201
|
Wu J, Mu Q, Thiviyanathan V, Annapragada A, Vigneswaran N. Cancer stem cells are enriched in Fanconi anemia head and neck squamous cell carcinomas. Int J Oncol 2014; 45:2365-72. [PMID: 25340704 PMCID: PMC4215586 DOI: 10.3892/ijo.2014.2677] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/19/2014] [Indexed: 01/06/2023] Open
Abstract
Fanconi anemia (FA) patients have an increased risk of head and neck squamous cell carcinoma (HNSCC) at a higher rate with no apparent risk factors. HNSCC of FA patients is an aggressive tumor characterized by multifocal origin, early metastases and frequent recurrences. Given that cancer stem cells (CSC) drive tumorigenesis, tumor recurrence and metastasis, in this study, we characterized the CSC population in FA and sporadic HNSCC. The Aldefluor assay was used to characterize and isolate CSC with high aldehyde dehydrogenase (ALDH) activity (ALDHpos) in cell lines derived from FA and sporadic HNSCC. Isolated ALDHpos and ALDHneg cells were examined for the expression of stemness genes using reverse transcription-polymerase chain reaction (RT-PCR) array. Tumor cell-derived FA and sporadic HNSCC were examined for their ability to form tumorspheres in vitro. Stem-like cell population in FA and sporadic HNSCC in human and mouse xenograft tumors were evaluated using ALDH isoform 1 (ALDH1) immunohistochemistry. FA‑HNSCC cell lines harbor a greater proportion of ALDHpos cells (15-31%) compared to sporadic HNSCC (10%). Expression of Nanog, Oct-3/4 and Stella, molecular markers of undifferentiated embryonic stem (ES) cells were detected in the ALDHpos FA‑HNSCC cells and not in the ALDHneg cells. FA‑HNSCC cell lines revealed enhanced in vitro tumorsphere formation compared to sporadic HNSCC cells. A higher percentage of ALDH1pos tumor cells are noted in the human and mouse xenograft tumors of FA‑HNSCC compared to sporadic HNSCC tumors. FA‑HNSCC are highly enriched for CSC and may serve as a model to develop CSC-targeted therapies for HNSCC.
Collapse
Affiliation(s)
- Jean Wu
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, Houston, TX 77054, USA
| | - Qingshan Mu
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, Houston, TX 77054, USA
| | - Varatharasa Thiviyanathan
- Department of Nanomedicine and Biomedical Engineering, The University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Ananth Annapragada
- The Singleton Department of Pediatric Radiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nadarajah Vigneswaran
- Department of Diagnostic and Biomedical Sciences, The University of Texas School of Dentistry at Houston, Houston, TX 77054, USA
| |
Collapse
|
202
|
Tanori M, Pasquali E, Leonardi S, Casciati A, Giardullo P, De Stefano I, Mancuso M, Saran A, Pazzaglia S. Developmental and oncogenic radiation effects on neural stem cells and their differentiating progeny in mouse cerebellum. Stem Cells 2014; 31:2506-16. [PMID: 23897709 DOI: 10.1002/stem.1485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/07/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023]
Abstract
Neural stem cells are highly susceptible to radiogenic DNA damage, however, little is known about their mechanisms of DNA damage response (DDR) and the long-term consequences of genotoxic exposure. Patched1 heterozygous mice (Ptc1(+/-)) provide a powerful model of medulloblastoma (MB), a frequent pediatric tumor of the cerebellum. Irradiation of newborn Ptc1(+/-) mice dramatically increases the frequency and shortens the latency of MB. In this model, we investigated the mechanisms through which multipotent neural progenitors (NSCs) and fate-restricted progenitor cells (PCs) of the cerebellum respond to DNA damage induced by radiation, and the long-term developmental and oncogenic consequences. These responses were assessed in mice exposed to low (0.25 Gy) or high (3 Gy) radiation doses at embryonic day 13.5 (E13.5), when NSCs giving rise to the cerebellum are specified but the external granule layer (EGL) has not yet formed, or at E16.5, during the expansion of granule PCs to form the EGL. We found crucial differences in DDR and apoptosis between NSCs and fate-restricted PCs, including lack of p21 expression in NSCs. NSCs also appear to be resistant to oncogenesis from low-dose radiation exposure but more vulnerable at higher doses. In addition, the pathway to DNA repair and the pattern of oncogenic alterations were strongly dependent on age at exposure, highlighting a differentiation-stage specificity of DNA repair pathways in NSCs and PCs. These findings shed light on the mechanisms used by NSCs and PCs to maintain genome integrity during neurogenesis and may have important implications for radiation risk assessment and for development of targeted therapies against brain tumors.
Collapse
Affiliation(s)
- Mirella Tanori
- Laboratory of Radiation Biology and Biomedicine, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), CR-Casaccia, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Vahidi Ferdousi L, Rocheteau P, Chayot R, Montagne B, Chaker Z, Flamant P, Tajbakhsh S, Ricchetti M. More efficient repair of DNA double-strand breaks in skeletal muscle stem cells compared to their committed progeny. Stem Cell Res 2014; 13:492-507. [PMID: 25262445 DOI: 10.1016/j.scr.2014.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 07/14/2014] [Accepted: 08/15/2014] [Indexed: 01/17/2023] Open
Abstract
The loss of genome integrity in adult stem cells results in accelerated tissue aging and is possibly cancerogenic. Adult stem cells in different tissues appear to react robustly to DNA damage. We report that adult skeletal stem (satellite) cells do not primarily respond to radiation-induced DNA double-strand breaks (DSBs) via differentiation and exhibit less apoptosis compared to other myogenic cells. Satellite cells repair these DNA lesions more efficiently than their committed progeny. Importantly, non-proliferating satellite cells and post-mitotic nuclei in the fiber exhibit dramatically distinct repair efficiencies. Altogether, reduction of the repair capacity appears to be more a function of differentiation than of the proliferation status of the muscle cell. Notably, satellite cells retain a high efficiency of DSB repair also when isolated from the natural niche. Finally, we show that repair of DSB substrates is not only very efficient but, surprisingly, also very accurate in satellite cells and that accurate repair depends on the key non-homologous end-joining factor DNA-PKcs.
Collapse
Affiliation(s)
- Leyla Vahidi Ferdousi
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France; Sorbonne Universités, UPMC, University of Paris 06, IFD-ED 515, Place Jussieu, Paris, 72252, France
| | - Pierre Rocheteau
- Institut Pasteur, Stem Cells & Development, Dept. of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS URA 2578, Paris, France
| | - Romain Chayot
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France
| | - Benjamin Montagne
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France
| | - Zayna Chaker
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France
| | - Patricia Flamant
- Institut Pasteur, Stem Cells & Development, Dept. of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS URA 2578, Paris, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells & Development, Dept. of Developmental and Stem Cell Biology, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS URA 2578, Paris, France
| | - Miria Ricchetti
- Institut Pasteur, Yeast Molecular Genetics, Dept. of Genomes and Genetics, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France; CNRS UMR 3525, Team Stability of Nuclear and Mitochondrial DNA, Paris, France.
| |
Collapse
|
204
|
Abstract
A quintessential trait of stem cells is embedded in their ability to self-renew without incurring DNA damage as a result of genome replication. One key self-renewal factor is the nucleolar GTP-binding protein nucleostemin (also known as guanine-nucleotide-binding protein-like 3, GNL3, in invertebrate species). Several studies have recently pointed to an unexpected role of nucleostemin in safeguarding the genome integrity of stem and cancer cells. Since its discovery, the predominant presence of nucleostemin in the nucleolus has led to the notion that it might function in the card-carrying event of the nucleolus--the biogenesis of ribosomes. As tantalizing as this might be, a ribosomal role of nucleostemin is refuted by evidence from recent studies, which argues that nucleostemin depletion triggers a primary event of DNA damage in S phase cells that then leads to ribosomal perturbation. Furthermore, there have been conflicting reports regarding the p53 dependency of nucleostemin activity and the cell cycle arrest profile of nucleostemin-depleted cells. In this Commentary, I propose a model that explains how the many contradictory observations surrounding nucleostemin can be reconciled and suggest that this protein might not be as multi-tasking as has been previously perceived. The story of nucleostemin highlights the complexity of the underlying molecular events associated with the appearance of any cell biological phenotype and also signifies a new understanding of the genome maintenance program in stem cells.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
205
|
Botchkarev VA, Flores ER. p53/p63/p73 in the epidermis in health and disease. Cold Spring Harb Perspect Med 2014; 4:4/8/a015248. [PMID: 25085956 DOI: 10.1101/cshperspect.a015248] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although p53 has long been known as the "guardian of the genome" with a role in tumor suppression in many tissues, the discovery of two p53 ancestral genes, p63 and p73, more than a decade ago has triggered a considerable amount of research into the role of these genes in skin development and diseases. In this review, we primarily focus on mechanisms of action of p53 and p63, which are the best-studied p53 family members in the skin. The existence of multiple isoforms and their roles as transcriptional activators and repressors are key to their function in multiple biological processes including the control of skin morphogenesis, regeneration, tumorigenesis, and response to chemotherapy. Last, we provide directions for further research on this family of genes in skin biology and pathology.
