201
|
Lin Y, Wan JQ, Gao GY, Pan YH, Ding SH, Fan YL, Wang Y, Jiang JY. Direct hippocampal injection of pseudo lentivirus-delivered nerve growth factor gene rescues the damaged cognitive function after traumatic brain injury in the rat. Biomaterials 2015; 69:148-57. [DOI: 10.1016/j.biomaterials.2015.08.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/31/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022]
|
202
|
Somani S, Robb G, Pickard BS, Dufès C. Enhanced gene expression in the brain following intravenous administration of lactoferrin-bearing polypropylenimine dendriplex. J Control Release 2015; 217:235-42. [DOI: 10.1016/j.jconrel.2015.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 01/18/2023]
|
203
|
Tığlı Aydın RS, Kaynak G, Gümüşderelioğlu M. Salinomycin encapsulated nanoparticles as a targeting vehicle for glioblastoma cells. J Biomed Mater Res A 2015; 104:455-64. [PMID: 26476239 DOI: 10.1002/jbm.a.35591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/09/2015] [Accepted: 10/15/2015] [Indexed: 11/09/2022]
Abstract
Salinomycin has been introduced as a novel alternative to traditional anti-cancer drugs. The aim of this study was to test a strategy designed to deliver salinomycin to glioblastoma cells in vitro. Salinomycin-encapsulated polysorbate 80-coated poly(lactic-co-glycolic acid) nanoparticles (P80-SAL-PLGA) were prepared and characterized with respect to particle size, morphology, thermal properties, drug encapsulation efficiency and controlled salinomycin-release behaviour. The in vitro cellular uptake of P80-SAL-PLGA (5 and 10 µM) or uncoated nanoparticles was assessed in T98G human glioblastoma cells, and the cell viability was investigated with respect to anti-growth activities. SAL, which was successfully transported to T98G glioblastoma cells via P80 coated nanoparticles (∼14% within 60 min), greatly decreased (p < 0.01) the cellular viability of T98G cells. Substantial morphological changes were observed in the T98G cells with damaged actin cytoskeleton. Thus, P80-SAL-PLGA nanoparticles induced cell death, suggesting a potential therapeutic role for this salinomycin delivery system in the treatment of human glioblastoma.
Collapse
Affiliation(s)
- R Seda Tığlı Aydın
- Department of Biomedical Engineering, Bülent Ecevit University, İncivez, Zonguldak, 67100, Turkey
| | - Gökçe Kaynak
- Bioengineering Division, Hacettepe University, Beytepe, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Bioengineering Division, Hacettepe University, Beytepe, Ankara, Turkey.,Department of Chemical Engineering, Hacettepe University, Beytepe, Ankara, Turkey
| |
Collapse
|
204
|
Saxena J, Meloni D, Huang MT, Heck DE, Laskin JD, Heindel ND, Young SC. Ethynylphenyl carbonates and carbamates as dual-action acetylcholinesterase inhibitors and anti-inflammatory agents. Bioorg Med Chem Lett 2015; 25:5609-12. [PMID: 26510670 DOI: 10.1016/j.bmcl.2015.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/14/2015] [Indexed: 01/24/2023]
Abstract
Novel ethynylphenyl carbonates and carbamates containing carbon- and silicon-based choline mimics were synthesized from their respective phenol and aniline precursors and screened for anticholinesterase and anti-inflammatory activities. All molecules were micromolar inhibitors of acetylcholinesterase (AChE), with IC50s of 28-86 μM; the carbamates were two-fold more potent than the carbonates. Two of the most potent AChE inhibitors suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation by 40%. Furthermore, these molecules have physicochemical properties in the range of other CNS drugs. These molecules have the potential to treat inflammation; they could also dually target Alzheimer's disease through restoration of cholinergic balance and inflammation suppression.
Collapse
Affiliation(s)
- Jaya Saxena
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - David Meloni
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, United States; Incyte Corporation, Wilmington, DE 19803, United States
| | - Mou-Tuan Huang
- Department of Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States
| | - Diane E Heck
- Department of Environmental Health Science, New York Medical College, Valhalla, NY 10595, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Medicine, Rutgers University, Piscataway, NJ 08854, United States
| | - Ned D Heindel
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, United States
| | - Sherri C Young
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, United States; Department of Chemistry, Muhlenberg College, Allentown, PA 18104, United States.
| |
Collapse
|
205
|
Te Brake LHM, Russel FGM, van den Heuvel JJMW, de Knegt GJ, de Steenwinkel JE, Burger DM, Aarnoutse RE, Koenderink JB. Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters. Tuberculosis (Edinb) 2015; 96:150-7. [PMID: 26682943 DOI: 10.1016/j.tube.2015.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Multiple-drug therapy for tuberculosis (TB) and TB-associated co-morbidity increase the likelihood of drug-drug interactions (DDIs). Inhibition of membrane transporters is an important mechanism underlying DDIs. In this study, we assessed the in vitro inhibitory potential of currently used first and second-line TB drugs and of proposed mycobacterial efflux pump inhibitors (EPIs) on the major ABC transporters relevant to drug transport, namely P-gp, BCRP, BSEP and MRP1-5. METHODS Membrane vesicles isolated from transporter-overexpressing HEK293 cells were used to study the inhibitory action of TB drugs and EPIs on the transport of model substrates [(3)H]-NMQ (P-gp); [(3)H]-E1S (BCRP); [(3)H]-TCA (BSEP); [(3)H]-E217βG (MRP1, 3 and 4) and [(3)H]-MTX (MRP2 and 5). RESULTS A strong inhibition (IC50 value <15 μM) was observed for clofazimine (P-gp, BCRP and MRP1), thioridazine (BCRP), timcodar (P-gp, BSEP and MRP1) and SQ109 (P-gp and BCRP). Rifampicin inhibited all transporters, but less potently. CONCLUSIONS Co-administration of clofazimine, thioridazine, timcodar, SQ109 and possibly rifampicin with drugs that are substrates for the inhibited transporters may lead to DDIs. The mycobacterial EPIs potently inhibited a wider range of human ABC transporters than previously reported. These vesicular transport data are especially valuable considering the current emphasis on development of TB drug regimens.
Collapse
Affiliation(s)
- Lindsey H M Te Brake
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA, Internal Postal Code 149, Nijmegen, The Netherlands; Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Internal Postal Code 864, Nijmegen, The Netherlands.
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA, Internal Postal Code 149, Nijmegen, The Netherlands.
| | - Jeroen J M W van den Heuvel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA, Internal Postal Code 149, Nijmegen, The Netherlands.
| | - Gerjo J de Knegt
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | - Jurriaan E de Steenwinkel
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | - David M Burger
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Internal Postal Code 864, Nijmegen, The Netherlands.
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA, Internal Postal Code 864, Nijmegen, The Netherlands.
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26, 6525 GA, Internal Postal Code 149, Nijmegen, The Netherlands.
| |
Collapse
|
206
|
Gartziandia O, Herran E, Pedraz JL, Carro E, Igartua M, Hernandez RM. Chitosan coated nanostructured lipid carriers for brain delivery of proteins by intranasal administration. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.06.054] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
207
|
Dilnawaz F, Sahoo SK. Therapeutic approaches of magnetic nanoparticles for the central nervous system. Drug Discov Today 2015; 20:1256-64. [DOI: 10.1016/j.drudis.2015.06.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/20/2015] [Accepted: 06/11/2015] [Indexed: 11/26/2022]
|
208
|
|
209
|
Ross KA, Brenza TM, Binnebose AM, Phanse Y, Kanthasamy AG, Gendelman HE, Salem AK, Bartholomay LC, Bellaire BH, Narasimhan B. Nano-enabled delivery of diverse payloads across complex biological barriers. J Control Release 2015; 219:548-559. [PMID: 26315817 DOI: 10.1016/j.jconrel.2015.08.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 01/12/2023]
Abstract
Complex biological barriers are major obstacles for preventing and treating disease. Nanocarriers are designed to overcome such obstacles by enhancing drug delivery through physiochemical barriers and improving therapeutic indices. This review critically examines both biological barriers and nanocarrier payloads for a variety of drug delivery applications. A spectrum of nanocarriers is discussed that have been successfully developed for improving tissue penetration for preventing or treating a range of infectious, inflammatory, and degenerative diseases.
