201
|
Xue T, Wang W, Yang Z, Wang F, Yang L, Li J, Gan H, Gu R, Wu Z, Dou G, Meng Z. Accurate Determination of the Degree of Deacetylation of Chitosan Using UPLC-MS/MS. Int J Mol Sci 2022; 23:ijms23158810. [PMID: 35955947 PMCID: PMC9369293 DOI: 10.3390/ijms23158810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
The mole fraction of deacetylated monomeric units in chitosan (CS) molecules is referred to as CS's degree of deacetylation (DD). In this study, 35 characteristic ions of CS were detected using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS). The relative response intensity of 35 characteristic ion pairs using a single charge in nine CS samples with varying DDs was analyzed using 30 analytical methods. There was a good linear relationship between the relative response intensity of the characteristic ion pairs determined using ultrahigh performance (UP) LC-MS/MS and the DD of CS. The UPLC-MS/MS method for determining the DD of CS was unaffected by the sample concentration. The detection instrument has a wide range of application parameters with different voltages, high temperatures, and gas flow conditions. This study established a detection method for the DD of CS with high sensitivity, fast analysis, accuracy, stability, and durability.
Collapse
|
202
|
Effect of titanium dioxide nanoparticles and β-cyclodextrin polymer on physicochemical, antimicrobial, and antibiofilm properties of a novel chitosan-camphor polymer. Int J Biol Macromol 2022; 219:1062-1079. [DOI: 10.1016/j.ijbiomac.2022.07.249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022]
|
203
|
Ji M, Li J, Wang Y, Li F, Man J, Li J, Zhang C, Peng S, Wang S. Advances in chitosan-based wound dressings: Modifications, fabrications, applications and prospects. Carbohydr Polym 2022; 297:120058. [DOI: 10.1016/j.carbpol.2022.120058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 12/15/2022]
|
204
|
Dong X, Jiang Z, Hu Q. A ready‐to‐use fast gelation/liquefying hydrogel towards enzyme free three‐dimensional cell culture. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaofei Dong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine Zhejiang University Hangzhou China
| | - Zhiqi Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
205
|
Zou W, Gu J, Li J, Wang Y, Chen S. Tailorable antibacterial and cytotoxic chitosan derivatives by introducing quaternary ammonium salt and sulfobetaine. Int J Biol Macromol 2022; 218:992-1001. [PMID: 35878673 DOI: 10.1016/j.ijbiomac.2022.07.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
Abstract
Chitosan (CS) derivatives with improved water solubility, antibacterial activity and adequate biocompatibility are attracting increasingly interest in medical application. Herein, we have successfully synthesized isocyanate terminated quaternary ammonium salt (IQAS) and sulfopropylbetaine (ISB) to be readily covalently bounded to CS skeleton by selective reaction with amino and hydroxyl groups. And their molecular structures and crystallinity were confirmed by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and X-ray diffraction. The effect of the substitution degree, carbon chain length, content ratio of IQAS/ISB on their water solubility, antibacterial activity and cytotoxicity were systematically investigated, which shows that those properties of the CS derivatives can be tailored by adjusting the grafted antibacterial agents and their additive amount. The structure-property relationship of these CS derivatives may provide a solid guidance on the development of CS derivatives for more efficient practical applications.
Collapse
Affiliation(s)
- Wanjing Zou
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jingwei Gu
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jianna Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen 518060, China
| | - Yuanfang Wang
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Shiguo Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
206
|
da Silva FKL, de Sa Alexandre AR, Casas AA, Ribeiro MC, de Souza KMC, Soares ES, Dos Santos Junior SR, Vieira JDG, Amaral AC. Increased production of chitinase by a Paenibacillus illinoisensis isolated from Brazilian coastal soil when immobilized in alginate beads. Folia Microbiol (Praha) 2022; 67:935-945. [PMID: 35849273 DOI: 10.1007/s12223-022-00992-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022]
Abstract
The accumulation of chitin waste from the seafood industry is a serious environmental problem. However, this residue can be degraded by chitinases and its subproducts, such as chitosan, economically exploited. In this study, a chitinase producer bacteria, identified as Paenibacillus illinoisensis, was isolated from the Brazilian coastal city of Terra de Areia - Rio Grande Do Sul (RS) and was immobilized within alginate beads to evaluate its chitinase production. The alginate beads containing cells presented an average size of 4 mm, 99% of immobilization efficiency and increased the enzymatic activity in 40.71% compared to the free cells. The biomass during enzymatic production increased 62.01% and the total cells leaked from the alginate beads corresponded to 6.46% after 96 h. Immobilized cells were reused in a sequential batch system and remained stable for production for up to four 96-h cycles, decreasing only 21.04% of the initial activity at the end of the fourth cycle. Therefore, the methodology used for cell immobilization resulted in adequate beads to maintain cell viability during the enzymatic production, increasing enzymatic activity, showing low cell leakage from the support and appropriate recyclable capacity.
Collapse
Affiliation(s)
- Francenya Kelley Lopes da Silva
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Setor Universitário, Rua 235, s/n, Goiânia, GO, 74605-050, Brazil
| | - Artur Ribeiro de Sa Alexandre
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Setor Universitário, Rua 235, s/n, Goiânia, GO, 74605-050, Brazil
| | - Ariadine Amorim Casas
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Setor Universitário, Rua 235, s/n, Goiânia, GO, 74605-050, Brazil
| | - Maycon Carvalho Ribeiro
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Setor Universitário, Rua 235, s/n, Goiânia, GO, 74605-050, Brazil
| | - Keili Maria Cardoso de Souza
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Setor Universitário, Rua 235, s/n, Goiânia, GO, 74605-050, Brazil
| | - Enio Saraiva Soares
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Setor Universitário, Rua 235, s/n, Goiânia, GO, 74605-050, Brazil
| | - Samuel Rodrigues Dos Santos Junior
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Setor Universitário, Rua 235, s/n, Goiânia, GO, 74605-050, Brazil.,Laboratory of Pathogenic Dimorphic Fungi, Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Jose Daniel Gonçalves Vieira
- Laboratory of Environmental Microbiology & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Andre Correa Amaral
- Laboratory of Nano & Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Setor Universitário, Rua 235, s/n, Goiânia, GO, 74605-050, Brazil.
| |
Collapse
|
207
|
Bai L, Liu L, Esquivel M, Tardy BL, Huan S, Niu X, Liu S, Yang G, Fan Y, Rojas OJ. Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem Rev 2022; 122:11604-11674. [PMID: 35653785 PMCID: PMC9284562 DOI: 10.1021/acs.chemrev.2c00125] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chitin, a fascinating biopolymer found in living organisms, fulfills current demands of availability, sustainability, biocompatibility, biodegradability, functionality, and renewability. A feature of chitin is its ability to structure into hierarchical assemblies, spanning the nano- and macroscales, imparting toughness and resistance (chemical, biological, among others) to multicomponent materials as well as adding adaptability, tunability, and versatility. Retaining the inherent structural characteristics of chitin and its colloidal features in dispersed media has been central to its use, considering it as a building block for the construction of emerging materials. Top-down chitin designs have been reported and differentiate from the traditional molecular-level, bottom-up synthesis and assembly for material development. Such topics are the focus of this Review, which also covers the origins and biological characteristics of chitin and their influence on the morphological and physical-chemical properties. We discuss recent achievements in the isolation, deconstruction, and fractionation of chitin nanostructures of varying axial aspects (nanofibrils and nanorods) along with methods for their modification and assembly into functional materials. We highlight the role of nanochitin in its native architecture and as a component of materials subjected to multiscale interactions, leading to highly dynamic and functional structures. We introduce the most recent advances in the applications of nanochitin-derived materials and industrialization efforts, following green manufacturing principles. Finally, we offer a critical perspective about the adoption of nanochitin in the context of advanced, sustainable materials.