Collapse
Affiliation(s)
- Vladimir A Botchkarev
- Centre for Skin Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Elsa R Flores
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, Metastasis Research Center, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
206
|
FANCA knockout in human embryonic stem cells causes a severe growth disadvantage. Stem Cell Res 2014; 13:240-50. [PMID: 25108529 DOI: 10.1016/j.scr.2014.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 11/22/2022] Open
Abstract
Fanconi anemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure (BMF) during childhood, aside from numerous congenital abnormalities. FA mouse models have been generated; however, they do not fully mimic the hematopoietic phenotype. As there is mounting evidence that the hematopoietic impairment starts already in utero, a human pluripotent stem cell model would constitute a more appropriate system to investigate the mechanisms underlying BMF in FA and its developmental basis. Using zinc finger nuclease (ZFN) technology, we have created a knockout of FANCA in human embryonic stem cells (hESC). We introduced a selection cassette into exon 2 thereby disrupting the FANCA coding sequence and found that whereas mono-allelically targeted cells retain an unaltered proliferation potential, disruption of the second allele causes a severe growth disadvantage. As a result, heterogeneous cultures arise due to the presence of cells still carrying an unaffected FANCA allele, quickly outgrowing the knockout cells. When pure cultures of FANCA knockout hESC are pursued either through selection or single cell cloning, this rapidly results in growth arrest and such cultures cannot be maintained. These data highlight the importance of a functional FA pathway at the pluripotent stem cell stage.
Collapse
|
207
|
Skvortsov S, Debbage P, Lukas P, Skvortsova I. Crosstalk between DNA repair and cancer stem cell (CSC) associated intracellular pathways. Semin Cancer Biol 2014; 31:36-42. [PMID: 24954010 DOI: 10.1016/j.semcancer.2014.06.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 01/08/2023]
Abstract
DNA damaging agents (ionizing radiation and chemotherapeutics) are considered as most effective in cancer treatment. However, there is a subpopulation of carcinoma cells within the tumour demonstrating resistance to DNA damaging treatment approaches. It is suggested that limited tumour response to this kind of therapy can be associated with specific molecular properties of carcinoma stem cells (CSCs) representing the most refractory cell subpopulation. This review article presents novel data about molecular features of CSCs underlying DNA damage response and related intracellular signalling.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.
| | - Paul Debbage
- Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Lukas
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| | - Ira Skvortsova
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
208
|
Raha D, Wilson TR, Peng J, Peterson D, Yue P, Evangelista M, Wilson C, Merchant M, Settleman J. The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Res 2014; 74:3579-90. [PMID: 24812274 DOI: 10.1158/0008-5472.can-13-3456] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Selective kinase inhibitors have emerged as an important class of cancer therapeutics, and several such drugs are now routinely used to treat advanced-stage disease. However, their clinical benefit is typically short-lived because of the relatively rapid acquisition of drug resistance following treatment response. Accumulating preclinical and clinical data point to a role for a heterogeneous response to treatment within a subpopulation of tumor cells that are intrinsically drug-resistant, such as cancer stem cells. We have previously described an epigenetically determined reversibly drug-tolerant subpopulation of cancer cells that share some properties with cancer stem cells. Here, we define a requirement for the previously established cancer stem cell marker ALDH (aldehyde dehydrogenase) in the maintenance of this drug-tolerant subpopulation. We find that ALDH protects the drug-tolerant subpopulation from the potentially toxic effects of elevated levels of reactive oxygen species (ROS) in these cells, and pharmacologic disruption of ALDH activity leads to accumulation of ROS to toxic levels, consequent DNA damage, and apoptosis specifically within the drug-tolerant subpopulation. Combining ALDH inhibition with other kinase-directed treatments delayed treatment relapse in vitro and in vivo, revealing a novel combination treatment strategy for cancers that might otherwise rapidly relapse following single-agent therapy.
Collapse
Affiliation(s)
- Debasish Raha
- Authors' Affiliations: Departments of Discovery Oncology
| | | | | | | | - Peng Yue
- Bioinformatics, Genentech, Inc., South San Francisco, California
| | | | | | | | - Jeff Settleman
- Authors' Affiliations: Departments of Discovery Oncology,
| |
Collapse
|
209
|
Liu JC, Lerou PH, Lahav G. Stem cells: balancing resistance and sensitivity to DNA damage. Trends Cell Biol 2014; 24:268-74. [PMID: 24721782 PMCID: PMC4342985 DOI: 10.1016/j.tcb.2014.03.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 01/01/2023]
Abstract
Embryonic stem cells (ESCs) are known to be very sensitive to DNA damage and undergo rapid apoptosis even after low-damage doses. By contrast, adult stem cells show variable sensitivity to damage. Here we describe the multiple pathways that have been proposed to affect the sensitivity of stem cells to damage, including proximity to the apoptotic threshold (mitochondrial priming) and the p53 signaling pathway, through activation of transcription or direct interaction with proapoptotic proteins in the cytoplasm. We also discuss which cellular factors might connect mitochondrial priming with pluripotency and the potential therapeutic advances that can be achieved by better understanding of the molecular mechanisms leading to sensitivity or resistance of embryonic or adult stem cells from different tissues.
Collapse
Affiliation(s)
- Julia C Liu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Paul H Lerou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
210
|
Pawar SA, Shao L, Chang J, Wang W, Pathak R, Zhu X, Wang J, Hendrickson H, Boerma M, Sterneck E, Zhou D, Hauer-Jensen M. C/EBPδ deficiency sensitizes mice to ionizing radiation-induced hematopoietic and intestinal injury. PLoS One 2014; 9:e94967. [PMID: 24747529 PMCID: PMC3991713 DOI: 10.1371/journal.pone.0094967] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/21/2014] [Indexed: 12/20/2022] Open
Abstract
Knowledge of the mechanisms involved in the radiation response is critical for developing interventions to mitigate radiation-induced injury to normal tissues. Exposure to radiation leads to increased oxidative stress, DNA-damage, genomic instability and inflammation. The transcription factor CCAAT/enhancer binding protein delta (Cebpd; C/EBPδ is implicated in regulation of these same processes, but its role in radiation response is not known. We investigated the role of C/EBPδ in radiation-induced hematopoietic and intestinal injury using a Cebpd knockout mouse model. Cebpd−/− mice showed increased lethality at 7.4 and 8.5 Gy total-body irradiation (TBI), compared to Cebpd+/+ mice. Two weeks after a 6 Gy dose of TBI, Cebpd−/− mice showed decreased recovery of white blood cells, neutrophils, platelets, myeloid cells and bone marrow mononuclear cells, decreased colony-forming ability of bone marrow progenitor cells, and increased apoptosis of hematopoietic progenitor and stem cells compared to Cebpd+/+ controls. Cebpd−/− mice exhibited a significant dose-dependent decrease in intestinal crypt survival and in plasma citrulline levels compared to Cebpd+/+ mice after exposure to radiation. This was accompanied by significantly decreased expression of γ-H2AX in Cebpd−/− intestinal crypts and villi at 1 h post-TBI, increased mitotic index at 24 h post-TBI, and increase in apoptosis in intestinal crypts and stromal cells of Cebpd−/− compared to Cebpd+/+ mice at 4 h post-irradiation. This study uncovers a novel biological function for C/EBPδ in promoting the response to radiation-induced DNA-damage and in protecting hematopoietic and intestinal tissues from radiation-induced injury.