Collapse
Affiliation(s)
- Kathleen A Ross
- Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames 50011, USA
| | - Timothy M Brenza
- Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames 50011, USA
| | - Andrea M Binnebose
- Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Vet Med, Ames 50011, USA
| | - Yashdeep Phanse
- Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison 53706, USA
| | | | - Howard E Gendelman
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985880 Nebraska Medical Center, Omaha 68198, USA
| | - Aliasger K Salem
- Pharmaceutical Sciences and Experimental Therapeutics, University of Iowa, 115 S. Grand Avenue, Iowa City 52242, USA
| | - Lyric C Bartholomay
- Pathobiological Sciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison 53706, USA
| | - Bryan H Bellaire
- Veterinary Microbiology and Preventive Medicine, Iowa State University, 2180 Vet Med, Ames 50011, USA
| | - Balaji Narasimhan
- Chemical and Biological Engineering, Iowa State University, 2114 Sweeney Hall, Ames 50011, USA.
| |
Collapse
|
210
|
In vitro prediction of human intestinal absorption and blood–brain barrier partitioning: development of a lipid analog for micellar liquid chromatography. Anal Bioanal Chem 2015; 407:7453-66. [DOI: 10.1007/s00216-015-8911-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
|
211
|
Shanley MR, Hawley D, Leung S, Zaidi NF, Dave R, Schlosser KA, Bandopadhyay R, Gerber SA, Liu M. LRRK2 Facilitates tau Phosphorylation through Strong Interaction with tau and cdk5. Biochemistry 2015; 54:5198-208. [PMID: 26268594 DOI: 10.1021/acs.biochem.5b00326] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) and tau have been identified as risk factors of Parkinson's disease (PD). As LRRK2 is a kinase and tau is hyperphosphorylated in some LRRK2 mutation carriers of PD patients, the obvious hypothesis is that tau could be a substrate of LRRK2. Previous reports that LRRK2 phosphorylates free tau or tubulin-associated tau provide direct support for this proposition. By comparing LRRK2 with cdk5, we show that wild-type LRRK2 and the G2019S mutant phosphorylate free recombinant full-length tau protein with specific activity 480- and 250-fold lower than cdk5, respectively. More strikingly tau binds to wt LRRK2 or the G2019S mutant 140- or 200-fold more strongly than cdk5. The extremely low activity of LRRK2 but strong binding affinity with tau suggests that LRRK2 may facilitate tau phosphorylation as a scaffold protein rather than as a major tau kinase. This hypothesis is further supported by the observation that (i) cdk5 or tau coimmunoprecipitates with endogenous LRRK2 in SH-SY5Y cells, in mouse brain tissue, and in human PBMCs; (ii) knocking down endogenous LRRK2 by its siRNA in SH-SY5Y cells reduces tau phosphorylation at Ser396 and Ser404; (iii) inhibiting LRRK2 kinase activity by its inhibitors has no effect on tau phosphorylation at these two sites; and (iv) overexpressing wt LRRK2, the G2019S mutant, or the D1994A kinase-dead mutant in SH-SY5Y cells has no effect on tau phosphorylation. Our results suggest that LRRK2 facilitates tau phosphorylation indirectly by recruiting tau or cdk5 rather than by directly phosphorylating tau.
Collapse
Affiliation(s)
- Mary R Shanley
- Neurology Department, Brigham and Women's Hospital, Harvard Medical School , 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Dillon Hawley
- Neurology Department, Brigham and Women's Hospital, Harvard Medical School , 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Shirley Leung
- Neurology Department, Brigham and Women's Hospital, Harvard Medical School , 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Nikhat F Zaidi
- Neurology Department, Brigham and Women's Hospital, Harvard Medical School , 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Roshni Dave
- Neurology Department, Brigham and Women's Hospital, Harvard Medical School , 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Kate A Schlosser
- Department of Genetics and of Biochemistry, Geisel School of Medicine at Dartmouth , One Medical Center Drive HB-7937, Lebanon, New Hampshire 03756, United States
| | - Rina Bandopadhyay
- Reta Lila, Weston Institute of Neurological Studies Department of Molecular Neuroscience UCL, Institute of Neurology 1 , Wakefield Street, London WC1N 1PJ, U.K
| | - Scott A Gerber
- Department of Genetics and of Biochemistry, Geisel School of Medicine at Dartmouth , One Medical Center Drive HB-7937, Lebanon, New Hampshire 03756, United States
| | - Min Liu
- Neurology Department, Brigham and Women's Hospital, Harvard Medical School , 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
212
|
Tonelli FMP, Goulart VAM, Gomes KN, Ladeira MS, Santos AK, Lorençon E, Ladeira LO, Resende RR. Graphene-based nanomaterials: biological and medical applications and toxicity. Nanomedicine (Lond) 2015; 10:2423-50. [PMID: 26244905 DOI: 10.2217/nnm.15.65] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Graphene and its derivatives, due to a wide range of unique properties that they possess, can be used as starting material for the synthesis of useful nanocomplexes for innovative therapeutic strategies and biodiagnostics. Here, we summarize the latest progress in graphene and its derivatives and their potential applications for drug delivery, gene delivery, biosensor and tissue engineering. A simple comparison with carbon nanotubes uses in biomedicine is also presented. We also discuss their in vitro and in vivo toxicity and biocompatibility in three different life kingdoms (bacterial, mammalian and plant cells). All aspects of how graphene is internalized after in vivo administration or in vitro cell exposure were brought about, and explain how blood-brain barrier can be overlapped by graphene nanomaterials.
Collapse
Affiliation(s)
- Fernanda M P Tonelli
- Cell Signaling & Nanobiotechnology Laboratory, Department of Biochemistry & Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Nanocell Institute, Divinópolis, MG, Brazil
| | - Vânia A M Goulart
- Cell Signaling & Nanobiotechnology Laboratory, Department of Biochemistry & Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Nanocell Institute, Divinópolis, MG, Brazil
| | - Katia N Gomes
- Cell Signaling & Nanobiotechnology Laboratory, Department of Biochemistry & Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marina S Ladeira
- Cell Signaling & Nanobiotechnology Laboratory, Department of Biochemistry & Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Anderson K Santos
- Cell Signaling & Nanobiotechnology Laboratory, Department of Biochemistry & Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Eudes Lorençon
- Nanomaterials Laboratory, Department of Physics & Center of Microscopy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627/Postal code: 31270-901, Belo Horizonte, Brazil
| | - Luiz O Ladeira
- Nanomaterials Laboratory, Department of Physics & Center of Microscopy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Universidade Federal de Minas Gerais, Av Antônio Carlos, 6627/Postal code: 31270-901, Belo Horizonte, Brazil
| | - Rodrigo R Resende
- Cell Signaling & Nanobiotechnology Laboratory, Department of Biochemistry & Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Nanocell Institute, Divinópolis, MG, Brazil
| |
Collapse
|
213
|
Polak P, Shefi O. Nanometric agents in the service of neuroscience: Manipulation of neuronal growth and activity using nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1467-79. [DOI: 10.1016/j.nano.2015.03.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 11/29/2022]
|
214
|
Micci MA, Boone DR, Parsley MA, Wei J, Patrikeev I, Motamedi M, Hellmich HL. Development of a novel imaging system for cell therapy in the brain. Stem Cell Res Ther 2015; 6:131. [PMID: 26194790 PMCID: PMC4534109 DOI: 10.1186/s13287-015-0129-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/19/2015] [Accepted: 07/09/2015] [Indexed: 01/19/2023] Open
Abstract
Introduction Stem cells have been evaluated as a potential therapeutic approach for several neurological disorders of the central and peripheral nervous system as well as for traumatic brain and spinal cord injury. Currently, the lack of a reliable and safe method to accurately and non-invasively locate the site of implantation and track the migration of stem cells in vivo hampers the development of stem cell therapy and its clinical application. In this report, we present data that demonstrate the feasibility of using the human sodium iodide symporter (hNIS) as a reporter gene for tracking neural stem cells (NSCs) after transplantation in the brain by using single-photon emission tomography/computed tomography (SPECT/CT) imaging. Methods NSCs were isolated from the hippocampus of adult rats (Hipp-NSCs) and transduced with a lentiviral vector containing the hNIS gene. Hipp-NSCs expressing the hNIS (NIS-Hipp-NSCs) were characterized in vitro and in vivo after transplantation in the rat brain and imaged by using technetium-99m (99mTc) and a small rodent SPECT/CT apparatus. Comparisons were made between Hipp-NSCs and NIS-Hipp-NSCs, and statistical analysis was performed by using two-tailed Student’s t test. Results Our results show that the expression of the hNIS allows the repeated visualization of NSCs in vivo in the brain by using SPECT/CT imaging and does not affect the ability of Hipp-NSCs to generate neuronal and glial cells in vitro and in vivo. Conclusions These data support the use of the hNIS as a reporter gene for non-invasive imaging of NSCs in the brain. The repeated, non-invasive tracking of implanted cells will accelerate the development of effective stem cell therapies for traumatic brain injury and other types of central nervous system injury.
