201
|
Liu X, Xiao R, Li R, Amjad A, Zhang Z. Bioremediation of Cd-contaminated soil by earthworms (Eisenia fetida): Enhancement with EDTA and bean dregs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115191. [PMID: 32663730 DOI: 10.1016/j.envpol.2020.115191] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/27/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
The remediation of cadmium (Cd) contaminated soil has become a global problem due to its toxicity to living organisms. In this study, earthworm (Eisenia fetida) alone or combined with EDTA or bean dregs were used for Cd removal from soils. The total and available Cd in soils, soil physicochemical and biological (soil enzyme) properties, Cd accumulation in the earthworm and its antioxidant responses towards Cd, were determined during the 35 days of soil incubation experiment. Our results showed that earthworms were capable of removing Cd from soils, and the remediation process was accelerated by both EDTA and bean dregs. By translocation of Cd from soils, the content of Cd in earthworm steadily increased with the exposure time to 8.11, 12.80, and 9.26 mg kg-1 on day 35 for T2 (earthworm alone), T3 (EDTA enhancement), and T4 (bean dregs enhancement), respectively. Consequently, a great reduction in the Cd contents in soils was achieved in T3 (36.53%) and T4 (30.8%) compared with T2 (28.95%). The concentrations of water/DTPA extractable Cd were also reduced, indicating the low Cd mobility after amendment. Finally, the soil became more fertile and active after wermi-remediation. The soil pH, EC, NO3--N, available P, and K contents increased, while soil SOM, DOC, and NH4+-N contents were decreased. There were higher soil enzyme activities (including acid phosphatase activity, β-glucosidase activity, and urease activity) among treatments with earthworms. Additionally, the operational taxonomic units (OTUs) increased by 100-150 units, and the higher chao1 and Shannon indexes indicated the enhanced microbial community after wermi-remediation, especially among treatment with EDTA and bean dregs. Therefore, we concluded that earthworms, alone or combined with EDTA and bean dregs, are feasible for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Xiangyu Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China; College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Ali Amjad
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
202
|
Yin A, Shen C, Huang Y, Yue M, Huang B, Xin J. Reduction of Cd accumulation in Se-biofortified rice by using fermented manure and fly ash. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39391-39401. [PMID: 32648217 DOI: 10.1007/s11356-020-10031-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Large areas of soils in China are contaminated with Cd and are deficient in Se. Therefore, here, we aimed to reduce Cd accumulation while increasing Se content in rice grain, and to elucidate the mechanisms associated. A greenhouse pot experiment was conducted to determine grain concentrations of Se and Cd upon foliar spraying of Se combined with the application of horse manure and/or fly ash to different contaminated soils containing Cd 0.51 (T1), 1.46 (T2), and 4.59 mg Cd kg-1 (T3). The amount of Fe, Si, and Cd in root iron plaque, and concentrations of Cd and Si in rice tissues were also determined. Foliar spray of Se increased Se concentration in brown rice from approximately 0.04 to 0.15 mg kg-1. Fly ash significantly reduced Cd concentration in brown rice from 0.07 to 0.05, 0.15 to 0.09, and 1.00 to 0.55 mg kg-1 at the T1, T2, and T3 treatment levels, respectively, and soil Cd bioavailability (by at least 33.3%), while it increased Si content in rice roots and shoots by at least 34%. The increase of Si concentration in rice tissues inhibited Cd translocation to brown rice by at least 17%. Horse manure increased the formation of root Fe plaque by approximately 2.3-fold, which resulted in the significant reduction of Cd accumulation in brown rice, shoots, and roots by 36-56%. Thus, foliar spray of Se in combination with the application of fly ash and horse manure proved an effective method to produce Cd-low and Se-rich rice.
Collapse
Affiliation(s)
- Aiguo Yin
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Chuang Shen
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Yingying Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
| | - Maofeng Yue
- School of Biological and Food Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Baifei Huang
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| | - Junliang Xin
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China.
| |
Collapse
|
203
|
Wang C, Luo Y, Tan H, Liu H, Xu F, Xu H. Responsiveness change of biochemistry and micro-ecology in alkaline soil under PAHs contamination with or without heavy metal interaction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115296. [PMID: 32791476 DOI: 10.1016/j.envpol.2020.115296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/16/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Co-presence of organic pollutants and heavy metals in soil is causing increasing concerns, but the lack of knowledge of relation between soil ecology and pollutant fate is limiting the developing of specific control strategy. This study investigated soil change under pyrene stress and its interaction with cadmium (Cd). Soil physicochemical properties were not seriously influenced. However, pollutants' presence easily varied soil microbial activity, quantity, and diversity. Under high-level pyrene, Cd presence contributed to soil indigenous microorganisms' adaption and soil microbial community structure stability. Soils with both pyrene and Cd presented 7.11-12.0% higher pyrene degradation compared with single pyrene treatment. High-throughput sequencing analysis indicated the proportion of Mycobacterium sp., a commonly known PAHs degrader, increased to 25.2-48.5% in treatments from 0.52% in control. This phenomenon was consistent with the increase of PAHs probable degraders (the ratio increased to 2.86-6.57% from 0.24% in control). Higher Cd bioavailability was also observed in soils with both pollutants than that with Cd alone. And Cd existence caused the elevation of Cd resistant bacterium Limnobacter sp. (increased to 12.2% in CdCK from 2.06% in control). Functional gene prediction also indicated that abundance of genes related to nutrient metabolism decreased dramatically with pollutants, while the abundances of energy metabolism, lipid metabolism, secondary metabolites biosynthesis-related genes increased (especially for aromatic compound degradation related genes). These results indicated the mutual effect and internal-interaction existed between pollutants and soils resulted in pollutants' fate and soil microbial changes, providing further information regarding pollutants dissipation and transformation under soil microbial response.
Collapse
Affiliation(s)
- Can Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| | - Yao Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Hang Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
204
|
Liu M, Zhao Z, Wang L, Xiao Y. Influences of rice straw biochar and organic manure on forage soybean nutrient and Cd uptake. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:53-63. [PMID: 33049150 DOI: 10.1080/15226514.2020.1789843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This pot experiment aimed to investigate the influence of rice straw biochar (BC 0, 1, and 3%, w/w) and organic manure (OM 0, 1, and 2%, w/w) addition on the growth, nutrient and cadmium (Cd) uptake of forage soybean in 10 mg Cd kg-1 contaminated soils. Compared with non-biochar treatments, biochar decreased shoot biomass, height and nitrogen (N) contents. Organic manure markedly increased the shoot biomass, shoot phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) concentration, and root N, P, Ca contents without biochar addition treatments, while in the case of 3% biochar, there were no significant effects on N, K, Ca, and Mg contents of shoot and root among organic manure treatments. In comparison with other treatments, the minimum Cd content of shoots and roots both occurred in the treatment of BC3%+OM2%, while shoot Cd content reached the maximum value in OM2% treatment. Thus, these results suggested that organic manure addition can elevate forage soybean yield and nutrient content, while biochar had no positive effects. High biochar (3%) addition in combination with highest dose of organic manure (2%) can decline the Cd content of soybean and contribute to the agricultural product safety.
Collapse
Affiliation(s)
- Mohan Liu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Zhuojun Zhao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Leqi Wang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yan Xiao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
205
|
Abstract
Cadmium (Cd) contamination threatens cocoa farming in the province of Bagua in Amazonas, Peru. This study reports our assessment of Cd concentrations in cocoa farm soils, and in cocoa roots, leaves, testa, and cotyledon, thus evaluating the magnitude of the problem caused by Cd exposure. For our analysis, we sampled agricultural soil, cocoa roots, leaves and pods at 29 farms in the province of Bagua. Concentrations of Cd in each of the samples were measured and correlated with selected variables at each sampling site. Within our collection of samples, Cd levels showed great variability. In soil, Cd concentrations ranged between 1.02 and 3.54 mg kg−1. Concentrations of this metal within cocoa trees measured from roots, leaves, testa, and cotyledon, Cd ranged from 0.49 mg kg−1 to 2.53 mg kg−1. The cocoa trees exhibited variable degrees of allocation Cd from the soil to their tissues and thus considerable variation among themselves. We found that Cd amounts in roots were up to five times more concentrated than Cd levels in the soils and 2.85 times [Cd] the amounts found in cotyledon. Soil pH is a key variable enabling the uptake of this metal. Most importantly, our evaluation determined that measurements from the majority of farms exceeded the maximum permissible limits established by Peruvian and European legislation.
Collapse
|
206
|
HuangFu Z, Ran Z, Mo Y, Xu Z, Wei W, Yu J, Lai B, Wang X. The performance of emerging materials derived from waste organism blood and saponified modified orange peel for immobilization of available Cd in soil. RSC Adv 2020; 10:37419-37428. [PMID: 35521262 PMCID: PMC9057200 DOI: 10.1039/d0ra06411d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022] Open
Abstract
Waste organism blood (WOB) and orange peel are emerging stabilization materials obtained as by-products from agricultural processes, which are quite suitable for heavy metal immobilization in soil. In this work, waste organism blood and chemically modified orange peel (SOP) were investigated as potential sorbents for immobilization of available Cd in soil. Application of 5% WOB and SOP effectively immobilized cadmium (Cd) with an associated regulation of soil pH, among which the pH of acidic soil increased most significantly. While the application of 3% SOP alone stabilized almost the same amount of available Cd compared to WOB, it caused the highest stabilization rate of 58.85% when applied at 5%. By contrast, SOP combined with WOB (the mass ratio of the material is 1 : 1) at a 5% addition rate stabilized the available Cd in soils remarkably, with a stabilization rate of 57.74%. This study revealed that the soil particles after stabilization have a more compact and flaky structure, and the SOP and WOB had a particular pore structure, which was helpful for the adsorption of available Cd in soil. This study put forward new insights into the potential effects of Cd immobilization in contaminated soil by newly emerging stabilization biomass materials (WOB and SOP).
Collapse
Affiliation(s)
- Zhuoxi HuangFu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 P. R. China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 P. R. China
| | - Zongxin Ran
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 P. R. China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 P. R. China
| | - Yinpeng Mo
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 P. R. China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 P. R. China
| | - Zichen Xu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 P. R. China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 P. R. China
| | - Wei Wei
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 P. R. China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 P. R. China
| | - Jiang Yu
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 P. R. China
- Institute of New Energy and Low Carbon Technology, Sichuan University Chengdu 610065 P. R. China
| | - Bo Lai
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University No. 24 South Section 1, Yihuan Road Chengdu 610065 P. R. China
| | - Xingrun Wang
- Institute of Soil and Solid Waste Environment, Chinese Research Academy of Environmental Sciences Beijing 100012 P. R. China
| |
Collapse
|
207
|
Zhang S, Deng Y, Fu S, Xu M, Zhu P, Liang Y, Yin H, Jiang L, Bai L, Liu X, Jiang H, Liu H. Reduction mechanism of Cd accumulation in rice grain by Chinese milk vetch residue: Insight into microbial community. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110908. [PMID: 32800243 DOI: 10.1016/j.ecoenv.2020.110908] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Chinese milk vetch is an efficient approach to reduce Cd accumulation in rice, nevertheless, its reduction mechanism is not well understood. In this study, we investigated the rice grain Cd, soil properties and microbial community in a Cd-polluted paddy field amended with milk vetch residue (MV) or without (CK) during rice growth period. We found that milk vetch residue averagely decreased the Cd content in rice grain by 45%. Decrease of Cd in rice mainly attributed to the inhibition of Cd activation by milk vetch residue at heading stage probably by the formation of HA-Cd (Humic Acid) and CdS. Increased pH and organic matter (OM) promoted the reduction of available Cd. In addition, nonmetric multidimensional scaling (NMDS) analysis revealed that microbial community structure was significantly different between MV and CK treatment (r = 0.187, p = 0.002), and the core functions of differentially abundant genera were mainly associated with N-cycling, organic matter degradation and sulfate-reducing. The application of milk vetch residue increased the abundance of sulfate-reducing bacteria (SRB) by 8-112% during the rice growth period, which may involve in promoting the transformation of Cd to a more stably residual Cd (CdS). Canonical correspondence analysis (CCA) and mantel test analysis indicated that available K (p = 0.004) and available N (p = 0.005) were the key environmental factors of shaping the SRB. Altogether, changes in soil properties affected microbial structure and functional characteristics, especially the response of SRB in MV treatment would provide valuable insights into reducing the bioavailability of Cd in soil.