Collapse
Affiliation(s)
- Snehalata A. Pawar
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| | - Lijian Shao
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jianhui Chang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Wenze Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Xiaoyan Zhu
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Junru Wang
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Howard Hendrickson
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Marjan Boerma
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Esta Sterneck
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, United States of America
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
| |
Collapse
|
211
|
Campbell PA, Rudnicki MA. Oct4 interaction with Hmgb2 regulates Akt signaling and pluripotency. Stem Cells 2014; 31:1107-20. [PMID: 23495099 DOI: 10.1002/stem.1365] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/26/2013] [Accepted: 01/31/2013] [Indexed: 12/20/2022]
Abstract
In pluripotent stem cells, bivalent domains mark the promoters of developmentally regulated loci. Histones in these chromatin regions contain coincident epigenetic modifications of gene activation and repression. How these marks are transmitted to maintain the pluripotent state in daughter progeny remains poorly understood. Our study demonstrates that Oct4 post-translational modifications (PTMs) form a positive feedback loop, which promotes Akt activation and interaction with Hmgb2 and the SET complex. This preserves H3K27me3 modifications in daughter progeny and maintains the pluripotent gene expression signature in murine embryonic stem cells. However, if Oct4 is not phosphorylated, a negative feedback loop is formed that inactivates Akt and initiates the DNA damage response. Oct4 sumoylation then is required for G1/S progression and transmission of the repressive H3K27me3 mark. Therefore, PTMs regulate the ability of Oct4 to direct the spatio-temporal formation of activating and repressing complexes to orchestrate chromatin plasticity and pluripotency. Our work highlights a previously unappreciated role for Oct4 PTM-dependent interactions in maintaining restrained Akt signaling and promoting a primitive epigenetic state.
Collapse
Affiliation(s)
- Pearl A Campbell
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
212
|
Belle JI, Nijnik A. H2A-DUBbing the mammalian epigenome: expanding frontiers for histone H2A deubiquitinating enzymes in cell biology and physiology. Int J Biochem Cell Biol 2014; 50:161-74. [PMID: 24647359 DOI: 10.1016/j.biocel.2014.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 12/16/2022]
Abstract
Posttranslational modifications of histone H2A through the attachment of ubiquitin or poly-ubiquitin conjugates are common in mammalian genomes and play an important role in the regulation of chromatin structure, gene expression, and DNA repair. Histone H2A deubiquitinases (H2A-DUBs) are a group of structurally diverse enzymes that catalyze the removal ubiquitin from histone H2A. In this review we provide a concise summary of the mechanisms that mediate histone H2A ubiquitination in mammalian cells, and review our current knowledge of mammalian H2A-DUBs, their biochemical activities, and recent developments in our understanding of their functions in mammalian physiology.
Collapse
Affiliation(s)
- Jad I Belle
- Department of Physiology, McGill University, Canada; Complex Traits Group, McGill University, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Canada; Complex Traits Group, McGill University, Canada.
| |
Collapse
|
213
|
Dong CM, Wang XL, Wang GM, Zhang WJ, Zhu L, Gao S, Yang DJ, Qin Y, Liang QJ, Chen YL, Deng HT, Ning K, Liang AB, Gao ZL, Xu J. A stress-induced cellular aging model with postnatal neural stem cells. Cell Death Dis 2014; 5:e1116. [PMID: 24625975 PMCID: PMC3973228 DOI: 10.1038/cddis.2014.82] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/05/2014] [Accepted: 01/07/2014] [Indexed: 12/21/2022]
Abstract
Aging refers to the physical and functional decline of the tissues over time that often leads to age-related degenerative diseases. Accumulating evidence implicates that the senescence of neural stem cells (NSCs) is of paramount importance to the aging of central neural system (CNS). However, exploration of the underlying molecular mechanisms has been hindered by the lack of proper aging models to allow the mechanistic examination within a reasonable time window. In the present study, we have utilized a hydroxyurea (HU) treatment protocol and effectively induced postnatal subventricle NSCs to undergo cellular senescence as determined by augmented senescence-associated-β-galactosidase (SA-β-gal) staining, decreased proliferation and differentiation capacity, increased G0/G1 cell cycle arrest, elevated reactive oxygen species (ROS) level and diminished apoptosis. These phenotypic changes were accompanied by a significant increase in p16, p21 and p53 expression, as well as a decreased expression of key proteins in various DNA repair pathways such as xrcc2, xrcc3 and ku70. Further proteomic analysis suggests that multiple pathways are involved in the HU-induced NSC senescence, including genes related to DNA damage and repair, mitochondrial dysfunction and the increase of ROS level. Intriguingly, compensatory mechanisms may have also been initiated to interfere with apoptotic signaling pathways and to minimize the cell death by downregulating Bcl2-associated X protein (BAX) expression. Taken together, we have successfully established a cellular model that will be of broad utilities to the molecular exploration of NSC senescence and aging.
Collapse
Affiliation(s)
- C-M Dong
- 1] East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China [2] Tenth People's Hospital Affiliated to Tongji University, Shanghai, People's Republic of China [3] Department of Anatomy and Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, People's Republic of China
| | - X-L Wang
- East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - G-M Wang
- East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - W-J Zhang
- Department of Hematology, Tongji Hospital of Tongji University School of Medicine, Shanghai, People's Republic of China
| | - L Zhu
- East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - S Gao
- East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - D-J Yang
- East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Y Qin
- East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| | - Q-J Liang
- 1] Tenth People's Hospital Affiliated to Tongji University, Shanghai, People's Republic of China [2] Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Y-L Chen
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - H-T Deng
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - K Ning
- 1] East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China [2] Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - A-B Liang
- Department of Hematology, Tongji Hospital of Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Z-L Gao
- 1] Tenth People's Hospital Affiliated to Tongji University, Shanghai, People's Republic of China [2] Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - J Xu
- East Hospital, Tongji University School of Medicine, Shanghai 200120, People's Republic of China
| |
Collapse
|
214
|
Abstract
In recent years, our views on how DNA and genes are organised and regulated have evolved significantly. One example is provided by reports that single DNA strands in the double helix could carry distinct forms of information. That chromatids carrying old and nascently replicated DNA strands are recognised by the mitotic machinery, then segregated in a concerted way to distinct daughter cells after cell division is remarkable. Notably, this phenomenon in several cases has been associated with the cell fate choice of resulting daughter cells. Here, we review the evidence for asymmetric or template DNA strand segregation in mammals with a focus on skeletal muscle.
Collapse
Affiliation(s)
- Brendan Evano
- Institut Pasteur, Stem Cells & Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 rue du Dr. Roux, Paris 75015, France
| | | |
Collapse
|
215
|
Abstract
This review discusses the processes of DNA-damage-response and DNA-damage repair in stem and progenitor cells of several tissues. The long life-span of stem cells suggests that they may respond differently to DNA damage than their downstream progeny and, indeed, studies have begun to elucidate the unique stem cell response mechanisms to DNA damage. Because the DNA damage responses in stem cells and progenitor cells are distinctly different, stem and progenitor cells should be considered as two different entities from this point of view. Hematopoietic and mammary stem cells display a unique DNA-damage response, which involves active inhibition of apoptosis, entry into the cell-cycle, symmetric division, partial DNA repair and maintenance of self-renewal. Each of these biological events depends on the up-regulation of the cell-cycle inhibitor p21. Moreover, inhibition of apoptosis and symmetric stem cell division are the consequence of the down-regulation of the tumor suppressor p53, as a direct result of p21 up-regulation. A deeper understanding of these processes is required before these findings can be translated into human anti-aging and anti-cancer therapies. One needs to clarify and dissect the pathways that control p21 regulation in normal and cancer stem cells and define (a) how p21 blocks p53 functions in stem cells and (b) how p21 promotes DNA repair in stem cells. Is this effect dependent on p21s ability to inhibit p53? Such molecular knowledge may pave the way to methods for maintaining short-term tissue reconstitution while retaining long-term cellular and genomic integrity.
Collapse
|
216
|
Zhang J, Yang R, Zhou D, Rudolph KL, Meng A, Ju Z. Exonuclease 1 is essential for maintaining genomic stability and the proliferative capacity of neural but not hematopoietic stem cells. Stem Cell Res 2014; 12:250-9. [DOI: 10.1016/j.scr.2013.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 09/26/2013] [Accepted: 11/01/2013] [Indexed: 12/29/2022] Open
|
217
|
Abstract
Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases.
Collapse
Affiliation(s)
- Yunjoon Jung
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andrew S Brack
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Boston, Massachusetts, USA
| |
Collapse
|
218
|
Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 2013; 14:149-59. [PMID: 24332836 DOI: 10.1016/j.stem.2013.11.008] [Citation(s) in RCA: 438] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/20/2013] [Accepted: 11/08/2013] [Indexed: 12/11/2022]
Abstract
The intestinal epithelium continually self-renews and can rapidly regenerate after damage. Lgr5 marks mitotically active intestinal stem cells (ISCs). Importantly, intestinal homeostasis can be maintained after depletion of Lgr5(+) cells due to the activation of Lgr5(-) reserve ISCs. The Lgr5(-) ISC populations are thought to play a similar role during intestinal regeneration following radiation-induced damage. We tested this regeneration hypothesis by combining depletion of Lgr5(+) ISCs with radiation exposure. In contrast to the negligible effect of Lgr5(+) ISC loss during homeostasis, depletion of Lgr5(+) cells during radiation-induced damage and subsequent repair caused catastrophic crypt loss and deterioration of crypt-villus architecture. Interestingly though, we found that crypts deficient for Lgr5(+) cells are competent to undergo hyperplasia upon loss of Apc. These data argue that Lgr5(-) reserve stem cells are radiosensitive and that Lgr5(+) cells are crucial for robust intestinal regeneration following radiation exposure but are dispensable for premalignant hyperproliferation.
