201
|
F3/Contactin acts as a modulator of neurogenesis during cerebral cortex development. Dev Biol 2012; 365:133-51. [PMID: 22360968 DOI: 10.1016/j.ydbio.2012.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/13/2012] [Accepted: 02/10/2012] [Indexed: 12/18/2022]
Abstract
The expression of the cell recognition molecule F3/Contactin (CNTN1) is generally associated with the functions of post-mitotic neurons. In the embryonic cortex, however, we find it expressed by proliferating ventricular zone (VZ) precursors. In contrast to previous findings in the developing cerebellum, F3/Contactin transgenic overexpression in the early cortical VZ promotes proliferation and expands the precursor pool at the expense of neurogenesis. At later stages, when F3/Contactin levels subside, however, neurogenesis resumes, suggesting that F3/Contactin expression in the VZ is inversely related to neurogenesis and plays a role in a feedback control mechanism, regulating the orderly progression of cortical development. The modified F3/Contactin profile therefore results in delayed corticogenesis, as judged by downregulation in upper and lower layer marker expression and by BrdU birth dating, indicating that, in this transgenic model, increased F3/Contactin levels counteract neuronal precursor commitment. These effects also occur in primary cultures and are reproduced by addition of an F3/Fc fusion protein to wild type cultures. Together, these data indicate a completely novel function for F3/Contactin. Parallel changes in the generation of the Notch Intracellular Domain and in the expression of the Hes-1 transcription factor indicate that activation of the Notch pathway plays a role in this phenotype, consistent with previous in vitro reports that F3/Contactin is a Notch1 ligand.
Collapse
|
202
|
Sebastián-Serrano A, Sandonis A, Cardozo M, Rodríguez-Tornos FM, Bovolenta P, Nieto M. Pαx6 expression in postmitotic neurons mediates the growth of axons in response to SFRP1. PLoS One 2012; 7:e31590. [PMID: 22359602 PMCID: PMC3281087 DOI: 10.1371/journal.pone.0031590] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 01/16/2012] [Indexed: 11/22/2022] Open
Abstract
During development, the mechanisms that specify neuronal subclasses are coupled to those that determine their axonal response to guidance cues. Pax6 is a homedomain transcription factor required for the specification of a variety of neural precursors. After cell cycle exit, Pax6 expression is often shut down in the precursor progeny and most postmitotic neurons no longer express detectable levels of the protein. There are however exceptions and high Pax6 protein levels are found, for example, in postmitotic retinal ganglion cells (RGCs), dopaminergic neurons of the olfactory bulb and the limbic system in the telencephalon. The function of Pax6 in these differentiating neurons remains mostly elusive. Here, we demonstrate that Pax6 mediates the response of growing axons to SFRP1, a secreted molecule expressed in several Pax6-positive forebrain territories. Forced expression of Pax6 in cultured postmitotic cortical neurons, which do not normally express Pax6, was sufficient to increment axonal length. Growth was blocked by the addition of anti-SFRP1 antibodies, whereas exogenously added SFRP1 increased axonal growth of Pax6-transfected neurons but not that of control or untransfected cortical neurons. In the reverse scenario, shRNA-mediated knock-down of Pax6 in mouse retinal explants specifically abolished RGCs axonal growth induced by SFRP1, but had no effect on RGCs differentiation and it did not modify the effect of Shh or Netrin on axon growth. Taken together these results demonstrate that expression of Pax6 is necessary and sufficient to render postmitotic neurons competent to respond to SFRP1. These results reveal a novel and unexpected function of Pax6 in postmitotic neurons and situate Pax6 and SFRP1 as pair regulators of axonal connectivity.
