201
|
Bai T, Peng CY, Aneas I, Sakabe N, Requena DF, Billstrand C, Nobrega M, Ober C, Parast M, Kessler JA. Establishment of human induced trophoblast stem-like cells from term villous cytotrophoblasts. Stem Cell Res 2021; 56:102507. [PMID: 34454392 PMCID: PMC8551050 DOI: 10.1016/j.scr.2021.102507] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 12/30/2022] Open
Abstract
Human trophoblast stem cells (hTSC) can be isolated from first trimester placenta but not from term placenta. Here we demonstrate that villous cytotrophoblasts (vCTB) from term placenta can be reprogrammed into induced trophoblastic stem-like cells (iTSC) by introducing sets of transcription factors. The iTSCs express TSC markers such as GATA3, TEAD4 and ELF5, and are multipotent, validated by their differentiation into both extravillous trophoblasts (EVT) and syncytiotrophoblasts (STB) in vitro and in vivo. The iTSC can be passaged indefinitely in vitro without slowing of growth. The transcriptome profile of these cells closely resembles the profile of hTSC isolated from first trimester placentae but different from the term placental vCTB from which they originated. The ability to reprogram cells from term placenta into iTSC will allow study of early gestation events which impact placental function later in gestation, including preeclampsia and spontaneous preterm birth.
Collapse
Affiliation(s)
- Tao Bai
- Department of Neurology, Northwestern University, Chicago, USA
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University, Chicago, USA
| | - Ivy Aneas
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Noboru Sakabe
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Daniela F Requena
- Department of Pathology and Sanford Consortium for Regenerative Medicine, University of California, San Diego, USA
| | | | - Marcelo Nobrega
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Mana Parast
- Department of Pathology and Sanford Consortium for Regenerative Medicine, University of California, San Diego, USA
| | - John A Kessler
- Department of Neurology, Northwestern University, Chicago, USA.
| |
Collapse
|
202
|
OCT4 cooperates with distinct ATP-dependent chromatin remodelers in naïve and primed pluripotent states in human. Nat Commun 2021; 12:5123. [PMID: 34446700 PMCID: PMC8390644 DOI: 10.1038/s41467-021-25107-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular underpinnings of pluripotency is a prerequisite for optimal maintenance and application of embryonic stem cells (ESCs). While the protein-protein interactions of core pluripotency factors have been identified in mouse ESCs, their interactome in human ESCs (hESCs) has not to date been explored. Here we mapped the OCT4 interactomes in naïve and primed hESCs, revealing extensive connections to mammalian ATP-dependent nucleosome remodeling complexes. In naïve hESCs, OCT4 is associated with both BRG1 and BRM, the two paralog ATPases of the BAF complex. Genome-wide location analyses and genetic studies reveal that these two enzymes cooperate in a functionally redundant manner in the transcriptional regulation of blastocyst-specific genes. In contrast, in primed hESCs, OCT4 cooperates with BRG1 and SOX2 to promote chromatin accessibility at ectodermal genes. This work reveals how a common transcription factor utilizes differential BAF complexes to control distinct transcriptional programs in naïve and primed hESCs. Although the interactors of pluripotency factors have been identified in mouse embryonic stem cells (ESCs), their interactors in human ESCs remain unexplored. Here the authors map OCT4 protein interactions in naïve and primed human ESCs to find specific interactions with BAF subunits that promote an open chromatin architecture at blastocyst-associated genes and ectodermal genes, respectively.
Collapse
|
203
|
Zhai J, Xiao Z, Wang Y, Wang H. Human embryonic development: from peri-implantation to gastrulation. Trends Cell Biol 2021; 32:18-29. [PMID: 34417090 DOI: 10.1016/j.tcb.2021.07.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/12/2023]
Abstract
The basic body plan of the mammalian embryo is established through gastrulation, a pivotal early postimplantation event during which the three major germ layers (endoderm, ectoderm, and mesoderm) are specified with cellular and spatial diversity. Despite its basic and clinical importance, human embryo development from peri-implantation to gastrulation remains shrouded in mystery. Recent advances in the elongated in vitro culture of rodent and non-primate embryos and the construction of embryo-like structures have helped to improve understanding of the mechanisms of human early embryonic development. Here, we review the recent advances and possible future directions in the development of in vitro models to better understand human embryogenesis from peri-implantation to gastrulation.