Collapse
Affiliation(s)
- Ciara Metcalfe
- Molecular Oncology Department, Genentech, South San Francisco, CA 94080, USA
| | - Noelyn M Kljavin
- Molecular Oncology Department, Genentech, South San Francisco, CA 94080, USA
| | - Ryan Ybarra
- Molecular Oncology Department, Genentech, South San Francisco, CA 94080, USA
| | | |
Collapse
|
219
|
HDAC inhibitor confers radiosensitivity to prostate stem-like cells. Br J Cancer 2013; 109:3023-33. [PMID: 24220693 PMCID: PMC3859953 DOI: 10.1038/bjc.2013.691] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/05/2013] [Accepted: 10/09/2013] [Indexed: 01/06/2023] Open
Abstract
Background: Radiotherapy can be an effective treatment for prostate cancer, but radiorecurrent tumours do develop. Considering prostate cancer heterogeneity, we hypothesised that primitive stem-like cells may constitute the radiation-resistant fraction. Methods: Primary cultures were derived from patients undergoing resection for prostate cancer or benign prostatic hyperplasia. After short-term culture, three populations of cells were sorted, reflecting the prostate epithelial hierarchy, namely stem-like cells (SCs, α2β1integrinhi/CD133+), transit-amplifying (TA, α2β1integrinhi/CD133−) and committed basal (CB, α2β1integrinlo) cells. Radiosensitivity was measured by colony-forming efficiency (CFE) and DNA damage by comet assay and DNA damage foci quantification. Immunofluorescence and flow cytometry were used to measure heterochromatin. The HDAC (histone deacetylase) inhibitor Trichostatin A was used as a radiosensitiser. Results: Stem-like cells had increased CFE post irradiation compared with the more differentiated cells (TA and CB). The SC population sustained fewer lethal double-strand breaks than either TA or CB cells, which correlated with SCs being less proliferative and having increased levels of heterochromatin. Finally, treatment with an HDAC inhibitor sensitised the SCs to radiation. Interpretation: Prostate SCs are more radioresistant than more differentiated cell populations. We suggest that the primitive cells survive radiation therapy and that pre-treatment with HDAC inhibitors may sensitise this resistant fraction.
Collapse
|
220
|
Yamashita M, Nitta E, Nagamatsu G, Ikushima YM, Hosokawa K, Arai F, Suda T. Nucleostemin is indispensable for the maintenance and genetic stability of hematopoietic stem cells. Biochem Biophys Res Commun 2013; 441:196-201. [DOI: 10.1016/j.bbrc.2013.10.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/08/2013] [Indexed: 01/10/2023]
|
221
|
Di J, Duiveman-de Boer T, Figdor CG, Torensma R. Aiming to immune elimination of ovarian cancer stem cells. World J Stem Cells 2013; 5:149-162. [PMID: 24179603 PMCID: PMC3812519 DOI: 10.4252/wjsc.v5.i4.149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/15/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023] Open
Abstract
Ovarian cancer accounts for only 3% of all cancers in women, but it causes more deaths than any other gynecologic cancer. Treatment with chemotherapy and cytoreductive surgery shows a good response to the therapy. However, in a large proportion of the patients the tumor grows back within a few years. Cancer stem cells, that are less responsive to these treatments, are blamed for this recurrence of disease. Immune therapy either cellular or humoral is a novel concept to treat cancer. It is based on the notice that immune cells invade the tumor. However, the tumor invest heavily to escape from immune elimination by recruiting several immune suppressive mechanisms. These processes are normally in place to limit excessive immune activation and prevent autoimmune phenomena. Here, we discuss current knowledge about the immune (suppressive) status in ovarian cancer. Moreover, we discuss the immunological targets of ovarian cancer stem cells.
Collapse
|
222
|
Charitou P, Burgering BMT. Forkhead box(O) in control of reactive oxygen species and genomic stability to ensure healthy lifespan. Antioxid Redox Signal 2013; 19:1400-19. [PMID: 22978495 DOI: 10.1089/ars.2012.4921] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Transcription factors of the Forkhead box O class (FOXOs) are associated with lifespan and play a role in age-related diseases. FOXOs, therefore, serve as a paradigm for developing an understanding as to how age-related diseases, such as cancer and diabetes interconnect with lifespan. Understanding the regulatory inputs on FOXO may reveal how changes in these regulatory signaling pathways affect disease and lifespan. RECENT ADVANCES Numerous regulators of FOXO have now been described and a clear and evolutionary conserved role has emerged for phosphoinositide-3 kinase/protein kinase B (also known as c-Akt or AKT) signaling and c-jun N-terminal kinase signaling. Analysis of FOXO function in the context of these signaling pathways has shown the importance of FOXO-mediated transcriptional regulation on cell cycle progression and other cell fates, such as cell metabolism, stress resistance, and apoptosis in mediating disease and lifespan. CRITICAL ISSUES Persistent DNA damage is also tightly linked to disease and aging; yet, data on a possible link between DNA damage and FOXO have been limited. Here, we discuss possible connections between FOXO and the DNA damage response in the context of the broader role of connecting lifespan and disease. FUTURE DIRECTIONS Understanding the role of lifespan in diseases onset may provide unique and generic possibilities to intervene in disease processes to ensure a healthy lifespan.
Collapse
Affiliation(s)
- Paraskevi Charitou
- Molecular Cancer Research, University Medical Center Utrecht , Utrecht, The Netherlands
| | | |
Collapse
|
223
|
Tomiyasu S, Miyamoto T, Mori M, Yaguchi T, Yakushiji H, Ohno S, Miyake Y, Sakaguchi T, Ueda M, Ohno E. Isolation of side population cells from endometrial cancer cells using a violet laser diode. Hum Cell 2013; 27:36-42. [PMID: 24092528 DOI: 10.1007/s13577-013-0079-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/04/2013] [Indexed: 12/26/2022]
Abstract
Cancer stem cells (CSCs) possess the ability for self-renewal, differentiation, and tumorigenesis and play a role in cancer recurrence and metastasis. CSCs are usually sorted in analysis into side population (SP) cells using ultraviolet (UV) laser (350 nm) excitation; they cannot be stained with Hoechst 33342 because of their efflux ability. However, it is difficult to avoid cell damage using a UV laser. Therefore, we attempted to isolate CSCs using a violet laser (407 nm) excitation to avoid cellular DNA damage. We sorted SP cells and main population (MP) cells from a human endometrial cancer cell line using the FACSAria system equipped with a violet laser and analyzed the biological properties of these cells. SP cells exhibited drug efflux, self-renewal, differentiation abilities, and tumorigenicity. It was found that v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) expression was significantly higher in SP cells than in MP cells. Our results suggest that CSCs exist in the SP fraction sorted using the FACSAria system equipped with a violet laser, which presents a useful tool to isolate small populations of viable putative CSCs from solid tumors and can be used to identify and characterize CSCs.
Collapse
Affiliation(s)
- Satoshi Tomiyasu
- Department of Chemical Technology, Graduate School of Science and Industrial Technology, Kurashiki University of Science and the Arts, Kurashiki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Oliver L, Hue E, Séry Q, Lafargue A, Pecqueur C, Paris F, Vallette FM. Differentiation-related response to DNA breaks in human mesenchymal stem cells. Stem Cells 2013; 31:800-7. [PMID: 23341263 DOI: 10.1002/stem.1336] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 11/25/2012] [Indexed: 12/19/2022]
Abstract
We have recently shown that the in vitro differentiation of human mesenchymal stem cells (hMSCs) was accompanied by an increased sensitivity toward apoptosis; however, the mechanism responsible for this shift is not known. Here, we show that the repair of DNA double-strand breaks (DSBs) was more rapid in undifferentiated hMSCs than in differentiated osteoblasts by quantification of the disappearance of γ-H2AX foci in the nuclei after γ-irradiation-induced DNA damage. In addition, there was a marked and prolonged increase in the level of nuclear Ku70 and an increased phosphorylation of DNA-PKcs. This was accompanied by an augmentation in the phosphorylation of ATM in hMSCs post-irradiation suggesting the nonhomologous end joining repair mechanism. However, when hMSCs were induced to differentiate along the osteogenic or adipogenic pathways; irradiation of these cells caused an expeditious and robust cell death, which was primarily apoptotic. This was in sharp contrast to undifferentiated hMSCs, which were highly resistant to irradiation and/or temozolomide-induced DSBs. In addition, we observed a 95% recovery from DSB in these cells. Our results suggest that apoptosis and DNA repair are major safeguard mechanisms in the control of hMSCs differentiation after DNA damage.