Collapse
Affiliation(s)
- Alvaro Sebastián-Serrano
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Africa Sandonis
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-UAM, and CIBER de Enfermedades Raras, Madrid, Spain
| | - Marcos Cardozo
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-UAM, and CIBER de Enfermedades Raras, Madrid, Spain
| | | | - Paola Bovolenta
- Centro de Biologia Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-UAM, and CIBER de Enfermedades Raras, Madrid, Spain
| | - Marta Nieto
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
203
|
Hulea L, Nepveu A. CUX1 transcription factors: from biochemical activities and cell-based assays to mouse models and human diseases. Gene 2012; 497:18-26. [PMID: 22306263 DOI: 10.1016/j.gene.2012.01.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/09/2012] [Accepted: 01/18/2012] [Indexed: 01/19/2023]
Abstract
ChIP-chip and expression analyses indicated that CUX1 transcription factors regulate a large number of genes and microRNAs involved in multiple cellular processes. Indeed, in proliferating cells CUX1 was shown to regulate several genes involved in DNA replication, progression into S phase and later, the spindle assembly checkpoint that controls progression through mitosis. siRNA-mediated knockdown established that CUX1 is required for cell motility. Moreover, higher expression of short CUX1 isoforms, as observed in many cancers, was shown to stimulate cell migration and invasion. In parallel, elevated expression particularly in higher grade tumors of breast and pancreatic cancers implicated CUX1 in tumor initiation and progression. Indeed, transgenic mouse models demonstrated a causal role of CUX1 in cancers originating from various cell types. These studies revealed that higher CUX1 expression or activity not only stimulates cell proliferation and motility, but also promotes genetic instability. CUX1 has also been implicated in the etiology of polycystic kidney diseases, both from a transgenic approach and the analysis of CUX1 activity in multiple mouse models of this disease. Studies in neurobiology have uncovered a potential implication of CUX1 in cognitive disorders, neurodegeneration and obesity. CUX1 was shown to be expressed specifically in pyramidal neurons of the neocortex upper layers where it regulates dendrite branching, spine development, and synapse formation. In addition, modulation of CUX1 expression in neurons of the hypothalamus has been associated with changes in leptin receptor trafficking in the vicinity of the primary cilium resulting in altered leptin signaling and ultimately, eating behavior. Overall, studies in various fields have allowed the development of several cell-based assays to monitor CUX1 function and have extended the range of organs in which CUX1 plays an important role in development and tissue homeostasis.
Collapse
Affiliation(s)
- Laura Hulea
- Goodman Cancer Centre, McGill University, 1160 Pine avenue West, Montreal, Quebec, Canada H3A 1A3
| | | |
Collapse
|
204
|
Regulation of the actin cytoskeleton in dendritic spines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:81-95. [PMID: 22351052 DOI: 10.1007/978-3-7091-0932-8_4] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spine morphogenesis is largely dependent on the remodeling of the actin cytoskeleton. Actin dynamics within spines is regulated by a complex network of signaling molecules, which relay signals from synaptic receptors, through small GTPases and their regulators, to actin-binding proteins. In this chapter, we will discuss molecules involved in dendritic spine plasticity beginning with actin and moving upstream toward neuromodulators and trophic factors that initiate signaling involved in these plasticity events. We will place special emphasis on small GTPase pathways, as they have an established importance in dendritic spine plasticity and pathology. Finally, we will discuss some epigenetic mechanisms that control spine morphogenesis.
Collapse
|
205
|
de la Torre-Ubieta L, Bonni A. Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron 2011; 72:22-40. [PMID: 21982366 DOI: 10.1016/j.neuron.2011.09.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
Abstract
The highly specialized morphology of a neuron, typically consisting of a long axon and multiple branching dendrites, lies at the core of the principle of dynamic polarization, whereby information flows from dendrites toward the soma and to the axon. For more than a century, neuroscientists have been fascinated by how shape is important for neuronal function and how neurons acquire their characteristic morphology. During the past decade, substantial progress has been made in our understanding of the molecular underpinnings of neuronal polarity and morphogenesis. In these studies, transcription factors have emerged as key players governing multiple aspects of neuronal morphogenesis from neuronal polarization and migration to axon growth and pathfinding to dendrite growth and branching to synaptogenesis. In this review, we will highlight the role of transcription factors in shaping neuronal morphology with emphasis on recent literature in mammalian systems.
