201
|
Cross JC. More of a good thing or less of a bad thing: gene copy number variation in polyploid cells of the placenta. PLoS Genet 2014; 10:e1004330. [PMID: 24784435 PMCID: PMC4006710 DOI: 10.1371/journal.pgen.1004330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- James C. Cross
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
202
|
Tian X, Anthony K, Neuberger T, Diaz FJ. Preconception zinc deficiency disrupts postimplantation fetal and placental development in mice. Biol Reprod 2014; 90:83. [PMID: 24599289 DOI: 10.1095/biolreprod.113.113910] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Zinc is an essential nutrient for optimal fertility, but the effects of preconception zinc deficiency on postimplantation development are not known. Female mice were fed a control or a zinc-deficient diet (ZDD) for 4-5 days before ovulation (preconception). Embryonic and/or placental development were evaluated on Days 3.5, 6.5, 10.5, 12.5, and 16.5 of pregnancy. The findings show a decrease in embryo length (31%, Day 10.5; 13%, Day 12.5; 10%, Day 16.5) and weight (23%, Day 16.5) in embryos from mothers fed a ZDD preconception. Zinc deficiency also caused a high incidence of pregnancy loss (46%, Day 10.5; 34%, Day 12.5; 51%, Day 16.5) compared to control (2%, Day 10.5; 7%, Day 12.5; 9%, Day 16.5). ZDD embryos transferred to normal recipients were 38% smaller and implantation rate was only 10% compared to 40% for controls. Trophoblast cell differentiation and implantation on Day 6.5 of pregnancy were compromised by preconception zinc deficiency. On Day 12.5 of pregnancy, placenta weight and area of fetal placenta were decreased 37% and 31%, respectively, by preconception zinc deficiency. Consistent with a smaller fetal placenta, expression of key placental transcripts, including Ar, Esx1, Syna, Tfeb, Dlx3, and Gcm1 mRNA, but not Ctsq mRNA, were decreased 30%-70% in the ZDD group. Preconception zinc deficiency caused 41%-57% of embryos to exhibit delayed or aberrant neural tube development, as examined by light microscopy and magnetic resonance imaging. Collectively, the findings provide evidence for the importance of preconception zinc in promoting optimal fertility and oocyte developmental potential.
Collapse
Affiliation(s)
- Xi Tian
- Center for Reproductive Biology and Health and Department of Animal Science, Pennsylvania State University, University Park, Pennsylvania
| | | | | | | |
Collapse
|
203
|
Rai A, Cross JC. Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev Biol 2014; 387:131-41. [PMID: 24485853 DOI: 10.1016/j.ydbio.2014.01.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 11/27/2022]
Abstract
The maternal vasculature within the placenta in primates and rodents is unique because it is lined by fetal cells of the trophoblast lineage and not by maternal endothelial cells. In addition to trophoblast cells that invade the uterine spiral arteries that bring blood into the placenta, other trophoblast subtypes sit at different levels of the vascular space. In mice, at least five distinct subtypes of trophoblast cells have been identified which engage maternal endothelial cells on the arterial and venous frontiers of the placenta, but which also form the channel-like spaces within it through a process analogous to formation of blood vessels (vasculogenic mimicry). These cells are all large, post-mitotic trophoblast giant cells. In addition to assuming endothelial cell-like characteristics (endothelial mimicry), they produce dozens of different hormones that are thought to regulate local and systemic maternal adaptations to pregnancy. Recent work has identified distinct molecular pathways in mice that regulate the morphogenesis of trophoblast cells on the arterial and venous sides of the vascular circuit that may be analogous to specification of arterial and venous endothelial cells.