Collapse
Affiliation(s)
- Jinglei Zhai
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, P. R. China
| | - Zhenyu Xiao
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, P. R. China
| | - Yiming Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongmei Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
204
|
Bower OJ, McCarthy A, Lea RA, Alanis-Lobato G, Zohren J, Gerri C, Turner JMA, Niakan KK. Generating CRISPR-Cas9-Mediated Null Mutations and Screening Targeting Efficiency in Human Pluripotent Stem Cells. Curr Protoc 2021; 1:e232. [PMID: 34432381 DOI: 10.1002/cpz1.232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
CRISPR-Cas9 mutagenesis facilitates the investigation of gene function in a number of developmental and cellular contexts. Human pluripotent stem cells (hPSCs), either embryonic or induced, are a tractable cellular model to investigate molecular mechanisms involved in early human development and cell fate decisions. hPSCs also have broad potential in regenerative medicine to model, investigate, and ameliorate diseases. Here, we provide an optimized protocol for efficient CRISPR-Cas9 genome editing of hPSCs to investigate the functional role of genes by engineering null mutations. We emphasize the importance of screening single guide RNAs (sgRNAs) to identify those with high targeting efficiency for generation of clonally derived null mutant hPSC lines. We provide important considerations for targeting genes that may have a role in hPSC maintenance. We also present methods to evaluate the on-target mutation spectrum and unintended karyotypic changes. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Selecting and ligating sgRNAs into expression plasmids Basic Protocol 2: Validation of sgRNA via in vitro transcription and cleavage assay Basic Protocol 3: Nucleofection of primed human embryonic stem cells Basic Protocol 4: MiSeq analysis of indel mutations Basic Protocol 5: Single cell cloning of targeted hPSCs Basic Protocol 6: Karyotyping of targeted hPSCs.
Collapse
Affiliation(s)
- Oliver J Bower
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Afshan McCarthy
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Rebecca A Lea
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Gregorio Alanis-Lobato
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Jasmin Zohren
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
| | - James M A Turner
- Sex Chromosome Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, United Kingdom
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
205
|
Wu J, Barbaric I. Fitness selection in human pluripotent stem cells and interspecies chimeras: Implications for human development and regenerative medicine. Dev Biol 2021; 476:209-217. [PMID: 33891964 PMCID: PMC8209287 DOI: 10.1016/j.ydbio.2021.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022]
Abstract
A small number of pluripotent cells within early embryo gives rise to all cells in the adult body, including germ cells. Hence, any mutations occurring in the pluripotent cell population are at risk of being propagated to their daughter cells and could lead to congenital defects or embryonic lethality and pose a risk of being transmitted to future generations. The observation that genetic errors are relatively common in preimplantation embryos, but their levels reduce as development progresses, suggests the existence of mechanisms for clearance of aberrant, unfit or damaged cells. Although early human embryogenesis is largely experimentally inaccessible, pluripotent stem cell (PSC) lines can be derived either from the inner cell mass (ICM) of a blastocyst or by reprogramming somatic cells into an embryonic stem cell-like state. PSCs retain the ability to differentiate into any cell type in vitro and, hence, they represent a unique and powerful tool for studying otherwise intractable stages of human development. The advent of PSCs has also opened up a possibility of developing regenerative medicine therapies, either through PSC differentiation in vitro or by creating interspecies chimeras for organ replacement. Here, we discuss the emerging evidence of cell selection in human PSC populations in vivo and in vitro and we highlight the implications of understanding this phenomenon for human development and regenerative medicine.
Collapse
Affiliation(s)
- Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Ivana Barbaric
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom; Neuroscience Institute, The University of Sheffield, Western Bank, Sheffield, S10 2TN, United Kingdom.
| |
Collapse
|
206
|
De Santis R, Brivanlou AH. The treasure inside human naive pluripotency, generation of trophectoderm and blastoids. Cell Stem Cell 2021; 28:985-987. [PMID: 34087157 DOI: 10.1016/j.stem.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in human naive pluripotent stem cell culture have demonstrated their ability to generate trophectoderm and descendant trophoblast cell types. Moreover, the same cells when cultured in three-dimensional configurations self-organize to generate blastocyst-like structures called blastoids. These discoveries represent a major step forward in modeling early human embryonic development.