Collapse
Affiliation(s)
- Maria-Adelaide Micci
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
| | - Debbie R Boone
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
| | - Margaret A Parsley
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
| | - Jingna Wei
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA.
| | - Igor Patrikeev
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA.
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA.
| | - Helen L Hellmich
- Department of Anesthesiology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX, 77555, USA.
| |
Collapse
|
215
|
Gregori M, Bertani D, Cazzaniga E, Orlando A, Mauri M, Bianchi A, Re F, Sesana S, Minniti S, Francolini M, Cagnotto A, Salmona M, Nardo L, Salerno D, Mantegazza F, Masserini M, Simonutti R. Investigation of Functionalized Poly(N,N-dimethylacrylamide)-block-polystyrene Nanoparticles As Novel Drug Delivery System to Overcome the Blood-Brain Barrier In Vitro. Macromol Biosci 2015. [PMID: 26198385 DOI: 10.1002/mabi.201500172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the search of new drug delivery carriers for the brain, self-assembled nanoparticles (NP) were prepared from poly(N,N-dimethylacrylamide)-block-polystyrene polymer. NP displayed biocompatibility on cultured endothelial cells, macrophages and differentiated SH-SY5Y neuronal-like cells. The surface-functionalization of NP with a modified fragment of human Apolipoprotein E (mApoE) enhanced the uptake of NP by cultured human brain capillary endothelial cells, as assessed by confocal microscopy, and their permeability through a Transwell Blood Brain Barrier model made with the same cells, as assessed by fluorescence. Finally, mApoE-NP embedding doxorubicin displayed an enhanced release of drug at low pH, suggesting the potential use of these NP for the treatment of brain tumors.
Collapse
Affiliation(s)
- Maria Gregori
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy.
| | - Daniela Bertani
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Emanuela Cazzaniga
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Antonina Orlando
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Michele Mauri
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Alberto Bianchi
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125, Milano, Italy
| | - Francesca Re
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Silvia Sesana
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Stefania Minniti
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, University of Milano and Fondazione Filarete, Via Vanvitelli 32, 20129, Milano, Italy
| | - Alfredo Cagnotto
- Department of Biochemistry and Molecular Pharmacology, IRCCS Mario Negri Institute for Pharmacological Research, Via La Masa 19, 20156, Milano, Italy
| | - Mario Salmona
- Department of Biochemistry and Molecular Pharmacology, IRCCS Mario Negri Institute for Pharmacological Research, Via La Masa 19, 20156, Milano, Italy
| | - Luca Nardo
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Domenico Salerno
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Francesco Mantegazza
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Massimo Masserini
- Department of Health Sciences, Nanomedicine Center NANOMIB, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Roberto Simonutti
- Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125, Milano, Italy
| |
Collapse
|
216
|
Blecharz KG, Colla R, Rohde V, Vajkoczy P. Control of the blood-brain barrier function in cancer cell metastasis. Biol Cell 2015; 107:342-71. [PMID: 26032862 DOI: 10.1111/boc.201500011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/22/2015] [Indexed: 12/25/2022]
Abstract
Cerebral metastases are the most common brain neoplasms seen clinically in the adults and comprise more than half of all brain tumours. Actual treatment options for brain metastases that include surgical resection, radiotherapy and chemotherapy are rarely curative, although palliative treatment improves survival and life quality of patients carrying brain-metastatic tumours. Chemotherapy in particular has also shown limited or no activity in brain metastasis of most tumour types. Many chemotherapeutic agents used systemically do not cross the blood-brain barrier (BBB), whereas others may transiently weaken the BBB and allow extravasation of tumour cells from the circulation into the brain parenchyma. Increasing evidence points out that the interaction between the BBB and tumour cells plays a key role for implantation and growth of brain metastases in the central nervous system. The BBB, as the tightest endothelial barrier, prevents both early detection and treatment by creating a privileged microenvironment. Therefore, as observed in several in vivo studies, precise targetting the BBB by a specific transient opening of the structure making it permeable for therapeutic compounds, might potentially help to overcome this difficult clinical problem. Moreover, a better understanding of the molecular features of the BBB, its interrelation with metastatic tumour cells and the elucidation of cellular mechanisms responsible for establishing cerebral metastasis must be clearly outlined in order to promote treatment modalities that particularly involve chemotherapy. This in turn would substantially expand the survival and quality of life of patients with brain metastasis, and potentially increase the remission rate. Therefore, the focus of this review is to summarise the current knowledge on the role and function of the BBB in cancer metastasis.
Collapse
Affiliation(s)
- Kinga G Blecharz
- Department of Experimental Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 10119, Germany
| | - Ruben Colla
- Department of Neurosurgery, Göttingen University Medical Center, Göttingen, 37070, Germany
| | - Veit Rohde
- Department of Neurosurgery, Göttingen University Medical Center, Göttingen, 37070, Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 10119, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| |
Collapse
|
217
|
Singh D, Kapahi H, Rashid M, Prakash A, Majeed ABA, Mishra N. Recent prospective of surface engineered Nanoparticles in the management of Neurodegenerative disorders. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:780-91. [PMID: 26107112 DOI: 10.3109/21691401.2015.1029622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Clinically, the therapeutic outcomes in neurodegenerative disorders (NDs) by drug treatment are very limited, and the most insurmountable obstacle in the treatment of NDs is the blood-brain barrier (BBB), which provides the highest level of protection from xenobiotics. A great deal of attention still needs to be paid to overcome these barriers, and surface-engineered polymeric nanoparticles are emerging as innovative tools that are able to interact with the biological system at a molecular level for the desired response. The present review covers the potential importance of surface-structure-engineered nanoparticles to overcome the BBB for good bioavailability, and the evaluation of drug therapy in NDs.
Collapse
Affiliation(s)
- Devendra Singh
- a Department of Pharmaceutics , I.S.F. College of Pharmacy , Moga, Punjab , India
| | - Himani Kapahi
- a Department of Pharmaceutics , I.S.F. College of Pharmacy , Moga, Punjab , India
| | - Muzamil Rashid
- a Department of Pharmaceutics , I.S.F. College of Pharmacy , Moga, Punjab , India
| | - Atish Prakash
- b Department of Pharmacology , I.S.F. College of Pharmacy , Moga, Punjab , India.,c Brain Research Laboratory, Department of Pharmacology , Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) , 42300, Puncak Alam, Malaysia
| | - Abu Bakar Abdul Majeed
- c Brain Research Laboratory, Department of Pharmacology , Faculty of Pharmacy, Universiti Teknologi MARA (UiTM) , 42300, Puncak Alam, Malaysia
| | - Neeraj Mishra
- a Department of Pharmaceutics , I.S.F. College of Pharmacy , Moga, Punjab , India
| |
Collapse
|
218
|
Intriguing possibilities and beneficial aspects of transporter-conscious drug design. Bioorg Med Chem 2015; 23:4119-4131. [PMID: 26138194 DOI: 10.1016/j.bmc.2015.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/02/2015] [Accepted: 06/10/2015] [Indexed: 01/11/2023]
Abstract
It has been revealed that many types of drugs interact with transporter proteins within an organism. Transporter proteins absorb or excrete materials, including drugs and nutrients, across the cell membrane. Some hydrophobic drugs are excreted from the cell as xenobiotics by ATP-binding cassette (ABC) transporters. However, solute carrier (SLC) transporters are tissue-specifically expressed and have substrate specificities. Thus, transporter-conscious drug design is an excellent method of delivering drugs to pharmaceutical target organs and provides advantages in absorption, distribution, excretion, and toxicity of drugs (ADMET) due to transport systems. In fact, based on this strategy, the bioavailability of prodrugs designed as peptide transporter 1 (PEPT1) substrates was better than that of the corresponding parent compounds due to the transport system in the small intestine. Furthermore, in central nervous system (CNS) drug developing, drug delivery into brain across the blood-brain barrier (BBB) is a serious problem. However, this problem can be also solved by the use of the transport systems at the BBB. Therefore, transporter-consciously designed drugs not only may effectively elicit activity but also may control adverse side effects caused by off-targets and drug-drug interactions and, consequently, may show good performance in clinical trials. In this review, I introduce possibilities and advantages of transporter-conscious drug designs.
