201
|
Besić E. Physical mechanisms and methods employed in drug delivery to tumors. ACTA PHARMACEUTICA 2007; 57:249-68. [PMID: 17878107 DOI: 10.2478/v10007-007-0021-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to several well-known drug delivery strategies developed to facilitate effective chemotherapy with anticancer agents, some new approaches have been recently established, based on specific effects arising from the applications of ultrasound, magnetic and electric fields on drug delivery systems. This paper gives an overview of newly developed methods of drug delivery to tumors and of the related anticancer therapies based on the combined use of different physical methods and specific drug carriers. The conventional strategies and new approaches have been put into perspective to revisit the existing and to propose new directions to overcome the threatening problem of cancer diseases.
Collapse
Affiliation(s)
- Erim Besić
- Department of Biophysics, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10002 Zagreb, Croatia.
| |
Collapse
|
202
|
Kinoshita M, Hynynen K. Key factors that affect sonoporation efficiency in in vitro settings: the importance of standing wave in sonoporation. Biochem Biophys Res Commun 2007; 359:860-5. [PMID: 17568561 PMCID: PMC4012532 DOI: 10.1016/j.bbrc.2007.05.153] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 05/18/2007] [Indexed: 11/19/2022]
Abstract
Ultrasound-induced intracellular drug delivery, sonoporation, is an appealing and promising technique for next generation drug delivery system. Many types of molecules, such as plasmid DNAs, siRNAs and peptides, have been demonstrated to be delivered into the cell by ultrasound with the aid of microbubbles both in vitro and in vivo. Although there are many reports on in vitro sonoporation, the efficiency of successful sonoporation and the viabilities of cells after the procedure documented in each report vary in a wide range, and the reasons for these differences are not fully understood. In this study, we have investigated how different experimental settings would affect sonoporation efficiency and cell viabilities after the procedure. Our results show that the fashion of cell culture (e.g. in suspension or in monolayer culture) and the presence of standing wave have a great impact on the overall results. These results indicate that in vitro sonoporation settings should be carefully evaluated in each experiment. The fact that standing wave is necessary to achieve high sonoporation efficiency may be a problematic issue for clinical application of sonoporation, as it may be difficult (although not impossible) to create standing wave in a human body.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Radiology, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|
203
|
Kumon RE, Aehle M, Sabens D, Parikh P, Kourennyi D, Deng CX. Ultrasound-induced calcium oscillations and waves in Chinese hamster ovary cells in the presence of microbubbles. Biophys J 2007; 93:L29-31. [PMID: 17631537 PMCID: PMC1959545 DOI: 10.1529/biophysj.107.113365] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study investigated the effects of ultrasound on the intracellular [Ca(2+)] of Chinese hamster ovary cells in the presence of albumin-encapsulated Optison microbubbles. Cells were exposed to 1 MHz ultrasound (tone burst of 0.2 s duration, 0.45 MPa peak pressure) while immersed in solution of 0.9 mM Ca(2+). Calcium imaging of the cells was performed using digital video fluorescence microscopy and Ca(2+)-indicator dye fura-2AM. Experimental evidence indicated that ultrasound caused a direct microbubble-cell interaction resulting in the breaking and eventual dissolution of the microbubble and concomitant permeabilization of the cells to Ca(2+). These cells exhibited a large influx of Ca(2+) over 3-4 s and did not return to their equilibrium levels. Subsequently, some cells exhibited one or more Ca(2+) oscillations with the onset of oscillations delayed by 10-80 s after the ultrasound pulse. A variety of oscillations were observed including decaying oscillations returning to the baseline value over 35-100 s, oscillations superimposed on a more gradual recovery over 150-200 s, and oscillations continued with increased amplitude caused by a second ultrasound tone burst. The delays in onset appeared to result from calcium waves that propagated across the cells after the application of the ultrasound pulse.