Collapse
Affiliation(s)
- Riccardo De Santis
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
207
|
Ávila-González D, Portillo W, García-López G, Molina-Hernández A, Díaz-Martínez NE, Díaz NF. Unraveling the Spatiotemporal Human Pluripotency in Embryonic Development. Front Cell Dev Biol 2021; 9:676998. [PMID: 34249929 PMCID: PMC8262797 DOI: 10.3389/fcell.2021.676998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
There have been significant advances in understanding human embryogenesis using human pluripotent stem cells (hPSCs) in conventional monolayer and 3D self-organized cultures. Thus, in vitro models have contributed to elucidate the molecular mechanisms for specification and differentiation during development. However, the molecular and functional spectrum of human pluripotency (i.e., intermediate states, pluripotency subtypes and regionalization) is still not fully understood. This review describes the mechanisms that establish and maintain pluripotency in human embryos and their differences with mouse embryos. Further, it describes a new pluripotent state representing a transition between naïve and primed pluripotency. This review also presents the data that divide pluripotency into substates expressing epiblast regionalization and amnion specification as well as primordial germ cells in primates. Finally, this work analyzes the amnion's relevance as an "signaling center" for regionalization before the onset of gastrulation.
Collapse
Affiliation(s)
- Daniela Ávila-González
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
- Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Wendy Portillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | | | | | - Néstor E. Díaz-Martínez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Néstor F. Díaz
- Instituto Nacional de Perinatología, Mexico City, Mexico
| |
Collapse
|
208
|
Zheng C, Ballard EB, Wu J. The road to generating transplantable organs: from blastocyst complementation to interspecies chimeras. Development 2021; 148:dev195792. [PMID: 34132325 PMCID: PMC10656466 DOI: 10.1242/dev.195792] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growing human organs in animals sounds like something from the realm of science fiction, but it may one day become a reality through a technique known as interspecies blastocyst complementation. This technique, which was originally developed to study gene function in development, involves injecting donor pluripotent stem cells into an organogenesis-disabled host embryo, allowing the donor cells to compensate for missing organs or tissues. Although interspecies blastocyst complementation has been achieved between closely related species, such as mice and rats, the situation becomes much more difficult for species that are far apart on the evolutionary tree. This is presumably because of layers of xenogeneic barriers that are a result of divergent evolution. In this Review, we discuss the current status of blastocyst complementation approaches and, in light of recent progress, elaborate on the keys to success for interspecies blastocyst complementation and organ generation.
Collapse
Affiliation(s)
- Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Emily B. Ballard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
209
|
Olivieri D, Castelli E, Kawamura YK, Papasaikas P, Lukonin I, Rittirsch M, Hess D, Smallwood SA, Stadler MB, Peters AHFM, Betschinger J. Cooperation between HDAC3 and DAX1 mediates lineage restriction of embryonic stem cells. EMBO J 2021; 40:e106818. [PMID: 33909924 PMCID: PMC8204867 DOI: 10.15252/embj.2020106818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) are biased toward producing embryonic rather than extraembryonic endoderm fates. Here, we identify the mechanism of this barrier and report that the histone deacetylase Hdac3 and the transcriptional corepressor Dax1 cooperatively limit the lineage repertoire of mESCs by silencing an enhancer of the extraembryonic endoderm-specifying transcription factor Gata6. This restriction is opposed by the pluripotency transcription factors Nr5a2 and Esrrb, which promote cell type conversion. Perturbation of the barrier extends mESC potency and allows formation of 3D spheroids that mimic the spatial segregation of embryonic epiblast and extraembryonic endoderm in early embryos. Overall, this study shows that transcriptional repressors stabilize pluripotency by biasing the equilibrium between embryonic and extraembryonic lineages that is hardwired into the mESC transcriptional network.