Collapse
Affiliation(s)
- Anshita Rai
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | - James C Cross
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1.
| |
Collapse
|
204
|
The dual roles of geminin during trophoblast proliferation and differentiation. Dev Biol 2014; 387:49-63. [PMID: 24412371 DOI: 10.1016/j.ydbio.2013.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 12/11/2013] [Accepted: 12/22/2013] [Indexed: 11/21/2022]
Abstract
Geminin is a protein involved in both DNA replication and cell fate acquisition. Although it is essential for mammalian preimplantation development, its role remains unclear. In one study, ablation of the geminin gene (Gmnn) in mouse preimplantation embryos resulted in apoptosis, suggesting that geminin prevents DNA re-replication, whereas in another study it resulted in differentiation of blastomeres into trophoblast giant cells (TGCs), suggesting that geminin regulates trophoblast specification and differentiation. Other studies concluded that trophoblast differentiation into TGCs is regulated by fibroblast growth factor-4 (FGF4), and that geminin is required to maintain endocycles. Here we show that ablation of Gmnn in trophoblast stem cells (TSCs) proliferating in the presence of FGF4 closely mimics the events triggered by FGF4 deprivation: arrest of cell proliferation, formation of giant cells, excessive DNA replication in the absence of DNA damage and apoptosis, and changes in gene expression that include loss of Chk1 with up-regulation of p57 and p21. Moreover, FGF4 deprivation of TSCs reduces geminin to a basal level that is required for maintaining endocycles in TGCs. Thus, geminin acts both like a component of the FGF4 signal transduction pathway that governs trophoblast proliferation and differentiation, and geminin is required to maintain endocycles.
Collapse
|
205
|
Pérez-Tito L, Bevilacqua E, Cebral E. Peri-implantational in vivo and in vitro embryo-trophoblast development after perigestational alcohol exposure in the CD-1 mouse. Drug Chem Toxicol 2013; 37:184-97. [PMID: 24116715 DOI: 10.3109/01480545.2013.834358] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Long-term pregestational ethanol exposure induced altered fertilization and preimplantation embryogenesis. We evaluated preimplantational embryo-trophoblast differentiation, growth and invasiveness after perigestational ethanol 10% ingestion for 15 days preceding and up to day 4 (treated females [TF]: TF-D4 group) or 5 (TF-D5) of CD-1 gestation (control females [CF] with water). In TF-D4, expanded and hatched blastocyst numbers were significantly reduced (p < 0.05) versus CF-D4. Abnormal embryos and percentage of pyknotic nuclei were increased, and early blastocyst growth (nuclear number/embryo) and mitotic index was reduced (p < 0.05) versus CF-D4. On day 5 of gestation, TF-D5 presented significantly reduced total embryos and advanced embryo type 3 number versus CF-D5 (p < 0.05). During in vitro development, up to 72-hour culture, TF-D5 had reduced embryo type 1 (the least developed) and 3 percentages (p < 0.05) versus controls, whereas embryo type 2 percentage increased (p < 0.05) versus CF-D5. Embryo-trophoblast growth was studied during culture by morphometry. Embryo size ranges were classified as small, medium and large embryos. At 48-hour culture, small and medium embryos of TF had significantly increased mean area versus CF (p < 0.05), whereas large embryos had reduced mean area at 24-hour culture. Perigestational alcohol exposure up to days 4-5 induced embryo differentiation retardation, abnormal blastocyst growth and alterations of embryo-trophoblast growth and expansion during implantation, suggesting impaired regulation of trophoblast invasion and a relation with early pregnancy loss after mouse perigestational alcohol consumption.