Collapse
Affiliation(s)
- Siyuan Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha, 410083, China
| | - Yan Deng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha, 410083, China
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha, 410083, China
| | - Menglong Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha, 410083, China
| | - Ping Zhu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha, 410083, China
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha, 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha, 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha, 410083, China
| | - Lianyang Bai
- Hunan Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha, 410083, China
| | - Huidan Jiang
- Hunan Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy of Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
208
|
Zhou Y, Yang Y, Liu G, He G, Liu W. Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene. WATER RESEARCH 2020; 184:116209. [PMID: 32721765 DOI: 10.1016/j.watres.2020.116209] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/03/2020] [Accepted: 07/19/2020] [Indexed: 05/22/2023]
Abstract
Microplastics (MPs) in aquatic systems can act as a vector for various toxic contaminants, such as metal ions. Although some studies have investigated the adsorption characteristics of metal ions on MPs, the desorption behaviors of metal ions from MPs in different environments are largely unknown. Here, the adsorption of cadmium (Cd(II)) onto five different types of MPs were compared to examine the relationship between the surface characteristics and the adsorption properties of MPs. Our results showed that polyamide had the highest Cd(II) adsorption capability with a value of 1.70 ± 0.04 mg/g, followed by polyvinyl chloride (1.04 ± 0.03 mg/g), polystyrene (0.76 ± 0.02 mg/g), acrylonitrile butadiene styrene (0.65 ± 0.02 mg/g) and polyethylene terephthalate (0.25 ± 0.01 mg/g). The specific surface area and total pore volume were closely correlated with the adsorption capacity of the MPs, and the π-π interaction, electrostatic interaction and oxygen-containing functional groups played crucial roles in the adsorption of Cd(II) onto the MPs. The sorption capabilities of Cd(II) onto the MPs first increased and then decreased with increasing solution pH from 2.0 to 9.0. In addition, the adsorption capacities were suppressed with the presence of lead ions (20-80 mg/L), while the coexistence of phenanthrene had a minor impact. Interestingly, the presence of humic acid promoted the desorption of Cd(II) from the MPs both in the synthetic earthworm gut and in the sediment system. A higher desorption rate was observed in the simulated gut environment, suggesting that metal-contaminated MPs would pose higher ecological risks to macroinvertebrates. Overall, our findings provide a better understanding of the sorption mechanism of Cd(II) onto MPs and the desorption behavior under different environmental conditions in aquatic ecosystems.
Collapse
Affiliation(s)
- Yanfei Zhou
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Guihua Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gang He
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
209
|
Yang H, Zhang G, Fu P, Li Z, Ma W. The evaluation of in-site remediation feasibility of Cd-contaminated soils with the addition of typical silicate wastes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114865. [PMID: 32505961 DOI: 10.1016/j.envpol.2020.114865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/29/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
In-site remediation is a relatively promising and socially acceptable technique for heavy metal contaminated soils. But the key task is to select cost-effective and environment-friendly amendents for the consideration of practical application. Based on the property of four typical silicate wastes such as straw ash (SA), coal fly ash (CFA), ferronickel slag (FNS) and blast-furnace slag (BFS), effects of four wastes on available Cd content and Cd chemical speciation in amended soils, and physicochemical properties of the amended soils were carried out in the study. The results showed that four wastes were dominately composed of the amorphous phases with OH- ions readily released. When the weight ratio of silicate wastes to artificial Cd-contaminated soils reached 10%, the available Cd contents decreased from 4.12 mg/kg in untreated soils to 1.94, 1.92, 1.45 and 1.53 mg/kg in amended soils by adding SA, CFA, FNS and BFS respectively, after the soils were amended for 30 days. The residual fraction of Cd (R) was 2.54, 2.48, 2.77 and 2.58 times higher in amended soil than that in untreated soil when SA, CFA, FNS and BFS was added, respentively. The soil pH and CEC were improved. The amended soils by adding SA and FNS were looser than those by adding CFA and BFS, and air permeability of the amended soils by SA was better than that by FNS.
Collapse
Affiliation(s)
- Huifen Yang
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing, 100083, China.
| | - Ge Zhang
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Peng Fu
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Zhen Li
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Wenkai Ma
- School of Civil and Resource Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| |
Collapse
|
210
|
Qi H, Zhao B, Li L, Chen X, An J, Liu X. Heavy metal contamination and ecological risk assessment of the agricultural soil in Shanxi Province, China. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200538. [PMID: 33204447 PMCID: PMC7657894 DOI: 10.1098/rsos.200538] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
To assess contamination levels and ecological risks of heavy metals in agricultural soil from Shanxi Province of China, a total of 33 samples in the surface soil were collected from 11 cities in Shanxi. The soil samples were digested by a mixed acid of nitric acid and hydrofluoric acid on a microwave digestion system, then the levels of eight heavy metals were analysed using an inductively coupled plasma mass spectrometer. The pollution levels of soil heavy metals were evaluated using a geo-accumulation index and their ecological risks were assessed using risk index calculated by Hakanson's method. As a result, the average concentrations of the heavy metals As, Cd, Cr, Cu, Hg, Ni, Pb and Zn were 12.9 ± 4.8, 0.35 ± 0.23, 43 ± 14, 27 ± 19, 0.25 ± 0.14, 21.7 ± 5.7, 17 ± 13 and 89 ± 53 mg kg-1, respectively. By comparison to the Chinese soil environmental quality (GB15618-2018), only 9% of Cd samples and 3% of Cu samples exceeded their corresponding screening criteria. Subsequently, the results of geo-accumulation indices suggested that Shanxi's soil suffered from moderate to heavy contamination posed by Cd and Hg, and risk indices exhibited a similar trend that Cd and Hg were the main contributors for considerable to very high ecological risk. Finally, the analysis of variance indicated that the mean levels of Cd significantly occurred at Yuncheng areas among the 11 cities (n = 3, p < 0.05), but Hg concentrations did not have significantly statistical differences. This study demonstrated that metals Cd and Hg had higher levels and ecological risks for agricultural soil in Shanxi, especially, Yuncheng City suffered from heavy Cd contamination. The findings of the present study will provide basic information on management and control of the agricultural soil contamination in Shanxi Province, China.
Collapse
Affiliation(s)
| | | | - Lihong Li
- College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, Shanxi 030619, People's Republic of China
| | | | | | | |
Collapse
|
211
|
De Oliveira VH, Ullah I, Dunwell JM, Tibbett M. Bioremediation potential of Cd by transgenic yeast expressing a metallothionein gene from Populus trichocarpa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110917. [PMID: 32800252 DOI: 10.1016/j.ecoenv.2020.110917] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is an extremely toxic environmental pollutant with high mobility in soils, which can contaminate groundwater, increasing its risk of entering the food chain. Yeast biosorption can be a low-cost and effective method for removing Cd from contaminated aqueous solutions. We transformed wild-type Saccharomyces cerevisiae (WT) with two versions of a Populus trichocarpa gene (PtMT2b) coding for a metallothionein: one with the original sequence (PtMT2b 'C') and the other with a mutated sequence, with an amino acid substitution (C3Y, named here: PtMT2b 'Y'). WT and both transformed yeasts were grown under Cd stress, in agar (0; 10; 20; 50 μM Cd) and liquid medium (0; 10; 20 μM Cd). Yeast growth was assessed visually and by spectrometry OD600. Cd removal from contaminated media and intracellular accumulation were also quantified. PtMT2b 'Y' was also inserted into mutant strains: fet3fet4, zrt1zrt2 and smf1, and grown under Fe-, Zn- and Mn-deficient media, respectively. Yeast strains had similar growth under 0 μM, but differed under 20 μM Cd, the order of tolerance was: WT < PtMT2b 'C' < PtMT2b 'Y', the latter presenting 37% higher growth than the strain with PtMT2b 'C'. It also extracted ~80% of the Cd in solution, and had higher intracellular Cd than WT. Mutant yeasts carrying PtMT2b 'Y' had slightly higher growth in Mn- and Fe-deficient media than their non-transgenic counterparts, suggesting the transgenic protein may chelate these metals. S. cerevisiae carrying the altered poplar gene offers potential for bioremediation of Cd from wastewaters or other contaminated liquids.
Collapse
Affiliation(s)
- Vinicius Henrique De Oliveira
- Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR, UK
| | - Ihsan Ullah
- School of Agriculture, Policy and Development, University of Reading, RG6 6AR, UK
| | - Jim M Dunwell
- School of Agriculture, Policy and Development, University of Reading, RG6 6AR, UK
| | - Mark Tibbett
- Department of Sustainable Land Management & Soil Research Centre, School of Agricultura, Policy and Development, University of Reading, RG6 6AR, UK.
| |
Collapse
|
212
|
Tomaszewski EJ, Olson L, Obst M, Byrne JM, Kappler A, Muehe EM. Complexation by cysteine and iron mineral adsorption limit cadmium mobility during metabolic activity of Geobacter sulfurreducens. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1877-1887. [PMID: 32803208 DOI: 10.1039/d0em00244e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) adversely affects human health by entering the food chain via anthropogenic activity. In order to mitigate risk, a better understanding of the biogeochemical mechanisms limiting Cd mobility in the environment is needed. While Cd is not redox-active, Cd speciation varies (i.e., aqueous, complexed, adsorbed), and influences mobility. Here, the cycling of Cd in relation to initial speciation during the growth of Geobacter sulfurreducens was studied. Either fumarate or ferrihydrite (Fh) was provided as an electron acceptor and Cd was present as: (1) an aqueous cation, (2) an aqueous complex with cysteine, which is often present in metal stressed soil environments, or (3) adsorbed to Fh. During microbial Fe(iii) reduction, the removal of Cd was substantial (∼80% removal), despite extensive Fe(ii) production (ratio Fe(ii)total : Fetotal = 0.8). When fumarate was the electron acceptor, there was higher removal from solution when Cd was complexed with cysteine (97-100% removal) compared to aqueous Cd (34-50%) removal. Confocal laser scanning microscopy (CLSM) demonstrated the formation of exopolymeric substances (EPS) in all conditions and that Cd was correlated with EPS in the absence of Fe minerals (r = 0.51-0.56). Most notable is that aqueous Cd was more strongly correlated with Geobacter cells (r = 0.72) compared to Cd-cysteine complexes (r = 0.51). This work demonstrates that Cd interactions with cell surfaces and EPS, and Cd solubility during metabolic activity are dependent upon initial speciation. These processes may be especially important in soil environments where sulfur is limited and Fe and organic carbon are abundant.
