201
|
Carmel JB, Martin JH. Motor cortex electrical stimulation augments sprouting of the corticospinal tract and promotes recovery of motor function. Front Integr Neurosci 2014; 8:51. [PMID: 24994971 PMCID: PMC4061747 DOI: 10.3389/fnint.2014.00051] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/28/2014] [Indexed: 12/11/2022] Open
Abstract
The corticospinal system—with its direct spinal pathway, the corticospinal tract (CST) – is the primary system for controlling voluntary movement. Our approach to CST repair after injury in mature animals was informed by our finding that activity drives establishment of connections with spinal cord circuits during postnatal development. After incomplete injury in maturity, spared CST circuits sprout, and partially restore lost function. Our approach harnesses activity to augment this injury-dependent CST sprouting and to promote function. Lesion of the medullary pyramid unilaterally eliminates all CST axons from one hemisphere and allows examination of CST sprouting from the unaffected hemisphere. We discovered that 10 days of electrical stimulation of either the spared CST or motor cortex induces CST axon sprouting that partially reconstructs the lost CST. Stimulation also leads to sprouting of the cortical projection to the magnocellular red nucleus, where the rubrospinal tract originates. Coordinated outgrowth of the CST and cortical projections to the red nucleus could support partial re-establishment of motor systems connections to the denervated spinal motor circuits. Stimulation restores skilled motor function in our animal model. Lesioned animals have a persistent forelimb deficit contralateral to pyramidotomy in the horizontal ladder task. Rats that received motor cortex stimulation either after acute or chronic injury showed a significant functional improvement that brought error rate to pre-lesion control levels. Reversible inactivation of the stimulated motor cortex reinstated the impairment demonstrating the importance of the stimulated system to recovery. Motor cortex electrical stimulation is an effective approach to promote spouting of spared CST axons. By optimizing activity-dependent sprouting in animals, we could have an approach that can be translated to the human for evaluation with minimal delay.
Collapse
Affiliation(s)
- Jason B Carmel
- Department of Neurology, Weill Cornell Medical College New York, NY, USA ; Department of Pediatrics, Weill Cornell Medical College New York, NY, USA ; Brain and Mind Research Institute, Weill Cornell Medical College New York, NY, USA ; Burke Medical Research Institute White Plains, NY, USA
| | - John H Martin
- Department of Physiology, Pharmacology and Neuroscience, City College of the City University of New York New York, NY, USA
| |
Collapse
|
202
|
Fink AJP, Croce KR, Huang ZJ, Abbott LF, Jessell TM, Azim E. Presynaptic inhibition of spinal sensory feedback ensures smooth movement. Nature 2014; 509:43-8. [PMID: 24784215 PMCID: PMC4292914 DOI: 10.1038/nature13276] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/24/2014] [Indexed: 12/20/2022]
Abstract
The precision of skilled movement depends on sensory feedback and its refinement by local inhibitory microcircuits. One specialized set of spinal GABAergic interneurons forms axo-axonic contacts with the central terminals of sensory afferents, exerting presynaptic inhibitory control over sensory-motor transmission. The inability to achieve selective access to the GABAergic neurons responsible for this unorthodox inhibitory mechanism has left unresolved the contribution of presynaptic inhibition to motor behavior. We used Gad2 as a genetic entry point to manipulate the interneurons that contact sensory terminals, and show that activation of these interneurons in mice elicits the defining physiological characteristics of presynaptic inhibition. Selective genetic ablation of Gad2-expressing interneurons severely perturbs goal-directed reaching movements, uncovering a pronounced and stereotypic forelimb motor oscillation, the core features of which are captured by modeling the consequences of sensory feedback at high gain. Our findings define the neural substrate of a genetically hard-wired gain control system crucial for the smooth execution of movement.
Collapse
Affiliation(s)
- Andrew J P Fink
- Howard Hughes Medical Institute, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Katherine R Croce
- Howard Hughes Medical Institute, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Z Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - L F Abbott
- Center for Theoretical Neuroscience, Departments of Physiology and Neuroscience, Columbia University, New York, New York 10032, USA
| | - Thomas M Jessell
- Howard Hughes Medical Institute, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Eiman Azim
- Howard Hughes Medical Institute, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| |
Collapse
|
203
|
Ford TW, Meehan CF, Kirkwood PA. Absence of synergy for monosynaptic Group I inputs between abdominal and internal intercostal motoneurons. J Neurophysiol 2014; 112:1159-68. [PMID: 24920027 PMCID: PMC4122728 DOI: 10.1152/jn.00245.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Internal intercostal and abdominal motoneurons are strongly coactivated during expiration. We investigated whether that synergy was paralleled by synergistic Group I reflex excitation. Intracellular recordings were made from motoneurons of the internal intercostal nerve of T8 in anesthetized cats, and the specificity of the monosynaptic connections from afferents in each of the two main branches of this nerve was investigated. Motoneurons were shown by antidromic excitation to innervate three muscle groups: external abdominal oblique [EO; innervated by the lateral branch (Lat)], the region of the internal intercostal muscle proximal to the branch point (IIm), and muscles innervated from the distal remainder (Dist). Strong specificity was observed, only 2 of 54 motoneurons showing excitatory postsynaptic potentials (EPSPs) from both Lat and Dist. No EO motoneurons showed an EPSP from Dist, and no IIm motoneurons showed one from Lat. Expiratory Dist motoneurons fell into two groups. Those with Dist EPSPs and none from Lat (group A) were assumed to innervate distal internal intercostal muscle. Those with Lat EPSPs (group B) were assumed to innervate abdominal muscle (transversus abdominis or rectus abdominis). Inspiratory Dist motoneurons (assumed to innervate interchondral muscle) showed Dist EPSPs. Stimulation of dorsal ramus nerves gave EPSPs in 12 instances, 9 being in group B Dist motoneurons. The complete absence of heteronymous monosynaptic Group I reflex excitation between muscles that are synergistically activated in expiration leads us to conclude that such connections from muscle spindle afferents of the thoracic nerves have little role in controlling expiratory movements but, where present, support other motor acts.