Collapse
Affiliation(s)
- Leticia Pérez-Tito
- Laboratorio de Reproducción y Fisiopatología Materno-Embrionaria, Instituto de Fisiología, Biología sMolecular y Neurociencias (IFIBYNE-CONICET), Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA) , Buenos Aires , Argentina and
| | | | | |
Collapse
|
206
|
Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med 2013; 34:981-1023. [DOI: 10.1016/j.mam.2012.12.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/01/2012] [Accepted: 12/19/2012] [Indexed: 12/11/2022]
|
207
|
Abstract
The mammalian placenta exhibits elevated expression of endogenous retroviruses (ERVs), but the evolutionary significance of this feature remains unclear. I propose that ERV-mediated regulatory evolution was, and continues to be, an important mechanism underlying the evolution of placental development. Many recent studies have focused on the co-option of ERV-derived genes for specific functional adaptations in the placenta. However, the co-option of ERV-derived regulatory elements could potentially lead to the incorporation of entire gene regulatory networks, which, I argue, would facilitate relatively rapid developmental evolution of the placenta. I suggest a model in which an ancient retroviral infection led to the establishment of the ancestral placental developmental gene network through the co-option of ERV-derived regulatory elements. Consequently, placental development would require elevated tolerance to ERV activity. This in turn would expose a continuous stream of novel ERV mutations that may have catalyzed the developmental diversification of the mammalian placenta.
Collapse
Affiliation(s)
- Edward B Chuong
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
208
|
Crish J, Conti MA, Sakai T, Adelstein RS, Egelhoff TT. Keratin 5-Cre-driven excision of nonmuscle myosin IIA in early embryo trophectoderm leads to placenta defects and embryonic lethality. Dev Biol 2013; 382:136-148. [PMID: 23911870 PMCID: PMC4186751 DOI: 10.1016/j.ydbio.2013.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 11/21/2022]
Abstract
In studies initially focused on roles of nonmuscle myosin IIA (NMIIA) in the developing mouse epidermis, we have discovered that a previously described cytokeratin 5 (K5)-Cre gene construct is expressed in early embryo development. Mice carrying floxed alleles of the nonmuscle myosin II heavy chain gene (NMHC IIA(flox/flox)) were crossed with the K5-Cre line. The progeny of newborn pups did not show a Mendelian genotype distribution, suggesting embryonic lethality. Analysis of post-implantation conceptuses from embryonic day (E)9.5 to E13.5 revealed poorly developed embryos and defective placentas, with significantly reduced labyrinth surface area and blood vessel vascularization. These results suggested the novel possibility that the bovine K5 promoter-driven Cre-recombinase was active early in trophoblast-lineage cells that give rise to the placenta. To test this possibility, K5-Cre transgenic mice were crossed with the mT/mG reporter mouse in which activation of GFP expression indicates Cre transgene expression. We observed activation of K5-Cre-driven GFP expression in the ectoplacental cone, in the extraembryonic ectoderm, and in trophoblast giant cells in the E6.5 embryo. In addition, we observed GFP expression at E11.5 to E13.5 in both the labyrinth of the placenta and the yolk sac. NMIIA expression was detected in these same cell types in normal embryos, as well as in E13.5 yolk sac and labyrinth. These findings taken together suggest that NMHC IIA may play critical roles in the early trophoblast-derived ectoplacental cone and extraembryonic ectoderm, as well as in the yolk sac and labyrinth tissues that form later. Our findings are consistent with phenotypes of constitutive NMIIA knockout mice made earlier, that displayed labyrinth and yolk sac-specific defects, but our findings extend those observations by suggesting possible NMIIA roles in trophoblast lineages as well. These results furthermore demonstrate that K5-Cre gene constructs, previously reported to be activated starting at approximately E12.5 in the forming epidermis, may be widely useful as drivers for activation of cre/lox based gene excision in early embryo extraembronic trophoblast tissues as well.