Collapse
Affiliation(s)
- E J Tomaszewski
- Geomicrobiology Group, Center for Applied Geoscience (ZAG), University of Tübingen, Schnarrenbergstrasse 94-96, Tübingen, D-72076, Germany. and University of Delaware, 221 Academy St, Newark, DE 19716, USA
| | - L Olson
- Geomicrobiology Group, Center for Applied Geoscience (ZAG), University of Tübingen, Schnarrenbergstrasse 94-96, Tübingen, D-72076, Germany.
| | - M Obst
- Experimental Biogeochemistry, BayCEER, University Bayreuth, Dr.-Hans-Frisch-Str. 1-3, Bayreuth, 95448, Germany
| | - J M Byrne
- Geomicrobiology Group, Center for Applied Geoscience (ZAG), University of Tübingen, Schnarrenbergstrasse 94-96, Tübingen, D-72076, Germany. and School of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1QU, UK
| | - A Kappler
- Geomicrobiology Group, Center for Applied Geoscience (ZAG), University of Tübingen, Schnarrenbergstrasse 94-96, Tübingen, D-72076, Germany.
| | - E M Muehe
- Geomicrobiology Group, Center for Applied Geoscience (ZAG), University of Tübingen, Schnarrenbergstrasse 94-96, Tübingen, D-72076, Germany. and Plant Biogeochemistry Group, Department Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
213
|
Securing of an Industrial Soil Using Turfgrass Assisted by Biostimulants and Compost Amendment. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work aimed to study the effects of compost (applied at two rates) and two commercial microbial biostimulants on the mobility and bioavailability of potentially toxic elements (PTEs) in an industrial soil phytostabilized by Dactylis glomerata L. or a mixed stand of grasses (Lolium perenne L., Poa pratensis L. and Festuca arundinacea Shreb.). The soil showed very high pseudototal and bioavailable concentrations of cadmium (Cd) and lead (Pb), due to improper lead-acid batteries storage. Compost amendment in combination with the two biostimulants produced the best outcomes in terms of plant growth and nutrient uptake. The same mix of beneficial microbes improved soil biological fertility enhancing soil nitrogen fixing and ammonia oxidizing bacteria, while reduced the pore water and NH4NO3 extractable concentrations of Cd and at lower extent of Pb in soil. Accordingly, the lower mobility and bioavailability of Cd in soil determined a lower uptake and accumulation of Cd in shoots of different grass species. Our results suggest that a green cap with turfgrass assisted by biostimulants and compost amendment in PTE-contaminated industrial sites could be a reliable and effective practice to protect and restore soil biological fertility and to reduce the risk of PTE dispersion in the surrounding environment.
Collapse
|
214
|
Liu X, Yin L, Deng X, Gong D, Du S, Wang S, Zhang Z. Combined application of silicon and nitric oxide jointly alleviated cadmium accumulation and toxicity in maize. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122679. [PMID: 32330780 DOI: 10.1016/j.jhazmat.2020.122679] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) contamination is a serious threat to plants and humans. Application of silicon (Si) or nitric oxide (NO) could alleviate Cd accumulation and toxicity in plants, but whether they have joint effects on alleviating of Cd accumulation and toxicity are not known. Therefore, the combined effect of Si and NO application on maize growth, Cd uptake, Cd transports and Cd accumulation were investigated in a pot experiment. Here, we reported that Cd stress decreased growth, caused Cd accumulation in plants. The combined application of Si and NO triggered a significant response in maize, increasing plant growth and reducing Cd uptake, accumulation, translocation and bioaccumulation factors under Cd stress. The grain Cd concentration was decreased by 66 % in the Si and NO combined treatment than Cd treatment. Moreover, the combined application of Si and NO reduced Cd health risk index in maize more effectively than either treatment alone. This study provided new evidence that Si and NO have a strong joint effect on alleviating the adverse effects of Cd toxicity by decreasing Cd uptake and accumulation. We advocate for supplement of Cd-contaminated soil with Si fertilizers and treatment of crops with NO as a practical approach to alleviating Cd toxicity.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Di Gong
- Yan'an Forestry Investigation and Planning Institute, Yan'an, Shanxi, 716000, China.
| | - Sheng Du
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, 712100, China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhiyong Zhang
- Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat/Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
215
|
Korobova E, Romanov S, Silenok A. Endemic diseases of geochemical origin and methodological approaches toward their prevention and elimination. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:2595-2608. [PMID: 31659701 DOI: 10.1007/s10653-019-00442-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
A new approach to the study of diseases of geochemical origin is presented, which is based on the hypothesis that all such geochemical endemias were not possible in conditions of virgin biosphere and are products of human civilization. Two genetically different types of endemic diseases of geochemical origin are distinguished, each having a specifically spatial structure: (1) diseases of natural origin due to natural element deficiency or excess in the particular zones or areas; (2) diseases of anthropogenic origin related to chemical transformation of the environment in the course of agricultural or industrial production. Anthropogenically provoked diseases of geochemical nature always occur in conditions of already formed natural geochemical heterogeneity. As each type of the endemic disease has a peculiar structure of spatial distribution, the present health risk can be mapped as a genetically two-layer structure, characterizing deviation of the existing geochemical conditions from those ideal for specific species. Parameters of geochemical conditions, which are ideal for humans and domesticated species, should be sought within the areas with undisturbed soil cover, where these species have been formed in their present form. The hypothesis is tested on example of thyroid diseases observed in iodine-deficient areas affected by a nuclear accident with 131I fallout. The developed approach is believed to serve as a practical tool for monitoring and prevention of endemic diseases of geochemical origin.
Collapse
Affiliation(s)
- Elena Korobova
- Geochemical Department, Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences (GEOKHI RAS), Moscow, Russian Federation.
| | - Sergey Romanov
- Unitary Enterprise "Geoinformation Systems", National Academy of Sciences of Belarus, Minsk, Belarus
| | | |
Collapse
|
216
|
Farooq A, Nadeem M, Abbas G, Shabbir A, Khalid MS, Javeed HMR, Saeed MF, Akram A, Younis A, Akhtar G. Cadmium Partitioning, Physiological and Oxidative Stress Responses in Marigold (Calendula calypso) Grown on Contaminated Soil: Implications for Phytoremediation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:270-276. [PMID: 32661664 DOI: 10.1007/s00128-020-02934-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/05/2020] [Indexed: 05/15/2023]
Abstract
Marigold (Calendula calypso) is a multipurpose ornamental plant, but its cadmium (Cd) tolerance and phytoremediation potential is unknown. The proposed study was carried out to unravel Cd partitioning, physiological and oxidative stress responses of C. calypso grown under Cd stress. Plants were grown for four months in pots having different soil Cd levels: 0, 25, 50, 75, and 100 mg kg-1 soil. Plant growth, biomass, photosynthetic pigments, leaf water contents, stomatal conductance, and membrane stability index were not decreased at 25 mg kg-1 Cd. At higher levels of Cd stress, activities of antioxidant enzymes (SOD, APX, CAT, POD) increased to mitigate H2O2 and lipid peroxidation. Cadmium uptake in plants increased with increasing soil Cd levels, and roots accumulated a greater portion of Cd, followed by shoots and flowers, respectively. On the basis of Cd accumulation and its tolerance, it was determined that C. calypso can be successfully grown for phytostabilization of Cd contaminated soils.
Collapse
Affiliation(s)
- Amjad Farooq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan.
| | - Muhammad Nadeem
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan.
| | - Arslan Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Shafique Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | | | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Ahsan Akram
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Adnan Younis
- Institute of Horticultural Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Gulzar Akhtar
- Department of Horticulture, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| |
Collapse
|
217
|
He C, Zhao Y, Wang F, Oh K, Zhao Z, Wu C, Zhang X, Chen X, Liu X. Phytoremediation of soil heavy metals (Cd and Zn) by castor seedlings: Tolerance, accumulation and subcellular distribution. CHEMOSPHERE 2020; 252:126471. [PMID: 32220713 DOI: 10.1016/j.chemosphere.2020.126471] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 06/10/2023]
Abstract
Cd and Zn pollution was observed to often occur simultaneously in soils. However, previous studies focused on single heavy metal instead of Cd and Zn combined pollution. Castor (Ricinus communis) is considered to have great potential for contaminated soil remediation. The resistance of castor seedlings to heavy metals and the mechanism behind it remain unknown. In this study, the tolerance and accumulation ability of castor seedlings to Cd and Zn were investigated, and the accumulation mechanism involving the subcellular distribution in different tissues was further explored. The results on biomass and chlorophyll revealed that castor seedlings have good tolerance to the pollution with 0-5 mg/kg Cd and 380 mg/kg Zn, while not to the heavy pollution with 25 mg/kg Cd and 380 mg/kg Zn. The maximum accumulation concentrations of Cd and Zn, 175.3 mg Cd/kg and 386.8 mg/kg Zn, appeared in castor seedling root instead of stem and leaf, indicating that root played a significant part in accumulating Zn and Cd. The relative low dosage of Cd (0-5 mg/kg) promoted the accumulation of Zn in the subcellular component, while high dosage (25 mg/kg) inhibited the accumulation of Zn. In subcellular accumulation and distribution of castor seedlings, Cd (27.1%-69.4%) and Zn (39.6%-66.6%) in the cell wall was the highest. With the increase of Cd addition, the accumulation of Cd increased in cell wall while decreased in organelle and soluble fraction. Hydroxyl, amino, amides and carboxyl functional groups on cell wall might provided the main binding sites for Cd and Zn.
Collapse
Affiliation(s)
- Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yanping Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Feifei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China.
| | - Kokyo Oh
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kisai, Saitama, 347-0115, Japan
| | - Zhenzhen Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Changlu Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xinying Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiaoyan Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
218
|
Bi D, Yuan G, Wei J, Xiao L, Feng L. Conversion of Oyster Shell Waste to Amendment for Immobilising Cadmium and Arsenic in Agricultural Soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:277-282. [PMID: 32556688 DOI: 10.1007/s00128-020-02906-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
A bulky waste, oyster shell (OS), was calcinated at 400-800°C to produce Ca-rich products (OS400-OS800) to reduce the human health risk of soil cadmium (Cd) and arsenic (As). Thermogravimetric analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET method were used to characterize OS and its calcined products. OS and OS400-OS700 removed little Cd and As from water, whereas OS800 removed 1508 mg Cd or 514 mg As per kg of OS800 from solutions of 1032 mg Cd/L or 257 mg As/L via adsorption and precipitation. Adding OS800 at a 2% dose to a Cd- and As-contaminated soil lowered its exchangeable Cd from 60% to 27%, and reduced Cd content in the edible part of vegetable Bok Choy from 2.80 to 0.048 mg/kg and As from 1.73 to 0.47 mg/kg. Converting OS to soil amendment has the dual benefits to soil remediation and sustainable oyster aquaculture.
Collapse
Affiliation(s)
- Dongxue Bi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guodong Yuan
- Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, Guangdong, China.
| | - Jing Wei
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Liang Xiao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| | - Lirong Feng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, Shandong, China
| |
Collapse
|
219
|
Mahmoud GAE, Ibrahim ABM, Mayer P. Zn(II) and Cd(II) thiosemicarbazones for stimulation/inhibition of kojic acid biosynthesis from Aspergillus flavus and the fungal defense behavior against the metal complexes' excesses. J Biol Inorg Chem 2020; 25:797-809. [PMID: 32661783 DOI: 10.1007/s00775-020-01802-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022]
Abstract
The complexes {[ZnL1Cl] C1, [ZnL2Cl].0.5H2O C2, [CdL1Cl] C3, and [CdL2Cl] C4} were prepared from tridentate thiosemicarbazones {HL1 = 4-(3-nitrophenyl)-1-((pyridin-2-yl)methylene) thiosemicarbazide and HL2 = 4-(2,4-dimethoxyphenyl)-1-((pyridin-2-yl)methylene)thiosemicarbazide} and identified by elemental CHNS, spectroscopic {IR and UV-Vis.}, thermal and DMF solution electrical conductivity data. On another hand, kojic acid (KA) which represents important secondary metabolite with numerous hot spot applications was successfully biosynthesized from Aspergillus flavus and structurally analyzed by single crystal analysis. The Zn(II) complexes C1&C2 (0.3 mM) enhanced the KA biosynthesis by 70.87% and 42.26%, while 76.09% of C1 and 72.78% of C2 were absorbed by the fungal cells. The Cd(II) complexes C3&C4 at 0.3 mM inhibited KA production by 87.95% and 97.03% with Cd(II) consumption reaching to 40.09% & 37.3%, while 0.4 mM of C3&C4 resulted in 100% inhibition of kojic acid biosynthesis. Light microscopic analysis showed the fungal structural abnormalities and the cell antioxidant behavior was detected. These complexes could be highly applicable as new stimulators and inhibitors of kojic acid production.