Collapse
Affiliation(s)
- T W Ford
- University of Nottingham School of Health Sciences, Queen's Medical Centre, Nottingham, United Kingdom; and
| | - C F Meehan
- Department of Neuroscience and Pharmacology, Panum Institute, Copenhagen N, Denmark
| | - P A Kirkwood
- Sobell Department for Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, United Kingdom;
| |
Collapse
|
204
|
Orlandi JG, Stetter O, Soriano J, Geisel T, Battaglia D. Transfer entropy reconstruction and labeling of neuronal connections from simulated calcium imaging. PLoS One 2014; 9:e98842. [PMID: 24905689 PMCID: PMC4048312 DOI: 10.1371/journal.pone.0098842] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 05/08/2014] [Indexed: 11/23/2022] Open
Abstract
Neuronal dynamics are fundamentally constrained by the underlying structural network architecture, yet much of the details of this synaptic connectivity are still unknown even in neuronal cultures in vitro. Here we extend a previous approach based on information theory, the Generalized Transfer Entropy, to the reconstruction of connectivity of simulated neuronal networks of both excitatory and inhibitory neurons. We show that, due to the model-free nature of the developed measure, both kinds of connections can be reliably inferred if the average firing rate between synchronous burst events exceeds a small minimum frequency. Furthermore, we suggest, based on systematic simulations, that even lower spontaneous inter-burst rates could be raised to meet the requirements of our reconstruction algorithm by applying a weak spatially homogeneous stimulation to the entire network. By combining multiple recordings of the same in silico network before and after pharmacologically blocking inhibitory synaptic transmission, we show then how it becomes possible to infer with high confidence the excitatory or inhibitory nature of each individual neuron.
Collapse
Affiliation(s)
- Javier G. Orlandi
- Departament d'Estructura i Consituents de la Matèria, Universitat de Barcelona, Barcelona, Spain
| | - Olav Stetter
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Georg-August-Universität, Physics Department, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Jordi Soriano
- Departament d'Estructura i Consituents de la Matèria, Universitat de Barcelona, Barcelona, Spain
| | - Theo Geisel
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Georg-August-Universität, Physics Department, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
| | - Demian Battaglia
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Institut de Neurosciences des Systèmes, Inserm UMR1106, Aix-Marseille Université, Marseille, France
- * E-mail:
| |
Collapse
|
205
|
Abstract
A recent study has revealed that different populations of commissural spinal interneurons ensure limb alternation at different speeds of locomotion.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
206
|
Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature 2014; 509:189-94. [PMID: 24776795 PMCID: PMC4057936 DOI: 10.1038/nature13161] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 02/18/2014] [Indexed: 01/03/2023]
Abstract
Astrocytes, the most abundant cells in the central nervous system, promote synapse formation and help refine neural connectivity. Although they are allocated to spatially distinct regional domains during development, it is unknown whether region-restricted astrocytes are functionally heterogeneous. Here we show that postnatal spinal cord astrocytes express several region-specific genes, and that ventral astrocyte-encoded Semaphorin3a (Sema3a) is required for proper motor neuron and sensory neuron circuit organization. Loss of astrocyte-encoded Sema3a led to dysregulated α–motor neuron axon initial segment orientation, markedly abnormal synaptic inputs, and selective death of α–but not of adjacent γ–motor neurons. Additionally, a subset of TrkA+ sensory afferents projected to ectopic ventral positions. These findings demonstrate that stable maintenance of a positional cue by developing astrocytes influences multiple aspects of sensorimotor circuit formation. More generally, they suggest that regional astrocyte heterogeneity may help to coordinate postnatal neural circuit refinement.
Collapse
|
207
|
Pivetta C, Esposito MS, Sigrist M, Arber S. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin. Cell 2014; 156:537-48. [PMID: 24485459 DOI: 10.1016/j.cell.2013.12.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 10/31/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022]
Abstract
Accurate motor-task execution relies on continuous comparison of planned and performed actions. Motor-output pathways establish internal circuit collaterals for this purpose. Here we focus on motor collateral organization between spinal cord and upstream neurons in the brainstem. We used a newly developed mouse genetic tool intersectionally with viruses to uncover the connectivity rules of these ascending pathways by capturing the transient expression of neuronal subpopulation determinants. We reveal a widespread and diverse network of spinal dual-axon neurons, with coincident input to forelimb motor neurons and the lateral reticular nucleus (LRN) in the brainstem. Spinal information to the LRN is not segregated by motor pool or neurotransmitter identity. Instead, it is organized according to the developmental domain origin of the progenitor cells. Thus, excerpts of most spinal information destined for action are relayed to supraspinal centers through exquisitely organized ascending connectivity modules, enabling precise communication between command and execution centers of movement.