Collapse
Affiliation(s)
- Long Bai
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Liang Liu
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Marianelly Esquivel
- Polymer
Research Laboratory, Department of Chemistry, National University of Costa Rica, Heredia 3000, Costa Rica
| | - Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Department
of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Siqi Huan
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xun Niu
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shouxin Liu
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
| | - Guihua Yang
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Sciences, Jinan 250353, China
| | - Yimin Fan
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
208
|
Qiao F, Jiang Z, Fang W, Sun J, Hu Q. Dually Responsive Nanoparticles for Drug Delivery Based on Quaternized Chitosan. Int J Mol Sci 2022; 23:ijms23137342. [PMID: 35806347 PMCID: PMC9266538 DOI: 10.3390/ijms23137342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
In this work, we report the fabrication and functional demonstration of a kind of dually responsive nanoparticles (NPs) as a potential drug delivery vector. The pH value, corresponding to the acidic microenvironment at the tumor site, and mannitol, to the extracellular trigger agent, were employed as the dually responsive factors. The function of dual responses was achieved by breaking the dynamic covalent bonds between phenylboronic acid (PBA) groups and diols at low pH value (pH 5.0) and/or under the administration of mannitol, which triggered the decomposition of the complex NPs and the concomitant release of anticancer drug of doxorubicin (DOX) loaded inside the NPs. The NPs were composed of modified chitosan (PQCS) with quaternary ammonium and PBA groups on the side chains, heparin (Hep), and poly(vinyl alcohol) (PVA), in which quaternary ammonium groups offer the positive charge for the cell-internalization of NPs, PBA groups serve for the formation of dynamic bonds in responding to pH change and mannitol addition, PVA furnishes the NPs with diol groups for the interaction with PBA groups and the formation of dynamic NPS, and Hep plays the roles of reducing the cytotoxicity of highly positively-charged chitosan and forming of complex NPs for DOX up-loading. A three-step fabrication process of drug-loaded NPs was described, and the characterization results were comprehensively demonstrated. The sustained drug release from the drug-loaded NPs displayed obvious pH and mannitol dependence. More specifically, the cumulative DOX release was increased more than 1.5-fold at pH 5.0 with 20 mg mL−1 mannitol. Furthermore, the nanoparticles were manifested with effective antitumor efficient and apparently enhanced cytotoxicity in response to the acidic pH value and/or mannitol.
Collapse
Affiliation(s)
- Fenghui Qiao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; (F.Q.); (Z.J.); (W.F.); (J.S.)
| | - Zhiqi Jiang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; (F.Q.); (Z.J.); (W.F.); (J.S.)
| | - Wen Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; (F.Q.); (Z.J.); (W.F.); (J.S.)
| | - Jingzhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; (F.Q.); (Z.J.); (W.F.); (J.S.)
- Center of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China; (F.Q.); (Z.J.); (W.F.); (J.S.)
- Correspondence:
| |
Collapse
|
209
|
Pellis A, Guebitz GM, Nyanhongo GS. Chitosan: Sources, Processing and Modification Techniques. Gels 2022; 8:gels8070393. [PMID: 35877478 PMCID: PMC9322947 DOI: 10.3390/gels8070393] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a copolymer of glucosamine and N-acetyl glucosamine, is derived from chitin. Chitin is found in cell walls of crustaceans, fungi, insects and in some algae, microorganisms, and some invertebrate animals. Chitosan is emerging as a very important raw material for the synthesis of a wide range of products used for food, medical, pharmaceutical, health care, agriculture, industry, and environmental pollution protection. This review, in line with the focus of this special issue, provides the reader with (1) an overview on different sources of chitin, (2) advances in techniques used to extract chitin and converting it into chitosan, (3) the importance of the inherent characteristics of the chitosan from different sources that makes them suitable for specific applications and, finally, (4) briefly summarizes ways of tailoring chitosan for specific applications. The review also presents the influence of the degree of acetylation (DA) and degree of deacetylation (DDA), molecular weight (Mw) on the physicochemical and biological properties of chitosan, acid-base behavior, biodegradability, solubility, reactivity, among many other properties that determine processability and suitability for specific applications. This is intended to help guide researchers select the right chitosan raw material for their specific applications.
Collapse
Affiliation(s)
- Alessandro Pellis
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy;
| | - Georg M. Guebitz
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
| | - Gibson Stephen Nyanhongo
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg P.O. Box 17011, South Africa
- Correspondence:
| |
Collapse
|
210
|
Lima R, Fernandes C, Pinto MMM. Molecular modifications, biological activities, and applications of chitosan and derivatives: A recent update. Chirality 2022; 34:1166-1190. [PMID: 35699356 DOI: 10.1002/chir.23477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
Polysaccharides arouse great interest due to their structure and unique properties, such as biocompatibility, biodegradability, and absence of toxicity. Polysaccharides from marine sources are particularly useful due to the wide variety of applications and biological activities. Chitosan, a deacetylated derivative of chitin, is an example of an interesting bioactive marine-derived polysaccharide. Moreover, a wide variety of chemical modifications and conjugation of chitosan with other bioactive molecules are responsible for improvements in physicochemical properties and biological activities, expanding the range of applications. An overview of the synthetic approaches for preparing chitosan, chitosan derivatives, and conjugates is described and discussed. A recent update of the biological activities and applications in different research fields, mainly focused on the last 5 years, is presented, highlighting current trends.
Collapse
Affiliation(s)
- Rita Lima
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
211
|
Orally Disintegrating Film: A New Approach to Nutritional Supplementation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
212
|
Guo Y, Liu W, Dong S, Li Y, He J, Liu F, Li R, Zhang S, Cai L, Zhang Y. Effects of deacetylation degree, molecular weight, and preparation method on wet‐adhesive and rheological properties of chitosan as food‐grade adhesive. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yunsi Guo
- School of Food Science and Bioengineering Zhejiang Gongshang University Hangzhou China
- Food Nutrition Science Centre Zhejiang Gongshang University Hangzhou China
| | - Wenfeng Liu
- China Tobacco Hubei Industrial Co., LTD Wuhan China
| | | | - Yingxue Li
- China Tobacco Hubei Industrial Co., LTD Wuhan China
| | - Jiewang He
- China Tobacco Hubei Industrial Co., LTD Wuhan China
| | - Fengfeng Liu
- China Tobacco Hubei Industrial Co., LTD Wuhan China
| | - Ran Li
- China Tobacco Hubei Industrial Co., LTD Wuhan China
| | - Suyun Zhang
- School of Food Science and Bioengineering Zhejiang Gongshang University Hangzhou China
- Food Nutrition Science Centre Zhejiang Gongshang University Hangzhou China
| | - Lei Cai
- School of Food Science and Bioengineering Zhejiang Gongshang University Hangzhou China
- Food Nutrition Science Centre Zhejiang Gongshang University Hangzhou China
| | - Yue Zhang
- School of Food Science and Bioengineering Zhejiang Gongshang University Hangzhou China
- Food Nutrition Science Centre Zhejiang Gongshang University Hangzhou China
| |
Collapse
|
213
|
Hasnan NSN, Mohamed MA, Anuar NA, Abdul Sukur MF, Mohd Yusoff SF, Wan Mokhtar WNA, Mohd Hir ZA, Mohd Shohaimi NA, Ahmad Rafaie H. Emerging polymeric-based material with photocatalytic functionality for sustainable technologies. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
214
|
Liu T, Lu H, Li C, Chen L, Feng Z. Excellent effect of lubrication performance of chitosan/polyethylene glycol/palygorskite as water‐based lubricating additive on 304 stainless steel and polymer pairs. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tao Liu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an China
| | - Hailin Lu
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an China
- Taizhou Medical New & Hi‐tech industrial Development Zone Taizhou China
| | - Chengzhi Li
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an China
| | - Lu Chen
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an China
| | - Ziqin Feng
- Group of Mechanical and Biomedical Engineering, Xi'an Key Laboratory of Modern Intelligent Textile Equipment, College of Mechanical & Electronic Engineering Xi'an Polytechnic University Xi'an China
| |
Collapse
|
215
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
216
|
Guarnieri A, Triunfo M, Scieuzo C, Ianniciello D, Tafi E, Hahn T, Zibek S, Salvia R, De Bonis A, Falabella P. Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens. Sci Rep 2022; 12:8084. [PMID: 35577828 PMCID: PMC9110362 DOI: 10.1038/s41598-022-12150-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Growing antimicrobial resistance has prompted researchers to identify new natural molecules with antimicrobial potential. In this perspective, attention has been focused on biopolymers that could also be functional in the medical field. Chitin is the second most abundant biopolymer on Earth and with its deacetylated derivative, chitosan, has several applications in biomedical and pharmaceutical fields. Currently, the main source of chitin is the crustacean exoskeleton, but the growing demand for these polymers on the market has led to search for alternative sources. Among these, insects, and in particular the bioconverter Hermetia illucens, is one of the most bred. Chitin can be extracted from larvae, pupal exuviae and dead adults of H. illucens, by applying chemical methods, and converted into chitosan. Fourier-transformed infrared spectroscopy confirmed the identity of the chitosan produced from H. illucens and its structural similarity to commercial polymer. Recently, studies showed that chitosan has intrinsic antimicrobial activity. This is the first research that investigated the antibacterial activity of chitosan produced from the three developmental stages of H. illucens through qualitative and quantitative analysis, agar diffusion tests and microdilution assays, respectively. Our results showed the antimicrobial capacity of chitosan of H. illucens, opening new perspectives for its use in the biological area.