Collapse
Affiliation(s)
- Daniel Olivieri
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Eleonora Castelli
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of SciencesUniversity of BaselBaselSwitzerland
| | - Yumiko K Kawamura
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Panagiotis Papasaikas
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Ilya Lukonin
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Melanie Rittirsch
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Daniel Hess
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | | | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Swiss Institute of BioinformaticsBaselSwitzerland
| | - Antoine H F M Peters
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of SciencesUniversity of BaselBaselSwitzerland
| | - Joerg Betschinger
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| |
Collapse
|
210
|
Jaremek A, Jeyarajah MJ, Jaju Bhattad G, Renaud SJ. Omics Approaches to Study Formation and Function of Human Placental Syncytiotrophoblast. Front Cell Dev Biol 2021; 9:674162. [PMID: 34211975 PMCID: PMC8240757 DOI: 10.3389/fcell.2021.674162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023] Open
Abstract
Proper development of the placenta is vital for pregnancy success. The placenta regulates exchange of nutrients and gases between maternal and fetal blood and produces hormones essential to maintain pregnancy. The placental cell lineage primarily responsible for performing these functions is a multinucleated entity called syncytiotrophoblast. Syncytiotrophoblast is continuously replenished throughout pregnancy by fusion of underlying progenitor cells called cytotrophoblasts. Dysregulated syncytiotrophoblast formation disrupts the integrity of the placental exchange surface, which can be detrimental to maternal and fetal health. Moreover, various factors produced by syncytiotrophoblast enter into maternal circulation, where they profoundly impact maternal physiology and are promising diagnostic indicators of pregnancy health. Despite the multifunctional importance of syncytiotrophoblast for pregnancy success, there is still much to learn about how its formation is regulated in normal and diseased states. ‘Omics’ approaches are gaining traction in many fields to provide a more holistic perspective of cell, tissue, and organ function. Herein, we review human syncytiotrophoblast development and current model systems used for its study, discuss how ‘omics’ strategies have been used to provide multidimensional insights into its formation and function, and highlight limitations of current platforms as well as consider future avenues for exploration.
Collapse
Affiliation(s)
- Adam Jaremek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
211
|
Yanagida A, Spindlow D, Nichols J, Dattani A, Smith A, Guo G. Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 2021; 28:1016-1022.e4. [PMID: 33957081 PMCID: PMC8189436 DOI: 10.1016/j.stem.2021.04.031] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Human naive pluripotent cells can differentiate into extraembryonic trophectoderm and hypoblast. Here we describe a human embryo model (blastoid) generated by self-organization. Brief induction of trophectoderm leads to formation of blastocyst-like structures within 3 days. Blastoids are composed of three tissue layers displaying exclusive lineage markers, mimicking the natural blastocyst. Single-cell transcriptome analyses confirm segregation of trophectoderm, hypoblast, and epiblast with high fidelity to the human embryo. This versatile and scalable system provides a robust experimental model for human embryo research.
Collapse
Affiliation(s)
- Ayaka Yanagida
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Daniel Spindlow
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Jennifer Nichols
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1GA, UK
| | - Anish Dattani
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Ge Guo
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
212
|
Khan SA, Park KM, Fischer LA, Dong C, Lungjangwa T, Jimenez M, Casalena D, Chew B, Dietmann S, Auld DS, Jaenisch R, Theunissen TW. Probing the signaling requirements for naive human pluripotency by high-throughput chemical screening. Cell Rep 2021; 35:109233. [PMID: 34133938 PMCID: PMC8272458 DOI: 10.1016/j.celrep.2021.109233] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 03/25/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
Naive human embryonic stem cells (hESCs) have been isolated that more closely resemble the pre-implantation epiblast compared to conventional “primed” hESCs, but the signaling principles underlying these discrete stem cell states remain incompletely understood. Here, we describe the results from a high-throughput screen using ~3,000 well-annotated compounds to identify essential signaling requirements for naive human pluripotency. We report that MEK1/2 inhibitors can be replaced during maintenance of naive human pluripotency by inhibitors targeting either upstream (FGFR, RAF) or downstream (ERK1/2) kinases. Naive hESCs maintained under these alternative conditions display elevated levels of ERK phosphorylation but retain genome-wide DNA hypomethylation and a transcriptional identity of the pre-implantation epiblast. In contrast, dual inhibition of MEK and ERK promotes efficient primed-to-naive resetting in combination with PKC, ROCK, and TNKS inhibitors and activin A. This work demonstrates that induction and maintenance of naive human pluripotency are governed by distinct signaling requirements. Khan et al. describe a high-throughput chemical screen to identify essential signaling requirements for naive human pluripotency in minimal conditions. They report that naive hESCs can be maintained by blocking distinct nodes in the FGF signaling pathway and that dual MEK/ERK inhibition promotes efficient primed-to-naive resetting in combination with activin A.