Collapse
Affiliation(s)
- Lisa Oliver
- CRCNA-INSERM UMR 892-CNRS UMR 6299, Nantes, France
| | | | | | | | | | | | | |
Collapse
|
225
|
Resilient and resourceful: genome maintenance strategies in hematopoietic stem cells. Exp Hematol 2013; 41:915-23. [PMID: 24067363 DOI: 10.1016/j.exphem.2013.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 01/08/2023]
Abstract
Blood homeostasis is maintained by a rare population of quiescent hematopoietic stem cells (HSCs) that self-renew and differentiate to give rise to all lineages of mature blood cells. In contrast to most other blood cells, HSCs are preserved throughout life, and the maintenance of their genomic integrity is therefore paramount to ensure normal blood production and to prevent leukemic transformation. HSCs are also one of the few blood cells that truly age and exhibit severe functional decline in old organisms, resulting in impaired blood homeostasis and increased risk for hematologic malignancies. In this review, we present the strategies used by HSCs to cope with the many genotoxic insults that they commonly encounter. We briefly describe the DNA-damaging insults that can affect HSC function and the mechanisms that are used by HSCs to prevent, survive, and repair DNA lesions. We also discuss an apparent paradox in HSC biology, in which the genome maintenance strategies used by HSCs to protect their function in fact render them vulnerable to the acquisition of damaging genetic aberrations.
Collapse
|
226
|
Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 2013; 12:526-42. [PMID: 23812271 DOI: 10.1038/nrd4003] [Citation(s) in RCA: 326] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Approximately 50% of all patients with cancer receive radiation therapy at some point during the course of their treatment, and the majority of these patients are treated with curative intent. Despite recent advances in the planning of radiation treatment and the delivery of image-guided radiation therapy, acute toxicity and potential long-term side effects often limit the ability to deliver a sufficient dose of radiation to control tumours locally. In the past two decades, a better understanding of the hallmarks of cancer and the discovery of specific signalling pathways by which cells respond to radiation have provided new opportunities to design molecularly targeted therapies to increase the therapeutic window of radiation therapy. Here, we review efforts to develop approaches that could improve outcomes with radiation therapy by increasing the probability of tumour cure or by decreasing normal tissue toxicity.
Collapse
|
227
|
Evertts AG, Manning AL, Wang X, Dyson NJ, Garcia BA, Coller HA. H4K20 methylation regulates quiescence and chromatin compaction. Mol Biol Cell 2013; 24:3025-37. [PMID: 23924899 PMCID: PMC3784377 DOI: 10.1091/mbc.e12-07-0529] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The methylation state of K20 on histone H4 is important for proper cell cycle control and chromatin compaction in human fibroblasts. High levels of dimethylated and trimethylated K20 are associated with quiescence, and loss of these modifications causes a more open chromatin conformation and defects in cell cycle progression and exit. The transition between proliferation and quiescence is frequently associated with changes in gene expression, extent of chromatin compaction, and histone modifications, but whether changes in chromatin state actually regulate cell cycle exit with quiescence is unclear. We find that primary human fibroblasts induced into quiescence exhibit tighter chromatin compaction. Mass spectrometry analysis of histone modifications reveals that H4K20me2 and H4K20me3 increase in quiescence and other histone modifications are present at similar levels in proliferating and quiescent cells. Analysis of cells in S, G2/M, and G1 phases shows that H4K20me1 increases after S phase and is converted to H4K20me2 and H4K20me3 in quiescence. Knockdown of the enzyme that creates H4K20me3 results in an increased fraction of cells in S phase, a defect in exiting the cell cycle, and decreased chromatin compaction. Overexpression of Suv4-20h1, the enzyme that creates H4K20me2 from H4K20me1, results in G2 arrest, consistent with a role for H4K20me1 in mitosis. The results suggest that the same lysine on H4K20 may, in its different methylation states, facilitate mitotic functions in M phase and promote chromatin compaction and cell cycle exit in quiescent cells.
Collapse
Affiliation(s)
- Adam G Evertts
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544 Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129 Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104 Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, and Department of Biological Chemistry, David Geffen School of Medicine, Los Angeles, CA 90095
| | | | | | | | | | | |
Collapse
|
228
|
Anversa P, Leri A. Innate regeneration in the aging heart: healing from within. Mayo Clin Proc 2013; 88:871-83. [PMID: 23910414 PMCID: PMC3936323 DOI: 10.1016/j.mayocp.2013.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 12/31/2022]
Abstract
The concept of the heart as a terminally differentiated organ incapable of replacing damaged myocytes has been at the center of cardiovascular research and therapeutic development for the past 50 years. The progressive decline in myocyte number as a function of age and the formation of scarred tissue after myocardial infarction have been interpreted as irrefutable proofs of the postmitotic characteristic of the heart. However, emerging evidence supports a more dynamic view of the heart in which cell death and renewal are vital components of the remodeling process that governs cardiac homeostasis, aging, and disease. The identification of dividing myocytes in the adult and senescent heart raises the important question concerning the origin of these newly formed cells. In vitro and in vivo findings strongly suggest that replicating myocytes derive from lineage determination of resident primitive cells, supporting the notion that cardiomyogenesis is controlled by activation and differentiation of a stem cell compartment. It is the current view that the myocardium is an organ permissive of tissue regeneration mediated by exogenous and endogenous progenitor cells.
Collapse
Affiliation(s)
- Piero Anversa
- Department of Anesthesia, Department of Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | | |
Collapse
|
229
|
Cousin W, Ho ML, Desai R, Tham A, Chen RY, Kung S, Elabd C, Conboy IM. Regenerative capacity of old muscle stem cells declines without significant accumulation of DNA damage. PLoS One 2013; 8:e63528. [PMID: 23704914 PMCID: PMC3660529 DOI: 10.1371/journal.pone.0063528] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 04/07/2013] [Indexed: 01/09/2023] Open
Abstract
The performance of adult stem cells is crucial for tissue homeostasis but their regenerative capacity declines with age, leading to failure of multiple organs. In skeletal muscle this failure is manifested by the loss of functional tissue, the accumulation of fibrosis, and reduced satellite cell-mediated myogenesis in response to injury. While recent studies have shown that changes in the composition of the satellite cell niche are at least in part responsible for the impaired function observed with aging, little is known about the effects of aging on the intrinsic properties of satellite cells. For instance, their ability to repair DNA damage and the effects of a potential accumulation of DNA double strand breaks (DSBs) on their regenerative performance remain unclear. This work demonstrates that old muscle stem cells display no significant accumulation of DNA DSBs when compared to those of young, as assayed after cell isolation and in tissue sections, either in uninjured muscle or at multiple time points after injury. Additionally, there is no significant difference in the expression of DNA DSB repair proteins or globally assayed DNA damage response genes, suggesting that not only DNA DSBs, but also other types of DNA damage, do not significantly mark aged muscle stem cells. Satellite cells from DNA DSB-repair-deficient SCID mice do have an unsurprisingly higher level of innate DNA DSBs and a weakened recovery from gamma-radiation-induced DNA damage. Interestingly, they are as myogenic in vitro and in vivo as satellite cells from young wild type mice, suggesting that the inefficiency in DNA DSB repair does not directly correlate with the ability to regenerate muscle after injury. Overall, our findings suggest that a DNA DSB-repair deficiency is unlikely to be a key factor in the decline in muscle regeneration observed upon aging.
Collapse
Affiliation(s)
- Wendy Cousin
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, California, United States of America
| | - Michelle Liane Ho
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, California, United States of America
| | - Rajiv Desai
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, California, United States of America
| | - Andrea Tham
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, California, United States of America
| | - Robert Yuzen Chen
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, California, United States of America
| | - Sunny Kung
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, California, United States of America
| | - Christian Elabd
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, California, United States of America
| | - Irina M. Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
230
|
Abstract
Hematopoietic stem cells self-renew for life to guarantee the continuous supply of all blood cell lineages. Here we show that Poly(ADP-ribose) polymerase-2 (Parp-2) plays an essential role in hematopoietic stem/progenitor cells (HSPC) survival under steady-state conditions and in response to stress. Increased levels of cell death were observed in HSPC from untreated Parp-2-/- mice, but this deficit was compensated by increased rates of self-renewal, associated with impaired reconstitution of hematopoiesis upon serial bone marrow transplantation. Cell death after γ-irradiation correlated with an impaired capacity to repair DNA damage in the absence of Parp-2. Upon exposure to sublethal doses of γ-irradiation, Parp-2-/- mice exhibited bone marrow failure that correlated with reduced long-term repopulation potential of irradiated Parp-2-/- HSPC under competitive conditions. In line with a protective role of Parp-2 against irradiation-induced apoptosis, loss of p53 or the pro-apoptotic BH3-only protein Puma restored survival of irradiated Parp-2-/- mice, whereas loss of Noxa had no such effect. Our results show that Parp-2 plays essential roles in the surveillance of genome integrity of HSPC by orchestrating DNA repair and restraining p53-induced and Puma-mediated apoptosis. The data may affect the design of drugs targeting Parp proteins and the improvement of radiotherapy-based therapeutic strategies.