Collapse
Affiliation(s)
| | - Ahmed B M Ibrahim
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Peter Mayer
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus, 81377, Munich, Germany
| |
Collapse
|
220
|
Mwamba TM, Islam F, Ali B, Lwalaba JLW, Gill RA, Zhang F, Farooq MA, Ali S, Ulhassan Z, Huang Q, Zhou W, Wang J. Comparative metabolomic responses of low- and high-cadmium accumulating genotypes reveal the cadmium adaptive mechanism in Brassica napus. CHEMOSPHERE 2020; 250:126308. [PMID: 32135439 DOI: 10.1016/j.chemosphere.2020.126308] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 05/21/2023]
Abstract
Recently, oilseed rape has gathered interest for its ability to withstand elevated metal contents in plant, a key feature for remediation of contaminated soils. In this study, comparative and functional metabolomic analyses using liquid chromatography/mass spectrometry were undertaken to explore the metabolic basis of this attribute under cadmium (Cd) stress. Results revealed both conserved and differential metabolomic responses between genotype CB671 (tolerant Cd-accumulating) and its sensitive counterpart ZD622. CB671 responded to Cd stress by rearranging carbon flux towards production of compatible solutes, sugar storage forms and ascorbate, as well as jasmonates, ethylene and vitamin B6. Intriguingly, IAA abundance was reduced by 1.91-fold, which was in connection with tryptophan funnelling into serotonin (3.48-fold rise). In ZD622 by contrast, Cd provoked drastic depletion of carbohydrates and vitamins, but subtle hormones alteration. A striking accumulation of unsaturated fatty acids and oxylipins in CB671, paralleled by glycerophospholipids build-up and induction of inositol-derived signalling metabolites (up to 5.41-fold) suggested ability for prompt triggering of detoxifying mechanisms. Concomitantly, phytosteroids, monoterpenes and carotenoids were induced, denoting fine-tuned mechanisms for membrane maintenance, which was not evident in ZD622. Further, ZD622 markedly accumulated phenolics from upstream sub-classes of flavonoids; in CB671 however, a distinct phenolic wiring was activated, prioritizing anthocyanins and lignans instead. Along with cell wall (CW) saccharides, the activation of lignans evoked CW priming in CB671. Current results have demonstrated existence of notable metabolomic-based strategies for Cd tolerance in metal-accumulating oilseed rapes, and provided a holistic view of metabolites potentially contributing to Cd tolerance in this species.
Collapse
Affiliation(s)
- T M Mwamba
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China; Department of Crop Science, University of Lubumbashi, Lubumbashi, 1825, DR Congo
| | - F Islam
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - B Ali
- Department of Agronomy, University of Agriculture Faisalabad, 38040, Pakistan
| | - J L W Lwalaba
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China; Department of Crop Science, University of Lubumbashi, Lubumbashi, 1825, DR Congo
| | - R A Gill
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - F Zhang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - M A Farooq
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - S Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Z Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - Q Huang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - W Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China
| | - J Wang
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
221
|
Chen Y, Hu C, Deng D, Li Y, Luo L. Factors affecting sorption behaviors of tetracycline to soils: Importance of soil organic carbon, pH and Cd contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110572. [PMID: 32283410 DOI: 10.1016/j.ecoenv.2020.110572] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 05/03/2023]
Abstract
The abuse of tetracycline arises the risk of antibiotic resistance genes and has been paid much attention. To understand the potential bioavailability of tetracycline (TC) in soil environments, this study explored the behaviors of TC adsorbing to six types of soils sampled from different regions of China. Moreover, the solution pH and existence of Cd2+ effect on TC sorption to soils were investigated to understand the influential factors affecting TC sorption. The results showed that the soil properties and sorption capacity of TC varied significantly with different soils. The sorption capacity of TC to soils might be largely affected by cation exchange capacity (CEC) and soil organic carbon (SOC), while the sorption rate, interaction strength and equilibrium sorption binding might be affected by soil pH, pHPZC, soil inorganic carbon (SIC) and H content. The result of solution pH effect suggested that the predominant sorption mechanism for acid soils might be hydrophobic interactions between soils and H2TC0, and the cation exchange was possibly proposed as the primary mechanism for TC sorption to alkaline soils. Furthermore, the presence of Cd2+ might increase TC sorption to acid soil, while reduce TC sorption to alkaline soil. It is expected that this study may provide important information for predicting the potential fate of TC (or similar antibiotics) in different soils, and thus helping to assess the bioavailability of TC in soils.
Collapse
Affiliation(s)
- Yuxuan Chen
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Chunyan Hu
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Dahang Deng
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yigen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Ling Luo
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, 611130, PR China.
| |
Collapse
|
222
|
Ma QJ, Sun MH, Lu J, Hu DG, Kang H, You CX, Hao YJ. Phosphorylation of a malate transporter promotes malate excretion and reduces cadmium uptake in apple. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3437-3449. [PMID: 32147696 PMCID: PMC7475249 DOI: 10.1093/jxb/eraa121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/02/2020] [Indexed: 05/27/2023]
Abstract
Heavy metal contamination is a major environmental and human health hazard in many areas of the world. Organic acids sequester heavy metals and protect plant roots from the effects of toxicity; however, it is largely unknown how these acids are regulated in response to heavy metal stress. Here, protein kinase SOS2L1 from apple was functionally characterized. MdSOS2L1 was found to be involved in the regulation of malate excretion, and to inhibit cadmium uptake into roots. Using the DUAL membrane system in a screen of an apple cDNA library with MdSOS2L1 as bait, a malate transporter, MdALMT14, was identified as an interactor. Bimolecular fluorescence complementation, pull-down, and co-immunoprecipitation assays further indicated the interaction of the two proteins. Transgenic analyses showed that MdSOS2L1 is required for cadmium-induced phosphorylation at the Ser358 site of MdALMT14, a modification that enhanced the stability of the MdALMT14 protein. MdSOS2L1 was also shown to enhance cadmium tolerance in an MdALMT14-dependent manner. This study sheds light on the roles of the MdSOS2L1-MdALMT14 complex in physiological responses to cadmium toxicity.
Collapse
Affiliation(s)
- Qi-Jun Ma
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Mei-Hong Sun
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jing Lu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Hui Kang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in Huanghuai Region, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
223
|
Wang J, Jiang Y, Sun J, She J, Yin M, Fang F, Xiao T, Song G, Liu J. Geochemical transfer of cadmium in river sediments near a lead-zinc smelter. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110529. [PMID: 32247240 DOI: 10.1016/j.ecoenv.2020.110529] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a highly toxic element and non-essential to human. Herein, the source and fate of Cd were examined in a typical sediment profile from the North River, South China, which was affected by the massive Pb-Zn smelting activities for decades. An exceptionally high enrichment of Cd, 107-441 mg/kg, was observed across the whole profile. Approximately 50-75% of Cd was retained in the weak acid soluble fraction. Risk assessment based on geoaccumulation index (Igeo), potential ecological risk index (Eri), bioavailable metal index (BMI) and toxic risk index (TRI) further indicated an extremely strong degree of potential ecological pollution and high toxic risks. The mineralogical composition of particles from the sediment profile exhibited the presence of pyrite, magnetite, wurtzite and greenockite. This further confirmed that Cd was migrated from smelting slags to the North River basin and enriched in sediment profile. Sediment Cd speciation analysis also implied a possible transformation of Cd from metal oxides in smelting slags to adsorbed phases and carbonates, which enhances the bioavailability of Cd. The findings indicate proper countermeasures or remediation approaches should be promptly taken towards high ecological risks of Cd arising from the depth profile extending nearly 1 m, due to lead-zinc smelting related activities.
Collapse
Affiliation(s)
- Jin Wang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, 510006, China
| | - Yanjun Jiang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jing Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Jingye She
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Meiling Yin
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fa Fang
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Gang Song
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou, 510006, China
| | - Juan Liu
- Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
224
|
Zhou Y, Liu X, Wang J. Ecotoxicological effects of microplastics and cadmium on the earthworm Eisenia foetida. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122273. [PMID: 32070928 DOI: 10.1016/j.jhazmat.2020.122273] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 05/23/2023]
Abstract
As microplastics (MPs) have become ubiquitous in both aquatic and terrestrial environments, there has been a growing concern about these new anthropogenic stressors. However, comparatively little is known about the negative effects of MPs, co-contamination of MPs and heavy metals on terrestrial organisms. The objective of this study was performed to understand the adverse effects of exposure to MPs and co-exposure to MPs and cadmium (Cd) on the earthworm Eisenia foetida (E. foetida). Results showed that exposure to MPs only or to a combination of MPs + Cd decreased growth rate and increased the mortality (>300 mg kg-1) after exposure for 42 d, with MPs + Cd (>3000 mg kg-1) posing higher negative influence on the growth of E. foetida. Exposure to MPs might induce oxidative damage in E. foetida, and the presence of Cd accelerates the adverse effects of MPs. Furthermore, the MPs particles can be retained within E. foetida, with values of 4.3-67.2 particles·g-1 earthworm, and can increase the accumulation of Cd in earthworm from 9.7%-161.3%. Collectively, the results of this study demonstrate that combined exposure to MPs and Cd poses higher negative effects on E. foetida, and that MPs have the potential to increase the bioaccessibility of heavy metal ions in the soil environment.
Collapse
Affiliation(s)
- Yanfei Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoning Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jun Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
225
|
Maddela NR, Kakarla D, García LC, Chakraborty S, Venkateswarlu K, Megharaj M. Cocoa-laden cadmium threatens human health and cacao economy: A critical view. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137645. [PMID: 32146410 DOI: 10.1016/j.scitotenv.2020.137645] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/10/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
In the recent decades, Cd burden in cocoa-based products threatened global food safety, human health and the future of chocolateries. Increased Cd bioavailability is an acute problem in cacao-based horticulture. Poverty, poor maintenance, unjustified traditional farming, and paucity of knowledge on Cd-binding propensity in cacao discourage the application of risk-mitigation measures. Progressive accumulation of Cd, with a half-life of 10-30 years, in the human body even at ultra-trace levels may lead to serious health complications. If Cd accumulates in the food chain through cocoa products, consequences in children, who are the primary consumers of chocolates, include morbidity and mortality that may result in a significant demographic transition by the year 2050. Developing cacao clones with an innate capability of taking up low Cd levels from soils, and site-specific Cd-cacao research might contribute to limiting the trophic transfer of Cd. This review highlights the possible routes for Cd uptake in cacao plants and discusses the measures to rescue the chocolateries from Cd pollution to promote "healthy" cacao farming. The potential human health risks of chocolate-laden Cd and mitigation strategies to minimize Cd burden in the human body are also presented. The challenges and prospects in Cd-cacao research are discussed as well.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador; Facultad la Ciencias la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Dhatri Kakarla
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luz Cecilia García
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador; Facultad de Agronomía, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Sagnik Chakraborty
- Hebei University of Technology, School of Energy & Environmental Engineering, Beichen, Tianjin, PR China
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
226
|
Qiao D, Wang G, Li X, Wang S, Zhao Y. Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China. CHEMOSPHERE 2020; 248:125988. [PMID: 31995735 DOI: 10.1016/j.chemosphere.2020.125988] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
The pollution by heavy metals (HMs) of mining is a widespread problem in the world. However, the pollution by HMs around unexploited deposits (virgin fields) has been studied rarely, especially in Tibet, China. Water, sediments and surface soils were collected to investigate the concentrations of HMs around unexploited Rona Cu deposit in Tibet, China. Furthermore, geochemical fractions of these elements were also analyzed. Pollution and environmental risk introduced by HMs accumulation were assessed using pollution indices, geo-accumulation (Igeo), potential ecological risk index and risk assessment code (RAC). Results indicated that the pH values of Rona tributary river ranged from 2.70 to 3.08, and the average concentrations of Cu and Zn were 2114.00 ± 65.89 and 1402.14 ± 27.36 μg L-1, respectively, exceeding their standard limits. The concentrations (mg kg-1) of Cu, Zn and As ranged in 19.01-1763.10, 62.00-543.06 and 11.12-61.78 for sediments, respectively, and 154.60-1489.35, 55.38-344.74 and 10.05-404.03 for surface soils, respectively, exceeding their standard limits. According to RAC, almost all Cu, Zn and As near low risk status. However, Cd ranged from medium to very high risk in sediments, and low to high risk in surface soils. Statistical analysis suggested that Cu, Pb, Zn, As and Cd in sediments and surface soils may mainly derive from Rona deposit, whereas Cr and Hg may primarily originate from lithogenic sources. The results indicated that very high concentrations of HMs could be occurred in surface water, sediments and surface soils around unexploited deposits. Especially at high-altitude Tibet, the high environmental risk of HMs deserves more attention.