Collapse
Affiliation(s)
- Shafqat A Khan
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyoung-Mi Park
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tenzin Lungjangwa
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Marta Jimenez
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Dominick Casalena
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Brian Chew
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Douglas S Auld
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
213
|
Meistermann D, Bruneau A, Loubersac S, Reignier A, Firmin J, François-Campion V, Kilens S, Lelièvre Y, Lammers J, Feyeux M, Hulin P, Nedellec S, Bretin B, Castel G, Allègre N, Covin S, Bihouée A, Soumillon M, Mikkelsen T, Barrière P, Chazaud C, Chappell J, Pasque V, Bourdon J, Fréour T, David L. Integrated pseudotime analysis of human pre-implantation embryo single-cell transcriptomes reveals the dynamics of lineage specification. Cell Stem Cell 2021; 28:1625-1640.e6. [PMID: 34004179 DOI: 10.1016/j.stem.2021.04.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 07/16/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022]
Abstract
Understanding lineage specification during human pre-implantation development is a gateway to improving assisted reproductive technologies and stem cell research. Here we employ pseudotime analysis of single-cell RNA sequencing (scRNA-seq) data to reconstruct early mouse and human embryo development. Using time-lapse imaging of annotated embryos, we provide an integrated, ordered, and continuous analysis of transcriptomics changes throughout human development. We reveal that human trophectoderm/inner cell mass transcriptomes diverge at the transition from the B2 to the B3 blastocyst stage, just before blastocyst expansion. We explore the dynamics of the fate markers IFI16 and GATA4 and show that they gradually become mutually exclusive upon establishment of epiblast and primitive endoderm fates, respectively. We also provide evidence that NR2F2 marks trophectoderm maturation, initiating from the polar side, and subsequently spreads to all cells after implantation. Our study pinpoints the precise timing of lineage specification events in the human embryo and identifies transcriptomics hallmarks and cell fate markers.
Collapse
Affiliation(s)
- Dimitri Meistermann
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; LS2N, UNIV Nantes, CNRS, Nantes, France
| | - Alexandre Bruneau
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Sophie Loubersac
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Arnaud Reignier
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Julie Firmin
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Valentin François-Campion
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Stéphanie Kilens
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | | | - Jenna Lammers
- CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Magalie Feyeux
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Phillipe Hulin
- Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Steven Nedellec
- Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Betty Bretin
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Gaël Castel
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Nicolas Allègre
- GReD Laboratory, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, CRBC, 63000 Clermont-Ferrand, France
| | - Simon Covin
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France
| | - Audrey Bihouée
- Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France; Institut du Thorax, UNIV Nantes, INSERM, CNRS, Nantes, France
| | - Magali Soumillon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Tarjei Mikkelsen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute, Cambridge, MA 02142, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Paul Barrière
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France
| | - Claire Chazaud
- GReD Laboratory, Université Clermont Auvergne, CNRS, INSERM, Faculté de Médecine, CRBC, 63000 Clermont-Ferrand, France
| | - Joel Chappell
- KU Leuven - University of Leuven, Department of Development and Regeneration, Institute for Single Cell Omics, Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Vincent Pasque
- KU Leuven - University of Leuven, Department of Development and Regeneration, Institute for Single Cell Omics, Leuven Stem Cell Institute, Herestraat 49, 3000 Leuven, Belgium
| | | | - Thomas Fréour
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; CHU Nantes, Université de Nantes, Service de Biologie de la Reproduction, 44000 Nantes, France.
| | - Laurent David
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44000 Nantes, France; Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France.
| |
Collapse
|
214
|
Posfai E, Lanner F, Mulas C, Leitch HG. All models are wrong, but some are useful: Establishing standards for stem cell-based embryo models. Stem Cell Reports 2021; 16:1117-1141. [PMID: 33979598 PMCID: PMC8185978 DOI: 10.1016/j.stemcr.2021.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Detailed studies of the embryo allow an increasingly mechanistic understanding of development, which has proved of profound relevance to human disease. The last decade has seen in vitro cultured stem cell-based models of embryo development flourish, which provide an alternative to the embryo for accessible experimentation. However, the usefulness of any stem cell-based embryo model will be determined by how accurately it reflects in vivo embryonic development, and/or the extent to which it facilitates new discoveries. Stringent benchmarking of embryo models is thus an important consideration for this growing field. Here we provide an overview of means to evaluate both the properties of stem cells, the building blocks of most embryo models, as well as the usefulness of current and future in vitro embryo models.