Collapse
|
231
|
Nair AR, DeGheselle O, Smeets K, Van Kerkhove E, Cuypers A. Cadmium-Induced Pathologies: Where Is the Oxidative Balance Lost (or Not)? Int J Mol Sci 2013; 14:6116-43. [PMID: 23507750 PMCID: PMC3634456 DOI: 10.3390/ijms14036116] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/04/2013] [Accepted: 02/20/2013] [Indexed: 12/12/2022] Open
Abstract
Over the years, anthropogenic factors have led to cadmium (Cd) accumulation in the environment causing various health problems in humans. Although Cd is not a Fenton-like metal, it induces oxidative stress in various animal models via indirect mechanisms. The degree of Cd-induced oxidative stress depends on the dose, duration and frequency of Cd exposure. Also the presence or absence of serum in experimental conditions, type of cells and their antioxidant capacity, as well as the speciation of Cd are important determinants. At the cellular level, the Cd-induced oxidative stress either leads to oxidative damage or activates signal transduction pathways to initiate defence responses. This balance is important on how different organ systems respond to Cd stress and ultimately define the pathological outcome. In this review, we highlight the Cd-induced oxidant/antioxidant status as well as the damage versus signalling scenario in relation to Cd toxicity. Emphasis is addressed to Cd-induced pathologies of major target organs, including a section on cell proliferation and carcinogenesis. Furthermore, attention is paid to Cd-induced oxidative stress in undifferentiated stem cells, which can provide information for future therapies in preventing Cd-induced pathologies.
Collapse
Affiliation(s)
- Ambily Ravindran Nair
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium; E-Mails: (A.R.N.); (O.D.); (K.S.); (E.V.K.)
| | | | | | - Emmy Van Kerkhove
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium; E-Mails: (A.R.N.); (O.D.); (K.S.); (E.V.K.)
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek 3590, Belgium; E-Mails: (A.R.N.); (O.D.); (K.S.); (E.V.K.)
| |
Collapse
|
232
|
Chen Y, Li D, Wang D, Liu X, Yin N, Song Y, Lu SH, Ju Z, Zhan Q. Quiescence and attenuated DNA damage response promote survival of esophageal cancer stem cells. J Cell Biochem 2013; 113:3643-52. [PMID: 22711554 DOI: 10.1002/jcb.24228] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulating evidence indicates cancer stem cells (CSCs) possess the capability to resist DNA-damage induced cell death, whereas the mechanism is largely unknown. Here we show that cell cycle status and DNA damage response (DDR) in CSCs probably contribute to their survival in genotoxic insults. In this study, we isolated esophageal cancer stem cells (ECSCs) from esophageal cancer cell line EC9706 by side-population (SP) phenotype through flow cytometry and found that ECSCs preferentially stay quiescent as compared to the non-ECSCs and are more resistant to DNA damage agents. Further study revealed that ECSCs express a lower level of EGFR, phosphoralated Stat3, and c-Myc, yet abnormally upregulated p27. More interestingly, different from non-ECSCs, when suffering DNA damage agents, ECSCs showed attenuated DDR, as well as declined DNA repair potential. These data indicated ECSCs probably employed an impaired DDR to handle severe genomic insults. Conclusively, we infer that the damage-resistance ability of ECSCs is likely attributed to their slow-cycling status and avoidance of apoptosis or senescence triggered by an excessive DDR.
Collapse
Affiliation(s)
- Yulin Chen
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Francipane MG, Chandler J, Lagasse E. Cancer Stem Cells: A Moving Target. CURRENT PATHOBIOLOGY REPORTS 2013; 1:111-118. [PMID: 23914341 DOI: 10.1007/s40139-013-0010-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Even though the number of anti-cancer drugs entering clinical trials and approved by the FDA has increased in recent years, many cancer patients still experience poor survival outcome. The main explanation for such a dismal prognosis is that current therapies might leave behind a population of cancer cells with the capacity for long-term self-renewal, so-called cancer stem cells (CSCs), from which most tumors are believed to be derived and fueled. CSCs might favor local and distant recurrence even many years after initial treatment, thus representing a potential target for therapies aimed at improving clinical outcome. In this review, we will address the CSC hypothesis with a particular emphasis on its current paradigms and debates, and discuss several mechanisms of CSC resistance to conventional therapies.
Collapse
Affiliation(s)
- Maria Giovanna Francipane
- McGowan Institute for Regenerative Medicine, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA ; RiMed Foundation, 90133 Palermo, Italy
| | | | | |
Collapse
|
234
|
Insinga A, Cicalese A, Faretta M, Gallo B, Albano L, Ronzoni S, Furia L, Viale A, Pelicci PG. DNA damage in stem cells activates p21, inhibits p53, and induces symmetric self-renewing divisions. Proc Natl Acad Sci U S A 2013; 110:3931-6. [PMID: 23417300 PMCID: PMC3593901 DOI: 10.1073/pnas.1213394110] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA damage leads to a halt in proliferation owing to apoptosis or senescence, which prevents transmission of DNA alterations. This cellular response depends on the tumor suppressor p53 and functions as a powerful barrier to tumor development. Adult stem cells are resistant to DNA damage-induced apoptosis or senescence, however, and how they execute this response and suppress tumorigenesis is unknown. We show that irradiation of hematopoietic and mammary stem cells up-regulates the cell cycle inhibitor p21, a known target of p53, which prevents p53 activation and inhibits p53 basal activity, impeding apoptosis and leading to cell cycle entry and symmetric self-renewing divisions. p21 also activates DNA repair, limiting DNA damage accumulation and self-renewal exhaustion. Stem cells with moderate DNA damage and diminished self-renewal persist after irradiation, however. These findings suggest that stem cells have evolved a unique, p21-dependent response to DNA damage that leads to their immediate expansion and limits their long-term survival.
Collapse
Affiliation(s)
- Alessandra Insinga
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy and
| | - Angelo Cicalese
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy and
| | - Mario Faretta
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy and
| | - Barbara Gallo
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy and
| | - Luisa Albano
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy and
| | - Simona Ronzoni
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy and
| | - Laura Furia
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy and
| | - Andrea Viale
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy and
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy and
- Dipartimento di Medicina, Chirurgia, e Odontoiatria, Università degli Studi di Milano, 20122 Milan, Italy
| |
Collapse
|
235
|
|
236
|
Pharmacologic stabilization of HIF-1α increases hematopoietic stem cell quiescence in vivo and accelerates blood recovery after severe irradiation. Blood 2013; 121:759-69. [DOI: 10.1182/blood-2012-02-408419] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Key Points
HIF-1α protein stabilization increases HSC quiescence in vivo. HIF-1α protein stabilization increases HSC resistance to irradiation and accelerates recovery.
Collapse
|
237
|
Sotiropoulou PA, Karambelas AE, Debaugnies M, Candi A, Bouwman P, Moers V, Revenco T, Rocha AS, Sekiguchi K, Jonkers J, Blanpain C. BRCA1 deficiency in skin epidermis leads to selective loss of hair follicle stem cells and their progeny. Genes Dev 2012; 27:39-51. [PMID: 23271346 DOI: 10.1101/gad.206573.112] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The accurate maintenance of genomic integrity is essential for tissue homeostasis. Deregulation of this process leads to cancer and aging. BRCA1 is a critical mediator of this process. Here, we performed conditional deletion of Brca1 during epidermal development and found that BRCA1 is specifically required for hair follicle (HF) formation and for development of adult HF stem cells (SCs). Mice deficient for Brca1 in the epidermis are hairless and display a reduced number of HFs that degenerate progressively. Surprisingly, the interfollicular epidermis and the sebaceous glands remain unaffected by Brca1 deletion. Interestingly, HF matrix transient amplifying progenitors present increased DNA damage, p53 stabilization, and caspase-dependent apoptosis compared with the interfollicular and sebaceous progenitors, leading to hyperproliferation, apoptosis, and subsequent depletion of the prospective adult HF SCs. Concomitant deletion of p53 and Brca1 rescues the defect of HF morphogenesis and loss of HF SCs. During adult homeostasis, BRCA1 is dispensable for quiescent bulge SCs, but upon their activation during HF regeneration, Brca1 deletion causes apoptosis and depletion of Brca1-deficient bulge SCs. Our data reveal a major difference in the requirement of BRCA1 between different types of epidermal SCs and progenitors and during the different activation stages of adult HF SCs.