Collapse
Affiliation(s)
- Anna Guarnieri
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Micaela Triunfo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy
| | | | - Elena Tafi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Thomas Hahn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| | - Angela De Bonis
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| |
Collapse
|
217
|
Sangeetha E, Narayanan A, Dhamodharan R. Super water-absorbing hydrogel based on chitosan, itaconic acid and urea: preparation, characterization and reversible water absorption. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03641-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
218
|
Alenazi AS, El-Bagory IM, Yassin AB, Alanazi FK, Alsarra IA, Haq N, Bayomi MA, Shakeel F. Design of polymeric nanoparticles for oral delivery of capreomycin peptide using double emulsion technique: Impact of stress conditions. J Drug Deliv Sci Technol 2022; 71:103326. [DOI: 10.1016/j.jddst.2022.103326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
219
|
Chitosan Film Functionalized with Grape Seed Oil—Preliminary Evaluation of Antimicrobial Activity. SUSTAINABILITY 2022. [DOI: 10.3390/su14095410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Although the fishing and wine industries undoubtedly contribute significantly to the economy, they also generate large waste streams with considerable repercussions on both economic and environmental levels. Scientific literature has shown products can be extracted from these streams which have properties of interest to the cosmetics, pharmaceutical and food industries. Antimicrobial activity is undoubtedly among the most interesting of these properties, and particularly useful in the production of food packaging to increase the shelf life of food products. In this study, film for food packaging was produced for the first time using chitosan extracted from the exoskeletons of red shrimp (Aristomorpha foliacea) and oil obtained from red grape seeds (Vitis vinifera). The antimicrobial activity of two films was analyzed: chitosan-only film and chitosan film with the addition of red grape seed oil at two different concentrations (0.5 mL and 1 mL). Our results showed noteworthy antimicrobial activity resulting from functionalized chitosan films; no activity was observed against pathogen and spoilage Gram-positive and Gram-negative bacteria, although the antimicrobial effects observed were species-dependent. The preliminary results of this study could contribute to developing the circular economy, helping to promote the reuse of waste to produce innovative films for food packaging.
Collapse
|
220
|
Xu T, Wang Y, Aytac Z, Zuverza-Mena N, Zhao Z, Hu X, Ng KW, White JC, Demokritou P. Enhancing Agrichemical Delivery and Plant Development with Biopolymer-Based Stimuli Responsive Core-Shell Nanostructures. ACS NANO 2022; 16:6034-6048. [PMID: 35404588 DOI: 10.1021/acsnano.1c11490] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The inefficient delivery of agrichemicals in agrifood systems is among the leading cause of serious negative planetary and public health impacts. Such inefficiency is mainly attributed to the inability to deliver the agrichemicals at the right place (target), right time, and right dose. In this study, scalable, biodegradable, sustainable, biopolymer-based multistimuli responsive core-shell nanostructures were developed for smart agrichemical delivery. Three types of responsive core/shell nanostructures incorporated with model agrichemicals (i.e., CuSO4 and NPK fertilizer) were synthesized by coaxial electrospray, and the resulting nanostructures showed spherical morphology with an average diameter about 160 nm. Tunable agrichemical release kinetics were achieved by controlling the surface hydrophobicity of nanostructures. The pH and enzyme responsiveness was also demonstrated by the model analyte release kinetics (up to 7 days) in aqueous solution. Finally, the efficacy of the stimuli responsive nanostructures was evaluated in soil-based greenhouse studies using soybean and wheat in terms of photosynthesis efficacy and linear electron flow (LEF), two important metrics for seedling development and health. Findings confirmed plant specificity; for soybean, the nanostructures resulted in 34.3% higher value of relative chlorophyll content and 41.2% higher value of PS1 centers in photosystem I than the ionic control with equivalent agrichemical concentration. For wheat, the nanostructures resulted in 37.6% higher value of LEF than the ionic agrichemicals applied at 4 times higher concentration, indicating that the responsive core-shell nanostructure is an effective platform to achieve precision agrichemical delivery while minimizing inputs. Moreover, the Zn and Na content in the leaves of 4-week-old soybean seedlings were significantly increased with nanostructure amendment, indicating that the developed nanostructures can potentially be used to modulate the accumulation of other important micronutrients through a potential biofortification strategy.
Collapse
Affiliation(s)
- Tao Xu
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yi Wang
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Zeynep Aytac
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Nubia Zuverza-Mena
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Xiao Hu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 637141, Singapore
| | - Kee Woei Ng
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, 637141, Singapore
| | - Jason C White
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), School of Public Health, Rutgers University, Piscataway, New Jersey 08854, United States
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
221
|
Bi D, Yang X, Lu J, Xu X. Preparation and potential applications of alginate oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:10130-10147. [PMID: 35471191 DOI: 10.1080/10408398.2022.2067832] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alginate, a linear polymer consisting of β-D-mannuronic acid (M) and α-L-guluronic acid (G) with 1,4-glycosidic linkages and comprising 40% of the dry weight of algae, possesses various applications in the food and nutraceutical industries. However, the potential applications of alginate are restricted in some fields because of its low water solubility and high solution viscosity. Alginate oligosaccharides (AOS) on the other hand, have low molecular weight which result in better water solubility. Hence, it becomes a more popular target to be researched in recent years for its use in foods and nutraceuticals. AOS can be obtained by multiple degradation methods, including enzymatic degradation, from alginate or alginate-derived poly G and poly M. AOS have unique bioactivity and can bring human health benefits, which render them potentials to be developed/incorporated into functional food. This review comprehensively covers methods of the preparation and analysis of AOS, and discussed the potential applications of AOS in foods and nutraceuticals.
Collapse
Affiliation(s)
- Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Xu Yang
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- School of Public Health and Interdisciplinary Studies, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| |
Collapse
|
222
|
Triunfo M, Tafi E, Guarnieri A, Salvia R, Scieuzo C, Hahn T, Zibek S, Gagliardini A, Panariello L, Coltelli MB, De Bonis A, Falabella P. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci Rep 2022; 12:6613. [PMID: 35459772 PMCID: PMC9033872 DOI: 10.1038/s41598-022-10423-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Due to their properties and applications, the growing demand for chitin and chitosan has stimulated the market to find more sustainable alternatives to the current commercial source (crustaceans). Bioconverter insects, such as Hermetia illucens, are the appropriate candidates, as chitin is a side stream of insect farms for feed applications. This is the first report on production and characterization of chitin and chitosan from different biomasses derived from H. illucens, valorizing the overproduced larvae in feed applications, the pupal exuviae and the dead adults. Pupal exuviae are the best biomass, both for chitin and chitosan yields and for their abundance and easy supply from insect farms. Fourier-transform infrared spectroscopy, X-ray diffraction and scanning electron microscope analysis revealed the similarity of insect-derived polymers to commercial ones in terms of purity and structural morphology, and therefore their suitability for industrial and biomedical applications. Its fibrillary nature makes H. illucens chitin suitable for producing fibrous manufacts after conversion to chitin nanofibrils, particularly adults-derived chitin, because of its high crystallinity. A great versatility emerged from the evaluation of the physicochemical properties of chitosan obtained from H. illucens, which presented a lower viscosity-average molecular weight and a high deacetylation degree, fostering its putative antimicrobial properties.
Collapse
Affiliation(s)
- Micaela Triunfo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Elena Tafi
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Anna Guarnieri
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy
| | - Thomas Hahn
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | | | - Luca Panariello
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | | | - Angela De Bonis
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy.
- Spinoff XFLIES s.r.l, University of Basilicata, Potenza, Italy.
| |
Collapse
|
223
|
Some Well-Known Alginate and Chitosan Modifications Used in Adsorption: A Review. WATER 2022. [DOI: 10.3390/w14091353] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to environmental pollution and increasingly strict regulations, heavy metals have attracted the attention of many researchers in various disciplines. Alginate and chitosan derivatives have gained popularity as biosorbents for water treatment. An increase in the number of publications on modified biosorbents for the biosorption of toxic compounds reveals widespread interest in examining the requirements and positive contribution of each modification type. This paper reviews the advantages and disadvantages of using alginate and chitosan for adsorption. Well-known modifications based on chitosan and alginate, namely, grafting, functionalization, copolymerization and cross-linking, as well as applications in the field of adsorption processes, especially amino acid functionalization, are reviewed. The selection criteria for the best biosorbents and their effectiveness and proposed mechanism of adsorption are discussed critically. In the conclusion, the question of why these adsorbents need modification before use is addressed.