Collapse
Affiliation(s)
- Donghai Qiao
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing, 100037, China; Global Mineral Resources Strategic Research Center, Institute of Mineral Resources, CAGS, Beijing, 100037, China
| | - Gaoshang Wang
- Global Mineral Resources Strategic Research Center, Institute of Mineral Resources, CAGS, Beijing, 100037, China
| | - Xiaosai Li
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing, 100037, China
| | - Song Wang
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing, 100037, China
| | - Yuanyi Zhao
- MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing, 100037, China.
| |
Collapse
|
227
|
Salam LB. Unravelling the antibiotic and heavy metal resistome of a chronically polluted soil. 3 Biotech 2020; 10:238. [PMID: 32405442 PMCID: PMC7205953 DOI: 10.1007/s13205-020-02219-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
The antibiotic and heavy metal resistome of a chronically polluted soil (3S) obtained from an automobile workshop in Ilorin, Kwara State, Nigeria was deciphered via functional annotation of putative ORFs (open reading frames). Functional annotation of antibiotic and heavy metal resistance genes in 3S metagenome was conducted using the Comprehensive Antibiotic Resistance Database (CARD), Antibiotic Resistance Gene-annotation (ARG-ANNOT) and Antibacterial Biocide and Metal Resistance Gene Database (BacMet). Annotation revealed detection of resistance genes for 15 antibiotic classes with the preponderance of beta lactamases, mobilized colistin resistance determinant (mcr), glycopepetide and tetracycline resistance genes, the OqxBgb and OqxA RND-type multidrug efflux pumps, among others. The dominance of resistance genes for antibiotics effective against members of the Enterobacteriaceae indicate possible contamination with faecal materials. Annotation of heavy metal resistance genes revealed diverse resistance genes responsible for the uptake, transport, detoxification, efflux and regulation of copper, zinc, cadmium, nickel, chromium, cobalt, mercury, arsenic, iron, molybdenum and several others. Majority of the antibiotic and heavy metal resistance genes detected in this study are borne on mobile genetic elements, which facilitate their spread and dissemination in the polluted soil. The presence of the heavy metal resistance genes is strongly believed to play a major role in the proliferation of antibiotic resistance genes. This study has established that soil is a huge repertoire of antibiotic and heavy metal resistome and due to the intricate link between human, animals and the soil environment, it may be a major contributor to the proliferation of multidrug-resistant clinical pathogens.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Summit University, Offa, Kwara Nigeria
| |
Collapse
|
228
|
Effects of cadmium perturbation on the microbial community structure and heavy metal resistome of a tropical agricultural soil. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00314-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractThe effects of cadmium (Cd) contamination on the microbial community structure, soil physicochemistry and heavy metal resistome of a tropical agricultural soil were evaluated in field-moist soil microcosms. A Cd-contaminated agricultural soil (SL5) and an untreated control (SL4) were compared over a period of 5 weeks. Analysis of the physicochemical properties and heavy metals content of the two microcosms revealed a statistically significant decrease in value of the soil physicochemical parameters (P < 0.05) and concentration of heavy metals (Cd, Pb, Cr, Zn, Fe, Cu, Se) content of the agricultural soil in SL5 microcosm. Illumina shotgun sequencing of the DNA extracted from the two microcosms showed the predominance of the phyla, classes, genera and species of Proteobacteria (37.38%), Actinobacteria (35.02%), Prevotella (6.93%), and Conexibacter woesei (8.93%) in SL4, and Proteobacteria (50.50%), Alphaproteobacteria (22.28%), Methylobacterium (9.14%), and Methylobacterium radiotolerans (12,80%) in SL5, respectively. Statistically significant (P < 0.05) difference between the metagenomes was observed at genus and species delineations. Functional annotation of the two metagenomes revealed diverse heavy metal resistome for the uptake, transport, efflux and detoxification of various heavy metals. It also revealed the exclusive detection in SL5 metagenome of members of RND (resistance nodulation division) protein czcCBA efflux system (czcA, czrA, czrB), CDF (cation diffusion facilitator) transporters (czcD), and genes for enzymes that protect the microbial cells against cadmium stress (sodA, sodB, ahpC). The results obtained in this study showed that Cd contamination significantly affects the soil microbial community structure and function, modifies the heavy metal resistome, alters the soil physicochemistry and results in massive loss of some autochthonous members of the community not adapted to the Cd stress.
Collapse
|
229
|
Wada N, DI G, Itabashi H, Mori M, Lin Y, Deng S, Xu W, Guo W, Luo Y, Zhu D. Variations in Cadmium Concentrations in Rice and Oxidation-Reduction Potential at the Soil Surface with Supplementation of Fermented Botanical Waste-based Amendment in Large-scale Farmland. ANAL SCI 2020; 36:531-538. [PMID: 32173674 DOI: 10.2116/analsci.19sbp01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We monitored the relationship between the cadmium (Cd) concentration uptake of rice and the oxidation-reduction potential (ORP) at the soil surface with the supplementation of fermented botanical waste-based amendment (FBWA), an organic fertilizer prepared from woody and food wastes. This study was carried out for 3 years in the western part of Jiangsu Province, China. It was found that the Cd concentration taken up by rice was correlated to a decreased the ORP of the cultivated soil. The yield of rice was ∼1.20 times higher than that of the control plot. The effects of reducing the Cd content in rice and increasing the rice yield remained for 2 years after FBWA application. Finally, Cd was immobilized in the soil with adsorption to FBWA or the decomposed products. The ORP measurement during rice cultivation might be a key index to predict the suppression effect of Cd uptake into the rice or limitation of the sustainable effect by the FBWA.
Collapse
Affiliation(s)
- Nobuhiko Wada
- Graduate School of Science and Technology, Gunma University.,Shanghai Shenglong Environment Remediation Materials, Co. Ltd
| | - Gao DI
- Graduate School of Science and Technology, Gunma University
| | | | | | - Yusuo Lin
- Nanjing Institute of Environmental Science, MEP, P. R. China
| | - Shaopo Deng
- Nanjing Institute of Environmental Science, MEP, P. R. China
| | - Weiwei Xu
- Geological Survey of Jiangsu Province
| | - Weiwei Guo
- Shanghai Shenglong Environment Remediation Technologies, Co. Ltd
| | - Yuanheng Luo
- Shanghai Shenglong Environment Remediation Technologies, Co. Ltd
| | - Dianyu Zhu
- School of the Environment, Nanjing University
| |
Collapse
|
230
|
Zhang JY, Zhou H, Gu JF, Huang F, Yang WJ, Wang SL, Yuan TY, Liao BH. Effects of nano-Fe 3O 4-modified biochar on iron plaque formation and Cd accumulation in rice (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113970. [PMID: 32014742 DOI: 10.1016/j.envpol.2020.113970] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Nano-Fe3O4-modified biochar (BC-Fe) was prepared by the coprecipitation of nano-Fe3O4 on a rice husk biochar surface. The effects of BC-Fe on cadmium (Cd) bioavailability in soil and on Cd accumulation and translocation in rice (Oryza sativa L. cv. 'H You 518') were investigated in a pot experiment with 7 application rates (0.05-1.6%, w/w). BC-Fe increased the biomass of the rice plants except for the roots and affected the concentration and accumulation of Cd and Fe in the plants. The Cd concentrations of brown rice were significantly decreased by 48.9%, 35.6%, and 46.5% by the 0.05%, 0.2%, and 0.4% BC-Fe treatments, respectively. Soil cation exchange capacity (CEC) increased by 9.4%-164.1% in response to the application of BC-Fe (0.05-1.6%), while the soil Cd availability decreased by 6.81%-25.0%. However, 0.8-1.6% BC-Fe treatments promoted Cd transport to leaves, which could increase the risk of Cd accumulation in brown rice. Furthermore, BC-Fe application promoted the formation of iron plaque and enhanced the root interception of Cd. The formation of iron plaque reduced the toxicity of Cd to rice roots, but this barrier effect was limited and had an interval threshold (DCB-Fe: 22.5-27.3 g·kg-1) under BC-Fe treatments.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China.
| | - Jiao-Feng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Fang Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Wen-Jun Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Shi-Long Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Teng-Yue Yuan
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| | - Bo-Han Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China; Hunan Engineering Laboratory for Control of Rice Quality and Safety, Changsha, 410004, China
| |
Collapse
|
231
|
Peng R, Sun W, Jin X, Yu L, Chen C, Yue Z, Dong Y. Analysis of 2,4-epibrassinolide created an enhancement tolerance on Cd toxicity in Solanum nigrum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16784-16797. [PMID: 32141006 DOI: 10.1007/s11356-020-08228-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Contamination of soils with cadmium (Cd) is a serious problem worldwide. Solanum nigrum L. is reported as a Cd hyperaccumulator, but its enrichment capacity is limited. 2,4-Epibrassinolide (2,4-EBL) plays important roles in plant response to various stresses. Little is known about its effect on Cd tolerance in S. nigrum. Current study was performed to demonstrate effects of 2,4-EBL on plant growth, photosynthesis activity, activities of antioxidants, and Cd concentration in plants by nutrient solution contaminated with Cd. Results revealed that S. nigrum exhibited toxicity to Cd stress, including reducing plant height, root length, and chlorophyll content and increasing malondialdehyde (MDA) content. Exogenous application of 2,4-EBL significantly enhanced the contents of proline and soluble sugar and decreased the MDA content. Meanwhile, the levels of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) markedly increased compared with the control. Interesting, 2,4-EBL promoted photosynthesis by increasing the chlorophyll content, Fv/Fm. And increase in chlorophyll content is caused by increased expression of synthetic genes and decreased expression of degraded genes. 2,4-EBL also decreased accumulation of Cd in S. nigrum compared with single Cd stress. According to the present results, 2,4-EBL can effectively be used to alleviate the damage of Cd stress in S. nigrum and probably in other solanaceae.
Collapse
Affiliation(s)
- Ruonan Peng
- Institute of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Weiyue Sun
- Institute of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Xiaoxia Jin
- Institute of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China.
| | - Lijie Yu
- Institute of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Chao Chen
- Institute of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Zhonghui Yue
- Institute of Life Science and Technology, Harbin Normal University, Harbin, 150025, Heilongjiang, China
| | - Yanlong Dong
- Horticulture Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, 150069, Heilongjiang, China
| |
Collapse
|
232
|
Wang Z, Xiao J, Wang L, Liang T, Guo Q, Guan Y, Rinklebe J. Elucidating the differentiation of soil heavy metals under different land uses with geographically weighted regression and self-organizing map. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114065. [PMID: 32041011 DOI: 10.1016/j.envpol.2020.114065] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Intensive anthropogenic activity has triggered serious heavy metal contamination of soil. Land use and land cover (LULC) changes bear significant impacts, either directly or indirectly, on the distribution of heavy metal in soils. A total of 180 samples were acquired from various land covers at different depths, namely surface soils (020 cm) and subsurface soils (20-40 cm). Spatial interpolation, geographically weighted regression (GWR) and self-organizing map (SOM) were used to discern how variations in the spatial distributions of soil heavy metals were caused by human activities for different land uses, and how these pollutants contributed to environmental risks. The medium concentrations of Cd, Cr, Cu, Pb and Zn in surface soil all exceeded the corresponding local background values in flat cropland and developed area soil. The overall ecological risk level of the study varied from low to medium. The GWR model indicated that the land use intensity had a certain influence on the accumulation of heavy metals in the surface soil. K-means clustering of the SOM revealed that the type of LULC also contributed to the redistribution of heavy metals in the surface soil.