Collapse
Affiliation(s)
- R E Kumon
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | |
Collapse
|
204
|
Abstract
Drug delivery to the brain remains a challenging field. The presence of a physiological barrier, the blood-brain barrier (BBB), complicates the delivery of drugs to the brain. Although several methods have been developed for drug delivery to the brain, they have problems such as being invasive or lacking in target specificity. On the other hand, ultrasound has emerged as a treatment method and a diagnostic technology. Several studies have shown the feasibility of using ultrasound for the localized and reversible disruption of the BBB. In this review, I would like to review the recent advancement of ultrasound-induced MRI-guided BBB disruption technique and other methods for delivering drugs to the brain.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
205
|
Taylor SL, Rahim AA, Bush NL, Bamber JC, Porter CD. Targeted retroviral gene delivery using ultrasound. J Gene Med 2007; 9:77-87. [PMID: 17310476 DOI: 10.1002/jgm.1003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Achieving specificity of delivery represents a major problem limiting the clinical application of retroviral vectors for gene therapy, whilst lack of efficiency and longevity of gene expression limit non-viral techniques. Ultrasound and microbubble contrast agents can be used to effect plasmid DNA delivery. We therefore sought to evaluate the potential for ultrasound/microbubble-mediated retroviral gene delivery. METHODS An envelope-deficient retroviral vector, inherently incapable of target cell entry, was combined with cationic microbubbles and added to target cells. The cells were exposed to pulsed 1 MHz ultrasound for 5 s and subsequently analysed for marker gene expression. The acoustic pressure profile of the ultrasound field, to which transduction efficiency was related, was determined using a needle hydrophone. RESULTS Ultrasound-targeted gene delivery to a restricted area of cells was achieved using virus-loaded microbubbles. Gene delivery efficiency was up to 2% near the beam focus. Significant transduction was restricted to areas exposed to > or = 0.4 MPa peak-negative acoustic pressure, despite uniform application of the vector. An acoustic pressure-dependence was demonstrated that can be exploited for targeted retroviral transduction. The mechanism of entry likely involves membrane perturbation in the vicinity of oscillating microbubbles, facilitating fusion of the viral and cell membranes. CONCLUSIONS We have established the basis of a novel retroviral vector technology incorporating favourable aspects of existing viral and non-viral gene delivery vectors. In particular, transduction can be controlled by means of ultrasound exposure. The technology is ideally suited to targeted delivery following systemic vector administration.
Collapse
Affiliation(s)
- Sarah L Taylor
- The Institute of Cancer Research, Section of Cell and Molecular Biology, 237 Fulham Road, London SW3 6JB, UK
| | | | | | | | | |
Collapse
|
206
|
Han YW, Ikegami A, Chung P, Zhang L, Deng CX. Sonoporation is an efficient tool for intracellular fluorescent dextran delivery and one-step double-crossover mutant construction in Fusobacterium nucleatum. Appl Environ Microbiol 2007; 73:3677-83. [PMID: 17449701 PMCID: PMC1932673 DOI: 10.1128/aem.00428-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 04/08/2007] [Indexed: 11/20/2022] Open
Abstract
Studies of microorganisms are often hindered by a lack of effective genetic tools. One such example is Fusobacterium nucleatum, a gram-negative anaerobe associated with various human infections, including those causing periodontal disease and preterm birth. The first double-crossover allelic-exchange mutant in F. nucleatum was recently constructed using sonoporation, a novel ultrasound-mediated intracellular delivery method, demonstrating potential for bacterial gene transfection. To better unveil its mechanism, the current study examines the factors affecting the outcome of sonoporation. Delivery of Texas Red-conjugated dextran into F. nucleatum by sonoporation was at least twice as efficient as that by electroporation, and sonoporation was nonbactericidal, unlike electroporation. The delivery efficiency was affected by the acoustic pressure amplitude, the duty cycle, and the quantity of microbubbles used to initiate cavitation but not by the pulse repetition frequency of ultrasound application. To examine the involvement of homologous recombination in sonoporation-mediated mutant construction, the highly conserved recA gene, which carried most of the consensus residues, including the P loop, was identified in F. nucleatum, and a double-crossover recA mutant of F. nucleatum 12230, US1610, was constructed by sonoporation. The mutant exhibited increased sensitivity to UV exposure compared with that of the wild type, indicating that the RecA function in F. nucleatum was conserved. Interestingly, US1610 was also sensitive to ultrasound treatment, suggesting the likely involvement of RecA in postsonoporation repair and survival. Since sonoporation has consistently generated one-step double-crossover mutants in F. nucleatum by use of intact suicide plasmids, this technology may be developed into an efficient tool for streamlining mutant construction in bacteria.
Collapse
Affiliation(s)
- Yiping W Han
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106-4905, USA.
| | | | | | | | | |
Collapse
|
207
|
Abstract
Ultrasound exposure (USE) in the presence of microbubbles (MCB) (e.g. contrast agents used to enhance ultrasound imaging) increases plasmid transfection efficiency in vitro by several orders of magnitude. Formation of short-lived pores in the plasma membrane ('sonoporation'), up to 100 nm in effective diameter lasting a few seconds, is implicated as the dominant mechanism, associated with acoustic cavitation. Ultrasound enhanced gene transfer (UEGT) has also been successfully achieved in vivo, with reports of spatially restricted and therapeutically relevant levels of transgene expression. Loading MCB with nucleic acids and/or disease-targeting ligands may further improve the efficiency and specificity of UEGT such that clinical testing becomes a realistic prospect.