Collapse
|
224
|
Kou SG, Peters L, Mucalo M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydr Polym 2022; 282:119132. [PMID: 35123764 DOI: 10.1016/j.carbpol.2022.119132] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/14/2022]
Abstract
Chitosan has many desirable attributes e.g. antimicrobial properties and promoting wound healing, and is used in various applications. This article first discusses how degree of deacetylation (DD) and molecular weight (MW) impacts on what level of bioactivities chitosan manifests, then introduces the "molecular chain configuration" model to explain various possible mechanisms of antimicrobial interactions between chitosan with different MW and different types of bacteria. Similarly, the possible pathways of how chitosan reacts with cancer and the body's immune system to demonstrate immune and antitumor effects are also discussed by using this model. Moreover, the possible mechanisms of how chitosan enhances coagulation and wound healing are also discussed. With these beneficial bioactivities in mind, the application of chitosan in surgery, tissue engineering and oncology is outlined. This review concludes that as chitosan demonstrates many beneficial bioactivities via multiple mechanisms, it is an important polymer with a promising future in medicine.
Collapse
Affiliation(s)
| | - Linda Peters
- School of Science, University of Waikato, New Zealand
| | | |
Collapse
|
225
|
Chitin Nanofibril-Nanolignin Complexes as Carriers of Functional Molecules for Skin Contact Applications. NANOMATERIALS 2022; 12:nano12081295. [PMID: 35458003 PMCID: PMC9029034 DOI: 10.3390/nano12081295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 02/04/2023]
Abstract
Chitin nanofibrils (CN) and nanolignin (NL) were used to embed active molecules, such as vitamin E, sodium ascorbyl phosphate, lutein, nicotinamide and glycyrrhetinic acid (derived from licorice), in the design of antimicrobial, anti-inflammatory and antioxidant nanostructured chitin nanofibrils–nanolignin (CN-NL) complexes for skin contact products, thus forming CN-NL/M complexes, where M indicates the embedded functional molecule. Nano-silver was also embedded in CN-NL complexes or on chitin nanofibrils to exploit its well-known antimicrobial activity. A powdery product suitable for application was finally obtained by spray-drying the complexes co-formulated with poly(ethylene glycol). The structure and morphology of the complexes was studied using infrared spectroscopy and field emission scanning electron microscopy, while their thermal stability was investigated via thermo-gravimetry. The latter provided criteria for evaluating the suitability of the obtained complexes for subsequent demanding industrial processing, such as, for instance, incorporation into bio-based thermoplastic polymers through conventional melt extrusion. In vitro tests were carried out at different concentrations to assess skin compatibility. The obtained results provided a physical–chemical, morphological and cytocompatibility knowledge platform for the correct selection and further development of such nanomaterials, allowing them to be applied in different products. In particular, chitin nanofibrils and the CN-NL complex containing glycyrrhetinic acid can combine excellent thermal stability and skin compatibility to provide a nanostructured system potentially suitable for industrial applications.
Collapse
|
226
|
Passieux R, Sudre G, Montembault A, Renard M, Hagege A, Alcouffe P, Haddane A, Vandesteene M, Boucard N, Bordenave L, David L. Cytocompatibility / Antibacterial Activity Trade-off for Knittable Wet-Spun Chitosan Monofilaments Functionalized by the In Situ Incorporation of Cu 2+ and Zn 2. ACS Biomater Sci Eng 2022; 8:1735-1748. [PMID: 35226455 DOI: 10.1021/acsbiomaterials.2c00079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The wet spinning of cytocompatible, bioresorbable, and knittable chitosan (CTS) monofilaments would be advantageous for a variety of surgical applications. The complexation capacity of chitosan with Cu2+ or Zn2+ can be leveraged to enhance its antibacterial activity, but not at the expense of cytocompatibility. In this work, a wet-spinning process was adapted for the in situ incorporation of Cu2+ or Zn2+ with chitosan dopes to produce monofilaments at different drawing ratios (τtot) with various cation/glucosamine molar ratios, evaluated in the fibers (rCu,f and rZn,f). Cytocompatibility and antibacterial activity of wet-spun monofilaments were, respectively, quantified by in vitro live-dead assays on balb 3T3 and by different evaluations of the proliferation inhibition of Staphylococcus epidermidis (Gram+) and Escherichia coli (Gram-). Knittability was tested by a specific tensile test using a knitting needle and evaluated with an industrial knitting machine. It was found that rCu,f = 0.01 and rZn,f = 0.03 significantly increase the antibacterial activity without compromising cytocompatibility. Wet spinning with τtot = 1.6 allowed the production of knittable CTS-Cu monofilaments, as confirmed by knitting assays under industrial conditions.
Collapse
Affiliation(s)
- Renaud Passieux
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France.,INSERM, U1026, BIOTIS Laboratory, Université de Bordeaux, Bordeaux F-33000, France.,MDB Texinov, Saint Didier de la Tour 38110, France
| | - Guillaume Sudre
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| | - Alexandra Montembault
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| | - Martine Renard
- CIC-IT INSERM; CHU de Bordeaux, Université de Bordeaux, Pessac 33600, France
| | - Agnès Hagege
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Institute of Analytical Sciences (ISA) UMR 5280, Villeurbanne 69100, France
| | - Pierre Alcouffe
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| | - Ali Haddane
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| | | | | | - Laurence Bordenave
- INSERM, U1026, BIOTIS Laboratory, Université de Bordeaux, Bordeaux F-33000, France
| | - Laurent David
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Ingénierie des Matériaux Polymères (IMP) UMR 5223, Villeurbanne 69100, France
| |
Collapse
|
227
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
228
|
Farizano JV, Díaz Vergara LI, Masias E, Baillo AA, Torino MI, Fadda S, Vanden Braber NL, Montenegro MA, Saavedra L, Minahk C. Biotechnological use of dairy by-products for the production and microencapsulation of the food preservative enterocin CRL35. FEMS Microbiol Lett 2022; 369:6553820. [PMID: 35325116 DOI: 10.1093/femsle/fnac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 11/15/2022] Open
Abstract
Bacteriocins from Gram-positive bacteria have been proposed as natural food preservative and there is a need for large-scale production for commercial purposes. The aim of the present work is to evaluate whey, a cheese industrial by-product, for the production and microencapsulation of enterocin CRL35. Whey proved to be a promising basal medium for bacterial growth although the bacteriocin production was quite low. However, it could be much favored with the addition of yeast extract at concentrations as low as 0.5%. Besides improving bacteriocin production, this peptide was successfully microencapsulated by spray drying using whey protein concentrate and a chitosan derivative as wall materials. Microcapsules averaging 10 ± 5 μm diameter were obtained, with good structural integrity and high antimicrobial activity with a stability of at least 12 weeks at 4°C. In summary, sustainable bacteriocin production and microencapsulation was achieved recycling whey or its derivatives. In addition, the formulation owns high antimicrobial activity with a long shelf life. The development of a food preservative may represent a green solution for handling whey.
Collapse
Affiliation(s)
- Juan V Farizano
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - Ladislao I Díaz Vergara
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Campus Universitario, Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Emilse Masias
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| | - Ayelén A Baillo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145. San Miguel de Tucumán, Argentina
| | - María I Torino
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145. San Miguel de Tucumán, Argentina
| | - Silvina Fadda
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145. San Miguel de Tucumán, Argentina
| | - Noelia L Vanden Braber
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Campus Universitario, Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Mariana A Montenegro
- Centro de Investigaciones y Transferencia de Villa María (CITVM-CONICET), Universidad Nacional de Villa María, Campus Universitario, Arturo Jauretche 1555, Villa María, Córdoba, Argentina
| | - Lucila Saavedra
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145. San Miguel de Tucumán, Argentina
| | - Carlos Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI - San Miguel de Tucumán, Argentina
| |
Collapse
|
229
|
Mycofabrication of Mycelium-Based Leather from Brown-Rot Fungi. J Fungi (Basel) 2022; 8:jof8030317. [PMID: 35330319 PMCID: PMC8950489 DOI: 10.3390/jof8030317] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022] Open
Abstract
Sustainable substitutes for leather can be made from mushroom mycelium, which is an environmentally friendly alternative to animal and synthetic leather. Mycelium-based leather is derived from Polyporales, in which lignocellulosic material is used as the substrate. The plasticizing and crosslinking of mycelial mats with various reagents might affect the leather properties and mycelial architecture. This study investigated the physicochemical and mechanical properties of mycelium-based leather (MBL) samples, including the hygroscopic nature, thermal stability, cell wall chemistry, density, micromorphology, tensile strength, elongation rate, and Young’s modulus. Micromorphological observations confirmed the mycelial networks and their binding performance, verifying their efficacy as a substitute leather. The most significant effects were observed after treatment with 20% polyethylene glycol, which resulted in an increase in Young’s modulus and tensile strength. Furthermore, the samples generally exhibited a high density (1.35, 1.46 g/cm3) and tensile strength (7.21 ± 0.93, 8.49 ± 0.90 MPa), resembling leather. The tear strength reached as low as 0.5–0.8 N/mm. However, the tensile and tear strength may be affected by leather processing and the tuning of mycelial growth. Nevertheless, high-density mycelia are shown to be suitable for the production of MBL, while mycofabrication and strain selection are sustainable for novel industrial applications of MBL.