Collapse
Affiliation(s)
- James Crish
- Department of Cellular and Molecular Medicine NC10, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195
| | - Mary Anne Conti
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Takao Sakai
- Department of Biomedical Engineering, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195
| | - Robert S. Adelstein
- Laboratory of Molecular Cardiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas T. Egelhoff
- Department of Cellular and Molecular Medicine NC10, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195
| |
Collapse
|
209
|
Gasperowicz M, Surmann-Schmitt C, Hamada Y, Otto F, Cross JC. The transcriptional co-repressor TLE3 regulates development of trophoblast giant cells lining maternal blood spaces in the mouse placenta. Dev Biol 2013; 382:1-14. [PMID: 23954203 DOI: 10.1016/j.ydbio.2013.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 11/17/2022]
Abstract
TLE3 is a transcriptional co-repressor that interacts with several DNA-binding repressors, including downstream effectors of the Notch signaling pathway. We generated Tle3-deficient mice and found that they die in utero and their death is associated with abnormal development of the placenta with major defects in the maternal vasculature. In the normal placenta, maternal blood spaces are lined, not as usual in the mammalian circulation by endothelial cells, but rather by specialized embryo-derived cells of the trophoblast cell lineage named trophoblast giant cells (TGC). Tle3 mRNA is expressed in those specialized TGC and Tle3 mutants show severe defects in differentiation of TGC-lined channels and lacunar spaces that take blood out of the labyrinth zone of the placenta and into the uterine veins. The mutants also show somewhat milder defects on the arterial-side of the maternal vascular circuit in spiral arteries and canals that take blood into the labyrinth. Notch2 and Tle3 expression patterns overlap in several TGC subtypes and we found that Tle3 and Notch2 mutants have some overlapping features. However, they also show differences implying that TLE3 may mediate some but not all of the effects of Notch2 signaling during placenta development. Therefore, formation of the different types of maternal blood spaces by different TGC subtypes is regulated by distinct molecular mechanisms.
Collapse
Affiliation(s)
- Malgorzata Gasperowicz
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Room HSC 2279, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | |
Collapse
|
210
|
Hu D, Scott IC, Snider F, Geary-Joo C, Zhao X, Simmons DG, Cross JC. The basic helix-loop-helix transcription factor Hand1 regulates mouse development as a homodimer. Dev Biol 2013; 382:470-81. [PMID: 23911935 DOI: 10.1016/j.ydbio.2013.07.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/04/2013] [Accepted: 07/28/2013] [Indexed: 10/26/2022]
Abstract
Hand1 is a basic helix-loop-helix transcription factor that is essential for development of the placenta, yolk sac and heart during mouse development. While Hand1 is essential for trophoblast giant cell (TGC) differentiation, its potential heterodimer partners are not co-expressed in TGCs. To test the hypothesis that Hand1 functions as homodimer, we generated knock-in mice in which the Hand1 gene was altered to encode a tethered homodimer (TH). Some Hand1(TH/-) conceptuses in which the only form of Hand1 is Hand1(TH) are viable and fertile, indicating that homodimer Hand1 is sufficient for mouse survival. ~2/3 of Hand1(TH/-) and all Hand1(TH/TH) mice died in utero and displayed severe placental defects and variable cardial and cranial-facial abnormalities, indicating a dosage-dependent effect of Hand1(TH). Meanwhile, expression of the Hand1(TH) protein did not have negative effects on viability or fertility in all Hand1(TH/+) mice. These data imply that Hand1 homodimer plays a dominant role during development and its expression dosage is critical for survival, whereas Hand1 heterodimers can be either dispensable or play a regulatory role to modulate the activity of Hand1 homodimer in vivo.
Collapse
Affiliation(s)
- Dong Hu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, AB, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada; Center for Stem Cell Application and Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | | | | | | | | | | | | |
Collapse
|
211
|
Hughes M, Natale BV, Simmons DG, Natale DRC. Ly6e expression is restricted to syncytiotrophoblast cells of the mouse placenta. Placenta 2013; 34:831-5. [PMID: 23830620 DOI: 10.1016/j.placenta.2013.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 05/13/2013] [Accepted: 05/29/2013] [Indexed: 11/16/2022]
Abstract
In the present study, we characterized the expression of lymphocyte antigen 6, locus E (Ly6e) in mouse placental trophoblast. We identified Ly6e mRNA expression in trophoblast stem (TS) cells by a gene expression screen. In vivo, Ly6e was first detectable by mRNA in situ hybridization in the chorion beginning at E8.5 with spatial expression similar to Syncytin a (Syna). At later stages of gestation, Ly6e was restricted to syncytiotrophoblast in the labyrinth. Northern blot confirmed that Ly6e was expressed in both undifferentiated and differentiated TS cell cultures but that its expression increased with differentiation. FACS analysis confirmed these results and allowed us to isolate LY6E⁺ cells, which we found to express Syna at a much higher level than did LY6E⁻ cells. Our findings suggest that LY6E is expressed in differentiated syncytiotrophoblast and may also be useful as an early marker, expressed in progenitors of this cell-type.