Collapse
Affiliation(s)
- C M H Newman
- Cardiovascular Research Unit, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK.
| | | |
Collapse
|
208
|
Min BH, Choi BH, Park SR. Low intensity ultrasound as a supporter of cartilage regeneration and its engineering. BIOTECHNOL BIOPROC E 2007. [DOI: 10.1007/bf02931799] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
209
|
Park K, Hoffmeister B, Han DK, Hasty K. Therapeutic ultrasound effects on interleukin-1beta stimulated cartilage construct in vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:286-95. [PMID: 17207905 DOI: 10.1016/j.ultrasmedbio.2006.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/10/2006] [Accepted: 08/17/2006] [Indexed: 05/13/2023]
Abstract
A low-intensity ultrasound (LIUS) was examined for its possible therapeutic effects on degenerative osteoarthritic cartilage. Along with the daily treatment of 5 ng interleukin-1beta (IL-1beta) for 5 d, an engineered 3D neocartilage construct was used as an in vitro OA model. Followed by 24 h preincubation with the first dose of IL-1beta, the constructs were then given ultrasonic stimulation (frequency 1.5 MHz and SATA 30 mW/cm(2)) once a day up to 5 d for the predetermined time. Fresh IL-1beta was added before the stimulation. The difference in the cell number and viability was insignificant between control (US-/IL+) and LIUS-stimulated groups. As the daily stimulation time was extended, the GAG contents in the constructs themselves significantly increased with 50 min stimulation but those released into the culture medium remained unaffected by LIUS. While the gene expression level of aggrecan was similar between control and LIUS (50 min) group, the ratio of collagen type II to type I was found to be higher in the control. The mRNA level of matrix metalloproteinase (MMP)-1 was substantially downregulated in the stimulated construct and that of MMP-13 was indifferent between control and stimulated one. The endogenous expression of transforming growth factor (TGF)-beta1 and beta3 was barely responsive to the LIUS stimulation. From histologic analysis, more intense GAG deposition was clearly identified with the LIUS-stimulated constructs. This study indicates that LIUS may have a significant potential to be a chondroprotective stimulant for osteoarthritic cartilage.
Collapse
Affiliation(s)
- Kwideok Park
- Biomaterials Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea.
| | | | | | | |
Collapse
|
210
|
Tran TA, Roger S, Le Guennec JY, Tranquart F, Bouakaz A. Effect of ultrasound-activated microbubbles on the cell electrophysiological properties. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:158-63. [PMID: 17189059 DOI: 10.1016/j.ultrasmedbio.2006.07.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 07/05/2006] [Accepted: 07/20/2006] [Indexed: 05/13/2023]
Abstract
New clinical applications of ultrasound contrast microbubbles extend beyond imaging and diagnosis toward therapeutic applications. Cell membrane permeability and the uptake of substances have been shown to be enhanced by microbubbles under ultrasound stimulation. However, the mechanisms of action of ultrasound-activated microbubbles are still unknown. The aim of our study was to examine how microbubbles and ultrasound interact with cells in an attempt to understand the sonoporation mechanism. The ruptured-patch-clamp whole-cell technique was used to measure membrane potential variations of a single cell. SonoVue microbubbles and mammary breast cancer cell line MDA-MB-231 were used. Ultrasound was applied using single-element transducers of 1 MHz. Microbubbles and cells were simultaneously video monitored during ultrasound exposure. Our results showed that, during sonoporation, a marked cell membrane hyperpolarization occurs (n = 6 cells) at negative pressures above 150 kPa, indicating the activation of specific ion channels while the cell and the microbubbles remain viable. The hyperpolarization was sustained for as long as the microbubbles are in a direct contact with the cell and the ultrasound waves are transmitted. Smaller acoustic amplitudes induced only mild hyperpolarization, whereas shutting off the ultrasound brings the cell membrane potential to its resting value. However, ultrasound alone did not affect the cell membrane potential. A similar hyperpolarization of the cell membrane was observed when a mechanical pressure was applied on the cell through a glass probe. In conclusion, the results demonstrate that microbubbles' oscillations under ultrasound activation entail modifications of the electrophysiologic cell activities by triggering the modulation of ionic transports through the plasmic cell membrane. However, only cells in direct contact with the microbubbles are impacted. The mechanisms involved are likely related to activation of specific channels sensitive to mechanical stresses (stretch-activated channels) and possibly nonspecific ion channels.