Collapse
|
230
|
Pinto PIF, Magina S, Budjav E, Pinto PCR, Liebner F, Evtuguin D. Cationization of Eucalyptus Kraft LignoBoost Lignin: Preparation, Properties, and Potential Applications. Ind Eng Chem Res 2022; 61:3503-3515. [PMID: 35309502 PMCID: PMC8931834 DOI: 10.1021/acs.iecr.1c04899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/14/2023]
Abstract
![]()
Current changes toward
a more biobased economy have recently created
tremendous renewed interest in using lignin as a valuable source for
chemicals and materials. Here, we present a facile cationization approach
aiming to impart kraft lignin water-solubility, with similar good
features as lignosulfonates. Eucalyptus globulus kraft lignin obtained from a paper mill black liquor by applying
the LignoBoost process was used as the substrate. Its reaction with
3-chloro-2-hydroxypropyl-trimethylammonium chloride (CHPTAC) in an
aqueous alkaline medium was studied to assess the impact of different
reaction conditions (temperature, time, educt concentration, molar
CHPTAC-to-lignin ratio) on the degree of cationization. It has been
shown that at pH 13, 10 wt % lignin content, 70 °C, and 3 h reaction
time, a CHPTAC-to-lignin minimum molar ratio of 1.3 is required to
obtain fully water-soluble products. Elemental analysis (4.2% N),
size-exclusion chromatography (Mw 2180
Da), and quantitative 13C NMR spectroscopy of the product
obtained at this limit reactant concentration suggest introduction
of 1.2 quaternary ammonium groups per C9 unit and substitution of
75% of the initially available phenolic OH groups. The possible contribution
of benzylic hydroxyls to the introduction of quaternary ammonium moieties
through a quinone methide mechanism has been proposed. Since both
molecular characteristics and degree of substitution, and hence solubility
or count of surface charge, of colloidal particles can be adjusted
within a wide range, cationic kraft lignins are promising materials
for a wide range of applications, as exemplarily demonstrated for
flocculation of anionic dyes.
Collapse
Affiliation(s)
- Patrícia I F Pinto
- RAIZ-Forest and Paper Research Institute, Quinta de S. Francisco, Apartado 15, Eixo, 3801-501 Aveiro, Portugal.,CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Sandra Magina
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Enkhjargal Budjav
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, A-3430 Tulln, Austria
| | - Paula C R Pinto
- RAIZ-Forest and Paper Research Institute, Quinta de S. Francisco, Apartado 15, Eixo, 3801-501 Aveiro, Portugal
| | - Falk Liebner
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.,Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, A-3430 Tulln, Austria
| | - Dmitry Evtuguin
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
231
|
Nakashima A, Kohori K, Yamamoto K, Kadokawa JI. Synthesis of thermoplastic chitin hexanoate-graft-poly(ε-caprolactone). Carbohydr Polym 2022; 280:119024. [PMID: 35027126 DOI: 10.1016/j.carbpol.2021.119024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022]
Abstract
Herein, we report that chitin hexanoate-graft-poly(ε-caprolactone) (ChHex-g-PCL) is thermoplastic, as confirmed by the formation of a melt-pressed film. Chitin hexanoates with degrees of substitution (DSs) of 1.4-1.8 and bearing free hydroxy groups were first prepared by the hexanoylation of chitin using adjusted feed equivalents of hexanoyl chloride in the presence of pyridine and N,N-dimethyl-4-aminopyridine in 1-allyl-3-methylimidazolium bromide, an ionic liquid. Surface-initiated ring-opening graft polymerization of ε-caprolactone from the hydroxy groups of the chitin hexanoates was conducted in the presence of tin(II) 2-ethylhexanoate as the catalyst at 100 °C to produce (ChHex-g-PCL)s. The feed equivalent of the catalyst, reaction time, and DS value were found to affect the molar substitution and degree of polymerization of the PCL graft chains. Longer PCL graft chains formed their crystalline structures and the (ChHex-g-PCL)s largely contained uncrystallized chitin chains. Accordingly, these (ChHex-g-PCL)s exhibited melting points associated with the PCL graft chains, leading to thermoplasticity.
Collapse
Affiliation(s)
- Aoi Nakashima
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kaho Kohori
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Kazuya Yamamoto
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan
| | - Jun-Ichi Kadokawa
- Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
| |
Collapse
|
232
|
Shahzadi L, Jamal A, Hajivand P, Mahmood N, Chaudhry A, Rehman I, Yar M. Synthesis and wound healing performance of new
water‐soluble
chitosan derivatives. J Appl Polym Sci 2022. [DOI: 10.1002/app.51770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | - Arshad Jamal
- Department of Biology University of Hail Hail Saudi Arabia
| | - Pegah Hajivand
- Faculty of Materials Science and Engineering Changzhou University Changzhou Jiangsu China
| | - Nasir Mahmood
- Department of Allied Health Sciences and Chemical Pathology University of Health Sciences Lahore Pakistan
| | - Aqif Chaudhry
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| | | | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials COMSATS University Islamabad Lahore Campus Pakistan
| |
Collapse
|
233
|
Kašparová P, Boková S, Rollová M, Paldrychová M, Vaňková E, Lokočová K, Michailidu J, Maťátková O, Masák J. Addition time plays a major role in the inhibitory effect of chitosan on the production of Pseudomonas aeruginosa virulence factors. Braz J Microbiol 2022; 53:535-546. [PMID: 35235193 PMCID: PMC9151934 DOI: 10.1007/s42770-022-00707-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/01/2022] [Indexed: 02/01/2023] Open
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium capable of forming persistent biofilms that are extremely difficult to eradicate. The species is most infamously known due to complications in cystic fibrosis patients. The high mortality of cystic fibrosis is caused by P. aeruginosa biofilms occurring in pathologically overly mucous lungs, which are the major cause facilitating the organ failure. Due to Pseudomonas biofilm-associated infections, remarkably high doses of antibiotics must be administered, eventually contributing to the development of antibiotic resistance. Nowadays, multidrug resistant P. aeruginosa is one of the most terrible threats in medicine, and the search for novel antimicrobial drugs is of the utmost importance. We have studied the effect of low molecular weight chitosan (LMWCH) on various stages of P. aeruginosa ATCC 10145 biofilm formation and eradication, as well as on production of other virulence factors. LMWCH is a well-known naturally occurring agent with a vast antimicrobial spectrum, which has already found application in various fields of medicine and industry. LMWCH at a concentration of 40 mg/L was able to completely prevent biofilm formation. At a concentration of 60 mg/L, this agent was capable to eradicate already formed biofilm in most studied times of addition (2-12 h of cultivation). LMWCH (50 mg/L) was also able to suppress pyocyanin production when added 2 and 4 h after cultivation. The treatment resulted in reduced formation of cell clusters. LMWCH was proved to be an effective antibiofilm agent worth further clinical research with the potential to become a novel drug for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- P Kašparová
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice, 166 28, Czech Republic.
| | - S Boková
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice, 166 28, Czech Republic
| | - M Rollová
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice, 166 28, Czech Republic
| | - M Paldrychová
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice, 166 28, Czech Republic
| | - E Vaňková
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice, 166 28, Czech Republic
| | - K Lokočová
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice, 166 28, Czech Republic
| | - J Michailidu
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice, 166 28, Czech Republic
| | - O Maťátková
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice, 166 28, Czech Republic
| | - J Masák
- Department of Biotechnology, University of Chemistry and Technology in Prague, Technická 5, Prague 6 - Dejvice, 166 28, Czech Republic
| |
Collapse
|
234
|
Zou M, Chi J, Jiang Z, Zhang W, Hu H, Ju R, Liu C, Xu T, Wang S, Feng Z, Liu W, Han B. Functional thermosensitive hydrogels based on chitin as RIN-m5F cell carrier for the treatment of diabetes. Int J Biol Macromol 2022; 206:453-466. [PMID: 35247418 DOI: 10.1016/j.ijbiomac.2022.02.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 12/19/2022]
Abstract
Herein, the thermosensitive hydroxypropyl chitin (HPCT) hydrogel was prepared and the chemical structures, microstructures, rheological properties and degradation in vitro were investigated. The HPCT hydrogel possessed satisfactory biocompatibility in mouse fibroblast cells and Sprague Dawley rats. On the other hand, N-acetylglucosamine (NAG) and carboxymethyl chitosan (CMCS) provided favorable capacity for promoting cell proliferation, delaying cell apoptosis, and facilitating the insulin secretion of rat pancreatic beta cells (RIN-m5F) in three-dimensional culture. Most importantly, the effects of HPCT/NAG and HPCT/CMCS thermosensitive hydrogels as RIN-m5F cells carriers were evaluated via injection into different areas of diabetic rats. Our results demonstrated that HPCT/NAG and HPCT/CMCS hydrogels loaded RIN-m5F cells could keep cells survival, maintain insulin secretion and reduce blood glucose for one week. Overall, the functional thermosensitive hydrogels based on HPCT were effective cell carriers for RIN-m5F cells and might provide novel strategy for the treatment of diabetes via cell engineering.