Collapse
Affiliation(s)
- M Hughes
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | | |
Collapse
|
212
|
Luiz Andrade Scherholz P, Cristina de Souza P, Spadacci-Morena D, Godosevicius Katz S. Vimentin is synthesized by mouse vascular trophoblast giant cells from embryonic day 7.5 onwards and is a characteristic factor of these cells. Placenta 2013; 34:518-25. [DOI: 10.1016/j.placenta.2013.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 03/28/2013] [Accepted: 04/05/2013] [Indexed: 12/31/2022]
|
213
|
Henke C, Ruebner M, Faschingbauer F, Stolt CC, Schaefer N, Lang N, Beckmann MW, Strissel PL, Strick R. Regulation of murine placentogenesis by the retroviral genes Syncytin-A, Syncytin-B and Peg10. Differentiation 2013; 85:150-60. [PMID: 23807393 DOI: 10.1016/j.diff.2013.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 01/27/2023]
Abstract
The murine placenta has a trichorial structure with two multinucleated syncytiotrophoblast (SCT) layers representing a barrier between the maternal and fetal blood system. Genes of endogenous retroviruses and retrotransposon-derived paternally expressed genes (Peg), remnants of past infections and integrations in the genome, have essential functions in placentogenesis. Previous studies showed that the envelope genes Syncytin-A and Syncytin-B were essential for cell-cell fusion of the SCT. The goal of this study was to analyze the temporal localization and expression of nine genes throughout placental development from embryonic day (E)8.5 to E18.5 using in situ-hybridization and absolute RNA-quantification. These included a comparison of previously characterized genes from the labyrinth Syncytin-A, Syncytin-B, Gcm1, the junctional zone PL-1, PL-2, Plf, Tpbpa with two further characterized genes Peg10 and Tpbpb. Syncytin-A and Syncytin-B RNA localized to SCT-I and SCT-II, respectively. Peg10 RNA localized to all extraembryonic tissues, specifically to the parietal and sinusoidal TGC of the labyrinth layer, which is in contact with SCT-I and the maternal blood. All three retroviral/retrotransposon-derived genes showed the highest expression at E16.5, but Peg10 with 188,917.1 molecules/ng cDNA was 208-fold and 106.8-fold higher expressed than Syncytin-A and Syncytin-B, respectively. Tpbpb localized to the junctional zone and showed the highest expression at E16.5 along with PL-2, Plf, Tpbpa, but not PL-1, which decreased in expression at E10.5. To investigate a role of Syncytin-A, Syncytin-B and Peg10 in cell-cell fusion, we established a cell culture system with fractionated primary trophoblasts from murine placentae. Culturing trophoblasts for up to 72h partly resembled trophoblast development in vivo according to the nine marker genes. Knockdown of Syncytin-A demonstrated a functional regulation of cell-cell fusion, where knockdown of Peg10 showed no involvement in cell fusion. Due to the expression of Peg10 in TGCs, we propose an essential functional role in the fetal-maternal blood system.