Collapse
Affiliation(s)
- Panagiota A Sotiropoulou
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire, Université Libre de Bruxelles, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Wang WJ, Wu SP, Liu JB, Shi YS, Huang X, Zhang QB, Yao KT. MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Cancer Res 2012; 73:1219-31. [PMID: 23269272 DOI: 10.1158/0008-5472.can-12-1408] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy is the most successful nonsurgical treatment for nasopharyngeal carcinoma (NPC). Despite this, the prognosis remains poor. Although NPCs initially respond well to a full course of radiation, recurrence is frequent. The cancer stem cell (CSC) hypothesis provides a framework for explaining the discrepancy between the response of NPC to therapy and the poor survival rate. In this study, a stem cell-like subpopulation (PKH26+) was identified in NPC cell lines using a label-retention technique. PKH26+ cells were enriched for clonogenicity, sphere formation, side-population cells, and resistance to radiotherapy. Using genomic approaches, we show that the proto-oncogene c-MYC (MYC) regulates radiotolerance through transcriptional activation of CHK1 (CHEK1) and CHK2 (CHEK2) checkpoint kinases through direct binding to the CHK1 and CHK2 promoters. Overexpression of c-MYC in the PKH26+ subpopulation leads to increased expression of CHK1 and CHK2 and subsequent activation of the DNA-damage-checkpoint response, resulting in radioresistance. Furthermore, loss of CHK1 and CHK2 expression reverses radioresistance in PKH26+ (c-MYC high expression) cells in vitro and in vivo. This study elucidates the role of the c-MYC-CHK1/CHK2 axis in regulating DNA-damage-checkpoint responses and stem cell characteristics in the PKH26+ subpopulation. Furthermore, these data reveal a potential therapeutic application in reversal of radioresistance through inhibition of the c-MYC-CHK1/CHK2 pathway.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Cancer Research Institute of Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
239
|
Pei M, Zhang Y, Li J, Chen D. Antioxidation of decellularized stem cell matrix promotes human synovium-derived stem cell-based chondrogenesis. Stem Cells Dev 2012; 22:889-900. [PMID: 23092115 DOI: 10.1089/scd.2012.0495] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Clinical treatment of cartilage defects is challenging due to concomitant post-traumatic joint inflammation. This study was to demonstrate that the antioxidant ability of human adult synovium-derived stem cells (SDSCs) could be enhanced by ex vivo expansion on a decellularized stem cell matrix (DSCM). Microarray was used to evaluate oxidative, antioxidative, and chondrogenic status in SDSCs after expansion on the DSCM and induction in the chondrogenic medium. Hydrogen peroxide (H2O2) was added to create oxidative stress in either expanded SDSCs or chondrogenically induced premature pellets. The effect of H2O2 on SDSC proliferation was evaluated using flow cytometry. Chondrogenic differentiation of expanded SDSCs was evaluated using histology, immunostaining, biochemical analysis, and real-time polymerase chain reaction. Mitogen-activated protein kinase signaling pathways and p21 were compared in the DSCM and plastic-flask-expanded SDSCs with or without H2O2 treatment. We found that expansion on the DSCM upregulated antioxidative gene levels and chondrogenic potential in human SDSCs (hSDSCs), retarded the decrease in the cell number and the increase in apoptosis, and rendered SDSCs resistant to cell-cycle G1 arrest resulting from H2O2 treatment. Treatment with 0.05 mM H2O2 during cell expansion yielded pellets with increased chondrogenic differentiation; treatment in premature SDSC pellets showed that the DSCM-expanded cells had a robust resistance to H2O2-induced oxidative stress. Extracellular signal-regulated kinases 1 and 2 and p38 were positively involved in antioxidative and chondrogenic potential in SDSCs expanded on the DSCM in which p21 was downregulated. DSCM could be a promising cell expansion system to provide a large number of high-quality hSDSCs for cartilage regeneration in a harsh joint environment.
Collapse
Affiliation(s)
- Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506-9196, USA.
| | | | | | | |
Collapse
|
240
|
Klos KS, Kim S, Alexander CM. Genotoxic exposure during juvenile growth of mammary gland depletes stem cell activity and inhibits Wnt signaling. PLoS One 2012. [PMID: 23185480 PMCID: PMC3503807 DOI: 10.1371/journal.pone.0049902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Various types of somatic stem cell have been tested for their response to genotoxic exposure, since these cells are likely to be important to regeneration, aging and cancer. In this study, we evaluated the response of mammary stem cells to genotoxic exposure during ductal growth in juveniles. Exposure to the polycyclic aromatic hydrocarbon (DMBA; 7,12 dimethylbenz[a]anthracene) had no gross effect on outgrowth and morphogenesis of the ductal tree, or upon lobuloalveolar growth during pregnancy. However, by fat pad assay, we found that mammary stem cell activity was reduced by 80% in glands from adults that were exposed to genotoxins as juveniles. The associated basal cell lineage was depleted. Both basal and luminal cells showed a robust response to genotoxic exposure (including γH2AX phosphorylation, pS15p53 and pT68Chk2), with durable hyperproliferation, but little cytotoxicity. Since the phenotype of these glands (low basal cell fraction, low stem cell activity) phenocopies mammary glands with loss of function for Wnt signaling, we measured Wnt signaling in genotoxin-exposed glands, and found a durable reduction in the activation of the canonical signaling Wnt receptors, Lrp5/6. Furthermore, when mammary epithelial cells were treated with Wnt3a, DMBA exposure reduced the basal cell population and Lrp activation was ablated. We conclude that during active ductal growth, Wnt-dependent mammary stem cells are sensitized to cell death by genotoxin exposure. Our conclusion may be important for other tissues, since all solid tumor stem cell activities have been shown to be Wnt-dependent to date.
Collapse
Affiliation(s)
- Kristine S. Klos
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Soyoung Kim
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Caroline M. Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
241
|
Abstract
A basic requirement for the development of complex organ systems is that the cellular response to identical environmental cues can vary significantly between distinct cell types and developmental stages. While it is well established that paracrine signaling can similarly elicit diverse responses in distinct tumor types, the relevance of developmental stage-specific signaling responses to tumor development remains unclear. Here, we show that the same microenvironmental factor, IL-6, can both promote and prevent lymphoma development by acting on cells at distinct stages of hematopoietic development. Specifically, paracrine IL-6 signaling promotes the survival of transplanted hematopoietic stem cells following lethal irradiation, allowing for the persistence and expansion of progenitor cells bearing a cancer-promoting alteration. Conversely, IL-6 signaling also initiates a paracrine secretory program in the bone marrow that promotes B-cell differentiation and inhibits the development of B-cell malignancies. Thus, stage-specific responses to cytokines may promote progenitor cell expansion while also inhibiting neoplastic development within a single developmental lineage. Once transformed, the resulting B-cell lymphomas again use paracrine IL-6 signaling as a survival signal, highlighting the ability of tumor cells to co-opt pathways used for stem cell protection. These data not only suggest a complex regulation of tumor development by the preneoplastic microenvironment, but also that this regulation can decisively impact the outcome of well-established tumor modeling approaches.
Collapse
Affiliation(s)
- Luke A Gilbert
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | |
Collapse
|
242
|
Rocha CRR, Lerner LK, Okamoto OK, Marchetto MC, Menck CFM. The role of DNA repair in the pluripotency and differentiation of human stem cells. Mutat Res 2012; 752:25-35. [PMID: 23010441 DOI: 10.1016/j.mrrev.2012.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/13/2022]
Abstract
All living cells utilize intricate DNA repair mechanisms to address numerous types of DNA lesions and to preserve genomic integrity, and pluripotent stem cells have specific needs due to their remarkable ability of self-renewal and differentiation into different functional cell types. Not surprisingly, human stem cells possess a highly efficient DNA repair network that becomes less efficient upon differentiation. Moreover, these cells also have an anaerobic metabolism, which reduces the mitochondria number and the likelihood of oxidative stress, which is highly related to genomic instability. If DNA lesions are not repaired, human stem cells easily undergo senescence, cell death or differentiation, as part of their DNA damage response, avoiding the propagation of stem cells carrying mutations and genomic alterations. Interestingly, cancer stem cells and typical stem cells share not only the differentiation potential but also their capacity to respond to DNA damage, with important implications for cancer therapy using genotoxic agents. On the other hand, the preservation of the adult stem cell pool, and the ability of cells to deal with DNA damage, is essential for normal development, reducing processes of neurodegeneration and premature aging, as one can observe on clinical phenotypes of many human genetic diseases with defects in DNA repair processes. Finally, several recent findings suggest that DNA repair also plays a fundamental role in maintaining the pluripotency and differentiation potential of embryonic stem cells, as well as that of induced pluripotent stem (iPS) cells. DNA repair processes also seem to be necessary for the reprogramming of human cells when iPS cells are produced. Thus, the understanding of how cultured pluripotent stem cells ensure the genetic stability are highly relevant for their safe therapeutic application, at the same time that cellular therapy is a hope for DNA repair deficient patients.