Collapse
Affiliation(s)
- Zhan Wang
- East China University of Technology, Nanchang, 330000, China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Xiao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingjun Guo
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yunlan Guan
- East China University of Technology, Nanchang, 330000, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| |
Collapse
|
233
|
Li C, Sanchez GM, Wu Z, Cheng J, Zhang S, Wang Q, Li F, Sun G, Meentemeyer RK. Spatiotemporal patterns and drivers of soil contamination with heavy metals during an intensive urbanization period (1989-2018) in southern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114075. [PMID: 32014753 DOI: 10.1016/j.envpol.2020.114075] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/14/2020] [Accepted: 01/23/2020] [Indexed: 05/06/2023]
Abstract
This three-decade long study was conducted in the Pearl River Delta (PRD), a rapidly urbanizing region in southern China. Extensive soil samples for a diverse land uses were collected in 1989 (113), 2005 (1384), 2009 (521), and 2018 (421) for heavy metals of As, Cr, Cd, Cu, Hg, Ni, Pb and Zn. Multiple pollution indices and Structural Equation Models (SEMs) were used in attribution analysis and comprehensive assessments. Data showed that majority of the sampling sites was contaminated by one or more heavy metals, but pollutant concentrations had not reached levels of concerns for food security or human health. There was an increasing trend in heavy metal contamination over time and the variations of soil contamination were site-, time- and pollutant-dependent. Areas with high concentrations of heavy metals overlapped with highly industrialized and populated areas in western part of the study region. A dozen SEMs path analyses were used to compare the relative influences of key environmental factors on soil contamination across space and time. The high or elevated soil contaminations by As, Cr, Ni, Cu and Zn were primarily affected by soil properties during the study period, except 1989-2005, followed by land use patterns. Parent materials had a significant effect on elevated soil contamination of Cd, Cr, Ni, Pb and overall soil pollution during 1989-2005. We hypothesized that other factors not considered in the present study, such as atmospheric deposition, sewage irrigation, and agrochemical uses, may be also important to explain the variability of soil contamination. This study implied that strategies to improve soil physiochemical properties and optimize landscape structures are viable methods to mitigate soil contamination. Future studies should monitor pollutant sources identified by this study to fully understand the causes of heavy metal contamination in rapidly industrialized regions in southern China.
Collapse
Affiliation(s)
- Cheng Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China.
| | - Georgina M Sanchez
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27606, USA; Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27606, USA.
| | - Zhifeng Wu
- School of Geographical Sciences, Guangzhou University, Guangzhou, 510006, China.
| | - Jiong Cheng
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China.
| | - Siyi Zhang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China.
| | - Qi Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China.
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, 510650, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangzhou, 510650, China.
| | - Ge Sun
- USDA Forest Service Eastern Forest Environment Threat Assessment Center, Research Triangle Park, NC, 27709, USA.
| | - Ross K Meentemeyer
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, 27606, USA; Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27606, USA.
| |
Collapse
|
234
|
Liu Y, Tie B, Peng O, Luo H, Li D, Liu S, Lei M, Wei X, Liu X, Du H. Inoculation of Cd-contaminated paddy soil with biochar-supported microbial cell composite: A novel approach to reducing cadmium accumulation in rice grains. CHEMOSPHERE 2020; 247:125850. [PMID: 31931314 DOI: 10.1016/j.chemosphere.2020.125850] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/25/2019] [Accepted: 01/04/2020] [Indexed: 06/10/2023]
Abstract
Bioremediation of heavy metal-contaminated soil using metal-resistant microbes is a promising remediation technology. However, as exogenous bacteria sometimes struggle to survive and grow when introduced to new soils, it is important to develop appropriate carriers for microbial populations. In this study, we report a novel approach to remediating Cd-contaminated rice paddy soil using biochar-supported microbial cell composites (BMCs) produced from agricultural waste (cornstalks). Pot experiments showed that amendment with BMC was more efficient at reducing root and grain Cd content than pure bacteria, while improving soil Cd fractionation toward more stabilized and less labile forms. Bacteria in the BMC medium grew more readily with more abundant metabolites than those raised in free cells, probably because biochar provides shelter via porous structures (as confirmed by scanning electron microscopy) as well as additional nutrients. Overall, the improved long-term production of microbial biomass caused by BMC inoculation results in a higher remediation efficiency. Our results demonstrate the feasibility of using biochar as an appropriate carrier for metal-tolerant bacteria to remediate Cd-contaminated paddy fields.
Collapse
Affiliation(s)
- Yuling Liu
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Boqing Tie
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China.
| | - Ou Peng
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Haiyan Luo
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Danyang Li
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Shoutao Liu
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Ming Lei
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Xiangdong Wei
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Xiaoli Liu
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China
| | - Huihui Du
- Hunan Engineering & Technology Research Center for Irrigation Water Purification, College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Southern Farmland Pollution Prevention and Control, Ministry of Agriculture, Changsha, 410128, China.
| |
Collapse
|
235
|
Lancíková V, Tomka M, Žiarovská J, Gažo J, Hricová A. Morphological Responses and Gene Expression of Grain Amaranth ( Amaranthus spp.) Growing under Cd. PLANTS 2020; 9:plants9050572. [PMID: 32365842 PMCID: PMC7285102 DOI: 10.3390/plants9050572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 11/28/2022]
Abstract
Phytoremediation efficiency depends on the ability of plants to accumulate, translocate and resist high levels of metals without symptoms of toxicity. This study was conducted to evaluate the potential of grain amaranth for remediation of soils contaminated with Cd. Three grain amaranth varieties, “Pribina” (A. cruentus), “Zobor” (A. hypochondriacus x A. hybridus) and Plainsman (A. hypochondriacus x A. hybridus) were tested under different level of Cd (0, 5, 10 and 15 mg/L) in a hydroponic experimental treatment. All could be classified as Cd excluders or Cd-hypertolerant varieties able to grow and accumulate significant amounts of Cd from the hydroponic solution, preferentially in the roots. Under the highest level of Cd exposure, qRT-PCR expression analysis of five stress-related genes was examined in above- and below-ground biomass. The results show that the Cd concentration significantly increased the mRNA level of chitinase 5 (Chit 5) in amaranth roots as the primary site of metal stress. The involvement of phytochelatin synthase (PCS1) in Cd detoxification is suggested. Based on our findings, we can conclude that variety “Pribina” is the most Cd-tolerant among three tested and can be expected to be used in the phytomanagement of Cd loaded soils as an effective phytostabiliser.
Collapse
Affiliation(s)
- Veronika Lancíková
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra 95007, Slovakia;
| | - Marián Tomka
- Department of Biochemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra 94976, Slovakia;
| | - Jana Žiarovská
- Department of Genetics and Plant Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra 94976, Slovakia; (J.Ž.); (J.G.)
| | - Ján Gažo
- Department of Genetics and Plant Breeding, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Nitra 94976, Slovakia; (J.Ž.); (J.G.)
| | - Andrea Hricová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra 95007, Slovakia;
- Correspondence:
| |
Collapse
|
236
|
Mullins AR, Bain DJ, Pfeil-McCullough E, Hopkins KG, Lavin S, Copeland E. Seasonal drivers of chemical and hydrological patterns in roadside infiltration-based green infrastructure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136503. [PMID: 32018946 DOI: 10.1016/j.scitotenv.2020.136503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Infiltration-based green infrastructure has become a popular means of reducing stormwater hazards in urban areas. However, the long-term effects of green infrastructure on the geochemistry of roadside environments are poorly defined, particularly given the considerable roadside legacy metal contamination from historic industrial activity and vehicle emissions (e.g., Pb). Most current research on green infrastructure geochemistry is restricted to time periods of less than a year or limited sets of chemical species. This further limits our understanding of systems that evolve over time and are subject to seasonal variability. Between 2016 and 2018, two infiltration trenches in Pittsburgh, PA, were monitored to determine infiltration rates and dissolved nutrient and metal content. The trench water was analyzed to characterize seasonal patterns in both trench function and chemistry. Shifting patterns in infiltration rate and geochemical activity show trends corresponding with seasonal changes. Trench function is dependent on the local water table, with the highest infiltration rates occurring when evapotranspiration is active and groundwater elevation is low. Two seasonal chemical patterns were identified. The first is driven by road salt application in the winter and interaction of the salt pulse increase Pb and Cu concentrations. The second is driven by the formation of summer reducing environments that increase dissolved Fe and Mn. These findings suggest that chemical and hydrological activity in infiltration-based green infrastructure varies seasonally and may remobilize legacy contamination.
Collapse
Affiliation(s)
- Angela R Mullins
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Daniel J Bain
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Erin Pfeil-McCullough
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kristina G Hopkins
- U.S. Geological Survey, South Atlantic Water Science Center, Raleigh, NC 27607, USA
| | - Sarah Lavin
- Rhea Engineers & Consultants, Inc., Valencia, PA 16059, USA
| | - Erin Copeland
- Pittsburgh Parks Conservancy, Pittsburgh, PA 15203, USA
| |
Collapse
|
237
|
Sá C, Matos D, Pires A, Cardoso P, Figueira E. Airborne exposure of Rhizobium leguminosarum strain E20-8 to volatile monoterpenes: Effects on cells challenged by cadmium. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121783. [PMID: 31836364 DOI: 10.1016/j.jhazmat.2019.121783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Volatile organic compounds (VOCs) are produced by plants, fungi, bacteria and animals. These compounds are metabolites originated mainly in catabolic reactions and can be involved in biological processes. In this study, the airborne effects of five monoterpenes (α-pinene, limonene, eucalyptol, linalool, and menthol) on the growth and oxidative status of the rhizobial strain Rhizobium leguminosarum E20-8 were studied, testing the hypothesis that these VOCs could influence Rhizobium growth and tolerance to cadmium. The tested monoterpenes were reported to have diverse effects, such as antibacterial activity (linalool, limonene, α-pinene, eucalyptol), modulation of antioxidant response or antioxidant properties (α-pinene and menthol). Our results showed that non-stressed cells of Rhizobium E20-8 have different responses (growth, cell damage and biochemistry) to monoterpenes, with α-pinene and eucalyptol increasing colonies growth. In stressed cells the majority of monoterpenes failed to minimize the detrimental effects of Cd and increased damage, decreased growth and altered cell biochemistry were observed. However, limonene (1 and 100 mM) and eucalyptol (100 nM) were able to increase the growth of Cd-stressed cells. Our study evidences the influence at-a-distance that organisms able to produce monoterpenes may have on the growth and tolerance of bacterial cells challenged by different environmental conditions.
Collapse
Affiliation(s)
- Carina Sá
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Diana Matos
- Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Adília Pires
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Paulo Cardoso
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
238
|
Ma H, Gao F, Zhang X, Cui B, Liu Y, Li Z. Formation of iron plaque on roots of Iris pseudacorus and its consequence for cadmium immobilization is impacted by zinc concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110306. [PMID: 32109586 DOI: 10.1016/j.ecoenv.2020.110306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
The impact of iron plaque (IP) on bioavailability of heavy metals to plants has been well documented, but the role of zinc (Zn) in modulating the associated processes remains elusive. We took Iris pseudacorus used in wetland for remediating Cd-contaminated water as an example and systematically studied the combined influence of Cd and Zn concentration on formation of IP and its consequence for immobilization and plant uptake of Cd. The experiment was conducted in hydroponic culture and in each treatment, we measured the physiological traits, activity of antioxidant enzymes (SOD, POD, CAT), mass of the IP, as well as the Cd content in both plant tissues and IP. The results showed that increasing Cd concentration resulted in a steady reduction in IP while the impact of zinc on IP was complicated and appeared to be coupled with Cd. When the Cd concentration was low (0.5 mg L-1 measured as CdCl2 2·5H2O) increasing Zn concentration reduced IP, while when the Cd concentration was increased to 5 mg L-1 increasing zinc concentration led to an increase in IP mass first followed by a decline after Zn concentration exceeded 100 mg L-1 (measured as ZnSO4·7H2O). The change in IP as affected by Zn had a strong consequence for immobilization and plant uptake of Cd. When Cd concentration was low, the IP was comparatively abundant and hence adsorbed most Cd. In contrast, when Cd concentration was high, the IP reduced and the amount of Cd taken up by plant roots and translocated to shoots and leaves increased. Both Cd immobilization and its plant uptake were modulated by Zn concentration. At low Cd concentration the combined Cd immobilized and taken up by plant peaked when the Zn concentration was 50 mg L-1, while at high Cd concentration the combined Cd reached maxima when theZn concentration was 100 mg L-1. The activity of the antioxidant enzymes changed significantly with Zn rather than with Cd. Regardless of Cd concentration, the activity of all three antioxidant enzymes increased first with zinc concentration before declining when the Zn concentration exceeded approximately 100 mg L-1 in all treatments, comparable with the change in immobilization and plant uptake of Cd as the Zn concentration increased. SEM analysis did prove the formation and variation of IP on the root surface of Iris pseudacorus in different treatments. We also found that the plant developed a survival strategy by scarifying its leaves with high Cd content. The results presented in this paper has wide implications as it revealed that care needs to be taken in applying Zn to enhance Cd immobilization and its plant uptake as exceeding the optimal application rate might reduce remediating efficiency rather than increase it.