Collapse
Affiliation(s)
- Chiara Pivetta
- Biozentrum, Department of Cell Biology, University of Basel, Basel 4056, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Maria Soledad Esposito
- Biozentrum, Department of Cell Biology, University of Basel, Basel 4056, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Markus Sigrist
- Biozentrum, Department of Cell Biology, University of Basel, Basel 4056, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland
| | - Silvia Arber
- Biozentrum, Department of Cell Biology, University of Basel, Basel 4056, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel 4058, Switzerland.
| |
Collapse
|
208
|
Functional motifs composed of morphologically homologous neurons repeated in the hindbrain segments. J Neurosci 2014; 34:3291-302. [PMID: 24573288 DOI: 10.1523/jneurosci.4610-13.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Segmental organization along the neuraxis is a prominent feature of the CNS in vertebrates. In a wide range of fishes, hindbrain segments contain orderly arranged reticulospinal neurons (RSNs). Individual RSNs in goldfish and zebrafish hindbrain are morphologically identified. RSNs sharing similar morphological features are called segmental homologs and repeated in adjacent segments. However, little is known about functional relationships among segmental homologs. Here we investigated the electrophysiological connectivity between the Mauthner cell (M-cell), a pair of giant RSNs in segment 4 (r4) that are known to trigger fast escape behavior, and different series of homologous RSNs in r4-r6. Paired intracellular recordings in adult goldfish revealed unidirectional connections from the M-cell to RSNs. The connectivity was similar in morphological homologs. A single M-cell spike produced IPSPs in dorsally located RSNs (MiD cells) on the ipsilateral side and excitatory postsynaptic depolarization on the contralateral side, except for MiD2cm cells. The inhibitory or excitatory potentials effectively suppressed or enhanced target RSNs spiking, respectively. In contrast to the lateralized effects on MiD cells, single M-cell spiking elicited equally strong depolarizations on bilateral RSNs located ventrally (MiV cells), and the depolarization was high enough for MiV cells to burst. Therefore, the morphological homology of repeated RSNs in r4-r6 and their functional M-cell connectivity were closely correlated, suggesting that each functional connection works as a functional motif during the M-cell-initiated escape.
Collapse
|
209
|
Achim K, Salminen M, Partanen J. Mechanisms regulating GABAergic neuron development. Cell Mol Life Sci 2014; 71:1395-415. [PMID: 24196748 PMCID: PMC11113277 DOI: 10.1007/s00018-013-1501-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 12/17/2022]
Abstract
Neurons using gamma-aminobutyric acid (GABA) as their neurotransmitter are the main inhibitory neurons in the mature central nervous system (CNS) and show great variation in their form and function. GABAergic neurons are produced in all of the main domains of the CNS, where they develop from discrete regions of the neuroepithelium. Here, we review the gene expression and regulatory mechanisms controlling the main steps of GABAergic neuron development: early patterning of the proliferative neuroepithelium, production of postmitotic neural precursors, establishment of their identity and migration. By comparing the molecular regulation of these events across CNS, we broadly identify three regions utilizing distinct molecular toolkits for GABAergic fate determination: telencephalon-anterior diencephalon (DLX2 type), posterior diencephalon-midbrain (GATA2 type) and hindbrain-spinal cord (PTF1A and TAL1 types). Similarities and differences in the molecular regulatory mechanisms reveal the core determinants of a GABAergic neuron as well as provide insights into generation of the vast diversity of these neurons.
Collapse
Affiliation(s)
- Kaia Achim
- EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Marjo Salminen
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjobergin katu 2, PO Box 66, 00014 Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, University of Helsinki, Viikinkaari 5, PO Box 56, 00014 Helsinki, Finland
| |
Collapse
|
210
|
Zanin MS, Ronchi JM, Silva TDC, Fuzaro AC, Araujo JED. Electromyographic and strength analyses of activation patterns of the wrist flexor muscles after acupuncture. J Acupunct Meridian Stud 2014; 7:231-7. [PMID: 25441947 DOI: 10.1016/j.jams.2014.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 11/26/2022] Open
Abstract
This study analyzed the electromyographic and strength responses of the flexor muscles of the wrist following stimulation of acupuncture points. A total of 52 participants were randomly divided into four groups: local (heart 3, HT3), distant (heart 4, HT4), control (bladder 60, BL60), and naïve control groups. To obtain the root mean square electromyographic activity, we placed surface electrodes over the wrist flexors. To obtain kilogram force (kgf) values, we attached a force transducer to the floor and to the hands of participants. Both values were recorded over three repetitions of maximal isometric wrist flexion contractions. Data were analyzed using one-way analyses of variance, followed by Dunnett's post-hoc tests. We found reductions in electromyographic activity contralateral to the stimulated point in the distant group 10 minutes after removal of the needles (F(3,48) = 3.25; p < 0.05). Regarding muscle strength, ipsilateral and contralateral stimulation in the distant group produced kgf levels prior to and 10 minute and 20 minutes after withdrawal of the acupuncture needle that were lower than that obtained prior to insertion of the needle (F(3,48) = 5.82; p < 0.05). Thus, stimulation of the acupuncture points distant from the wrist flexors reduced ipsilateral and contralateral muscle strength and decreased the root mean square values contralateral to the site of stimulation.