Collapse
Affiliation(s)
- Luis de la Torre-Ubieta
- Department of Neurobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
206
|
Alfano C, Viola L, Heng JIT, Pirozzi M, Clarkson M, Flore G, De Maio A, Schedl A, Guillemot F, Studer M. COUP-TFI promotes radial migration and proper morphology of callosal projection neurons by repressing Rnd2 expression. Development 2011; 138:4685-97. [PMID: 21965613 DOI: 10.1242/dev.068031] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
During corticogenesis, late-born callosal projection neurons (CPNs) acquire their laminar position through glia-guided radial migration and then undergo final differentiation. However, the mechanisms controlling radial migration and final morphology of CPNs are poorly defined. Here, we show that in COUP-TFI mutant mice CPNs are correctly specified, but are delayed in reaching the cortical plate and have morphological defects during migration. Interestingly, we observed that the rate of neuronal migration to the cortical plate normally follows a low-rostral to high-caudal gradient, similar to that described for COUP-TFI. This gradient is strongly impaired in COUP-TFI(-/-) brains. Moreover, the expression of the Rho-GTPase Rnd2, a modulator of radial migration, is complementary to both these gradients and strongly increases in the absence of COUP-TFI function. We show that COUP-TFI directly represses Rnd2 expression at the post-mitotic level along the rostrocaudal axis of the neocortex. Restoring correct Rnd2 levels in COUP-TFI(-/-) brains cell-autonomously rescues neuron radial migration and morphological transitions. We also observed impairments in axonal elongation and dendritic arborization of COUP-TFI-deficient CPNs, which were rescued by lowering Rnd2 expression levels. Thus, our data demonstrate that COUP-TFI modulates late-born neuron migration and favours proper differentiation of CPNs by finely regulating Rnd2 expression levels.
Collapse
Affiliation(s)
- Christian Alfano
- Telethon Institute of Genetics and Medicine (TIGEM), Developmental Disorders Program, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Bachy I, Franck MCM, Li L, Abdo H, Pattyn A, Ernfors P. The transcription factor Cux2 marks development of an A-delta sublineage of TrkA sensory neurons. Dev Biol 2011; 360:77-86. [PMID: 21945863 DOI: 10.1016/j.ydbio.2011.09.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/25/2011] [Accepted: 09/07/2011] [Indexed: 11/29/2022]
Abstract
The developmental process and unique molecular identity between the many different types of dorsal root ganglion (DRG) sensory neurons generated during embryogenesis provide the cellular basis for the distinct perceptual modalities of somatosensation. The mechanisms leading to the generation of different types of nociceptive sensory neurons remain only partly understood. Here, we show that the transcription factor Cux2 is a novel marker of sensory neuron subpopulations of three main sublineages as defined by the expression of neurotrophic factor receptors TrkA, TrkB and TrkC. In particular, it is expressed in a subpopulation of early TrkA(+) neurons that arise during the early, Ngn1-independent initiated neurogenesis in the DRG. Postnatally, Cux2 marks a specific subtype of A-delta nociceptors as seen by expression of TrkA and NF200 but absence of TrpV1. Analysis of Cux2 mutant mice shows that Cux2 is not required for specification of Trk(+) neuronal subpopulations. However, Cux2 mutant mice are hypersensitive to mechanical, but not to heat or cold stimuli, consistent with a requirement in the process of specification of the mechanoreceptive neuron circuit. Hence, our results show that Cux2 is expressed and may participate in development of a specific subtype of myelinated TrkA(+) nociceptors.
Collapse
Affiliation(s)
- Isabelle Bachy
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
208
|
Zhang L, Song NN, Chen JY, Huang Y, Li H, Ding YQ. Satb2 is required for dendritic arborization and soma spacing in mouse cerebral cortex. ACTA ACUST UNITED AC 2011; 22:1510-9. [PMID: 21885532 DOI: 10.1093/cercor/bhr215] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Self-avoidance is a mechanism by which dendrites from the same neuron repel one another in order to establish uniform coverage of the dendritic field. The importance of self-avoidance for the development of complex arborization patterns has been highlighted by studies of Drosophila sensory and mouse retinal neurons. However, it is unclear whether branch patterning in the mammalian central nervous system is also governed by this strategy. We reduced Satb2 expression in a population of layer II/III pyramidal neurons in vivo by RNA interference and found that the somas of Satb2-deficient neurons clumped together, and their dendrites failed to expand laterally but instead formed fascicles. Furthermore, experiments showed that reducing Satb2 caused the adhesion of not only neighboring Satb2-deficient neurons but also neighboring wild-type neurons. Our results indicate a cell autonomous and non-cell autonomous role for Satb2 in regulating the adhesive and/or repulsive properties of cerebral pyramidal neurons.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai 200092, China
| | | | | | | | | | | |
Collapse
|
209
|
Turtle functions downstream of Cut in differentially regulating class specific dendrite morphogenesis in Drosophila. PLoS One 2011; 6:e22611. [PMID: 21811639 PMCID: PMC3141077 DOI: 10.1371/journal.pone.0022611] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/29/2011] [Indexed: 11/23/2022] Open
Abstract
Background Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined. Methodology/Principal Findings The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology. Conclusions/Significance Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a transcriptional regulatory interaction between Cut and Turtle, representing a novel pathway for mediating class specific dendrite development.
