysiological phenomena associated with neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). As the age-related decline in the production of melatonin may contribute to increased levels of oxidative stress in the elderly, the role of this neuroprotective agent is attracting increasing attention. Melatonin has multiple actions as a regulator of antioxidant and prooxidant enzymes, radical scavenger and antagonist of mitochondrial radical formation. The ability of melatonin and its kynuramine metabolites to interact directly with the electron transport chain by increasing the electron flow and reducing electron leakage are unique features by which melatonin is able to increase the survival of neurons under enhanced oxidative stress. Moreover, antifibrillogenic actions have been demonstrated in vitro, also in the presence of profibrillogenic apoE4 or apoE3, and in vivo, in a transgenic mouse model. Amyloid-β toxicity is antagonized by melatonin and one of its kynuramine metabolites. Cytoskeletal disorganization and protein hyperphosphorylation, as induced in several cell-line models, have been attenuated by melatonin, effects comprising stress kinase downregulation and extending to neurotrophin expression. Various experimental models of AD, PD and HD indicate the usefulness of melatonin in antagonizing disease progression and/or mitigating some of the symptoms. Melatonin secretion has been found to be altered in AD and PD. Attempts to compensate for age- and disease-dependent melatonin deficiency have shown that administration of this compound can improve sleep efficiency in AD and PD and, to some extent, cognitive function in AD patients. Exogenous melatonin has also been reported to alleviate behavioral symptoms such as sundowning. Taken together, these findings suggest that melatonin, its analogues and kynuric metabolites may have potential value in prevention and treatment of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- V Srinivasan
- Department of Physiology, School of Medical Sciences, University Sains Malaysia, Kampus Kesihatan, 16150, Kubang kerian, Kelantan, Malaysia
| | - SR Pandi-Perumal
- Comprehensive Center for Sleep Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai School of Medicine, 1176 – 5Avenue, New York, NY 10029, USA
| | - DP Cardinali
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, 1121, Buenos Aires, Argentina
| | - B Poeggeler
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Berliner Str. 28, D-37073 Goettingen, Germany
| | - R Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Berliner Str. 28, D-37073 Goettingen, Germany
| |
Collapse
|
218
|
Abstract
The cyclin-dependent kinase-5 (Cdk5) is critical to normal mammalian development and has been implicated in synaptic plasticity, learning, and memory in the adult brain. But Cdk-5 activity has also been linked to neurodegenerative diseases. Could a single protein have opposing effects? A new study shows that production of a neuronal protein capable of regulating Cdk-5 activity can turn Cdk-5 from "good" to "bad." The findings may have implications for the development and treatment of conditions like Alzheimer's disease.
Collapse
Affiliation(s)
- Qing Guo
- Department of Physiology, University of Oklahoma Health Sciences Center, College of Medicine, Oklahoma City, OK 73104, USA.
| |
Collapse
|
219
|
LaFerla FM, Kitazawa M. Antipodal effects of p25 on synaptic plasticity, learning, and memory--too much of a good thing is bad. Neuron 2006; 48:711-2. [PMID: 16337907 DOI: 10.1016/j.neuron.2005.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Elevated activity of the Cdk5/p25 complex has been implicated in the pathogenesis of Alzheimer's disease. The report by Fischer and colleagues in this issue of Neuron describes a dichotomous role for the activator protein p25 in synaptic plasticity, learning, and memory, whereby transient expression in transgenic mice produces beneficial effects, but prolonged expression is detrimental. This work demonstrates the complexity of Cdk5/p25 in neuronal function and shows that dysregulation of a factor involved in plasticity can cause neurodegeneration.
Collapse
Affiliation(s)
- Frank M LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, 1109 Gillespie Neuroscience Research Facility, Irvine, California 92697, USA
| | | |
Collapse
|