Collapse
|
219
|
Ung N, Yang I. Nanotechnology to augment immunotherapy for the treatment of glioblastoma multiforme. J Neurooncol 2015; 123:473-81. [DOI: 10.1007/s11060-015-1814-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 05/20/2015] [Indexed: 12/30/2022]
|
220
|
Abstract
Rabies is a highly lethal disease caused by the neurotropic rabies virus (RABV), and it remains an important public health problem globally. Effective vaccines have been developed for pre- and post-exposure prophylaxis (PEP). PEP is only effective if it is initiated promptly after recognizing exposure. Once neurological symptoms develop, however, it is widely accepted that there is no effective treatment available. Recent studies indicate that the presence of RABV-specific immunity (i.e. Virus neutralizing antibodies, VNA) and the transient enhancement of the BBB permeability are absolutely required for effective virus clearance from the CNS. In principle, it has been shown in mice using various live-attenuated RABVs or recombinant RABVs expressing three copies of the G or expressing chemokine/cytokines, which can induce high levels of VNA in the serum and also capable of transiently enhancing the BBB permeability that it is possible to clear the virus from CNS. Also, it has been demonstrated that, intravenous administration of VNA together with MCP-1 (shown to transiently open up BBB) can clear RABV from the CNS in both immunocompetent and immunocompromised mice, as late as 5 days after lethal challenge. Novel therapeutic approaches aimed at allowing the peripheral VNA to cross the BBB by administration of the VNA in combination with biological or chemical agents that can transiently open up the BBB would be useful to establish an effective therapy for rabies in humans. In this review, we focus on the some of the approaches that can be used to meet the challenges in the field of rabies treatment.
Collapse
Affiliation(s)
- C W Gnanadurai
- Department of Pathology, College of Veterinary Medicine, University of Georgia Athens, USA
| | - C T Huang
- Department of Pathology, College of Veterinary Medicine, University of Georgia Athens, USA
| | - D Kumar
- Department of Pathology, College of Veterinary Medicine, University of Georgia Athens, USA
| | - Zhen F Fu
- Department of Pathology, College of Veterinary Medicine, University of Georgia Athens, USA; State-key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, China
| |
Collapse
|
221
|
Garg T, Bhandari S, Rath G, Goyal AK. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J Drug Target 2015; 23:865-87. [PMID: 25835469 DOI: 10.3109/1061186x.2015.1029930] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain tumor is one of the most challenging diseases to treat. The major obstacle in the specific drug delivery to brain is blood-brain barrier (BBB). Mostly available anti-cancer drugs are large hydrophobic molecules which have limited permeability via BBB. Therefore, it is clear that the protective barriers confining the passage of the foreign particles into the brain are the main impediment for the brain drug delivery. Hence, the major challenge in drug development and delivery for the neurological diseases is to design non-invasive nanocarrier systems that can assist controlled and targeted drug delivery to the specific regions of the brain. In this review article, our major focus to treat brain tumor by study numerous strategies includes intracerebral implants, BBB disruption, intraventricular infusion, convection-enhanced delivery, intra-arterial drug delivery, intrathecal drug delivery, injection, catheters, pumps, microdialysis, RNA interference, antisense therapy, gene therapy, monoclonal/cationic antibodies conjugate, endogenous transporters, lipophilic analogues, prodrugs, efflux transporters, direct conjugation of antitumor drugs, direct targeting of liposomes, nanoparticles, solid-lipid nanoparticles, polymeric micelles, dendrimers and albumin-based drug carriers.
Collapse
Affiliation(s)
| | - Saurav Bhandari
- b Department of Quality Assurance , ISF College of Pharmacy , Moga , Punjab , India
| | | | | |
Collapse
|
222
|
Gregori M, Masserini M, Mancini S. Nanomedicine for the treatment of Alzheimer's disease. Nanomedicine (Lond) 2015; 10:1203-18. [DOI: 10.2217/nnm.14.206] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease affects more than 35 million people worldwide and this number is presumed to double by the year 2050. Currently, there is no efficient therapy for this disorder but a promising approach is represented by nanotechnology, easily multifunctionalizable devices with size in the order of billionth of meter. This review provides a concise survey on the nano-based strategies for Alzheimer's disease treatment, aiming at carrying drugs across the blood–brain barrier, in particular to target the metabolism of β-amyloid peptide, a pivotal player in this pathology.
Collapse
Affiliation(s)
- Maria Gregori
- Department of Health Sciences, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Massimo Masserini
- Department of Health Sciences, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Simona Mancini
- Department of Health Sciences, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| |
Collapse
|
223
|
Elias PZ, Liu GW, Wei H, Jensen MC, Horner PJ, Pun SH. A functionalized, injectable hydrogel for localized drug delivery with tunable thermosensitivity: synthesis and characterization of physical and toxicological properties. J Control Release 2015; 208:76-84. [PMID: 25747144 DOI: 10.1016/j.jconrel.2015.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/20/2015] [Accepted: 03/01/2015] [Indexed: 12/14/2022]
Abstract
Thermosensitive injectable hydrogels have been used for the delivery of pharmacological and cellular therapies in a variety of soft tissue applications. A promising class of synthetic, injectable hydrogels based upon oligo(ethylene glycol) methacrylate (OEGMA) monomers has been previously reported, but these polymers lack reactive groups for covalent attachment of therapeutic molecules. In this work, thermosensitive, amine-reactive and amine-functionalized polymers were developed by incorporation of methacrylic acid N-hydroxysuccinimide ester or 2-aminoethyl methacrylate into OEGMA-based polymers. A model therapeutic peptide, bivalirudin, was conjugated to the amine-reactive hydrogel to investigate effects on the polymer thermosensitivity and gelation properties. The ability to tune the thermosensitivity of the polymer in order to compensate for peptide hydrophilicity and maintain gelation capability below physiological temperature was demonstrated. Cell encapsulation studies using an H9 T-cell line (CD4+) were conducted to evaluate feasibility of the hydrogel as a carrier for cellular therapies. Although this class of polymers is generally considered to be non-toxic, it was found that concentrations required for gelation were incompatible with cell survival. Investigation into the cause of cytotoxicity revealed that a hydrolysis byproduct, diethylene glycol monomethyl ether, is likely a contributing factor. While modifications to structure or composition will be required to enable viable cell encapsulation, the functionalized injectable hydrogel has the potential for controlled delivery of a wide range of drugs.
Collapse
Affiliation(s)
- Paul Z Elias
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - Gary W Liu
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - Hua Wei
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States
| | - Michael C Jensen
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA 98101, United States
| | - Philip J Horner
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, United States.
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
224
|
Scarpa M, Bellettato CM, Lampe C, Begley DJ. Neuronopathic lysosomal storage disorders: Approaches to treat the central nervous system. Best Pract Res Clin Endocrinol Metab 2015; 29:159-71. [PMID: 25987170 DOI: 10.1016/j.beem.2014.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pharmacological research has always focused on developing new therapeutic strategies capable of modifying a disease's natural history and improving patients' quality of life. Despite recent advances within the fields of medicine and biology, some diseases still represent a major challenge for successful therapy. Neuronopathic lysosomal storage disorders, in particular, have high rates of morbidity and mortality and a devastating socio-economic effect. Many of the available therapies, such as enzyme replacement therapy, can reverse the natural history of the disease in peripheral organs but, unfortunately, are still unable to reach the central nervous system effectively because they cannot cross the blood-brain barrier that surrounds and protects the brain. Moreover, many lysosomal storage disorders are characterized by a number of blood-brain barrier dysfunctions, which may further contribute to disease neuropathology and accelerate neuronal cell death. These issues, and their context in the development of new therapeutic strategies, will be discussed in detail in this chapter.