Collapse
Affiliation(s)
- Christine Henke
- University-Clinic Erlangen, Department of Gynaecology and Obstetrics, Laboratory for Molecular Medicine, Universitaetsstr. 21-23, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Epigenetic regulation of placental endocrine lineages and complications of pregnancy. Biochem Soc Trans 2013; 41:701-9. [DOI: 10.1042/bst20130002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A defining feature of mammals is the development in utero of the fetus supported by the constant flow of nutrients from the mother obtained via a specialized organ: the placenta. The placenta is also a major endocrine organ that synthesizes vast quantities of hormones and cytokines to instruct both maternal and fetal physiology. Nearly 20 years ago, David Haig and colleagues proposed that placental hormones were likely targets of the epigenetic process of genomic imprinting in response to the genetic conflicts imposed by in utero development [Haig (1993) Q. Rev. Biol. 68, 495–532]. There are two simple mechanisms through which genomic imprinting could regulate placental hormones. First, imprints could directly switch on or off alleles of specific genes. Secondly, imprinted genes could alter the expression of placental hormones by regulating the development of placental endocrine lineages. In mice, the placental hormones are synthesized in the trophoblast giant cells and spongiotrophoblast cells of the mature placenta. In the present article, I review the functional role of imprinted genes in regulating these endocrine lineages, which lends support to Haig's original hypothesis. I also discuss how imprinting defects in the placenta may adversely affect the health of the fetus and its mother during pregnancy and beyond.
Collapse
|
215
|
Gasperowicz M, Rai A, Cross JC. Spatiotemporal expression of Notch receptors and ligands in developing mouse placenta. Gene Expr Patterns 2013; 13:249-54. [PMID: 23665443 DOI: 10.1016/j.gep.2013.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 11/27/2022]
Abstract
Notch signaling is involved in cell lineage specification in many developing organs. In mice there are four known Notch receptor genes (Notch1-4) and five ligands genes (Dll1, 3, 4 and Jagged1 and 2). Notch2 is essential for development of placenta, an organ that mediates feto-maternal nutrient and gas exchange as well as maternal adaptations to pregnancy. However the role of other Notch receptors and ligands in placentation is not known. In order to gain better insight into the role of Notch signaling in mouse placenta we thoroughly analyzed mRNA expression of all Notch receptors and ligands in all trophoblast cell types from the embryonic day (E) 7.5 to E12.5, the period during which all of the substructures of the placenta develop. Here we show that Notch receptors and ligands are specifically and dynamically expressed in multiple cell layers of developing placenta. We found that the Notch2 receptor and Jagged1 and Jagged2 ligand genes are complementarily expressed in trophoblast cells of the chorion and its later derivatives in the labyrinth. Dll4 and Notch2 expression complement each other in the ectoplacental cone, while Dll1 and Notch2 are expressed in an ectoplacental cone derivative, the junctional zone. Moreover Dll4 and Notch2 are expressed at the ectoplacental cone-decidua interface at early stages of placentation. Additionally we show that Notch2 is dynamically expressed in all trophoblast giant cell subtypes, which is consistent with previous reports. Overall these expression pattern results suggest that Notch signaling may play several diverse roles during placenta development.
Collapse
Affiliation(s)
- Malgorzata Gasperowicz
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | | | |
Collapse
|
216
|
Li M, Schwerbrock NMJ, Lenhart PM, Fritz-Six KL, Kadmiel M, Christine KS, Kraus DM, Espenschied ST, Willcockson HH, Mack CP, Caron KM. Fetal-derived adrenomedullin mediates the innate immune milieu of the placenta. J Clin Invest 2013; 123:2408-20. [PMID: 23635772 DOI: 10.1172/jci67039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/22/2013] [Indexed: 12/11/2022] Open
Abstract
The remodeling of maternal uterine spiral arteries (SAs) is an essential process for ensuring low-resistance, high-capacitance blood flow to the growing fetus. Failure of SAs to remodel is causally associated with preeclampsia, a common and life-threatening complication of pregnancy that is harmful to both mother and fetus. Here, using both loss-of-function and gain-of-function genetic mouse models, we show that expression of the pregnancy-related peptide adrenomedullin (AM) by fetal trophoblast cells is necessary and sufficient to promote appropriate recruitment and activation of maternal uterine NK (uNK) cells to the placenta and ultimately facilitate remodeling of maternal SAs. Placentas that lacked either AM or its receptor exhibited reduced fetal vessel branching in the labyrinth, failed SA remodeling and reendothelialization, and markedly reduced numbers of maternal uNK cells. In contrast, overexpression of AM caused a reversal of these phenotypes with a concomitant increase in uNK cell content in vivo. Moreover, AM dose-dependently stimulated the secretion of numerous chemokines, cytokines, and MMPs from uNK cells, which in turn induced VSMC apoptosis. These data identify an essential function for fetal-derived factors in the maternal vascular adaptation to pregnancy and underscore the importance of exploring AM as a biomarker and therapeutic agent for preeclampsia.