Collapse
Affiliation(s)
- Marília Silva Zanin
- Laboratory of Neuropsychobiology and Motor Behavior, Department of Biomechanics, Medicine, and Rehabilitation of the Locomotor System, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana Morales Ronchi
- Laboratory of Neuropsychobiology and Motor Behavior, Department of Biomechanics, Medicine, and Rehabilitation of the Locomotor System, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Tainan de Castro Silva
- Laboratory of Neuropsychobiology and Motor Behavior, Department of Biomechanics, Medicine, and Rehabilitation of the Locomotor System, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda Cunha Fuzaro
- Laboratory of Neuropsychobiology and Motor Behavior, Department of Biomechanics, Medicine, and Rehabilitation of the Locomotor System, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - João Eduardo de Araujo
- Laboratory of Neuropsychobiology and Motor Behavior, Department of Biomechanics, Medicine, and Rehabilitation of the Locomotor System, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
211
|
Can simple rules control development of a pioneer vertebrate neuronal network generating behavior? J Neurosci 2014; 34:608-21. [PMID: 24403159 DOI: 10.1523/jneurosci.3248-13.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
How do the pioneer networks in the axial core of the vertebrate nervous system first develop? Fundamental to understanding any full-scale neuronal network is knowledge of the constituent neurons, their properties, synaptic interconnections, and normal activity. Our novel strategy uses basic developmental rules to generate model networks that retain individual neuron and synapse resolution and are capable of reproducing correct, whole animal responses. We apply our developmental strategy to young Xenopus tadpoles, whose brainstem and spinal cord share a core vertebrate plan, but at a tractable complexity. Following detailed anatomical and physiological measurements to complete a descriptive library of each type of spinal neuron, we build models of their axon growth controlled by simple chemical gradients and physical barriers. By adding dendrites and allowing probabilistic formation of synaptic connections, we reconstruct network connectivity among up to 2000 neurons. When the resulting "network" is populated by model neurons and synapses, with properties based on physiology, it can respond to sensory stimulation by mimicking tadpole swimming behavior. This functioning model represents the most complete reconstruction of a vertebrate neuronal network that can reproduce the complex, rhythmic behavior of a whole animal. The findings validate our novel developmental strategy for generating realistic networks with individual neuron- and synapse-level resolution. We use it to demonstrate how early functional neuronal connectivity and behavior may in life result from simple developmental "rules," which lay out a scaffold for the vertebrate CNS without specific neuron-to-neuron recognition.
Collapse
|
212
|
Sayenko DG, Angeli C, Harkema SJ, Edgerton VR, Gerasimenko YP. Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J Neurophysiol 2014; 111:1088-99. [PMID: 24335213 PMCID: PMC3949232 DOI: 10.1152/jn.00489.2013] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/11/2013] [Indexed: 11/22/2022] Open
Abstract
Epidural stimulation (ES) of the lumbosacral spinal cord has been used to facilitate standing and voluntary movement after clinically motor-complete spinal-cord injury. It seems of importance to examine how the epidurally evoked potentials are modulated in the spinal circuitry and projected to various motor pools. We hypothesized that chronically implanted electrode arrays over the lumbosacral spinal cord can be used to assess functionally spinal circuitry linked to specific motor pools. The purpose of this study was to investigate the functional and topographic organization of compound evoked potentials induced by the stimulation. Three individuals with complete motor paralysis of the lower limbs participated in the study. The evoked potentials to epidural spinal stimulation were investigated after surgery in a supine position and in one participant, during both supine and standing, with body weight load of 60%. The stimulation was delivered with intensity from 0.5 to 10 V at a frequency of 2 Hz. Recruitment curves of evoked potentials in knee and ankle muscles were collected at three localized and two wide-field stimulation configurations. Epidural electrical stimulation of rostral and caudal areas of lumbar spinal cord resulted in a selective topographical recruitment of proximal and distal leg muscles, as revealed by both magnitude and thresholds of the evoked potentials. ES activated both afferent and efferent pathways. The components of neural pathways that can mediate motor-evoked potentials were highly dependent on the stimulation parameters and sensory conditions, suggesting a weight-bearing-induced reorganization of the spinal circuitries.