Collapse
|
211
|
Schlicher RK, Radhakrishna H, Tolentino TP, Apkarian RP, Zarnitsyn V, Prausnitz MR. Mechanism of intracellular delivery by acoustic cavitation. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:915-24. [PMID: 16785013 DOI: 10.1016/j.ultrasmedbio.2006.02.1416] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 01/24/2006] [Accepted: 01/31/2006] [Indexed: 05/10/2023]
Abstract
Using conditions different from conventional medical imaging or laboratory cell lysis, ultrasound has recently been shown to reversibly increase plasma membrane permeability to drugs, proteins and DNA in living cells and animals independently of cell or drug type, suggesting a ubiquitous mechanism of action. To determine the mechanism of these effects, we examined cells exposed to ultrasound by flow cytometry coupled with electron and fluorescence microscopies. The results show that cavitation generated by ultrasound facilitates cellular incorporation of macromolecules up to 28 nm in radius through repairable micron-scale disruptions in the plasma membrane with lifetimes >1 min, which is a period similar to the kinetics of membrane repair after mechanical wounding. Further data suggest that cells actively reseal these holes using a native healing response involving endogenous vesicle-based membrane resealing. In this way, noninvasively focused ultrasound could deliver drugs and genes to targeted tissues, thereby minimizing side effects, lowering drug dosages, and improving efficacy.
Collapse
Affiliation(s)
- Robyn K Schlicher
- The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, Georgia 30332-0100, USA
| | | | | | | | | | | |
Collapse
|
212
|
Duvshani-Eshet M, Adam D, Machluf M. The effects of albumin-coated microbubbles in DNA delivery mediated by therapeutic ultrasound. J Control Release 2006; 112:156-66. [PMID: 16632040 DOI: 10.1016/j.jconrel.2006.02.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 02/07/2006] [Accepted: 02/13/2006] [Indexed: 10/25/2022]
Abstract
The application of therapeutic ultrasound (TUS) in combination with contrast agents (USCA) to mediate gene delivery relies on the understanding of the bioeffects involved. The objective of this study was to evaluate the various bioeffects generated by albumin-coated microbubbles: Optison, an USCA, when applied with TUS operated for 10-30 min, on cells and on DNA transfection. This study reveals that Optison microbubbles were still acoustically active after long-term TUS application of 30 min. Optison enhances TUS-gene transfection by increasing the number of plasmids in the cells and also by distributing the plasmids to more cells, without significant decrease in cell viability. Optison also interacts with the DNA to further enhance transfection in a mechanism not necessarily involving cavitation. However, Optison affects mainly the cell cytoplasmatic membrane, without interfering with DNA intracellular trafficking. Using high-resolution scanning electron microscopy (HRSEM), the bioeffects on cell membrane induced by TUS-Optison were observed, demonstrating that Optison lead to a rougher surface, characterized by depressions that are reversible within 24-h post TUS. These effects are different from those observed when only TUS was applied. The findings from this study suggest that albumin-coated microbubbles enhances transfection when using TUS for 10-30 min, and that microbubbles play a major role in elevating cell transfection level and efficiency.
Collapse
Affiliation(s)
- Maayan Duvshani-Eshet
- The Laboratory of Cancer Drug Delivery and Mammalian Cell Technology, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | |
Collapse
|
213
|
Juffermans LJM, Dijkmans PA, Musters RJP, Visser CA, Kamp O. Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide. Am J Physiol Heart Circ Physiol 2006; 291:H1595-601. [PMID: 16632548 DOI: 10.1152/ajpheart.01120.2005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we addressed the interactions among ultrasound, microbubbles, and living cells as well as consequent arising bioeffects. We specifically investigated whether hydrogen peroxide (H(2)O(2)) is involved in transient permeabilization of cell membranes in vitro after ultrasound exposure at low diagnostic power, in the presence of stable oscillating microbubbles, by measuring the generation of H(2)O(2) and Ca(2+) influx. Ultrasound, in the absence or presence of SonoVue microbubbles, was applied to H9c2 cells at 1.8 MHz with a mechanical index (MI) of 0.1 or 0.5 during 10 s. This was repeated every minute, for a total of five times. The production of H(2)O(2) was measured intracellularly with CM-H(2)DCFDA. Cell membrane permeability was assessed by measuring real-time changes in intracellular Ca(2+) concentration with fluo-4 using live-cell fluorescence microscopy. Ultrasound, in the presence of microbubbles, caused a significant increase in intracellular H(2)O(2) at MI 0.1 of 50% and MI 0.5 of 110% compared with control (P < 0.001). Furthermore, we found increases in intracellular Ca(2+) levels at both MI 0.1 and MI 0.5 in the presence of microbubbles, which was not detected in the absence of extracellular Ca(2+). In addition, in the presence of catalase, Ca(2+) influx immediately following ultrasound exposure was completely blocked at MI 0.1 (P < 0.01) and reduced by 50% at MI 0.5 (P < 0.001). Finally, cell viability was not significantly affected, not even 24 h later. These results implicate a role for H(2)O(2) in transient permeabilization of cell membranes induced by ultrasound-exposed microbubbles.