Collapse
Affiliation(s)
- Manyu Li
- Department of Cell Biology and Physiology, The University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Tunster SJ, Jensen AB, John RM. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 2013; 145:R117-37. [PMID: 23445556 DOI: 10.1530/rep-12-0511] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imprinted genes, which are preferentially expressed from one or other parental chromosome as a consequence of epigenetic events in the germline, are known to functionally converge on biological processes that enable in utero development in mammals. Over 100 imprinted genes have been identified in the mouse, the majority of which are both expressed and imprinted in the placenta. The purpose of this review is to provide a summary of the current knowledge regarding imprinted gene function in the mouse placenta. Few imprinted genes have been assessed with respect to their dosage-related action in the placenta. Nonetheless, current data indicate that imprinted genes converge on two key functions of the placenta, nutrient transport and placental signalling. Murine studies may provide a greater understanding of certain human pathologies, including low birth weight and the programming of metabolic diseases in the adult, and complications of pregnancy, such as pre-eclampsia and gestational diabetes, resulting from fetuses carrying abnormal imprints.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | | | | |
Collapse
|
218
|
Rappolee DA, Zhou S, Puscheck EE, Xie Y. Stress responses at the endometrial-placental interface regulate labyrinthine placental differentiation from trophoblast stem cells. Reproduction 2013; 145:R139-55. [PMID: 23463790 DOI: 10.1530/rep-12-0240] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Development can happen in one of two ways. Cells performing a necessary function can differentiate from stem cells before the need for it arises and stress does not develop. Or need arises before function, stress develops and stress signals are part of the normal stimuli that regulate developmental mechanisms. These mechanisms adjust stem cell differentiation to produce function in a timely and proportional manner. In this review, we will interpret data from studies of null lethal mutants for placental stress genes that suggest the latter possibility. Acknowledged stress pathways participate in stress-induced and -regulated differentiation in two ways. These pathways manage the homeostatic response to maintain stem cells during the stress. Stress pathways also direct stem cell differentiation to increase the first essential lineage and suppress later lineages when stem cell accumulation is diminished. This stress-induced differentiation maintains the conceptus during stress. Pathogenic outcomes arise because population sizes of normal stem cells are first depleted by decreased accumulation. The fraction of stem cells is further decreased by differentiation that is induced to compensate for smaller stem cell populations. Analysis of placental lethal null mutant genes known to mediate stress responses suggests that the labyrinthine placenta develops during, and is regulated by, hypoxic stress.
Collapse
Affiliation(s)
- D A Rappolee
- CS Mott Center for Human Growth and Development, Wayne State University School of Medicine.