Collapse
Affiliation(s)
- Dimitry G Sayenko
- Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | | | | | | | | |
Collapse
|
213
|
Taniguchi H. Genetic dissection of GABAergic neural circuits in mouse neocortex. Front Cell Neurosci 2014; 8:8. [PMID: 24478631 PMCID: PMC3902216 DOI: 10.3389/fncel.2014.00008] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/06/2014] [Indexed: 01/01/2023] Open
Abstract
Diverse and flexible cortical functions rely on the ability of neural circuits to perform multiple types of neuronal computations. GABAergic inhibitory interneurons significantly contribute to this task by regulating the balance of activity, synaptic integration, spiking, synchrony, and oscillation in a neural ensemble. GABAergic interneurons display a high degree of cellular diversity in morphology, physiology, connectivity, and gene expression. A considerable number of subtypes of GABAergic interneurons diversify modes of cortical inhibition, enabling various types of information processing in the cortex. Thus, comprehensively understanding fate specification, circuit assembly, and physiological function of GABAergic interneurons is a key to elucidate the principles of cortical wiring and function. Recent advances in genetically encoded molecular tools have made a breakthrough to systematically study cortical circuitry at the molecular, cellular, circuit, and whole animal levels. However, the biggest obstacle to fully applying the power of these to analysis of GABAergic circuits was that there were no efficient and reliable methods to express them in subtypes of GABAergic interneurons. Here, I first summarize cortical interneuron diversity and current understanding of mechanisms, by which distinct classes of GABAergic interneurons are generated. I then review recent development in genetically encoded molecular tools for neural circuit research, and genetic targeting of GABAergic interneuron subtypes, particularly focusing on our recent effort to develop and characterize Cre/CreER knockin lines. Finally, I highlight recent success in genetic targeting of chandelier cells, the most unique and distinct GABAergic interneuron subtype, and discuss what kind of questions need to be addressed to understand development and function of cortical inhibitory circuits.
Collapse
Affiliation(s)
- Hiroki Taniguchi
- Development and Function of Inhibitory Neural Circuits, Max Planck Florida Institute for Neuroscience, JupiterFL, USA
| |
Collapse
|
214
|
Abstract
V3 interneurons (INs) are a major group of excitatory commissural interneurons in the spinal cord, and they are essential for producing a stable and robust locomotor rhythm. V3 INs are generated from the ventral-most progenitor domain, p3, but migrate dorsally and laterally during postmitotic development. At birth, they are located in distinctive clusters in the ventral horn and deep dorsal horn. To assess the heterogeneity of this genetically identified group of spinal INs, we combined patch-clamp recording and anatomical tracing with cluster analysis. We examined electrophysiological and morphological properties of mature V3 INs identified by their expression of tdTomato fluorescent proteins in Sim1(Cre/+); Rosa(floxstop26TdTom) mice. We identified two V3 subpopulations with distinct intrinsic properties and spatial distribution patterns. Ventral V3 INs, primarily located in lamina VIII, possess a few branching processes and were capable of generating rapid tonic firing spikes. By contrast, dorsal V3 INs exhibited a more complex morphology and relatively slow average spike frequency with strong adaptation, and they also displayed large sag voltages and post-inhibitory rebound potentials. Our data suggested that hyperpolarization-activated cation channel currents and T-type calcium channel currents may account for some of the membrane properties of V3 INs. Finally, we observed that ventral and dorsal V3 INs were active in different ways during running and swimming, indicating that ventral V3 INs may act as premotor neurons and dorsal V3 INs as relay neurons mediating sensory inputs. Together, we detected two physiologically and topographically distinct subgroups of V3 INs, each likely playing different roles in locomotor activities.
Collapse
|
215
|
Abstract
Locomotion requires precise control of spinal networks. In tetrapods and bipeds, dynamic regulation of locomotion is simplified by the modular organization of spinal limb circuits, but it is not known whether their predecessors, fish axial circuits, are similarly organized. Here, we demonstrate that the larval zebrafish spinal cord contains distinct, parallel microcircuits for independent control of dorsal and ventral musculature on each side of the body. During normal swimming, dorsal and ventral microcircuits are equally active, but, during postural correction, fish differentially engage these microcircuits to generate torque for self-righting. These findings reveal greater complexity in the axial spinal networks responsible for swimming than previously recognized and suggest an early template of modular organization for more-complex locomotor circuits in later vertebrates.
Collapse
Affiliation(s)
- Martha W. Bagnall
- Department of Neurobiology, Northwestern University, Evanston IL 60208, USA
| | - David L. McLean
- Department of Neurobiology, Northwestern University, Evanston IL 60208, USA
| |
Collapse
|
216
|
Abstract
Genetic means to visualize and manipulate neuronal circuits in the intact animal have revolutionized neurobiology. "Dynamic neuroanatomy" defines a range of approaches aimed at quantifying the architecture or subcellular organization of neurons over time during their development, regeneration, or degeneration. A general feature of these approaches is their reliance on the optical isolation of defined neurons in toto by genetically expressing markers in one or few cells. Here we use the afferent neurons of the lateral line as an example to describe a simple method for the dynamic neuroanatomical study of axon terminals in the zebrafish by laser-scanning confocal microscopy.
Collapse
Affiliation(s)
- Adèle Faucherre
- Département de Physiologie, Institut de Génomique Fonctionnelle, CNRS UMR 5203, INSERM U661, Universtités Montpellier 1 & 2, Montpellier, France
| | | |
Collapse
|
217
|
Abstract
The organization and functional logic of corticospinal motor neurons and their target connections remains unclear, despite their evident influence on movement. Spinal interneurons mediate much of this influence, yet we know little about the way in which corticospinal neurons engage spinal interneurons. This is perhaps not surprising given that the principles of organization of local spinal microcircuits remain elusive--we have glimpses of an underlying order but lack a comprehensive view of their functional architecture. In this brief essay we make a case that a new focus on the intersection of cortical and spinal circuits may provide clarity to the interpretation of corticospinal motor neuron firing patterns and help specify the logic of corticospinal motor neuronal function.