Collapse
Affiliation(s)
- Maurizio Scarpa
- Center for Rare Diseases, Horst Schmidt Kliniken, Department of Child and Adolescent Medicine, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, D, Germany; University of Padova, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy; Brains for Brains Foundation, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy.
| | - Cinzia Maria Bellettato
- Brains for Brains Foundation, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy.
| | - Christina Lampe
- Center for Rare Diseases, Horst Schmidt Kliniken, Department of Child and Adolescent Medicine, Ludwig-Erhard-Straße 100, 65199 Wiesbaden, D, Germany.
| | - David J Begley
- Brains for Brains Foundation, Department of Women and Children Health, Via Giustiniani 3, Padova, Italy; Kings College London, Institute of Pharmaceutical Science, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
225
|
Abd El-Gaber MK, Hassan HY, Mahfouz NM, Farag HH, Bekhit AA. Synthesis, biological investigation and molecular docking study of N-malonyl-1,2-dihydroisoquinoline derivatives as brain specific and shelf-stable MAO inhibitors. Eur J Med Chem 2015; 93:481-91. [DOI: 10.1016/j.ejmech.2015.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 12/29/2022]
|
226
|
Kreuter J. Influence of Chronobiology on the Nanoparticle-Mediated Drug Uptake into the Brain. Pharmaceutics 2015; 7:3-9. [PMID: 25654637 PMCID: PMC4381197 DOI: 10.3390/pharmaceutics7010003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/08/2015] [Accepted: 01/21/2015] [Indexed: 11/30/2022] Open
Abstract
Little attention so-far has been paid to the influence of chronobiology on the processes of nanoparticle uptake and transport into the brain, even though this transport appears to be chronobiologically controlled to a significant degree. Nanoparticles with specific surface properties enable the transport across the blood–brain barrier of many drugs that normally cannot cross this barrier. A clear dependence of the central antinociceptive (analgesic) effects of a nanoparticle-bound model drug, i.e., the hexapeptide dalargin, on the time of day was observable after intravenous injection in mice. In addition to the strongly enhanced antinociceptive effect due to the binding to the nanoparticles, the minima and maxima of the pain reaction with the nanoparticle-bound drug were shifted by almost half a day compared to the normal circadian nociception: The maximum in the pain reaction after i.v. injection of the nanoparticle-bound dalargin occurred during the later rest phase of the animals whereas the normal pain reaction and that of a dalargin solution was highest during the active phase of the mice in the night. This important shift could be caused by an enhanced endo- and exocytotic particulates transport activity of the brain capillary endothelial cells or within the brain during the rest phase.
Collapse
Affiliation(s)
- Jörg Kreuter
- Institut für Pharmazeutische Technologie, Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, Frankfurt D-60439, Germany.
| |
Collapse
|
227
|
Toxicity evaluation of prolonged convection-enhanced delivery of small-molecule kinase inhibitors in naïve rat brainstem. Childs Nerv Syst 2015; 31:221-6. [PMID: 25269544 DOI: 10.1007/s00381-014-2568-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Convection-enhanced delivery (CED), a local drug delivery technique, is typically performed as a single session and drug concentrations therefore decline quickly post CED. Prolonged CED (pCED) overcomes this problem by performing a long-term infusion to maintain effective drug concentrations for an extended period. The purpose of the current study was to assess the toxicity of using pCED to deliver single and multi-drug therapy in naïve rat brainstem. METHODS Sixteen rats underwent pCED of three small-molecule kinase inhibitors in the pons. Single and multi-drug combinations were delivered continuously for 7 days using ALZET mini-osmotic pumps (model 2001, rate of 1 μl/h). Rats were monitored daily for neurological signs of toxicity. Rats were sacrificed 10 days post completion of infusion, and appropriate tissue sections were analyzed for histological signs of toxicity. RESULTS Two rats exhibited signs of neurological deficits, which corresponded with diffuse inflammation, necrosis, and parenchymal damage on histological analysis. The remaining rats showed no neurological or histological signs of toxicity. CONCLUSION The neurological deficits in the two rats were likely due to injury from physical force, such as cannula movement post insertion and subsequent encephalitis. The remaining rats showed no toxicity and therefore brainstem targeting using pCED to infuse single and multi-drug therapy was well tolerated in these rats.
Collapse
|
228
|
Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:715-29. [PMID: 25652894 DOI: 10.1016/j.nano.2014.12.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 12/11/2022]
Abstract
Nanoparticulate delivery systems represent an area of particular promise for nanoneuromedicines. They possess significant potential for desperately needed therapies designed to combat a range of disorders associated with aging. As such, the field was selected as the focus for the 2014 meeting of the American Society for Nanomedicine. Regenerative, protective, immune modulatory, anti-microbial and anti-inflammatory products, or imaging agents are readily encapsulated in or conjugated to nanoparticles and as such facilitate the delivery of drug payloads to specific action sites across the blood-brain barrier. Diagnostic imaging serves to precisely monitor disease onset and progression while neural stem cell replacement can regenerate damaged tissue through control of stem cell fates. These, taken together, can improve disease burden and limit systemic toxicities. Such enabling technologies serve to protect the nervous system against a broad range of degenerative, traumatic, metabolic, infectious and immune disorders. From the clinical editor: Nanoneuromedicine is a branch of nanomedicine that specifically looks at the nervous system. In the clinical setting, a fundamental hurdle in nervous system disorders is due to an inherent inability of nerve cells to regenerate after damage. Nanotechnology can offer new approaches to overcome these challenges. This review describes recent developments in nanomedicine delivery systems that would affect stem cell repair and regeneration in the nervous system.
Collapse
|
229
|
Nagai N, Yoshioka C, Mano Y, Tnabe W, Ito Y, Okamoto N, Shimomura Y. A nanoparticle formulation of disulfiram prolongs corneal residence time of the drug and reduces intraocular pressure. Exp Eye Res 2015; 132:115-23. [PMID: 25633346 DOI: 10.1016/j.exer.2015.01.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/04/2014] [Accepted: 01/24/2015] [Indexed: 11/30/2022]
Abstract
The goal in the search for successful therapies for glaucoma is the reduction of intraocular pressure (IOP), and the search for effective eye drops that reduce IOP is a high priority. We previously reported the potential of a 2-hydroxypropyl-β-cyclodextrin (HPβCD) solution containing 0.5% DSF (DSF solution) to provide effective anti-glaucoma treatment in eye drop form. In this study, we designed new ophthalmic formulations containing 0.5% DSF nanoparticles prepared by a bead mill method (DSFnano dispersion; particle size 183 ± 92 nm, mean ± S.D.), and compared the IOP-reducing effects of a DSFnano dispersion with those of a DSF solution. The high stability of the DSFnano dispersion was observed until 7 days after preparation, and the DSFnano dispersion showed high antimicrobial activity against Escherichia coli (ATCC 8739). In transcorneal penetration experiments using rabbit corneas, only diethyldithiocarbamate (DDC) was detected in the aqueous humor, while no DSF was detected. The DDC penetration level (area under the curve, AUC) and corneal residence time (mean residence time, MRT) of the DSFnano dispersion were approximately 1.45- and 1.44-fold higher than those of the DSF, respectively. Moreover, the IOP-reducing effects of the DSFnano dispersion were significantly greater than those of the DSF solution in rabbits (the IOP was enhanced by placing the rabbits in a dark room for 5 h). In addition, DSFnano dispersion are tolerated better by a corneal epithelial cell than DSF solution and commercially available timolol maleate eye drops. It is possible that dispersions containing DSF nanoparticles will provide new possibilities for the effective treatment of glaucoma, and that an ocular drug delivery system using drug nanoparticles may expand their usage as therapy in the ophthalmologic field. These findings provide significant information that can be used to design further studies aimed at developing anti-glaucoma drugs.
Collapse
Affiliation(s)
- Noriaki Nagai
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Chiaki Yoshioka
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yu Mano
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Wataru Tnabe
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshimasa Ito
- Faculty of Pharmacy, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.
| | - Norio Okamoto
- Department of Ophthalmology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yoshikazu Shimomura
- Department of Ophthalmology, Kinki University Faculty of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan
| |
Collapse
|
230
|
De Luca MA, Lai F, Corrias F, Caboni P, Bimpisidis Z, Maccioni E, Fadda AM, Di Chiara G. Lactoferrin- and antitransferrin-modified liposomes for brain targeting of the NK3 receptor agonist senktide: preparation and in vivo evaluation. Int J Pharm 2015; 479:129-37. [PMID: 25560308 DOI: 10.1016/j.ijpharm.2014.12.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/23/2014] [Accepted: 12/26/2014] [Indexed: 12/15/2022]
Abstract
The aim of this work was to evaluate the capability of lactoferrin- and antitransferrin-modified long circulating liposomes to deliver the hydrophilic peptide senktide, a selective NK3 receptor agonist unable to cross the blood brain barrier, to central nervous system by using an indirect method based on in vivo microdialysis studies to estimate the responsiveness of nucleus accumbens shell dopamine to senktide. To this purpose, senktide was encapsulated in different targeted and not-targeted stealth liposomes prepared using film hydration method. Formulations were characterized in terms of morphology, size distribution, zeta potential, encapsulation efficiency, and antibody presence on the liposome surface. In vivo microdialysis studies were performed injecting intravenously the senktide-loaded liposomes and comparing obtained dopamine levels with those found with the free senktide given intracerebroventricularly. Results showed that all vesicles were spherical, small in size (around 120 nm), homogeneously dispersed, and slightly negatively charged. TEM analysis, using an anti IgG secondary antibody with 10nm gold nanoparticles at its distal end, demonstrated the successful linkage of the antibody on the liposomal surface. Intravenously administered in rats, senktide-loaded targeted stealth liposomes elicited a significant increase of dialysate dopamine in the nucleus accumbens shell, which was comparable to that of the free senktide given intracerebroventricularly when antitransferrin-targeted liposomes were tested. On the contrary, control stealth liposomes did not affect dopamine levels. Senktide brain levels were higher using the antitransferrin-targeted liposomes in comparison with the lactoferrin ones, while the opposite was obtained in the liver tissue where the highest senktide accumulation was always found.