Collapse
Affiliation(s)
- L J M Juffermans
- VU Univ. Medical Center, Van der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
214
|
Shuto J, Ichimiya I, Suzuki M. Effects of low-intensity focused ultrasound on the mouse submandibular gland. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:587-94. [PMID: 16616604 DOI: 10.1016/j.ultrasmedbio.2005.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 11/03/2005] [Accepted: 11/11/2005] [Indexed: 05/08/2023]
Abstract
Ultrasound is expected to make a considerable contribution to drug delivery systems (DDSs). We tested the hypothesis that low-intensity focused ultrasound (LIFU) increases vessel permeability in the mouse submandibular gland without causing parenchymal damage. In a preliminary study, LIFU at 3 W/cm2 with a 50% duty cycle for 2 minutes did not cause histologic damage. We therefore applied LIFU to mouse submandibular gland at these conditions before and after injecting horseradish peroxidase. Single labeling laser scanning confocal microscopy revealed positive horseradish peroxidase staining around the excretory ducts in the mucous-producing part of the gland, but absence of staining in control glands. Immunostaining for fibrinogen was positive in the same region. Fibrinogen is an intravascular protein that does not pass through intact vessels. These findings suggest that LIFU increases vessel permeability and disruption without destruction. It is anticipated that this process will be useful in establishing a DDS that uses LIFU.
Collapse
Affiliation(s)
- Jun Shuto
- Department of Otolaryngology, Oita University Faculty of Medicine, Yufu-city, Oita, Japan
| | | | | |
Collapse
|
215
|
Abstract
AIM To investigate the specific effects of Ca2+ on transgene expression during electroporation-mediated gene transfer in mice. METHODS Skeletal muscle and skin were subjected to in vivo electroporation with a luciferase reporter plasmid, with or without Ca2+ and various other ions. RESULTS For in vivo electroporation, the presence of just 10 mmol/L Ca2+ in the DNA solution drastically reduced the resulting transgene expression, to less than 5% of control values. Only Ca2+, not other ions, caused inhibition, and the effect was not tissue specific. More surprisingly, even when Ca2+ ions were delivered by electroporation before or after DNA administration, similar effects were still observed. CONCLUSION The inhibitory effect of Ca2+ on in vivo gene transfer by electroporation is specific, ie, the inhibitory effect may be related to the cell membrane properties after electroporation and the subsequent resealing event.
Collapse
Affiliation(s)
- Yong-gang Zhao
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai 200240, China
| | | | | | | |
Collapse
|
216
|
Martina AD, Meyer-Wiethe K, Allémann E, Seidel G. Ultrasound Contrast Agents for Brain Perfusion Imaging and Ischemic Stroke Therapy. J Neuroimaging 2006. [DOI: 10.1111/j.1552-6569.2005.tb00314.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
217
|
Khanna S, Hudson B, Pepper CJ, Amso NN, Coakley WT. Fluorescein isothiocynate-dextran uptake by chinese hamster ovary cells in a 1.5 MHz ultrasonic standing wave in the presence of contrast agent. ULTRASOUND IN MEDICINE & BIOLOGY 2006; 32:289-95. [PMID: 16464674 DOI: 10.1016/j.ultrasmedbio.2005.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 10/24/2005] [Accepted: 11/03/2005] [Indexed: 05/06/2023]
Abstract
Uptake of fluorescein isothiocynate-dextran (FITC-dextran) by Chinese hamster ovary cells was studied after exposure to ultrasonic standing wave (USW) in presence of Optison, an ultrasound contrast agent. Confluent Chinese hamster ovary cells were harvested and suspended in phosphate-buffered saline + 0.1% bovine serum albumin containing FITC-dextran (10, 40, and 500 kDa) at 10 microM final concentration. The suspension was seeded with contrast agent (75 microL/mL) and exposed to a 1.5 MHz USW system at acoustic pressures ranging from 0.98 to 4.2 MPa. Macromolecular uptake was assessed by fluorescent microscopy and quantified by flow cytometry 10 min after exposure. FITC-dextran positive cells, as assessed by flow cytometry, were 1 +/- 0.05% and 2.58 +/- 0.27% for acoustic pressures of 1.96 and 4.2 MPa, respectively (p = 0.006). Fluorescent microscopy indicated a degree of macromolecular loading at 0.98 MPa with 46% of peripherally FITC-dextran- and/or propidium iodide-stained cells coincident with the appearance of significant frequency (f0/2 and 2 f0) emission signals. At higher pressures, high macromolecular loading with 6% peripherally stained cells at 1.96 MPa was associated with lower order emission signals and white noise. The study conclusively demonstrates macromolecular loading in an USW, a significantly higher macromolecular loading at higher pressures and indicates potential of emission signals for a feedback loop to control the acoustic power outputs and fine-tune the biologic effects associated with sonoporation.