Collapse
Affiliation(s)
- Andrew Miri
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Zuckerman Mind Brain Behavior Institute, and Kavli Institute for Brain Science, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
218
|
Abstract
A complete understanding of nervous system function cannot be achieved without the identification of its component cell types. In this Perspective, we explore a series of related issues surrounding cell identity and how revolutionary methods for labeling and probing specific neuronal types have clarified this question. Specifically, we ask the following questions: what is the purpose of such diversity, how is it generated, how is it maintained, and, ultimately, how can one unambiguously identity one cell type from another? We suggest that each cell type can be defined by a unique and conserved molecular ground state that determines its capabilities. We believe that gaining an understanding of these molecular barcodes will advance our ability to explore brain function, enhance our understanding of the biochemical basis of CNS disorders, and aid in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Gord Fishell
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY 10016, USA.
| | | |
Collapse
|
219
|
Goggolidou P, Soneji S, Powles-Glover N, Williams D, Sethi S, Baban D, Simon MM, Ragoussis I, Norris DP. A chronological expression profile of gene activity during embryonic mouse brain development. Mamm Genome 2013; 24:459-72. [PMID: 24249052 PMCID: PMC3843766 DOI: 10.1007/s00335-013-9486-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/14/2013] [Indexed: 02/03/2023]
Abstract
The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.
Collapse
Affiliation(s)
- P Goggolidou
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Philippidou P, Dasen JS. Hox genes: choreographers in neural development, architects of circuit organization. Neuron 2013; 80:12-34. [PMID: 24094100 DOI: 10.1016/j.neuron.2013.09.020] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The neural circuits governing vital behaviors, such as respiration and locomotion, are comprised of discrete neuronal populations residing within the brainstem and spinal cord. Work over the past decade has provided a fairly comprehensive understanding of the developmental pathways that determine the identity of major neuronal classes within the neural tube. However, the steps through which neurons acquire the subtype diversities necessary for their incorporation into a particular circuit are still poorly defined. Studies on the specification of motor neurons indicate that the large family of Hox transcription factors has a key role in generating the subtypes required for selective muscle innervation. There is also emerging evidence that Hox genes function in multiple neuronal classes to shape synaptic specificity during development, suggesting a broader role in circuit assembly. This Review highlights the functions and mechanisms of Hox gene networks and their multifaceted roles during neuronal specification and connectivity.
Collapse
Affiliation(s)
- Polyxeni Philippidou
- Howard Hughes Medical Institute, NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
221
|
Francius C, Harris A, Rucchin V, Hendricks TJ, Stam FJ, Barber M, Kurek D, Grosveld FG, Pierani A, Goulding M, Clotman F. Identification of multiple subsets of ventral interneurons and differential distribution along the rostrocaudal axis of the developing spinal cord. PLoS One 2013; 8:e70325. [PMID: 23967072 PMCID: PMC3744532 DOI: 10.1371/journal.pone.0070325] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/17/2013] [Indexed: 01/06/2023] Open
Abstract
The spinal cord contains neuronal circuits termed Central Pattern Generators (CPGs) that coordinate rhythmic motor activities. CPG circuits consist of motor neurons and multiple interneuron cell types, many of which are derived from four distinct cardinal classes of ventral interneurons, called V0, V1, V2 and V3. While significant progress has been made on elucidating the molecular and genetic mechanisms that control ventral interneuron differentiation, little is known about their distribution along the antero-posterior axis of the spinal cord and their diversification. Here, we report that V0, V1 and V2 interneurons exhibit distinct organizational patterns at brachial, thoracic and lumbar levels of the developing spinal cord. In addition, we demonstrate that each cardinal class of ventral interneurons can be subdivided into several subsets according to the combinatorial expression of different sets of transcription factors, and that these subsets are differentially distributed along the rostrocaudal axis of the spinal cord. This comprehensive molecular profiling of ventral interneurons provides an important resource for investigating neuronal diversification in the developing spinal cord and for understanding the contribution of specific interneuron subsets on CPG circuits and motor control.