Collapse
Affiliation(s)
- Huanhuan Ma
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan Province, 453002, China.
| | - Feng Gao
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan Province, 453002, China.
| | - Xiaoxian Zhang
- Sustiainable Agriculture Sciences, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom.
| | - Bingjian Cui
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan Province, 453002, China.
| | - Yuan Liu
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan Province, 453002, China.
| | - Zhongyang Li
- Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, Henan Province, 453002, China.
| |
Collapse
|
239
|
Hamid Y, Tang L, Hussain B, Usman M, Lin Q, Rashid MS, He Z, Yang X. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136121. [PMID: 31865074 DOI: 10.1016/j.scitotenv.2019.136121] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 05/08/2023]
Abstract
Immobilization is among the most-suitable strategies to remediate cadmium (Cd) contaminated sites. Organic additives (OAs) have emerged as highly efficient and environment-friendly immobilizers to eradicate Cd contamination in a wide range of environments. This review article is intended to critically illustrate the role of different OAs in Cd immobilization and to highlight the key findings in this context. Owing to the unique structural features (high surface area, cation exchange capacity (CEC), presence of many functional groups), OAs have shown strong capability to remediate Cd polluted soils by adsorption, electrostatic interaction, complexation and precipitation. Research data is compiled about the efficiency of different OAs (bio-waste, biochar, activated carbon, composts, manure, and plant residues) applied alone or in combination with other amendments in stabilization and renovation of contaminated sites. In addition to their role in remediation, OAs are widely advocated for being classical sources of essential plant nutrients and as agents to improve the soil health and quality which has also been focused in this review. OAs may contain considerable amounts of metals and therefore it becomes essential to assess their final contribution. Elimination of Cd contamination is essential to attenuate the contaminant effect and to produce the safe food. Therefore, deployment of environment-friendly remediation strategies (alone or in combination with other suitable technologies) should be adopted especially at early stages of contamination.
Collapse
Affiliation(s)
- Yasir Hamid
- Ministry of Education (MOE) Key Lab of Environ Remediation and Ecol Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, PR China
| | - Lin Tang
- Ministry of Education (MOE) Key Lab of Environ Remediation and Ecol Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, PR China
| | - Bilal Hussain
- Ministry of Education (MOE) Key Lab of Environ Remediation and Ecol Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Qiang Lin
- Ministry of Education (MOE) Key Lab of Environ Remediation and Ecol Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, PR China
| | - Muhammad Saqib Rashid
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, USA
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Lab of Environ Remediation and Ecol Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
240
|
Pollution, Sources and Human Health Risk Assessment of Potentially Toxic Elements in Different Land Use Types under the Background of Industrial Cities. SUSTAINABILITY 2020. [DOI: 10.3390/su12052121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Residents in industrial cities may be exposed to potentially toxic elements (PTEs) in soil that increase chronic disease risks. In this study, six types of PTEs (Zn, As, Cr, Ni, Cu, and Pb) in 112 surface soil samples from three land use types—industrial land, residential land, and farmland—in Tonghua City, Jilin Province were measured. The geological accumulation index and pollution load index were calculated to assess the pollution level of metal. Meanwhile, the potential ecological risk index, hazard index, and carcinogenic risk were calculated to assess the environmental risks. The spatial distribution map was determined by the ordinary kriging method, and the sources of PTEs were identified by factor analysis and cluster analysis. The average concentrations of Zn, As, Cr, Ni, Cu, and Pb were 266.57, 15.72, 72.41, 15.04, 20.52, and 16.30 mg/kg, respectively. The results of the geological accumulation index demonstrated the following: Zn pollution was present in all three land use types, As pollution in industrial land cannot be neglected, Cr pollution in farmland was higher than that in the other two land use types. The pollution load index decreased in the order of industrial land > farmland > residential land. Multivariate statistical analysis divided the six PTEs into three groups by source: Zn and As both originated from industrial activities; vehicle emissions were the main source of Pb; and Ni and Cu were derived from natural parent materials. Meanwhile, Cr was found to come from a mixture of artificial and natural sources. The soil environment in the study area faced ecological risk from moderate pollution levels mainly contributed by As. PTEs did not pose a non-carcinogenic risk to humans; however, residents of the three land use types all faced estimated carcinogenic risks caused by Cr, and As in industrial land also posed high estimated carcinogenic risk to human health. The conclusion of this article provides corresponding data support to the government’s policy formulation of remediating different types of land and preventing exposure and related environmental risks.
Collapse
|
241
|
Wang W, Zhou F, Chang Y, Cui J, He D, Du J, Chan A, Yao D, Li Y, Chen Z, Kariman K. Effects of Soil Amendments on Microbial Activities in a Typical Cd-Contaminated Purple Field Soil, Southwestern China. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:380-385. [PMID: 31932904 DOI: 10.1007/s00128-020-02786-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, three soil amendments (inorganic, liming, or organic-inorganic materials) were used in a Cd-contaminated purple field soil to investigate their impacts on soil Cd availability, enzyme (urease, catalase, sucrase, and acid phosphatase) activities, microbial biomass (carbon/nitrogen) and type (bacteria, fungi, and actinomycetes) in mustard and corn trials. Results showed that soil amendments generally decreased soil exchangeable Cd, fungi and bacterial populations while increasing the activities of all the four soil enzymes tested, microbial biomass carbon and populations of actinomycetes (p < 0.05). Soil pH and microbial biomass nitrogen did not exhibit any significant response (p > 0.05) whereas stronger effects appeared in soil organic matter and available nutrients (nitrogen, phosphorous and potassium; p < 0.05). However, only soil available phosphorous significantly correlated with soil microbial activity in both mustard and corn trails (p < 0.05). Thus, application of phosphorous-containing amendments should be considered for promoting soil health in the remediation of the Cd-contaminated purple soils.
Collapse
Affiliation(s)
- Wenqiang Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Fengwu Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yajun Chang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, 210014, China
| | - Jian Cui
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, 210014, China.
- Centre of Atmospheric Environment Research, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Dongyi He
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
- Centre of Atmospheric Environment Research, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jinmeng Du
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, 210014, China
| | - Andy Chan
- Division of Environment, Faculty of Engineering, University of Nottingham Malaysia Campus, 43500, Semenyih, Malaysia
| | - Dongrui Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Mem. Sun Yat-Sen, Nanjing, 210014, China
| | - Yong Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Zhiyuan Chen
- Division of Environment, Faculty of Engineering, University of Nottingham Malaysia Campus, 43500, Semenyih, Malaysia
| | - Khalil Kariman
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
242
|
Al-Homaidan AA, Al-Otaibi TG, El-Sheikh MA, Al-Ghanayem AA, Ameen F. Accumulation of heavy metals in a macrophyte Phragmites australis: implications to phytoremediation in the Arabian Peninsula wadis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:202. [PMID: 32107648 DOI: 10.1007/s10661-020-8177-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Heavy metal-polluted wetlands could be remediated by harvesting metal accumulating plants, i.e., using phytoextraction. We studied a macrophyte Phragmites australis and assessed its potential to be utilized in the phytoremediation of heavy metal-polluted wetlands, specifically in wadis in the Arabian Peninsula. We sampled six polluted wadi sites and measured Mn, Fe, Ni, Cu, Zn, Cd, and Pb concentrations in the roots, rhizomes, stems, and leaves of P. australis, as well as in sediment and water. We analyzed the correlations between different plant organs, water, and sediment, and calculated the accumulation and translocation of the metals to the plant organs. We found indications for the accumulation of Cd, Zn, and Pb into P. australis and somewhat contradictory indications for the accumulation of Cu. We suggest that P. australis is a good candidate to be utilized in the phytoremediation of heavy metal-polluted wadis in the Arabian Peninsula where the few wadis offer many valuable ecosystem services for urban citizens.
Collapse
Affiliation(s)
- Ali A Al-Homaidan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Turki G Al-Otaibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed A El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Al-Ghanayem
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
243
|
The Immobilization of Soil Cadmium by the Combined Amendment of Bacteria and Hydroxyapatite. Sci Rep 2020; 10:2189. [PMID: 32041971 PMCID: PMC7010816 DOI: 10.1038/s41598-020-58259-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/13/2020] [Indexed: 11/25/2022] Open
Abstract
The remediation of heavy metal-contaminated soils has attracted increased attention worldwide. The immobilization of metals to prevent their uptake by plants is an efficient way to remediate contaminated soils. This work aimed to seek the immobilization of cadmium in contaminated soils via a combination method. Flask experiments were performed to investigate the effects of hydroxyapatite (HAP) and the Cupriavidus sp. strain ZSK on soil pH and DTPA-extractable cadmium. Pot experiments were carried out to study the effects of the combined amendment on three plant species. The results showed that HAP has no obvious influence on the growth of the strain. With increasing concentrations of HAP, the soil pH increased, and the DTPA-extractable Cd decreased. Via the combined amendment of the strain and HAP (SH), the DTPA-extractable Cd in the soil decreased by 58.2%. With the combined amendment of the SH, the cadmium accumulation in ramie, dandelion, and daisy decreased by 44.9%, 51.0%, and 38.7%, respectively. Moreover, the combined amendment somewhat benefitted the growth of the three plant species and significantly decreased the biosorption of cadmium. These results suggest that the immobilization by the SH combination is a potential method to decrease the available cadmium in the soil and the cadmium accumulation in plants.
Collapse
|
244
|
Sharma A, Soares C, Sousa B, Martins M, Kumar V, Shahzad B, Sidhu GPS, Bali AS, Asgher M, Bhardwaj R, Thukral AK, Fidalgo F, Zheng B. Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: a review on molecular and biochemical aspects. PHYSIOLOGIA PLANTARUM 2020; 168:318-344. [PMID: 31240720 DOI: 10.1111/ppl.13004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/17/2019] [Accepted: 06/24/2019] [Indexed: 05/07/2023]
Abstract
Given their sessile nature, plants continuously face unfavorable conditions throughout their life cycle, including water scarcity, extreme temperatures and soil pollution. Among all, metal(loid)s are one of the main classes of contaminants worldwide, posing a serious threat to plant growth and development. When in excess, metals which include both essential and non-essential elements, quickly become phytotoxic, inducing the occurrence of oxidative stress. In this way, in order to ensure food production and safety, attempts to enhance plant tolerance to metal(loid)s are urgently needed. Nitric oxide (NO) is recognized as a signaling molecule, highly involved in multiple physiological events, like the response of plants to abiotic stress. Thus, substantial efforts have been made to assess NO potential in alleviating metal-induced oxidative stress in plants. In this review, an updated overview of NO-mediated protection against metal toxicity is provided. After carefully reviewing NO biosynthetic pathways, focus was given to the interaction between NO and the redox homeostasis followed by photosynthetic performance of plants under metal excess.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Cristiano Soares
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Porto, 4169-007, Portugal
| | - Bruno Sousa
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Porto, 4169-007, Portugal
| | - Maria Martins
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Porto, 4169-007, Portugal
| | - Vinod Kumar
- Department of Botany, DAV University, Jalandhar, 144012, India
| | - Babar Shahzad
- School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Gagan P S Sidhu
- Department of Environment Education, Government College of Commerce and Business Administration, Chandigarh, 160047, India
| | - Aditi S Bali
- Department of Botany, M.C.M.D.A.V. College for Women, Chandigarh, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, 185234, India
| | - Renu Bhardwaj
- Plant Stress Physiology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Ashwani K Thukral
- Plant Stress Physiology Laboratory, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Fernanda Fidalgo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Biology Department, Faculty of Sciences of University of Porto, Porto, 4169-007, Portugal
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| |
Collapse
|
245
|
Liu N, Huang X, Sun L, Li S, Chen Y, Cao X, Wang W, Dai J, Rinnan R. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China. CHEMOSPHERE 2020; 241:125065. [PMID: 31622886 DOI: 10.1016/j.chemosphere.2019.125065] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal-contaminated farmland, especially for cadmium (Cd), is being used for agricultural production in large scale due to the increasing food demand. Thus, minimizing the influx of Cd to the human food chain is urgently needed. Screening for stably low Cd and moderately high micronutrient wheat cultivars is one of the most feasible and effective approaches to ensure food safety and quality. Here, the Cd accumulation by 72 wheat cultivars was identified in field 1, and the stability of Cd accumulation in these cultivars was tested in fields 2 and 3. The effects of Cd on micronutrient (zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), and boron (B)) uptake in grains were also investigated. Nine of the 24 low-Cd wheat cultivars identified by screening showed stably low-Cd and moderately high micronutrient concentrations in grain. Nine cultivars exhibited unstable low-Cd accumulation characteristics, and another five cultivars contained significantly lower Zn concentrations in grain in at least two experimental fields. One low-Cd cultivar also had low Zn, Cu and Mn concentrations in grain. The accumulation of Cd in wheat grain had little effects on the uptake of Fe. Grain Cd concentration correlated positively with the dry weight of stem and root, and negatively with the spike length. There was no correlation between grain Cd concentration and wheat yield. The selected cultivars with stably low-Cd accumulation and moderately high micronutrient concentrations in grain are recommended for cultivation in slightly to moderately Cd-contaminated farmland to ensure food safety for the growing human population.