Collapse
Affiliation(s)
- Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, Italy; INN, National Institute of Neuroscience, University of Cagliari, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Italy; CNBS, University of Cagliari, Italy
| | - Francesco Corrias
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Zisis Bimpisidis
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences, University of Cagliari, Italy
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences, University of Cagliari, Italy; CNBS, University of Cagliari, Italy.
| | - Gaetano Di Chiara
- Department of Biomedical Sciences, University of Cagliari, Italy; INN, National Institute of Neuroscience, University of Cagliari, Italy; Institute of Neuroscience, CNR, Cagliari Section, Italy
| |
Collapse
|
231
|
Targeted Drug Delivery Systems: Strategies and Challenges. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-3-319-11355-5_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
232
|
Nagai N, Yoshioka C, Ito Y. Topical Therapies for Rheumatoid Arthritis by Gel Ointments containing Indomethacin Nanoparticles in Adjuvant-Induced Arthritis Rat. J Oleo Sci 2015; 64:337-46. [DOI: 10.5650/jos.ess14170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
233
|
Sarvaiya J, Agrawal Y. Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol 2015; 72:454-65. [DOI: 10.1016/j.ijbiomac.2014.08.052] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/24/2014] [Accepted: 08/28/2014] [Indexed: 11/25/2022]
|
234
|
Jörg M, May LT, Mak FS, Lee KCK, Miller ND, Scammells PJ, Capuano B. Synthesis and pharmacological evaluation of dual acting ligands targeting the adenosine A2A and dopamine D2 receptors for the potential treatment of Parkinson's disease. J Med Chem 2014; 58:718-38. [PMID: 25490054 DOI: 10.1021/jm501254d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A relatively new strategy in drug discovery is the development of dual acting ligands. These molecules are potentially able to interact at two orthosteric binding sites of a heterodimer simultaneously, possibly resulting in enhanced subtype selectivity, higher affinity, enhanced or modified physiological response, and reduced reliance on multiple drug administration regimens. In this study, we have successfully synthesized a series of classical heterobivalent ligands as well as a series of more integrated and "drug-like" dual acting molecules, incorporating ropinirole as a dopamine D2 receptor agonist and ZM 241385 as an adenosine A2A receptor antagonist. The best compounds of our series maintained the potency of the original pharmacophores at both receptors (adenosine A2A and dopamine D2). In addition, the integrated dual acting ligands also showed promising results in preliminary blood-brain barrier permeability tests, whereas the classical heterobivalent ligands are potentially more suited as pharmacological tools.
Collapse
Affiliation(s)
- Manuela Jörg
- Medicinal Chemistry and ‡Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences , 381 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
235
|
Garg P, Dhakne R, Belekar V. Role of breast cancer resistance protein (BCRP) as active efflux transporter on blood-brain barrier (BBB) permeability. Mol Divers 2014; 19:163-72. [PMID: 25502234 DOI: 10.1007/s11030-014-9562-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/26/2014] [Indexed: 11/26/2022]
Abstract
Nowadays most of the CNS acting therapeutic molecules are failing in clinical trials due to efflux transporters at the blood brain barrier (BBB) which imparts resistance and poor ADMET properties of these molecules. CNS acting drug molecules interact with the BBB prior to their target site, so there is a need to develop predictive models for BBB permeability which can be used in the initial phases of drug discovery process. Most of the drug molecules are transported to the brain via passive diffusion which is explored extensively; on the other hand, the role of active efflux transporters in BBB permeability is unclear. Our aim is to develop predictive models for BBB permeability that include active efflux transporters. An in silico model has been developed to assess the role of BCRP on BBB permeation. Eight descriptors were selected, which also include BCRP substrate probabilities used for model development and show a relationship between BCRP and logBB. From our analysis, it was found that 11 molecules satisfied all criteria required for BBB permeation but have low logBB values. These 11 molecules are predicted as BCRP substrates from the model developed, suggesting that the molecules are effluxed by the BCRP transporter. This predictive ability was further validated by docking of these 11 molecules into BCRP protein. This study provides a new mechanistic insight into correlation of low logBB values and efflux mechanism of BCRP in BBB.
Collapse
Affiliation(s)
- Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab, 160062, India,
| | | | | |
Collapse
|
236
|
Nanoparticles and the blood-brain barrier: advancing from in-vitro models towards therapeutic significance. Pharm Res 2014; 32:1161-85. [PMID: 25446769 DOI: 10.1007/s11095-014-1545-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/06/2014] [Indexed: 01/12/2023]
Abstract
The blood-brain barrier is a unique cell-based restrictive barrier that prevents the entry of many substances, including most therapeutics, into the central nervous system. A wide range of nanoparticulate delivery systems have been investigated with the aim of targeting therapeutics (drugs, nucleic acids, proteins) to the brain following administration by various routes. This review provides a comprehensive description of the design and formulation of these nanoparticles including the rationale behind individual approaches. In addition, the ability of currently available in-vitro BBB models to accurately predict the in-vivo performance of targeted nanoparticles is critically assessed.
Collapse
|
237
|
Li J, Feng L, Jiang X. In vivo phage display screen for peptide sequences that cross the blood-cerebrospinal-fluid barrier. Amino Acids 2014; 47:401-5. [PMID: 25408466 DOI: 10.1007/s00726-014-1874-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 11/10/2014] [Indexed: 11/26/2022]
Abstract
There is lack of a barrier between CSF and brain, thus peptide that can cross the blood-cerebrospinal-fluid barrier (BCSFB) will have a greater chance of providing access to the brain. In this study, we screened for a novel peptide sequence that can cross the BCSFB from the systemic circulation using phage display. We applied a 12-mer phage display peptide library (Ph.D.-12) intravenously in rats and recovered phage from the cerebrospinal fluid. A longer circulation time was used according to the biodistributive CSF/blood ratio of the phage particles. Following sequential rounds of isolation, several phages were sequenced, and a peptide sequence (TPSYDTYAAELR, referred to as the TPS peptide) was identified. Clone 12-1, which encoded the TPS peptide, was enriched approximately 53 times greater than the random library phage. After labeling with FITC, the TPS peptide demonstrated significantly greater brain accumulation efficiency. This study demonstrates the feasibility of using in vivo phage display to screen for peptides that can cross the BCSFB from the systemic circulation. In conclusion, the TPS peptide represents a previously unreported promising motif that can be used to design a drug delivery system that can cross the BCSFB.
Collapse
Affiliation(s)
- Jingwei Li
- Institute of Medicine, School of Pharmacy, Dali University, Xueren Rd., Dali, 671000, People's Republic of China,
| | | | | |
Collapse
|
238
|
Kalász H, Nurulain SM, Veress G, Antus S, Darvas F, Adeghate E, Adem A, Hashemi F, Tekes K. Mini review on blood-brain barrier penetration of pyridinium aldoximes. J Appl Toxicol 2014; 35:116-23. [PMID: 25291712 DOI: 10.1002/jat.3048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/14/2014] [Accepted: 06/16/2014] [Indexed: 01/27/2023]
Abstract
This paper reviews the blood-brain barrier (BBB) penetration of newly developed pyridinium aldoximes. Pyridinium aldoximes are highly charged hydrophilic compounds used in the treatment of subjects exposed to organophosphonates because they are effective as acetylcholinesterase reactivators. Pyridinium aldoximes have antidotal effects against poisoning with cholinesterase inhibitors, a frequent problem affecting people working with organophosphate-based insecticides and pesticides. Toxic organophosphonate products such as sarin and tabun can be used by terrorists as chemical warfare agents. This poses a severe challenge to all innocent and peace-loving people worldwide. This review gives a brief summary of BBB transporters and description of the current in vitro and in vivo methods for the characterization of BBB penetration of established and novel pyridinium aldoximes. The authors provide a putative mechanism of penetration, outline some future ways of formulation and discuss the possible advantages and disadvantages of increasing BBB penetration.