Collapse
Affiliation(s)
- Cédric Francius
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Audrey Harris
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Vincent Rucchin
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
| | - Timothy J. Hendricks
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Floor J. Stam
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Melissa Barber
- CNRS UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dorota Kurek
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank G. Grosveld
- Erasmus MC Stem Cell Institute, Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alessandra Pierani
- CNRS UMR 7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Frédéric Clotman
- Université catholique de Louvain, Institute of Neuroscience, Laboratory of Neural Differentiation, Brussels, Belgium
- * E-mail:
| |
Collapse
|
222
|
Affiliation(s)
- Z. Josh Huang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724;
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, Washington 98103;
| |
Collapse
|
223
|
Rubelowski JM, Menge M, Distler C, Rothermel M, Hoffmann KP. Connections of the superior colliculus to shoulder muscles of the rat: a dual tracing study. Front Neuroanat 2013; 7:17. [PMID: 23760726 PMCID: PMC3675767 DOI: 10.3389/fnana.2013.00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 05/22/2013] [Indexed: 12/18/2022] Open
Abstract
Previous investigations indicate that the superior colliculus (SC) is involved in the initiation and execution of forelimb movements. In the present study we investigated the tectofugal, in particular the tecto-reticulo-spinal projections to the shoulder and arm muscles in the rat. We simultaneously retrogradely labeled the premotor neurons in the brainstem by injection of the pseudorabies virus PrV Bartha 614 into the m. rhomboideus minor and m. acromiodeltoideus, and anterogradely visualized the tectofugal projections by intracollicular injection of the tracer FITC dextrane. Our results demonstrate that the connection of the SC to the skeletal muscles of the forelimb is at least trisynaptic. This was confirmed by long survival times after virus injections into the muscles (98-101 h) after which numerous neurons in the deep layers of the SC were labeled. Transsynaptically retrogradely labeled brainstem neurons connected disynaptically to the injected muscles with adjacent tectal terminals were predominantly located in the gigantocellular nuclear complex of the reticular formation. In addition, putative relay neurons were found in the caudal part of the pontine reticular nucleus. Both tectal projections to the nucleus gigantocellularis and the pontine reticular nucleus were bilateral but ipsilaterally biased. We suggest this projection to be involved in more global functions in motivated behavior like general arousal allowing fast voluntary motor activity.
Collapse
Affiliation(s)
- J. M. Rubelowski
- Allgemeine Zoologie and Neurobiologie, Ruhr-University BochumBochum, Germany
| | - M. Menge
- Allgemeine Zoologie and Neurobiologie, Ruhr-University BochumBochum, Germany
| | - C. Distler
- Allgemeine Zoologie and Neurobiologie, Ruhr-University BochumBochum, Germany
| | - M. Rothermel
- Brain Institute and Department of Physiology, School of Medicine, University of UtahSalt Lake City, UT, USA
| | | |
Collapse
|
224
|
Stein PSG. Molecular, genetic, cellular, and network functions in the spinal cord and brainstem. Ann N Y Acad Sci 2013; 1279:1-12. [PMID: 23530997 DOI: 10.1111/nyas.12083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies of the model systems of spinal cord and brainstem reveal molecular, genetic, and cellular mechanisms that are critical for network and behavioral functions in the nervous system. Recent experiments establish the importance of neurogenetics in revealing cellular and network properties. Breakthroughs that utilize direct visualization of neuronal activity and network structure provide new insights. Major discoveries of plasticity in the spinal cord and brainstem contribute to basic neuroscience and, in addition, have promising therapeutic implications.
Collapse
Affiliation(s)
- Paul S G Stein
- Biology Department, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
225
|
|
226
|
Kimura Y, Satou C, Fujioka S, Shoji W, Umeda K, Ishizuka T, Yawo H, Higashijima SI. Hindbrain V2a Neurons in the Excitation of Spinal Locomotor Circuits during Zebrafish Swimming. Curr Biol 2013; 23:843-9. [DOI: 10.1016/j.cub.2013.03.066] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 10/26/2022]
|
227
|
Winges SA, Furuya S, Faber NJ, Flanders M. Patterns of muscle activity for digital coarticulation. J Neurophysiol 2013; 110:230-42. [PMID: 23596338 DOI: 10.1152/jn.00973.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although piano playing is a highly skilled task, basic features of motor pattern generation may be shared across tasks involving fine movements, such as handling coins, fingering food, or using a touch screen. The scripted and sequential nature of piano playing offered the opportunity to quantify the neuromuscular basis of coarticulation, i.e., the manner in which the muscle activation for one sequential element is altered to facilitate production of the preceding and subsequent elements. Ten pianists were asked to play selected pieces with the right hand at a uniform tempo. Key-press times were recorded along with the electromyographic (EMG) activity from seven channels: thumb flexor and abductor muscles, a flexor for each finger, and the four-finger extensor muscle. For the thumb and index finger, principal components of EMG waveforms revealed highly consistent variations in the shape of the flexor bursts, depending on the type of sequence in which a particular central key press was embedded. For all digits, the duration of the central EMG burst scaled, along with slight variations across subjects in the duration of the interkeystroke intervals. Even within a narrow time frame (about 100 ms) centered on the central EMG burst, the exact balance of EMG amplitudes across multiple muscles depended on the nature of the preceding and subsequent key presses. This fails to support the idea of fixed burst patterns executed in sequential phases and instead provides evidence for neuromuscular coarticulation throughout the time course of a hand movement sequence.
Collapse
Affiliation(s)
- Sara A Winges
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
228
|
Santello M, Baud-Bovy G, Jörntell H. Neural bases of hand synergies. Front Comput Neurosci 2013; 7:23. [PMID: 23579545 PMCID: PMC3619124 DOI: 10.3389/fncom.2013.00023] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/13/2013] [Indexed: 11/21/2022] Open
Abstract
The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is “synergy control” which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review, we describe the evolution of the modern concept using studies of kinematic and force synergies in human hand control, neurophysiology of cortical and spinal neurons, and electromyographic (EMG) activity of hand muscles. We go beyond the often purely descriptive usage of synergy by reviewing the organization of the underlying neuronal circuitry in order to propose mechanistic explanations for various observed synergy phenomena. Finally, we propose a theoretical framework to reconcile important and still debated concepts such as the definitions of “fixed” vs. “flexible” synergies and mechanisms underlying the combination of synergies for hand control.