Collapse
Affiliation(s)
- Na Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China; Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Xianmin Huang
- Shandong General Station of Agricultural Environmental Protection and Rural Energy, Jinan, 250100, China
| | - Leiming Sun
- Jining Academy of Agricultural Sciences, Jining, 272031, China
| | - Shuangshuang Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yihui Chen
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiaoyu Cao
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| |
Collapse
|
246
|
Schaefer HR, Dennis S, Fitzpatrick S. Cadmium: Mitigation strategies to reduce dietary exposure. J Food Sci 2020; 85:260-267. [PMID: 31957884 PMCID: PMC7027482 DOI: 10.1111/1750-3841.14997] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
Abstract
Abstract Cadmium has long been recognized as an environmental contaminant that poses risks to human health. Cadmium is of concern since nearly everyone in the general population is exposed to the metal through the food supply and the ability of the element to accumulate in the body over a lifetime. In support of the United States Food and Drug Administration's (FDA) Toxic Element Working Group's efforts to reduce the risks associated with elements in food, this review sought to identify current or new mitigation efforts that have the potential to reduce exposures of cadmium throughout the food supply chain. Cadmium contamination of foods can occur at various stages, including agronomic production, processing, and consumer preparation for consumption. The presence of cadmium in food is variable and dependent on the geographical location, the bioavailability of cadmium from the soil, crop genetics, agronomic practices used, and postharvest operations. Although there are multiple points in the food supply system for foods to be contaminated and mitigations to be applied, a key step to reducing cadmium in the diet is to reduce or prevent initial uptake by plants consumed as food or feed crops. Due to complex interactions of soil chemistry, plant genetics, and agronomic practices, additional research is needed. Support for field‐based experimentation and testing is needed to inform risk modeling and to develop practical farm‐specific management strategies. This study can also assist the FDA in determining where to focus resources so that research and regulatory efforts can have the greatest impact on reducing cadmium exposures from the food supply. Practical Application The presence of cadmium in food is highly variable and highly dependent on the geographical location, the bioavailability of cadmium from the soil, crop genetics, and agronomic practices used. This study can assist the FDA in determining where to focus resources so that research and regulatory efforts can have the greatest impact on reducing cadmium exposures from the food supply.
Collapse
Affiliation(s)
- Heather R Schaefer
- Center for Food Safety and Applied Nutrition (CFSAN), US Food and Drug Administration (FDA), 5001 Campus Drive, College Park, MD, 20740, U.S.A
| | - Sherri Dennis
- Center for Food Safety and Applied Nutrition (CFSAN), US Food and Drug Administration (FDA), 5001 Campus Drive, College Park, MD, 20740, U.S.A
| | - Suzanne Fitzpatrick
- Center for Food Safety and Applied Nutrition (CFSAN), US Food and Drug Administration (FDA), 5001 Campus Drive, College Park, MD, 20740, U.S.A
| |
Collapse
|
247
|
Qiu M, Li T, Gao X, Yin G, Zhou J. Effects of urbanization on Cd accumulation in agricultural soils: From the perspective of accessibility gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134799. [PMID: 31726416 DOI: 10.1016/j.scitotenv.2019.134799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Road accessibility clearly reflects the spatial heterogeneity of urbanization. This study therefore adopted accessibility gradient to analyze the effects of urbanization on Cadmium (Cd) accumulation in agricultural soils. In total, 212 soil samples were collected along the accessibility gradient from agricultural soils in the Guangzhou-Foshan metropolitan region. Cd concentration showed a clearly decreasing pattern in agricultural soils with a decrease in accessibility level. The decreasing patterns varied in different accessibility ranges. The urban-rural ecotone (accessibility range 10-15) was the region with the most drastic changes in Cd accumulation. The influencing factors of Cd accumulation in agricultural soils mainly include industrial pollutants, agriculture chemicals, mining activities, domestic wastes, and soil properties. The importance of these factors varies across different accessibility ranges. Our findings imply that the characteristic variation of Cd accumulation with the road accessibility gradient must be considered in the formulation of targeted policies for controlling Cd contamination in agricultural soils.
Collapse
Affiliation(s)
- Menglong Qiu
- Center for Land Resource Research in Northwest China, Shaanxi Normal University, Xi'an 710119, China; Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, Shaanxi 710075, China.
| | - Tao Li
- Center for Land Resource Research in Northwest China, Shaanxi Normal University, Xi'an 710119, China
| | - Xingchuan Gao
- Center for Land Resource Research in Northwest China, Shaanxi Normal University, Xi'an 710119, China
| | - Guanyi Yin
- College of Geography and Environment, Shandong Normal University, Jinan 250358, China
| | - Jian Zhou
- Center for Land Resource Research in Northwest China, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
248
|
Lahori AH, Mierzwa-Hersztek M, Rashid M, Kalhoro SA, Memon M, Naheed Z, Ahmed M, Zhang Z. Residual effects of tobacco biochar along with different fixing agents on stabilization of trace elements in multi-metal contaminated soils. J Environ Sci (China) 2020; 87:299-309. [PMID: 31791503 DOI: 10.1016/j.jes.2019.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The residual effect of tobacco biochar (TB ≥ 500°C) mono and co-application with Ca-hydroxide (CH), Ca-bentonite (CB) and natural zeolite (NZ) on the bio-availability of trace elements TE(s) in alkaline soils has not been deeply studied yet. A pot study that had earlier been investigated TB mono and blended with CH, CB and NZ on the immobilization of Pb, Cu Cd, and Zn by Chinese cabbage. Maize crop in the rotation was selected as test plant to assess the residual impact of amendments on stabilization of Pb, Cu Cd, and Zn in mine polluted (M-P), smelter heavily and low polluted (S-HP and S-LP, respectively) soils. The obtained results showed that stabilization of Pb, Cd, Cu and Zn reached 63.84% with TB + CB, 61.19% with TB + CH, 83.31% with TB + CH and 35.27% with TB + CH for M-P soil, 36.46% with TB + NZ, 38.46% with TB + NZ, 19.40% with TB + CH and 62.43% with TB + CH for S-LP soil, 52.94% TB + NZ, 57.65% with TB + NZ, 52.94% with TB + NZ, and 28.44% with TB + CH for S-LP soil. Conversely, TB + CH and TB alone had mobilized Pb and Zn up to 19.29% and 34.96% in M-P soil. The mobility of Zn reached 8.38% with TB + CB and 66.03% with TB for S-HP and S-LP soils. The uptake and accumulation of Pb, Cd, Cu and Zn in shoot and root were reduced in three polluted soils. Overall, the combination of TB along with CH, CB and NZ has been proven to be effective in Pb, Cd, Cu and Zn polluted mine/smelter soils restoration.
Collapse
Affiliation(s)
- Altaf Hussain Lahori
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China; Department of Environmental Sciences, Sindh Madressatul Islam University, Karachi, Pakistan
| | - Monika Mierzwa-Hersztek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakowal, Mickiewicza 2131-120, Krakow, Poland
| | - Muhammad Rashid
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal 90150, Pakistan
| | - Shahmir Ali Kalhoro
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal 90150, Pakistan
| | - Mehrunisa Memon
- Department of Soil Science, Sindh Agriculture University, Tandojam, Pakistan
| | - Zobia Naheed
- Agriculture Research Station, Baffa, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Muneer Ahmed
- Faculty of Agriculture, Lasbela University of Agriculture, Water and Marine Sciences, Uthal 90150, Pakistan
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shannxi 712100, China.
| |
Collapse
|
249
|
Ibrahim AB, Zidan AS, Aly AA, Mosbah HK, Mahmoud GA. Mesoporous cadmium sulfide nanoparticles derived from a new cadmium anthranilato complex: Characterization and induction of morphological abnormalities in pathogenic fungi. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ahmed B.M. Ibrahim
- Department of Chemistry, Faculty of ScienceAssiut University Assiut 71515 Egypt
| | - Amna S.A. Zidan
- Department of Chemistry, Faculty of ScienceAssiut University Assiut 71515 Egypt
| | - Aref A.M. Aly
- Department of Chemistry, Faculty of ScienceAssiut University Assiut 71515 Egypt
| | - Hanan K. Mosbah
- Department of Chemistry, Faculty of ScienceAssiut University Assiut 71515 Egypt
| | | |
Collapse
|
250
|
Interactive Effects of Salicylic Acid and Nitric Oxide in Enhancing Rice Tolerance to Cadmium Stress. Int J Mol Sci 2019; 20:ijms20225798. [PMID: 31752185 PMCID: PMC6888396 DOI: 10.3390/ijms20225798] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/29/2022] Open
Abstract
Cadmium (Cd) is one of the prominent environmental hazards, affecting plant productivity and posing human health risks worldwide. Although salicylic acid (SA) and nitric oxide (NO) are known to have stress mitigating roles, little was explored on how they work together against Cd-toxicity in rice. This study evaluated the individual and combined effects of SA and sodium nitroprusside (SNP), a precursor of NO, on Cd-stress tolerance in rice. Results revealed that Cd at toxic concentrations caused rice biomass reduction, which was linked to enhanced accumulation of Cd in roots and leaves, reduced photosynthetic pigment contents, and decreased leaf water status. Cd also potentiated its phytotoxicity by triggering reactive oxygen species (ROS) generation and depleting several non-enzymatic and enzymatic components in rice leaves. In contrast, SA and/or SNP supplementation with Cd resulted in growth recovery, as evidenced by greater biomass content, improved leaf water content, and protection of photosynthetic pigments. These signaling molecules were particularly effective in restricting Cd uptake and accumulation, with the highest effect being observed in “SA + SNP + Cd” plants. SA and/or SNP alleviated Cd-induced oxidative damage by reducing ROS accumulation and malondialdehyde production through the maintenance of ascorbate and glutathione levels, and redox status, as well as the better activities of antioxidant enzymes superoxide dismutase, catalase, glutathione S-transferase, and monodehydroascorbate reductase. Combined effects of SA and SNP were observed to be more prominent in Cd-stress mitigation than the individual effects of SA followed by that of SNP, suggesting that SA and NO in combination more efficiently boosted physiological and biochemical responses to alleviate Cd-toxicity than either SA or NO alone. This finding signifies a cooperative action of SA and NO in mitigating Cd-induced adverse effects in rice, and perhaps in other crop plants.
Collapse
|