Collapse
Affiliation(s)
- Sanjay Khanna
- Department of Obstetrics and Gynaecology, Wales College of Medicine, Heath Park, Cardiff, UK
| | | | | | | | | |
Collapse
|
218
|
Abstract
The principles of physical rehabilitation therapy can be applied to the horse to provide a reduction in discomfort and dysfunction associated with the various forms of joint disease. Physical agents,such as ice, heat, electricity, sound, light, magnetic fields, compression, and movement, can be used by the rehabilitation therapist to attempt to control pain, reduce swelling, and restore optimal movement and function in the affected joint. The equine therapist's attention is focused not only on the affected joint but on the body as a whole to manage secondary or compensatory problems.
Collapse
Affiliation(s)
- Mimi Porter
- Equine Therapy, 4350 Harrodsburg Road, Lexington, KY 40513, USA.
| |
Collapse
|
219
|
Chappell JC, Price RJ. Targeted Therapeutic Applications of Acoustically Active Microspheres in the Microcirculation. Microcirculation 2006; 13:57-70. [PMID: 16393947 DOI: 10.1080/10739680500383381] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The targeted delivery of intravascular drugs and genes across the endothelial barrier with only minimal side effects remains a significant obstacle in establishing effective therapies for many pathological conditions. Recent investigations have shown that contrast agent microbubbles, which are typically used for image enhancement in diagnostic ultrasound, may also be promising tools in emergent, ultrasound-based therapies. Explorations of the bioeffects generated by ultrasound-microbubble interactions indicate that these phenomena may be exploited for clinical utility such as in the targeted revascularization of flow-deficient tissues. Moreover, development of this treatment modality may also include using ultrasound-microbubble interactions to deliver therapeutic material to tissues, and reporter genes and therapeutic agents have been successfully transferred from the microcirculation to tissue in various animal models of normal and pathological function. This article reviews the recent studies aimed at using interactions between ultrasound and contrast agent microbubbles in the microcirculation for therapeutic purposes. Furthermore, the authors present investigations involving microspheres that are of a different design compared to current microbubble contrast agents, yet are acoustically active and demonstrate potential as tools for targeted delivery. Future directions necessary to address current challenges and advance these techniques to clinical practicality are also discussed.
Collapse
Affiliation(s)
- John C Chappell
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
220
|
Crowder KC, Hughes MS, Marsh JN, Barbieri AM, Fuhrhop RW, Lanza GM, Wickline SA. Sonic activation of molecularly-targeted nanoparticles accelerates transmembrane lipid delivery to cancer cells through contact-mediated mechanisms: implications for enhanced local drug delivery. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:1693-700. [PMID: 16344131 DOI: 10.1016/j.ultrasmedbio.2005.07.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2005] [Revised: 07/19/2005] [Accepted: 07/28/2005] [Indexed: 05/05/2023]
Abstract
Liquid perfluorocarbon nanoparticles serve as sensitive and specific targeted contrast and drug delivery vehicles by binding to specific cell surface markers. We hypothesized that application of acoustic energy at diagnostic power levels could promote nanoparticle-associated drug delivery by stimulating increased interaction between the nanoparticle's lipid layer and the targeted cell's plasma membrane. Ultrasound (mechanical index = 1.9) applied with a conventional ultrasound imaging system to nanoparticles targeted to alpha(v)beta3-integrins on C32 melanoma cancer cells in vitro produced no untoward effects. Within 5 min, lipid delivery from nanoparticles into cell cytoplasm was dramatically augmented. We also demonstrate the operation of a potential physical mechanism for this effect, the acoustic radiation force on the nanoparticles, which may contribute to the enhanced lipid delivery. Accordingly, we propose that local delivery of lipophilic substances (e.g., drugs) from targeted nanoparticles directly into cell cytoplasm can be augmented rapidly and safely with conventional ultrasound imaging devices through nondestructive mechanisms.