Collapse
Affiliation(s)
- Marco Santello
- Neural Control of Movement Laboratory, School of Biological and Health Systems Engineering, Arizona State University Tempe, AZ, USA
| | | | | |
Collapse
|
229
|
Baek M, Enriquez J, Mann RS. Dual role for Hox genes and Hox co-factors in conferring leg motoneuron survival and identity in Drosophila. Development 2013; 140:2027-38. [PMID: 23536569 DOI: 10.1242/dev.090902] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adult Drosophila walk using six multi-jointed legs, each controlled by ∼50 leg motoneurons (MNs). Although MNs have stereotyped morphologies, little is known about how they are specified. Here, we describe the function of Hox genes and homothorax (hth), which encodes a Hox co-factor, in Drosophila leg MN development. Removing either Hox or Hth function from a single neuroblast (NB) lineage results in MN apoptosis. A single Hox gene, Antennapedia (Antp), is primarily responsible for MN survival in all three thoracic segments. When cell death is blocked, partially penetrant axon branching errors are observed in Hox mutant MNs. When single MNs are mutant, errors in both dendritic and axon arborizations are observed. Our data also suggest that Antp levels in post-mitotic MNs are important for specifying their identities. Thus, in addition to being essential for survival, Hox and hth are required to specify accurate MN morphologies in a level-dependent manner.
Collapse
Affiliation(s)
- Myungin Baek
- Department of Biological Sciences, Columbia University, 701 W. 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
230
|
Pujol-Martí J, López-Schier H. Developmental and architectural principles of the lateral-line neural map. Front Neural Circuits 2013; 7:47. [PMID: 23532704 PMCID: PMC3607791 DOI: 10.3389/fncir.2013.00047] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/06/2013] [Indexed: 11/13/2022] Open
Abstract
The transmission and central representation of sensory cues through the accurate construction of neural maps is essential for animals to react to environmental stimuli. Structural diversity of sensorineural maps along a continuum between discrete- and continuous-map architectures can influence behavior. The mechanosensory lateral line of fishes and amphibians, for example, detects complex hydrodynamics occurring around the animal body. It triggers innate fast escape reactions but also modulates complex navigation behaviors that require constant knowledge about the environment. The aim of this article is to summarize recent work in the zebrafish that has shed light on the development and structure of the lateralis neural map, which is helping to understand how individual sensory modalities generate appropriate behavioral responses to the sensory context.
Collapse
Affiliation(s)
- Jesús Pujol-Martí
- Research Unit of Sensory Biology and Organogenesis, Helmholtz Zentrum München Neuherberg, Munich, Germany
| | | |
Collapse
|
231
|
Sindhurakar A, Bradley NS. Light accelerates morphogenesis and acquisition of interlimb stepping in chick embryos. PLoS One 2012; 7:e51348. [PMID: 23236480 PMCID: PMC3516530 DOI: 10.1371/journal.pone.0051348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 11/05/2012] [Indexed: 11/19/2022] Open
Abstract
Chicks are bipedal precocious vertebrates that achieve adaptive locomotor skill within hours after hatching. Development of limb movement has been extensively studied in the chicken embryo, but few studies have focused on the preparations leading to precocious locomotor skill. Chicks typically hatch after 21 days of incubation, and recent studies provided evidence that the neural circuits for intralimb control of stepping are established between embryonic days (E) 18-20. It has also been shown that variations in light exposure during embryogenesis can accelerate or delay the onset of hatching and walking by 1 to 2 days. Our earlier work revealed that despite these differences in time to hatch, chicks incubated in different light conditions achieved similar locomotor skill on the day of hatching. Results suggested to us that light exposure during incubation may have accelerated development of locomotor circuits in register with earlier hatching. Thus, in this study, embryos were incubated in 1 of 3 light conditions to determine if development of interlimb coordination at a common time point, 19 days of incubation, varied with light exposure during embryogenesis. Leg muscle activity was recorded bilaterally and burst analyses were performed for sequences of spontaneous locomotor-related activity in one or more ankle muscles to quantify the extent of interlimb coordination in ovo. We report findings indicating that the extent of interlimb coordination varied with light exposure, and left-right alternating steps were a more reliable attribute of interlimb coordination for embryos incubated in constant bright light. We provide evidence that morphological development of the leg varied with light exposure. Based on these findings, we propose that light can accelerate the development of interlimb coordination in register with earlier hatching. Our results lead us to further propose that alternating left-right stepping is the default pattern of interlimb coordination produced by locomotor circuits during embryogenesis.
Collapse
Affiliation(s)
- Anil Sindhurakar
- Burke-Cornell Medical Research Institute, White Plains, New York, United States of America
| | - Nina S. Bradley
- Biokinesiology and Physical Therapy, Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|