Collapse
Affiliation(s)
- Clarissa Ribeiro Reily Rocha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP 05508 900, Brazil
| | - Leticia Koch Lerner
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP 05508 900, Brazil
| | - Oswaldo Keith Okamoto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Maria Carolina Marchetto
- Laboratory of Genetics (LOG-G), The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carlos Frederico Martins Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP 05508 900, Brazil.
| |
Collapse
|
243
|
Schanz S, Schuler N, Lorat Y, Fan L, Kaestner L, Wennemuth G, Rübe C, Rübe CE. Accumulation of DNA damage in complex normal tissues after protracted low-dose radiation. DNA Repair (Amst) 2012; 11:823-32. [PMID: 22947398 DOI: 10.1016/j.dnarep.2012.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/12/2012] [Accepted: 07/19/2012] [Indexed: 01/08/2023]
Abstract
The biological consequences of low levels of radiation exposure and their effects on human health are unclear. Ionizing radiation induces a variety of lesions of which DNA double-strand breaks (DSBs) are the most biologically significant, because unrepaired or misrepaired DSBs can lead to genomic instability and cell death. Using repair-proficient mice as an in vivo system we monitored the accumulation of DNA damage in normal tissues exposed to daily low-dose radiation of 100mGy or 10mGy. Radiation-induced foci in differentiated and tissue-specific stem cells were quantified by immunofluorescence microscopy after 2, 4, 6, 8, and 10 weeks of daily low-dose radiation and DNA lesions were characterized using transmission electron microscopy (TEM) combined with immunogold-labeling. In brain, long-living cortical neurons had a significant accumulation of foci with increasing cumulative doses. In intestine and skin, characterized by constant cell renewal of their epithelial lining, differentiated enterocytes and keratinocytes had either unchanged or only slightly increased foci levels during protracted low-dose radiation. Significantly, analysis of epidermal stem cells in skin revealed a constant increase of 53BP1 foci during the first weeks of low-dose radiation even with 10mGy, suggesting substantial accumulations of DSBs. However, TEM analysis suggests that these remaining 53BP1 foci, which are predominantly located in compact heterochromatin, do not co-localize with phosphorylated Ku70 or DNA-PKcs, core components of non-homologous end-joining. The biological relevance of these persistent 53BP1 foci, particularly their contribution to genomic instability by genetic and epigenetic alterations, has to be defined in future studies.
Collapse
Affiliation(s)
- Stefanie Schanz
- Department of Radiation Oncology, Saarland University, Homburg, Saar, Germany
| | | | | | | | | | | | | | | |
Collapse
|
244
|
Verga Falzacappa MV, Ronchini C, Reavie LB, Pelicci PG. Regulation of self-renewal in normal and cancer stem cells. FEBS J 2012; 279:3559-3572. [PMID: 22846222 DOI: 10.1111/j.1742-4658.2012.08727.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mutations can confer a selective advantage on specific cells, enabling them to go through the multistep process that leads to malignant transformation. The cancer stem cell hypothesis postulates that only a small pool of low-cycling stem-like cells is necessary and sufficient to originate and develop the disease. Normal and cancer stem cells share important functional similarities such as 'self-renewal' and differentiation potential. However, normal and cancer stem cells have different biological behaviours, mainly because of a profound deregulation of self-renewal capability in cancer stem cells. Differences in mode of division, cell-cycle properties, replicative potential and handling of DNA damage, in addition to the activation/inactivation of cancer-specific molecular pathways confer on cancer stem cells a malignant phenotype. In the last decade, much effort has been devoted to unravel the complex dynamics underlying cancer stem cell-specific characteristics. However, further studies are required to identify cancer stem cell-specific markers and targets that can help to confirm the cancer stem cell hypothesis and develop novel cancer stem cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Maria V Verga Falzacappa
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Chiara Ronchini
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Linsey B Reavie
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Pier G Pelicci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| |
Collapse
|
245
|
Sperka T, Wang J, Rudolph KL. DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol 2012; 13:579-90. [DOI: 10.1038/nrm3420] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
246
|
Abstract
The discovery of tumor-initiating cells endowed with stem-like features has added a further level of complexity to the pathobiology of neoplastic diseases. In the attempt of dissecting the functional properties of this uncommon cellular subpopulation, investigators are taking full advantage of a body of knowledge about adult stem cells, as the "cancer stem cell model" implies that tissue-resident stem cells are the target of the oncogenic process. It is emerging that a plethora of molecular mechanisms protect cancer stem cells (CSC) against chemotherapy- and radiotherapy-induced death stimuli. The ability of CSCs to survive stressful conditions is correlated, among others, with a multifaceted protection of genome integrity by a prompt activation of the DNA damage sensor and repair machinery. Nevertheless, many molecular-targeted agents directed against DNA repair effectors are in late preclinical or clinical development while the identification of predictive biomarkers of response coupled with the validation of robust assays for assessing biomarkers is paving the way for biology-driven clinical trials.
Collapse
Affiliation(s)
- Marcello Maugeri-Saccà
- Department of Hematology Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161, Italy.
| | | | | |
Collapse
|
247
|
|
248
|
Sotiropoulou PA, Blanpain C. Development and homeostasis of the skin epidermis. Cold Spring Harb Perspect Biol 2012; 4:a008383. [PMID: 22751151 DOI: 10.1101/cshperspect.a008383] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin epidermis is a stratified epithelium that forms a barrier that protects animals from dehydration, mechanical stress, and infections. The epidermis encompasses different appendages, such as the hair follicle (HF), the sebaceous gland (SG), the sweat gland, and the touch dome, that are essential for thermoregulation, sensing the environment, and influencing social behavior. The epidermis undergoes a constant turnover and distinct stem cells (SCs) are responsible for the homeostasis of the different epidermal compartments. Deregulation of the signaling pathways controlling the balance between renewal and differentiation often leads to cancer formation.
Collapse
|
249
|
Ceccaldi R, Parmar K, Mouly E, Delord M, Kim JM, Regairaz M, Pla M, Vasquez N, Zhang QS, Pondarre C, Peffault de Latour R, Gluckman E, Cavazzana-Calvo M, Leblanc T, Larghero J, Grompe M, Socié G, D'Andrea AD, Soulier J. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 2012; 11:36-49. [PMID: 22683204 DOI: 10.1016/j.stem.2012.05.013] [Citation(s) in RCA: 253] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 03/28/2012] [Accepted: 05/02/2012] [Indexed: 01/03/2023]
Abstract
Fanconi anemia (FA) is an inherited DNA repair deficiency syndrome. FA patients undergo progressive bone marrow failure (BMF) during childhood, which frequently requires allogeneic hematopoietic stem cell transplantation. The pathogenesis of this BMF has been elusive to date. Here we found that FA patients exhibit a profound defect in hematopoietic stem and progenitor cells (HSPCs) that is present before the onset of clinical BMF. In response to replicative stress and unresolved DNA damage, p53 is hyperactivated in FA cells and triggers a late p21(Cdkn1a)-dependent G0/G1 cell-cycle arrest. Knockdown of p53 rescued the HSPC defects observed in several in vitro and in vivo models, including human FA or FA-like cells. Taken together, our results identify an exacerbated p53/p21 "physiological" response to cellular stress and DNA damage accumulation as a central mechanism for progressive HSPC elimination in FA patients, and have implications for clinical care.
Collapse
Affiliation(s)
- Raphael Ceccaldi
- Institute of Hematology (IUH), Université Paris-Diderot, Sorbonne Paris Cité 75010, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Basu-Roy U, Basilico C, Mansukhani A. Perspectives on cancer stem cells in osteosarcoma. Cancer Lett 2012; 338:158-67. [PMID: 22659734 DOI: 10.1016/j.canlet.2012.05.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/21/2012] [Accepted: 05/24/2012] [Indexed: 12/27/2022]
Abstract
Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer.
Collapse
Affiliation(s)
- Upal Basu-Roy
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, United States
| | | | | |
Collapse
|