Collapse
Affiliation(s)
- Kathryn C Crowder
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
221
|
Kinoshita M, Hynynen K. A novel method for the intracellular delivery of siRNA using microbubble-enhanced focused ultrasound. Biochem Biophys Res Commun 2005; 335:393-9. [PMID: 16081042 DOI: 10.1016/j.bbrc.2005.07.101] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/19/2005] [Indexed: 11/29/2022]
Abstract
Short interfering RNA (siRNA) has attracted much attention for clinical use in various diseases. However, its delivery, especially through the cell membrane, continues to present a challenge. Advances in ultrasound- and ultrasound contrast-agent technologies have made it possible to change transiently the permeability of the cell membrane and, using a focused ultrasound transducer, to narrow and focus the ultrasound energy on a small target, thereby avoiding damage to surrounding tissue. In this in vitro study, we demonstrate that it is possible to deliver siRNA intracellularly via microbubble-enhanced focused ultrasound. Although further optimization is necessary, our novel method for siRNA transduction represents a powerful tool for using siRNA in vivo and possibly in the clinical setting.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | |
Collapse
|
222
|
Han YW, Ikegami A, Rajanna C, Kawsar HI, Zhou Y, Li M, Sojar HT, Genco RJ, Kuramitsu HK, Deng CX. Identification and characterization of a novel adhesin unique to oral fusobacteria. J Bacteriol 2005; 187:5330-40. [PMID: 16030227 PMCID: PMC1196005 DOI: 10.1128/jb.187.15.5330-5340.2005] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fusobacterium nucleatum is a gram-negative anaerobe that is prevalent in periodontal disease and infections of different parts of the body. The organism has remarkable adherence properties, binding to partners ranging from eukaryotic and prokaryotic cells to extracellular macromolecules. Understanding its adherence is important for understanding the pathogenesis of F. nucleatum. In this study, a novel adhesin, FadA (Fusobacterium adhesin A), was demonstrated to bind to the surface proteins of the oral mucosal KB cells. FadA is composed of 129 amino acid (aa) residues, including an 18-aa signal peptide, with calculated molecular masses of 13.6 kDa for the intact form and 12.6 kDa for the secreted form. It is highly conserved among F. nucleatum, Fusobacterium periodonticum, and Fusobacterium simiae, the three most closely related oral species, but is absent in the nonoral species, including Fusobacterium gonidiaformans, Fusobacterium mortiferum, Fusobacterium naviforme, Fusobacterium russii, and Fusobacterium ulcerans. In addition to FadA, F. nucleatum ATCC 25586 and ATCC 49256 also encode two paralogues, FN1529 and FNV2159, each sharing 31% identity with FadA. A double-crossover fadA deletion mutant, F. nucleatum 12230-US1, was constructed by utilizing a novel sonoporation procedure. The mutant had a slightly slower growth rate, yet its binding to KB and Chinese hamster ovarian cells was reduced by 70 to 80% compared to that of the wild type, indicating that FadA plays an important role in fusobacterial colonization in the host. Furthermore, due to its uniqueness to oral Fusobacterium species, fadA may be used as a marker to detect orally related fusobacteria. F. nucleatum isolated from other parts of the body may originate from the oral cavity.
Collapse
Affiliation(s)
- Yiping W Han
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4905, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Pan H, Zhou Y, Izadnegahdar O, Cui J, Deng CX. Study of sonoporation dynamics affected by ultrasound duty cycle. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:849-56. [PMID: 15936500 DOI: 10.1016/j.ultrasmedbio.2005.03.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Revised: 03/14/2005] [Accepted: 03/22/2005] [Indexed: 05/02/2023]
Abstract
Sonoporation is the ultrasound-induced membrane porosity and has been investigated as a means for intracellular drug delivery and nonviral gene transfection. The dynamic characteristics of sonoporation, such as formation, duration and resealing of the pores in the cell membrane, determine the process of intracellular uptake of molecules or agents of interest that are otherwise obstructed by the cell membrane barrier. Sonoporation dynamics is also important for postultrasound cell survival. In this study, we investigated the effects of ultrasound duty cycle on sonoporation dynamics using Xenopus oocyte as a model system. Transducer with a center frequency of 0.96 MHz was used to generate pulsed ultrasound of desired duty cycle (5%, 10% and 15%) at a pulse repetition frequency of 1 Hz and an acoustic pressure of 0.4 MPa in our experiments. Employing voltage clamp techniques, we measured the transmembrane current as the direct result of decreased membrane resistance due to pore formation induced by ultrasound application. We characterized the sonoporation dynamics from these time-resolved recordings of transmembrane current to indicate cell membrane status, including pore formation, extension and resealing. We observed that the transmembrane current amplitude increased with increasing duty cycle, while the recovering process of membrane pores and cell survival rate decreased at higher duty cycles.