Collapse
Affiliation(s)
- Mingyu Zou
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Wei Zhang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Huiwen Hu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ruibao Ju
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Chenqi Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Tianjiao Xu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhilong Feng
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| |
Collapse
|
235
|
Moustafa H, Darwish NA, Youssef AM. Rational formulations of sustainable polyurethane/chitin/rosin composites reinforced with ZnO-doped-SiO 2 nanoparticles for green packaging applications. Food Chem 2022; 371:131193. [PMID: 34649200 DOI: 10.1016/j.foodchem.2021.131193] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022]
Abstract
Polysaccharide chitin (CH) was modified by antimicrobial natural gum rosin as a biocompatible agent within the thermoplastic polyurethane (TPU) elastomer to form the TPU/CH composite. This blend was then mixed with different ratios of ZnO-doped-SiO2 nanoparticles (ZnO-SiO2-NPs) to chelate chitin and to improve the properties of TPU nanocomposites. The topology and surface roughness of chitin and nanoparticles within the TPU matrix, besides their effect on the crystallinity degree of TPU were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The TPU nanocomposites are subjected to different measurements such as mechanical, thermal, hydrophobicity, flammability, water vapor, and oxygen barrier properties, as well as antimicrobial activity. The results showed that the major properties were improved when the nanoparticles were added, especially at 5 wt%. Furthermore, the TPU/CH blend reinforced with high contents of NPs (i.e., 5-7 wt%) exhibited efficient antimicrobial activities against Gram-negative, Gram-positive bacteria and, pathogenic fungi.
Collapse
Affiliation(s)
- Hesham Moustafa
- Polymer Metrology & Technology Department, National Institute of Standards (NIS), Tersa Street, El Haram, P.O Box 136, Giza 12211, Giza, Egypt.
| | - Nabila A Darwish
- Polymer Metrology & Technology Department, National Institute of Standards (NIS), Tersa Street, El Haram, P.O Box 136, Giza 12211, Giza, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (Former El Tahrir St.), Dokki, Giza, P.O. 12622, Egypt.
| |
Collapse
|
236
|
Xie F, Jiang L, Xiao X, Lu Y, Liu R, Jiang W, Cai J. Quaternized Polysaccharide-Based Cationic Micelles as a Macromolecular Approach to Eradicate Multidrug-Resistant Bacterial Infections while Mitigating Antimicrobial Resistance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104885. [PMID: 35129309 DOI: 10.1002/smll.202104885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Microbial infections and microbial resistance lead to a high demand for new antimicrobial agents. Quaternized polysaccharides are cationic antimicrobial candidates; however, the limitation of homogeneous synthesis solvents that affect the molecular structure and biological activities, as well as their drug resistance remains unclear. Therefore, the authors homogeneously synthesize a series of quaternized chitin (QC) and quaternized chitosan (QCS) derivatives via a green and effective KOH/urea system and investigate their structure-activity relationship and biological activity in vivo and in vitro. Their study reveals that a proper match of degree of quaternization (DQ) and degree of deacetylation (DD') of QC or QCS is key to balance antimicrobial property and cytotoxicity. They identify QCS-2 as the optimized antimicrobial agent with a DQ of 0.46 and DD' of 82%, which exhibits effective broad-spectrum antimicrobial properties, good hemocompatibility, excellent cytocompatibility, and effective inhibition of bacterial biofilm formation and eradication of mature bacterial biofilms. Moreover, QCS-2 exhibits a low propensity for development of drug resistance and significant anti-infective effects on MRSA in vivo comparable to that of vancomycin, avoiding excessive inflammation and promoting the formation of new blood vessels, hair follicles, and collagen deposition to thus expedite wound healing.
Collapse
Affiliation(s)
- Fang Xie
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lai Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiwen Lu
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Jie Cai
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, China
- Research Institute of Shenzhen, Wuhan University, Shenzhen, 518057, China
| |
Collapse
|
237
|
Physicochemical characterization, adsorption function and prebiotic effect of chitin-glucan complex from mushroom Coprinus comatus. Int J Biol Macromol 2022; 206:255-263. [PMID: 35240205 DOI: 10.1016/j.ijbiomac.2022.02.152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 11/22/2022]
Abstract
Chitin-glucan complex (CGC) is a novel insoluble dietary fiber with multiple physiological activities. In this work, CGC was extracted from the fruiting body of Coprinus comatus and its physicochemical properties and prebiotic effects were investigated. The results indicated that CGC consisted of glucosamine and glucose in a molar ratio of 67: 33 with degree of acetylation of 61.91% and crystallinity index of 25.40%. The maximum degradation temperature was determined to be 307.52 °C, and a woven fibrous structure was observed by scanning electron microscopy. CGC exhibited higher oil-holding capacity, water-holding capacity and nitrite ion adsorption capacity than commercial chitin, and showed potential prebiotic effects. Compared with control and commercial chitin, CGC significantly (P < 0.05) increased the concentration of propionic and butyric acids. These results suggested that CGC from C. comatus was promising to be an alternative source of CGC products and used as a bioactive ingredient in functional foods.
Collapse
|
238
|
Freitas DS, Teixeira P, Pinheiro IB, Castanheira EMS, Coutinho PJG, Alves MJ. Chitosan Nano/Microformulations for Antimicrobial Protection of Leather with a Potential Impact in Tanning Industry. MATERIALS 2022; 15:ma15051750. [PMID: 35268982 PMCID: PMC8911499 DOI: 10.3390/ma15051750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 01/27/2023]
Abstract
Tanned leather can be attacked by microorganisms. To ensure resistance to bacteria on leather surfaces, protection solutions need to be developed, addressing both environmental issues and economic viability. In this work, chitosan nano/microparticles (CNP) and chitosan/silver nano/microstructures (CSNP), containing silver nanoparticles around 17 nm size, were incorporated into leather, obtained from the industrial process. Low loads of chitosan-based nano/microformulations, 0.1% mass ratio, resulted in total bacteria reduction (100%) after 2 h towards Gram-positive Staphylococcus aureus, both with CNP and CSNP coatings. Otherwise, comparable tests with the Gram-negative bacteria, Klebsiella pneumoniae, Escherichia coli, showed no significant improvement under the coating acidic conditions. The antimicrobial activity was evaluated by standard test methods: (1) inhibition halo and (2) dynamic contact conditions. The developed protection of leather either with CNP or CSNP is much higher than the one obtained with a simple chitosan solution.
Collapse
Affiliation(s)
- David S. Freitas
- Centre of Chemistry and Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.S.F.); (I.B.P.)
| | - Pilar Teixeira
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory, 4800-122 Braga, Portugal
| | - Inês B. Pinheiro
- Centre of Chemistry and Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.S.F.); (I.B.P.)
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, 4800-122 Braga, Portugal
| | - Paulo J. G. Coutinho
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LaPMET—Laboratory of Physics for Materials and Emergent Technologies, 4800-122 Braga, Portugal
- Correspondence: (P.J.G.C.); (M.J.A.)
| | - Maria J. Alves
- Centre of Chemistry and Department of Chemistry, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (D.S.F.); (I.B.P.)
- Correspondence: (P.J.G.C.); (M.J.A.)
| |
Collapse
|
239
|
Vu THN, Morozkina SN, Uspenskaya MV. Study of the Nanofibers Fabrication Conditions from the Mixture of Poly(vinyl alcohol) and Chitosan by Electrospinning Method. Polymers (Basel) 2022; 14:811. [PMID: 35215724 PMCID: PMC8963080 DOI: 10.3390/polym14040811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Nanofiber fabrication is attracting great attention from scientists and technologists due to its applications in many fields of life. In order to design a nanosized polymer-based drug delivery system, we studied the conditions for the fabrication of electrospun nanofibers from poly (vinyl alcohol) (PVA) and chitosan (CS), which are well-known as biocompatible, biodegradable and non-toxic polymers that are widely used in the medical field. Aiming to develop nanofibers that can directly target diseased cells for treatment, such as cancerous cells, the ideal choice would be a system that contains the highest CS content as well as high quality fibers. In the present manuscript, it is expected to become the basis for improving the low bioavailability of medicinal drugs limited by poor solubility and low permeability. PVA-CS nanofibers were obtained by electrospinning at a PVA:CS ratio of 5:5 in a 60% (w/w) acetic acid solution under the following parameters: voltage 30 kV, feed rate 0.2 mL/h, needle-collector distance 14 cm. The obtained fibers were relatively uniform, with a diameter range of 77-292 nm and average diameter of 153 nm. The nanofiber system holds promise as a potential material for the integration of therapeutic drugs.