Collapse
Affiliation(s)
- Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Fredrik Lanner
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm, Sweden; Ming Wai Lau Center for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Carla Mulas
- Wellcome - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| |
Collapse
|
215
|
Io S, Kabata M, Iemura Y, Semi K, Morone N, Minagawa A, Wang B, Okamoto I, Nakamura T, Kojima Y, Iwatani C, Tsuchiya H, Kaswandy B, Kondoh E, Kaneko S, Woltjen K, Saitou M, Yamamoto T, Mandai M, Takashima Y. Capturing human trophoblast development with naive pluripotent stem cells in vitro. Cell Stem Cell 2021; 28:1023-1039.e13. [PMID: 33831365 DOI: 10.1016/j.stem.2021.03.013] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 01/06/2023]
Abstract
Trophoblasts are extraembryonic cells that are essential for maintaining pregnancy. Human trophoblasts arise from the morula as trophectoderm (TE), which, after implantation, differentiates into cytotrophoblasts (CTs), syncytiotrophoblasts (STs), and extravillous trophoblasts (EVTs), composing the placenta. Here we show that naïve, but not primed, human pluripotent stem cells (PSCs) recapitulate trophoblast development. Naive PSC-derived TE and CTs (nCTs) recreated human and monkey TE-to-CT transition. nCTs self-renewed as CT stem cells and had the characteristics of proliferating villous CTs and CTs in the cell column of the first trimester. Notably, although primed PSCs differentiated into trophoblast-like cells (BMP4, A83-01, and PD173074 [BAP]-treated primed PSCs [pBAPs]), pBAPs were distinct from nCTs and human placenta-derived CT stem cells, exhibiting properties consistent with the amnion. Our findings establish an authentic paradigm for human trophoblast development, demonstrating the invaluable properties of naive human PSCs. Our system provides a platform to study the molecular mechanisms underlying trophoblast development and related diseases.
Collapse
Affiliation(s)
- Shingo Io
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan; Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Mio Kabata
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshiki Iemura
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Katsunori Semi
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Nobuhiro Morone
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Atsutaka Minagawa
- Department of Cell Growth and Differentiation, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Bo Wang
- Department of Cell Growth and Differentiation, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Ikuhiro Okamoto
- Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Tomonori Nakamura
- Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; The HAKUBI Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Yoji Kojima
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan; Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Belinda Kaswandy
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Eiji Kondoh
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Shin Kaneko
- Department of Cell Growth and Differentiation, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan
| | - Mitinori Saitou
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan; Department of Anatomy and Cell Biology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan; AMED-CREST, AMED, Tokyo 100-0004, Japan; Medical Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Projects (AIP), Kyoto 606-8507, Japan
| | - Masaki Mandai
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
216
|
Rossant J, Tam PPL. Opportunities and challenges with stem cell-based embryo models. Stem Cell Reports 2021; 16:1031-1038. [PMID: 33667412 PMCID: PMC8185371 DOI: 10.1016/j.stemcr.2021.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based embryo models open an unprecedented avenue for modeling embryogenesis, cell lineage differentiation, tissue morphogenesis, and organogenesis in mammalian development. Experimentation on these embryo models can lead to a better understanding of the mechanisms of development and offers opportunities for functional genomic studies of disease-causing mechanisms, identification of therapeutic targets, and preclinical modeling of advanced therapeutics for precision medicine. An immediate challenge is to create embryo models of high fidelity to embryogenesis and organogenesis in vivo, to ensure that the knowledge gleaned is biologically meaningful and clinically relevant.
Collapse
Affiliation(s)
- Janet Rossant
- Hospital for Sick Children, University of Toronto, and The Gairdner Foundation, Toronto, Canada.
| | - Patrick P L Tam
- Children's Medical Research Institute, University of Sydney, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| |
Collapse
|
217
|
Semi K, Takashima Y. Pluripotent stem cells for the study of early human embryology. Dev Growth Differ 2021; 63:104-115. [PMID: 33570781 PMCID: PMC8251740 DOI: 10.1111/dgd.12715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Forty years have passed since the first pluripotent stem cells (PSCs), mouse embryonic stem cells (ESCs), were established. Since then, several PSCs have been reported, including human ESCs in 1998, mouse epiblast stem cells (EpiSCs) in 2007, induced PSCs (iPSCs) in 2006 and 2007, and naïve human PSCs in 2014. Naïve PSCs are thought to correspond to pre-implantation epiblast cells, whereas conventional (or primed) human PSCs correspond to post-implantation epiblast cells. Thus, naïve and primed PSCs are classified by their developmental stages and have stage-specific characteristics, despite sharing the common feature of pluripotency. In this review, we discuss the current status of PSCs and their use to model human peri-implantation development.
Collapse
Affiliation(s)
- Katsunori Semi
- Center for iPS Cell Research and ApplicationKyoto UniversityKyotoJapan
| | | |
Collapse
|