Collapse
Affiliation(s)
- H Kalász
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Nagyvárad tér 4, Hungary; Department of Pharmacology and Therapeutics, CMHS, United Arab Emirates University, Al Ain, P.O.Box 17666, United Arab Emirates
| | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev 2014; 43:6814-38. [PMID: 24549364 PMCID: PMC4138306 DOI: 10.1039/c3cs60467e] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule in the human body, playing a crucial role in cell and neuronal communication, regulation of blood pressure, and in immune activation. However, overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is one of the fundamental causes underlying neurodegenerative disorders and neuropathic pain. Therefore, developing small molecules for selective inhibition of nNOS over related isoforms (eNOS and iNOS) is therapeutically desirable. The aims of this review focus on the regulation and dysregulation of NO signaling, the role of NO in neurodegeneration and pain, the structure and mechanism of nNOS, and the use of this information to design selective inhibitors of this enzyme. Structure-based drug design, the bioavailability and pharmacokinetics of these inhibitors, and extensive target validation through animal studies are addressed.
Collapse
Affiliation(s)
- Paramita Mukherjee
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | | | | | | |
Collapse
|
240
|
Mohamed MS, Veeranarayanan S, Baliyan A, Poulose AC, Nagaoka Y, Minegishi H, Iwai S, Shimane Y, Yoshida Y, Maekawa T, Kumar DS. Structurally Distinct Hybrid Polymer/Lipid Nanoconstructs Harboring a Type-I Ribotoxin as Cellular Imaging and Glioblastoma-Directed Therapeutic Vectors. Macromol Biosci 2014; 14:1696-711. [DOI: 10.1002/mabi.201400248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/26/2014] [Indexed: 11/06/2022]
Affiliation(s)
- M. Sheikh Mohamed
- Bio Nano Electronics Research Center; Graduate School of Interdisciplinary New Science Toyo University; Kawagoe Saitama 350-8585 Japan
| | - Srivani Veeranarayanan
- Bio Nano Electronics Research Center; Graduate School of Interdisciplinary New Science Toyo University; Kawagoe Saitama 350-8585 Japan
| | - Ankur Baliyan
- Bio Nano Electronics Research Center; Graduate School of Interdisciplinary New Science Toyo University; Kawagoe Saitama 350-8585 Japan
| | - Aby Cheruvathoor Poulose
- Bio Nano Electronics Research Center; Graduate School of Interdisciplinary New Science Toyo University; Kawagoe Saitama 350-8585 Japan
| | - Yutaka Nagaoka
- Bio Nano Electronics Research Center; Graduate School of Interdisciplinary New Science Toyo University; Kawagoe Saitama 350-8585 Japan
| | - Hiroaki Minegishi
- Bio Nano Electronics Research Center; Graduate School of Interdisciplinary New Science Toyo University; Kawagoe Saitama 350-8585 Japan
| | - Seiki Iwai
- Bio Nano Electronics Research Center; Graduate School of Interdisciplinary New Science Toyo University; Kawagoe Saitama 350-8585 Japan
| | - Yasuhiro Shimane
- Bio Nano Electronics Research Center; Graduate School of Interdisciplinary New Science Toyo University; Kawagoe Saitama 350-8585 Japan
| | - Yasuhiko Yoshida
- Bio Nano Electronics Research Center; Graduate School of Interdisciplinary New Science Toyo University; Kawagoe Saitama 350-8585 Japan
| | - Toru Maekawa
- Bio Nano Electronics Research Center; Graduate School of Interdisciplinary New Science Toyo University; Kawagoe Saitama 350-8585 Japan
| | - D. Sakthi Kumar
- Bio Nano Electronics Research Center; Graduate School of Interdisciplinary New Science Toyo University; Kawagoe Saitama 350-8585 Japan
| |
Collapse
|
241
|
Tajes M, Ramos-Fernández E, Weng-Jiang X, Bosch-Morató M, Guivernau B, Eraso-Pichot A, Salvador B, Fernàndez-Busquets X, Roquer J, Muñoz FJ. The blood-brain barrier: structure, function and therapeutic approaches to cross it. Mol Membr Biol 2014; 31:152-67. [PMID: 25046533 DOI: 10.3109/09687688.2014.937468] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is constituted by a specialized vascular endothelium that interacts directly with astrocytes, neurons and pericytes. It protects the brain from the molecules of the systemic circulation but it has to be overcome for the proper treatment of brain cancer, psychiatric disorders or neurodegenerative diseases, which are dramatically increasing as the population ages. In the present work we have revised the current knowledge on the cellular structure of the BBB and the different procedures utilized currently and those proposed to cross it. Chemical modifications of the drugs, such as increasing their lipophilicity, turn them more prone to be internalized in the brain. Other mechanisms are the use of molecular tools to bind the drugs such as small immunoglobulins, liposomes or nanoparticles that will act as Trojan Horses favoring the drug delivery in brain. This fusion of the classical pharmacology with nanotechnology has opened a wide field to many different approaches with promising results to hypothesize that BBB will not be a major problem for the new generation of neuroactive drugs. The present review provides an overview of all state-of-the-art of the BBB structure and function, as well as of the classic strategies and these appeared in recent years to deliver drugs into the brain for the treatment of Central Nervous System (CNS) diseases.
Collapse
Affiliation(s)
- Marta Tajes
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF) , Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Moss DM, Siccardi M. Optimizing nanomedicine pharmacokinetics using physiologically based pharmacokinetics modelling. Br J Pharmacol 2014; 171:3963-79. [PMID: 24467481 DOI: 10.1111/bph.12604] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 12/16/2022] Open
Abstract
The delivery of therapeutic agents is characterized by numerous challenges including poor absorption, low penetration in target tissues and non-specific dissemination in organs, leading to toxicity or poor drug exposure. Several nanomedicine strategies have emerged as an advanced approach to enhance drug delivery and improve the treatment of several diseases. Numerous processes mediate the pharmacokinetics of nanoformulations, with the absorption, distribution, metabolism and elimination (ADME) being poorly understood and often differing substantially from traditional formulations. Understanding how nanoformulation composition and physicochemical properties influence drug distribution in the human body is of central importance when developing future treatment strategies. A helpful pharmacological tool to simulate the distribution of nanoformulations is represented by physiologically based pharmacokinetics (PBPK) modelling, which integrates system data describing a population of interest with drug/nanoparticle in vitro data through a mathematical description of ADME. The application of PBPK models for nanomedicine is in its infancy and characterized by several challenges. The integration of property-distribution relationships in PBPK models may benefit nanomedicine research, giving opportunities for innovative development of nanotechnologies. PBPK modelling has the potential to improve our understanding of the mechanisms underpinning nanoformulation disposition and allow for more rapid and accurate determination of their kinetics. This review provides an overview of the current knowledge of nanomedicine distribution and the use of PBPK modelling in the characterization of nanoformulations with optimal pharmacokinetics.
Collapse
Affiliation(s)
- Darren Michael Moss
- Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
243
|
Sydow K, Torchilin VP, Dathe M. Lipopeptide‐modified PEG‐PE‐based pharmaceutical nanocarriers for enhanced uptake in blood–brain barrier cells and improved cytotoxicity against glioma cells. EUR J LIPID SCI TECH 2014. [DOI: 10.1002/ejlt.201300373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Karl Sydow
- Leibniz‐Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)BerlinGermany
| | | | - Margitta Dathe
- Leibniz‐Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. (FMP)BerlinGermany
| |
Collapse
|
244
|
Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:11-24. [PMID: 24963272 PMCID: PMC4064947 DOI: 10.4137/pmc.s13384] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 01/04/2023]
Abstract
The treatment of central nervous system (CNS) disease has long been difficult due to the ineffectiveness of drug delivery across the blood-brain barrier (BBB). This review summarizes important concepts of the BBB in normal versus pathophysiology and how this physical, enzymatic, and efflux barrier provides necessary protection to the CNS during drug delivery, and consequently treatment challenging. Small molecules account for the vast majority of available CNS drugs primarily due to their ability to penetrate the phospholipid membrane of the BBB by passive or carrier-mediated mechanisms. Physiochemical and biological factors relevant for designing small molecules with optimal capabilities for BBB permeability are discussed, as well as the most promising classes of transporters suitable for small-molecule drug delivery. Clinically translatable imaging methodologies for detecting and quantifying drug uptake and targeting in the brain are discussed as a means of further understanding and refining delivery parameters for both drugs and imaging probes in preclinical and clinical domains. This information can be used as a guide to design drugs with preserved drug action and better delivery profiles for improved treatment outcomes over existing therapeutic approaches.