Collapse
|
210
|
Soumiya H, Fukumitsu H, Furukawa S. Prenatal immune challenge compromises development of upper-layer but not deeper-layer neurons of the mouse cerebral cortex. J Neurosci Res 2011; 89:1342-50. [DOI: 10.1002/jnr.22636] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 11/07/2022]
|
211
|
A requirement for nuclear factor-kappaB in developmental and plasticity-associated synaptogenesis. J Neurosci 2011; 31:5414-25. [PMID: 21471377 DOI: 10.1523/jneurosci.2456-10.2011] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Structural plasticity of dendritic spines and synapses is a fundamental mechanism governing neuronal circuits and may form an enduring basis for information storage in the brain. We find that the p65 subunit of the nuclear factor-κB (NF-κB) transcription factor, which is required for learning and memory, controls excitatory synapse and dendritic spine formation and morphology in murine hippocampal neurons. Endogenous NF-κB activity is elevated by excitatory transmission during periods of rapid spine and synapse development. During in vitro synaptogenesis, NF-κB enhances dendritic spine and excitatory synapse density and loss of endogenous p65 decreases spine density and spine head volume. Cell-autonomous function of NF-κB within the postsynaptic neuron is sufficient to regulate the formation of both presynaptic and postsynaptic elements. During synapse development in vivo, loss of NF-κB similarly reduces spine density and also diminishes the amplitude of synaptic responses. In contrast, after developmental synaptogenesis has plateaued, endogenous NF-κB activity is low and p65 deficiency no longer attenuates basal spine density. Instead, NF-κB in mature neurons is activated by stimuli that induce demand for new synapses, including estrogen and short-term bicuculline, and is essential for upregulating spine density in response to these stimuli. p65 is enriched in dendritic spines making local protein-protein interactions possible; however, the effects of NF-κB on spine density require transcription and the NF-κB-dependent regulation of PSD-95, a critical postsynaptic component. Collectively, our data define a distinct role for NF-κB in imparting transcriptional regulation required for the induction of changes to, but not maintenance of, excitatory synapse and spine density.
Collapse
|
212
|
Genetic and developmental homology in amniote brains. Toward conciliating radical views of brain evolution. Brain Res Bull 2010; 84:125-36. [PMID: 21146594 DOI: 10.1016/j.brainresbull.2010.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/26/2010] [Accepted: 12/05/2010] [Indexed: 11/23/2022]
Abstract
The six-layered neocortex is both a unique and a universal character of mammals. Historically, a major concern has been to determine its phylogenetic origins by establishing which structures, if any, correspond to it in the brains of other vertebrates. Two opposing hypotheses have been debated in the last years: (i) the neocortex arises entirely from the dorsal hemisphere of ancestral reptiles, and (ii) a large portion of it originates in the lateral hemisphere, from a structure termed the dorsal ventricular ridge (DVR), which expands significantly in reptiles and especially in birds. While developmental and genetic evidence strongly favors a dorsal origin of the neocortex, there are important similarities in the sensory connectivity to the neocortex and to the DVR, and more recently, in the phenotype of late-produced elements in both structures. It is proposed that, despite originating in different embryonic domains, the proliferative expansion of both the mammalian neocortex and the sauropsidian DVR is partly based on the amplification of similar developmental programs, possibly dependent on Pax6 activity or of related cascades that promote progenitor proliferation. While Pax6 activity is already present in the amphibian pallium, I propose that at some point(s) in amniote evolution it has been upregulated yielding brain expansion in both sauropsids and mammals. However, in the latter there has been an additional dorsalizing influence contributing to the development of the neocortex and restricting the expansion of the lateral hemisphere. Finally, a significant contribution to neocortical origins by anterior signaling centers secreting FGFs is suggested, by virtue of their association to olfactory development and their cortical patterning functions. This perspective fits a dynamical view of brain homology, where instead of searching for a one-to-one correspondence between components, emphasis is placed on changes in the modulation of conserved signaling centers and their corresponding morphogen gradients across species.