Collapse
Affiliation(s)
- Hua Pan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 44106-7207, USA
| | | | | | | | | |
Collapse
|
224
|
Kinoshita M, Hynynen K. Intracellular delivery of Bak BH3 peptide by microbubble-enhanced ultrasound. Pharm Res 2005; 22:716-20. [PMID: 15906165 DOI: 10.1007/s11095-005-2586-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Accepted: 01/21/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE To investigate the possibility of intracellular delivery of Bak BH3 peptide using sonoporation effect by microbubble-enhanced ultrasound. METHODS HeLa and BJAB cells were exposed to 1.696-Mhz focused ultrasound with 2% microbubble contrast agents (OPTISON). Cell-impermeable calcein was used as an indicator for successful sonoporation, and propidium iodide staining was used for cell viability assessment. Peptides were also exposed to ultrasound with OPTISON and analyzed with mass spectrometry for evaluation of stability under ultrasound exposure. The effect of transduced Bak BH3 peptide was evaluated by the cell viability of successfully sonoporated cells. RESULTS Bak BH3 peptides did not undergo mechanical degradation with microbubble-enhanced ultrasound exposure. With the increase of acoustic energy exposure, the sonoporation efficiency saturated both in BJAB and HeLa cells, while direct cell death rate by ultrasound exposure tended to increase. When BJAB cells were treated with 100 microM Bak BH3 peptides, and ultrasound exposure with ultrasound contrast agents (OPTISON), an increased 35% cell death was confirmed. On the other hand, although HeLa cells had a similar trend, they failed to exhibit statistical significance. CONCLUSIONS Our results suggest that microbubble-enhanced focused ultrasound peptide transduction is possible. Further optimization of ultrasound exposure conditions may be necessary.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Radiology, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
225
|
Dittmar KM, Xie J, Hunter F, Trimble C, Bur M, Frenkel V, Li KCP. Pulsed High-Intensity Focused Ultrasound Enhances Systemic Administration of Naked DNA in Squamous Cell Carcinoma Model: Initial Experience. Radiology 2005; 235:541-6. [PMID: 15798154 DOI: 10.1148/radiol.2352040254] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To determine whether exposures to pulsed high-intensity focused ultrasound can enhance local delivery and expression of a reporter gene, administered with systemic injection of naked DNA, in tumors in mice. MATERIALS AND METHODS The study was performed according to an approved animal protocol and in compliance with guidelines of the institutional animal care and use committee. Squamous cell carcinoma (SCC7) tumors were induced subcutaneously in both flanks of female C3H mice (n = 3) and allowed to grow to average size of 0.4 cm(3). In each mouse, one tumor was exposed to pulsed high-intensity focused ultrasound while a second tumor served as a control. Immediately after ultrasound exposure, a solution containing a cytomegalovirus-green fluorescent protein (GFP) reporter gene construct was injected intravenously via the tail vein. The mouse was sacrificed 24 hours later. Tissue specimens were viewed with fluorescence microscopy to determine the presence of GFP expression, and Western blot analysis was performed, at which signal intensities of expressed GFP were quantitated. A paired Student t test was used to compare mean values in controls with those in treated tumors. Histologic analyses were performed with specific techniques (hematoxylin-eosin staining, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling) to determine whether tumor cells had been damaged by ultrasound exposure. RESULTS GFP expression was present in all sections of tumors that received ultrasound exposure but not in control tumors. Results of signal intensity measurement at Western blot analysis showed expressed GFP to be nine times greater in ultrasound-exposed tumors (160.2 +/- 24.5 [standard deviation]) than in controls (17.4 +/- 11.8) (P = .004, paired Student t test). Comparison of histologic sections from treated tumors with those from controls revealed no destructive effects from ultrasound exposure. CONCLUSION Local exposure to pulsed high-intensity focused ultrasound in tumors can enhance the delivery and expression of systemically injected naked DNA.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cytomegalovirus/genetics
- DNA, Recombinant/administration & dosage
- Female
- Gene Expression/physiology
- Gene Transfer Techniques
- Genes, Reporter/genetics
- Genetic Therapy
- Green Fluorescent Proteins/genetics
- In Situ Nick-End Labeling
- Injections, Intravenous
- Mice
- Mice, Inbred C3H
- Microscopy, Fluorescence
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/pathology
- Soft Tissue Neoplasms/genetics
- Soft Tissue Neoplasms/pathology
- Subcutaneous Tissue/pathology
- Ultrasonic Therapy
Collapse
Affiliation(s)
- Kristin M Dittmar
- Department of Radiology, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
226
|
Tsutsui JM, Xie F, Porter RT. The use of microbubbles to target drug delivery. Cardiovasc Ultrasound 2004; 2:23. [PMID: 15546496 PMCID: PMC538251 DOI: 10.1186/1476-7120-2-23] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 11/16/2004] [Indexed: 11/16/2022] Open
Abstract
Ultrasound-mediated microbubbles destruction has been proposed as an innovative method for noninvasive delivering of drugs and genes to different tissues. Microbubbles are used to carry a drug or gene until a specific area of interest is reached, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. Furthermore, the ability of albumin-coated microbubbles to adhere to vascular regions with glycocalix damage or endothelial dysfunction is another possible mechanism to deliver drugs even in the absence of ultrasound. This review focuses on the characteristics of microbubbles that give them therapeutic properties and some important aspects of ultrasound parameters that are known to influence microbubble-mediated drug delivery. In addition, current studies involving this novel therapeutical application of microbubbles will be discussed.
Collapse
Affiliation(s)
- Jeane M Tsutsui
- Department of Internal Medicine, Section of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Feng Xie
- Department of Internal Medicine, Section of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Richard Thomas Porter
- Department of Internal Medicine, Section of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|