Collapse
Affiliation(s)
- Thi Hong Nhung Vu
- Chemical Engineering Centre, ITMO University, Kronverkskiy Prospekt, 49A, 197101 St. Petersburg, Russia; (S.N.M.); (M.V.U.)
| | | | | |
Collapse
|
240
|
Kumar N, Banerjee C, Negi S, Shukla P. Microalgae harvesting techniques: updates and recent technological interventions. Crit Rev Biotechnol 2022; 43:342-368. [PMID: 35168457 DOI: 10.1080/07388551.2022.2031089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Microalgal biomass has garnered attention as a renewable and sustainable resource for producing biodiesel. The harvesting of microalgal biomass is a significant bottleneck being faced by the industries as it is the crucial cost driver in the downstream processing of biomass. Bioharvesting of microalgal biomass mediated by: microbial, animal, and plant-based polymeric flocculants has gained a higher probability of utility in accumulation due to: its higher dewatering potential, less toxicity, and ecofriendly properties. The present review summarizes the key challenges and the technological advancements associated with various such harvesting techniques. The economic and technical aspects of different microalgal harvesting techniques, particularly the cationic polymeric flocculant-based harvesting of microalgal biomass, are also discussed. Furthermore, interactions of flocculants with microalgal biomass and the effects of these interactions on metabolite and lipid extractions are discussed to offer a promising solution for suitability in selecting the most efficient and economical method of microalgal biomass harvesting for cost-effective biodiesel production.
Collapse
Affiliation(s)
- Niwas Kumar
- Algal Bioenergy Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, India
| | - Chiranjib Banerjee
- Algal Bioenergy Laboratory, Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, India.,Department of Botany and Microbiology, Faculty of Life Sciences, Gurukula Kangri (Deemed to be University), Haridwar, India
| | - Sangeeta Negi
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India.,Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
241
|
Pokatilov FA, Akamova HV, Kizhnyaev VN. Synthesis and properties of tetrazole-containing polyelectrolytes based on chitosan, starch, and arabinogalactan. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
The synthesis of tetrazole-containing derivatives of chitosan, starch, and arabinogalactan was carried out by a sequence of reactions including cyanoethylation of polysaccharides and subsequent azidation of cyanoethyl derivatives. The reaction of cyanoethylation of polysaccharides with acrylonitrile proceeds in the temperature range 40–60°C in the presence of NaOH. The transformation of nitrile groups into tetrazole rings (azidation) of cyanoethylated polysaccharide derivatives was carried out with a mixture of sodium azide with ammonium chloride in DMF at 105°C. The reaction with the participation of derivatives of starch and arabinogalactan is characterized by the degree of conversion of nitrile groups into tetrazole rings, which is close to the maximum. The introduction of unsubstituted tetrazole rings into the structure of polysaccharides of acidic N–H substantially changes some of their properties. Like other carbo- and hetero-chain polymers containing N–H unsubstituted tetrazole rings in the structure, tetrazolated polysaccharides exhibit the properties of acidic polyelectrolytes. Tetrazole-containing derivatives of chitosan exhibit the properties of polyampholytes. The presence of tetrazole rings in the structure of modified polysaccharides allows the reaction with epoxy compounds to yield network polymers capable of limited swelling in aqueous media with the formation of polyelectrolyte hydrogels.
Collapse
Affiliation(s)
- Fedor A. Pokatilov
- Department of Chemistry, Irkutsk State University , K. Marksa St. 1 , Irkutsk 664003 , Russia
| | - Helen V. Akamova
- Department of Chemistry, Irkutsk State University , K. Marksa St. 1 , Irkutsk 664003 , Russia
| | - Valery N. Kizhnyaev
- Department of Chemistry, Irkutsk State University , K. Marksa St. 1 , Irkutsk 664003 , Russia
| |
Collapse
|
242
|
Obtaining Chitosan from Artemia Cysts and Studying its Sorption Properties. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
243
|
Biomedyczne właściwości chitozanu – zastosowanie w inżynierii tkankowej Biomedical properties of chitosan: Application in tissue engineering. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2021-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
Inżynieria tkankowa to interdyscyplinarna dziedzina badań, która stosuje zasady inżynierii i nauk przyrodniczych do opracowywania substytutów biologicznych, przywracania, utrzymywania lub poprawy funkcji tkanek. Łączy medycy-nę kliniczną, inżynierię mechaniczną, materiałoznawstwo i biologię molekularną. Chitozan jest związkiem, który może być stosowany na szeroką skalę w biomedycynie, m.in. jako nośnik leków, nici chirurgiczne, materiały opatrunkowe przeznaczone do przyspieszonego gojenia ran oraz rusztowania komórkowe w inżynierii tkankowej. Chitozon spełnia najważniejsze kryteria dla biomateriałów, m.in. kompatybilność, odpowiednie właściwości mechaniczne, morfologia i porowatość, nietoksyczność i biodegradowalność. Rusztowania chitozanowe mogą sprzyjać adhezji, różnicowaniu i proliferacji na powierzchni komórek. Z chitozanu można tworzyć różne formy funkcjonalne w zależności od potrzeb i wymagań, w tym: hydrożele 3D, gąbki 3D, folie i membrany oraz nanowłókna. Ze względu na unikalne właściwości fizykochemiczne biopolimer ten może być również wykorzystany do oczyszczania białek terapeutycznych z endotoksyn bakteryjnych, co jest dziś istotnym problemem w oczyszczaniu produktu końcowego w zastosowaniach medycznych. Obecnie terapie oparte na białkach rekombinowanych znajdują szerokie zastosowanie w terapiach celowanych, inżynierii tkankowej oraz szeroko pojętej medycynie regeneracyjnej. Dlatego tak ważny jest współistniejący, dobrze zapro-jektowany system oczyszczania produktu białkowego, który nie zmieni swoich zasadniczych właściwości. Artykuł jest przeglądem aktualnych badań nad zastosowaniem materiałów bioaktywnych na bazie chitozanu w medycynie regene-racyjnej różnych tkanek i narządów (m.in. tkanki chrzęstnej i kostnej, tkanki skórnej czy tkanki nerwowej).
Collapse
|
244
|
Theoretical investigation of Chitosan-Assisted Controlled Release of Digestive System Antitumor Drug Fluorouracil. J Pharm Sci 2022; 111:2049-2055. [PMID: 35122829 DOI: 10.1016/j.xphs.2022.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/22/2022]
Abstract
5-Fluorouracil (5-FU) has been applied to treat pancreatic cancer, which is one of the most common types of digestive system tumors. However, due to poor tumor selectivity, 5-FU's therapeutic effect has certain limitations. 5-FU's activity and selectivity against tumor cells can be improved by chitosan assisted drug delivery systems. Understanding the atomic interaction mechanism between chitosan and 5-FU is important. In this work, the interactions between 5-FU and different types of chitosan were systematically investigated by using molecular dynamics (MD) simulation. Based on the radial distribution function and the free energy calculation, our results demonstrate that the functional groups of chitosan could greatly regulate the interaction behavior between chitosan and 5-FU. Moreover, 5-FU could gradually release from chitosan at a more acidic pH (tumor tissues) environment. These results revealed the underlying atomic interaction mechanism between 5-FU and chitosan at various pH levels, and may be helpful in the design of chitosan-based drug delivery systems.