Collapse
Affiliation(s)
- John L Mikitsh
- Department of Radiology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann-Marie Chacko
- Department of Radiology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
245
|
Vendel E, de Lange ECM. Functions of the CB1 and CB 2 receptors in neuroprotection at the level of the blood-brain barrier. Neuromolecular Med 2014; 16:620-42. [PMID: 24929655 DOI: 10.1007/s12017-014-8314-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 05/14/2014] [Indexed: 12/30/2022]
Abstract
The cannabinoid (CB) receptors are the main targets of the cannabinoids, which include plant cannabinoids, endocannabinoids and synthetic cannabinoids. Over the last few years, accumulated evidence has suggested a role of the CB receptors in neuroprotection. The blood-brain barrier (BBB) is an important brain structure that is essential for neuroprotection. A link between the CB receptors and the BBB is thus likely, but this possible connection has only recently gained attention. Cannabinoids and the BBB share the same mechanisms of neuroprotection and both protect against excitotoxicity (CB1), cell death (CB1), inflammation (CB2) and oxidative stress (possibly CB independent)-all processes that also damage the BBB. Several examples of CB-mediated protection of the BBB have been found, such as inhibition of leukocyte influx and induction of amyloid beta efflux across the BBB. Moreover, the CB receptors were shown to improve BBB integrity, particularly by restoring the tightness of the tight junctions. This review demonstrated that both CB receptors are able to restore the BBB and neuroprotection, but much uncertainty about the underlying signaling cascades still exists and further investigation is needed.
Collapse
Affiliation(s)
- Esmée Vendel
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, PO Box 9502, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
246
|
Somani S, Blatchford DR, Millington O, Stevenson ML, Dufès C. Transferrin-bearing polypropylenimine dendrimer for targeted gene delivery to the brain. J Control Release 2014; 188:78-86. [PMID: 24933602 DOI: 10.1016/j.jconrel.2014.06.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/04/2014] [Accepted: 06/05/2014] [Indexed: 11/29/2022]
Abstract
The possibility of using genes as medicines to treat brain diseases is currently limited by the lack of safe and efficacious delivery systems able to cross the blood-brain barrier, thus resulting in a failure to reach the brain after intravenous administration. On the basis that iron can effectively reach the brain by using transferrin receptors for crossing the blood-brain barrier, we propose to investigate if a transferrin-bearing generation 3-polypropylenimine dendrimer would allow the transport of plasmid DNA to the brain after intravenous administration. In vitro, the conjugation of transferrin to the polypropylenimine dendrimer increased the DNA uptake by bEnd.3 murine brain endothelioma cells overexpressing transferrin receptors, by about 1.4-fold and 2.3-fold compared to that observed with the non-targeted dendriplex and naked DNA. This DNA uptake appeared to be optimal following 2h incubation with the treatment. In vivo, the intravenous injection of transferrin-bearing dendriplex more than doubled the gene expression in the brain compared to the unmodified dendriplex, while decreasing the non-specific gene expression in the lung. Gene expression was at least 3-fold higher in the brain than in any tested peripheral organs and was at its highest 24h following the injection of the treatments. These results suggest that transferrin-bearing polypropylenimine dendrimer is a highly promising gene delivery system to the brain.
Collapse
Affiliation(s)
- Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - David R Blatchford
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Owain Millington
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - M Lynn Stevenson
- School of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
247
|
Pavan B, Paganetto G, Rossi D, Dalpiaz A. Multidrug resistance in cancer or inefficacy of neuroactive agents: innovative strategies to inhibit or circumvent the active efflux transporters selectively. Drug Discov Today 2014; 19:1563-71. [PMID: 24929222 DOI: 10.1016/j.drudis.2014.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 01/13/2023]
Abstract
Multidrug resistance (MDR) is a crucial issue in the treatment of cancer cells that protect themselves by overexpression of active efflux transporters (AETs). AET expression maintains the homeostasis in healthy tissues and in the blood-brain barrier it often prevents drugs from reaching the brain. Inhibition of AETs could therefore be a valuable solution for preventing MDR; but nonselective long-term AET blocking can be harmful toward healthy tissues and, in particular, the brain. This review looks at the development of innovative formulations suitable for selectively blocking or avoiding AETs as promising ways to overcome the challenges of MDR and inefficacy of neuroactive agents.
Collapse
Affiliation(s)
- Barbara Pavan
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Guglielmo Paganetto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Damiano Rossi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessandro Dalpiaz
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
248
|
Bramini M, Ye D, Hallerbach A, Nic Raghnaill M, Salvati A, Aberg C, Dawson KA. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier. ACS NANO 2014; 8:4304-12. [PMID: 24773217 DOI: 10.1021/nn5018523] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Understanding nanoparticle interactions with the central nervous system, in particular the blood-brain barrier, is key to advances in therapeutics, as well as assessing the safety of nanoparticles. Challenges in achieving insights have been significant, even for relatively simple models. Here we use a combination of live cell imaging and computational analysis to directly study nanoparticle translocation across a human in vitro blood-brain barrier model. This approach allows us to identify and avoid problems in more conventional inferential in vitro measurements by identifying the catalogue of events of barrier internalization and translocation as they occur. Potentially this approach opens up the window of applicability of in vitro models, thereby enabling in depth mechanistic studies in the future. Model nanoparticles are used to illustrate the method. For those, we find that translocation, though rare, appears to take place. On the other hand, barrier uptake is efficient, and since barrier export is small, there is significant accumulation within the barrier.
Collapse
Affiliation(s)
- Mattia Bramini
- Centre for BioNano Interactions, School of Chemistry and Chemical Biology & UCD Conway Institute for Biomolecular and Biomedical Research, University College Dublin , Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | |
Collapse
|
249
|
Lu CT, Zhao YZ, Wong HL, Cai J, Peng L, Tian XQ. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int J Nanomedicine 2014; 9:2241-57. [PMID: 24872687 PMCID: PMC4026551 DOI: 10.2147/ijn.s61288] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although many agents have therapeutic potentials for central nervous system (CNS) diseases, few of these agents have been clinically used because of the brain barriers. As the protective barrier of the CNS, the blood–brain barrier and the blood–cerebrospinal fluid barrier maintain the brain microenvironment, neuronal activity, and proper functioning of the CNS. Different strategies for efficient CNS delivery have been studied. This article reviews the current approaches to open or facilitate penetration across these barriers for enhanced drug delivery to the CNS. These approaches are summarized into three broad categories: noninvasive, invasive, and miscellaneous techniques. The progresses made using these approaches are reviewed, and the associated mechanisms and problems are discussed.
Collapse
Affiliation(s)
- Cui-Tao Lu
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People's Republic of China
| | - Ying-Zheng Zhao
- Hainan Medical College, Haikou City, Hainan Province, People's Republic of China ; College of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, People's Republic of China
| | - Ho Lun Wong
- School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Jun Cai
- Departments of Pediatrics and Anatomical Sciences and Neurobiology, University of Louisville School of Medicine Louisville, KY, USA
| | - Lei Peng
- Hainan Medical College, Haikou City, Hainan Province, People's Republic of China
| | - Xin-Qiao Tian
- The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province, People's Republic of China
| |
Collapse
|
250
|
Kreuter J. Drug delivery to the central nervous system by polymeric nanoparticles: what do we know? Adv Drug Deliv Rev 2014; 71:2-14. [PMID: 23981489 DOI: 10.1016/j.addr.2013.08.008] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 02/06/2023]
Abstract
Nanoparticles enable the delivery of a great variety of drugs including anticancer drugs, analgesics, anti-Alzheimer's drugs, cardiovascular drugs, protease inhibitors, and several macromolecules into the brain after intravenous injection of animals. The mechanism of the nanoparticle-mediated drug transport across the BBB appears to be receptor-mediated endocytosis followed by transcytosis into the brain or by drug release within the endothelial cells. Modification of the nanoparticle surface with covalently attached targeting ligands or by coating with certain surfactants that lead to the adsorption of specific plasma proteins after injection is necessary for this receptor-mediated uptake. A very critical and important requirement for nanoparticulate brain delivery is that the employed nanoparticles are biocompatible and, moreover, rapidly biodegradable, i.e. over a time frame of a few days. In addition to enabling drug delivery to the brain, nanoparticles, as with doxorubicin, may importantly reduce the drug's toxicity and adverse effects due to an alteration of the body distribution. Because of the possibility to treat severe CNS diseases such as brain tumours and to even transport proteins and other macromolecules across the blood-brain barrier, this technology holds great promise for a non-invasive therapy of these diseases.
Collapse
Affiliation(s)
- Jörg Kreuter
- Institut für Pharmazeutische Technologie, Goethe-Universtät, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany.
| |
Collapse
|