Collapse
|
213
|
Fame RM, MacDonald JL, Macklis JD. Development, specification, and diversity of callosal projection neurons. Trends Neurosci 2010; 34:41-50. [PMID: 21129791 DOI: 10.1016/j.tins.2010.10.002] [Citation(s) in RCA: 275] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 10/04/2010] [Accepted: 10/08/2010] [Indexed: 01/24/2023]
Abstract
Callosal projection neurons (CPN) are a diverse population of neocortical projection neurons that connect the two hemispheres of the cerebral cortex via the corpus callosum. They play key roles in high-level associative connectivity, and have been implicated in cognitive syndromes of high-level associative dysfunction, such as autism spectrum disorders. CPN evolved relatively recently compared to other cortical neuron populations, and have undergone disproportionately large expansion from mouse to human. While much is known about the anatomical trajectory of developing CPN axons, and progress has been made in identifying cellular and molecular controls over midline crossing, only recently have molecular-genetic controls been identified that specify CPN populations, and help define CPN subpopulations. In this review, we discuss the development, diversity and evolution of CPN.
Collapse
Affiliation(s)
- Ryann M Fame
- MGH-HMS Center for Nervous System Repair, Department of Neurosurgery, and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA
| | | | | |
Collapse
|
214
|
Cubelos B, Nieto M. Intrinsic programs regulating dendrites and synapses in the upper layer neurons of the cortex. Commun Integr Biol 2010; 3:483-6. [PMID: 21331220 DOI: 10.4161/cib.3.6.12755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 06/18/2010] [Indexed: 11/19/2022] Open
Abstract
Dendrites and spines are key regulators of neuronal function often affected in cognitive disorders. Neuronal subclasses are characterized by a wide range of dendritic morphologies that aid their specific functions. However, how subclass-specific dendritic trees arise during vertebrate development remains largely unknown. We have recently reported that the restricted expression of Cux1 and Cux2 genes in the upper layers of the cerebral cortex determines the specific morphology of dendrites and spines and the function of these neurons. Since Cux genes are the vertebrate homologs of Drosophila Cut, which specifies the dendritic morphologies of certain sensory neuron populations, our findings suggest that mechanisms of dendrite differentiation are conserved between Drosophila and mammals, which had yet to be demonstrated. Importantly, we found that Cux genes not only modulate dendritic branching, but also dendritic spine morphogenesis, the functional synapse and cognition. Dendritic spine stabilization was partly mediated by direct repression of genes of the Xlr family, previously implicated in cognitive defects in a model of Turner syndrome. Hence, our work indicates that neuronal subclass specific determinants may intrinsically affect synaptic activity beyond expected. The functions of Cux1 and Cux2 were additive and complement each other to establish the final pattern of the dendritic tree and the number and strength of the synapses. This work unravels novel mechanisms of dendritogenesis and synaptogenesis and illustrates how regulating dendritic structures contributes to the specialization of upper layer neurons. It will be interesting to dissect how these mechanisms regulate cortical activity, area specialization and cognitive functions.
Collapse
Affiliation(s)
- Beatriz Cubelos
- Centro Nacional de Biotecnología; CSIC; Campus de Cantoblanco; Madrid, Spain
| | | |
Collapse
|
215
|
Kernohan KD, Jiang Y, Tremblay DC, Bonvissuto AC, Eubanks JH, Mann MRW, Bérubé NG. ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain. Epigenomics 2010; 2:743-63. [PMID: 20159591 DOI: 10.2217/epi.10.61] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human developmental disorders caused by chromatin dysfunction often display overlapping clinical manifestations, such as cognitive deficits, but the underlying molecular links are poorly defined. Here, we show that ATRX, MeCP2, and cohesin, chromatin regulators implicated in ATR-X, RTT, and CdLS syndromes, respectively, interact in the brain and colocalize at the H19 imprinting control region (ICR) with preferential binding on the maternal allele. Importantly, we show that ATRX loss of function alters enrichment of cohesin, CTCF, and histone modifications at the H19 ICR, without affecting DNA methylation on the paternal allele. ATRX also affects cohesin, CTCF, and MeCP2 occupancy within the Gtl2/Dlk1 imprinted domain. Finally, we show that loss of ATRX interferes with the postnatal silencing of the maternal H19 gene along with a larger network of imprinted genes. We propose that ATRX, cohesin, and MeCP2 cooperate to silence a subset of imprinted genes in the postnatal mouse brain.
Collapse
Affiliation(s)
- Kristin D Kernohan
- Department of Paediatrics, 800 Commissioners Road East, London, ON N6C 2V5, Canada
| | | | | | | | | | | | | |
Collapse
|