Collapse
|
245
|
Omar BA, Elmasry R, Eita A, Soliman MM, El-Tahan AM, Sitohy M. Upgrading the preparation of high-quality chitosan from Procambarus clarkii wastes over the traditional isolation of shrimp chitosan. Saudi J Biol Sci 2022; 29:911-919. [PMID: 35197759 PMCID: PMC8848021 DOI: 10.1016/j.sjbs.2021.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/15/2022] Open
Abstract
Crustacean waste is one of the most severe issues, posing significant environmental and health risks. This study aims to improve managing marine waste by isolating chitosan from Procambarus clarkii by devising a new methodology, incorporating technical steps, e.g., washing, decolorization and deacetylation under a reflexive condenser and dialysis purification. A comparison was made between the prepared P. clarkii chitosan and four types of shrimp chitosans: commercial, high, low, and nano. The obtained chitosan has a low molecular weight and viscosity compared to the commercial shrimp chitosan used in various applications. P. clarkii chitosan was prepared in high quality from a cheap source, as its color and quality were better than those of the commercial shrimp chitosan. The new methodology has successfully extracted chitosan from P. clarkii in a good quality and high purity, achieving 89% deacetylation, high solubility, high purity, and medium molecular weight. Analysis of the different chitosan samples with Fourier transform infrared spectroscopy (FTIR), atomic force microscopy, Raman spectrum referred indicated high similarity between the chitosan different types, regardless of its source. The 3D image of P. clarkii showed the distance between the highest and most profound points of extracted chitosan is 728.94 nm, revealing homogeneous, smooth surfaces, apparently free of pores and cracks. FTIR and Raman spectrum of P. clarkii indicated various functional groups, e.g., alcohol, amines, amides, and phenols. These active groups are responsible for about 60% of the antioxidant activity of that product. Evaluating the quality traits indicated the excellence of the chitosan prepared from P. clarkii, especially in color, viscosity, and antioxidant activity, nominating it for different food applications.
Collapse
Affiliation(s)
- Belal A. Omar
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519, Egypt
| | - Ragab Elmasry
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519, Egypt
| | - Ahmed Eita
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, 21995, Saudi Arabia
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria, Egypt
| | - Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, 44519, Egypt
| |
Collapse
|
246
|
Chen J, Wu J, Raffa P, Picchioni F, Koning CE. Superabsorbent Polymers: From long-established, microplastics generating systems, to sustainable, biodegradable and future proof alternatives. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101475] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
247
|
Rostamian M, Hosseini H, Fakhri V, Talouki PY, Farahani M, Gharehtzpeh AJ, Goodarzi V, Su CH. Introducing a bio sorbent for removal of methylene blue dye based on flexible poly(glycerol sebacate)/chitosan/graphene oxide ecofriendly nanocomposites. CHEMOSPHERE 2022; 289:133219. [PMID: 34902387 DOI: 10.1016/j.chemosphere.2021.133219] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
As a consequence of industrial activities, one of the most prevalent components in wastewater is Water-soluble dyes needed to be removed. In this research, eco-friendly adsorbents based on poly(glycerol sebacate) (PGS), including PGS-graphene oxide nanoparticles (GO), PGS-graft-chitosan(CS), and PGS-CS-GO nanocomposites, have been proposed as efficient dye adsorbents for the wastewater treatment procedure. FESEM images showed that a smooth and uniform structure was created over incorporating CS into PGS. Besides, the presence of CS within PGS/GO nanocomposites had a positive impact on the exfoliation of GO. Moreover, it was found that the incorporation of both CS and GO into PGS reduced the glass transition of PGS. Besides, their coexistence can probably increase the chain regularity in the polymer matrix and cause a relatively larger crystal size of PGS. In this regard, the ternary nanocomposite saw a Tg value of -29.4 °C. A high adsorption capacity of 178 mg g-1, as well as 99 removal% efficiency, were observed in the case of the PGS-CS-GO sample after 300 min at a dye concentration of 100 mg L-1 and pH 7. Additionally, the adsorption capacity value of the adsorbent was preserved around 129 mg g-1 after 7 cycles of adsorption-desorption. The findings revealed that innovatively synthesized PGS-g-CS/GO nanocomposites could efficiently remove methylene blue from water solutions. Hence, they can be used as a powerful and influential dye adsorbent to purify water solutions.
Collapse
Affiliation(s)
- Mostafa Rostamian
- Department of Biomedical Engineering Faculty, Islamic Azad University, South Tehran Branch, P.O. Box 19585-466, Tehran, Iran
| | - Hadi Hosseini
- Faculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran
| | - Vafa Fakhri
- Department of Polymer Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Pardis Yousefi Talouki
- Department of Biomedical Engineering, Center Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Farahani
- School of Chemical Engineering, College of Engineering, University of Tehran, P. O. Box 11155-4563, Tehran, Iran
| | - Ali Jalali Gharehtzpeh
- Department of Polymer Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O.Box 19945-546, Tehran, Iran.
| | - Chia-Hung Su
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
248
|
Investigation of Surface Properties and Free Volumes of Chitosan-Based Buccal Mucoadhesive Drug Delivery Films Containing Ascorbic Acid. Pharmaceutics 2022; 14:pharmaceutics14020345. [PMID: 35214077 PMCID: PMC8875152 DOI: 10.3390/pharmaceutics14020345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 01/04/2023] Open
Abstract
Nowadays, the buccal administration of mucoadhesive films is very promising. Our aim was to prepare ascorbic acid-containing chitosan films to study the properties and structures important for applicability and optimize the composition. During the formulation of mucoadhesive films, chitosan as the polymer basis of the film was used. Ascorbic acid, which provided the acidic pH, was used in different concentrations (2–5%). The films were formulated by the solvent casting method. The properties of films important for applicability were investigated, such as physical parameters, mucoadhesive force, surface free energy, and breaking strength. The fine structure of the films was analyzed by atomic force microscopy, and the free volume was analyzed by PALS, which can be important for drug release kinetics and the location of the drug in the film. The applicability of the optimized composition was also tested with two different types of active ingredients. The structure of the films was also analyzed by XRPD and FTIR. Ascorbic acid can be used well in chitosan films, where it can function as a permeation enhancer when reacting to chitosan, it is biodegradable, and can be applied in 2% of our studies.
Collapse
|
249
|
Chitin Nanocrystals: Environmentally Friendly Materials for the Development of Bioactive Films. COATINGS 2022. [DOI: 10.3390/coatings12020144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biobased nanomaterials have gained growing interest in recent years for the sustainable development of composite films and coatings, providing new opportunities and high-performance products. In particular, chitin and cellulose nanocrystals offer an attractive combination of properties, including a rod shape, dispersibility, outstanding surface properties, and mechanical and barrier properties, which make these nanomaterials excellent candidates for sustainable reinforcing materials. Until now, most of the research has been focused on cellulose nanomaterials; however, in the last few years, chitin nanocrystals (ChNCs) have gained more interest, especially for biomedical applications. Due to their biological properties, such as high biocompatibility, biodegradability, and antibacterial and antioxidant properties, as well as their superior adhesive properties and promotion of cell proliferation, chitin nanocrystals have emerged as valuable components of composite biomaterials and bioactive materials. This review attempts to provide an overview of the use of chitin nanocrystals for the development of bioactive composite films in biomedical and packaging systems.
Collapse
|
250
|
Bashal AH, Riyadh SM, Alharbi W, Alharbi KH, Farghaly TA, Khalil KD. Bio-Based (Chitosan-ZnO) Nanocomposite: Synthesis, Characterization, and Its Use as Recyclable, Ecofriendly Biocatalyst for Synthesis of Thiazoles Tethered Azo Groups. Polymers (Basel) 2022; 14:polym14030386. [PMID: 35160376 PMCID: PMC8840260 DOI: 10.3390/polym14030386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, nanotechnology has become a considerable research interest in the area of preparation of nanocatalysts based on naturally occurring polysaccharides. Chitosan (CS), as a naturally occurring biodegradable and biocompatible polysaccharide, is successfully utilized as an ideal template for the immobilization of metal oxide nanoparticles. In this study, zinc oxide nanoparticles have been doped within a chitosan matrix at dissimilar weight percentages (5, 10, 15, 20, and 25 wt.% CS/ZnO) and have been fabricated by using a simple solution casting method. The prepared solutions of the nanocomposites were cast in a Petri-dish and were subsequently shaped as a thin film. After that, the structural features of the nanocomposite film have been studied by measuring the FTIR, SEM, and XRD analytical tools. FTIR spectra showed the presence of some changes in the major characteristic peaks of chitosan due to interaction with ZnO nanoparticles. In addition, SEM graphs exhibited dramatic morphology changes on the chitosan surface, which is attributed to the surface adsorption of ZnO molecules. Based on the results of the investigated organic catalytic reactions, the prepared CS/ZnO nanocomposite film (20 wt.%) could be a viable an effective, recyclable, and heterogeneous base catalyst in the synthesis of thiazoles. The results showed that the nanocomposite film is chemically stable and can be collected and reused in the investigated catalytic reactions more than three times without loss of its catalytic activity.
Collapse
Affiliation(s)
- Ali H. Bashal
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawrah 30002, Saudi Arabia; (A.H.B.); (S.M.R.)
| | - Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawrah 30002, Saudi Arabia; (A.H.B.); (S.M.R.)
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Walaa Alharbi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.A.); (K.H.A.)
| | - Khadijah H. Alharbi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.A.); (K.H.A.)
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Khaled D. Khalil
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
- Correspondence:
| |
Collapse
|