| | | | | | | |
Collapse
|
219
|
Negrón-Pérez VM, Echevarría FD, Huffman SR, Rivera RM. Determination of Allelic Expression of H19 in Pre- and Peri-Implantation Mouse Embryos1. Biol Reprod 2013; 88:97. [DOI: 10.1095/biolreprod.112.105882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
220
|
Corbel C, Diabangouaya P, Gendrel AV, Chow JC, Heard E. Unusual chromatin status and organization of the inactive X chromosome in murine trophoblast giant cells. Development 2013; 140:861-72. [PMID: 23362347 DOI: 10.1242/dev.087429] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mammalian X-chromosome inactivation (XCI) enables dosage compensation between XX females and XY males. It is an essential process and its absence in XX individuals results in early lethality due primarily to extra-embryonic defects. This sensitivity to X-linked gene dosage in extra-embryonic tissues is difficult to reconcile with the reported tendency of escape from XCI in these tissues. The precise transcriptional status of the inactive X chromosome in different lineages has mainly been examined using transgenes or in in vitro differentiated stem cells and the degree to which endogenous X-linked genes are silenced in embryonic and extra-embryonic lineages during early postimplantation stages is unclear. Here we investigate the precise temporal and lineage-specific X-inactivation status of several genes in postimplantation mouse embryos. We find stable gene silencing in most lineages, with significant levels of escape from XCI mainly in one extra-embryonic cell type: trophoblast giant cells (TGCs). To investigate the basis of this epigenetic instability, we examined the chromatin structure and organization of the inactive X chromosome in TGCs obtained from ectoplacental cone explants. We find that the Xist RNA-coated X chromosome has a highly unusual chromatin content in TGCs, presenting both heterochromatic marks such as H3K27me3 and euchromatic marks such as histone H4 acetylation and H3K4 methylation. Strikingly, Xist RNA does not form an overt silent nuclear compartment or Cot1 hole in these cells. This unusual combination of silent and active features is likely to reflect, and might underlie, the partial activity of the X chromosome in TGCs.
Collapse
Affiliation(s)
- Catherine Corbel
- Unité de Génétique et Biologie du Développement, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | | | | | | | | |
Collapse
|
221
|
Revil T, Jerome-Majewska LA. During embryogenesis, esrp1 expression is restricted to a subset of epithelial cells and is associated with splicing of a number of developmentally important genes. Dev Dyn 2013; 242:281-90. [PMID: 23233200 DOI: 10.1002/dvdy.23918] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2012] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Development of a mature organism from a single cell requires a series of important morphological changes, which is in part regulated by alternative splicing. In this article, we report the expression of Esrp1 during early mouse embryogenesis, a splicing factor implicated in epithelial to mesenchymal transitions. RESULTS By qRT-PCR, we find higher expression of Esrp1 and Esrp2 in placenta compared to the embryos. We also find a correlation between the expression of Esrp1 and alternative splicing of several known target exons. Using in situ RNA hybridization we show that while Esrp1 expression is ubiquitous in embryonic day (E)6.5 mouse embryos, expression becomes restricted to the chorion and definitive endoderm starting at E7.5. Esrp1 expression was consistently restricted to a subset of epithelial cell types in developing embryos from E9.5 to E13.5. CONCLUSIONS Our results suggest that Esrp1 could play an important role in the morphological changes underlying embryogenesis of the placenta and embryo.
Collapse
Affiliation(s)
- Timothée Revil
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
222
|
The APC/C activator Cdh1 regulates the G2/M transition during differentiation of placental trophoblast stem cells. Biochem Biophys Res Commun 2013. [DOI: 10.1016/j.bbrc.2012.11.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
223
|
Mould A, Morgan MAJ, Li L, Bikoff EK, Robertson EJ. Blimp1/Prdm1 governs terminal differentiation of endovascular trophoblast giant cells and defines multipotent progenitors in the developing placenta. Genes Dev 2012; 26:2063-74. [PMID: 22987638 DOI: 10.1101/gad.199828.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Developmental arrest of Blimp1/Prdm1 mutant embryos at around embryonic day 10.5 (E10.5) has been attributed to placental disturbances. Here we investigate Blimp1/Prdm1 requirements in the trophoblast cell lineage. Loss of function disrupts specification of the invasive spiral artery-associated trophoblast giant cells (SpA-TGCs) surrounding maternal blood vessels and severely compromises the ability of the spongiotrophoblast layer to expand appropriately, secondarily causing collapse of the underlying labyrinth layer. Additionally, we identify a population of proliferating Blimp1(+) diploid cells present within the spongiotrophoblast layer. Lineage tracing experiments exploiting a novel Prdm1.Cre-LacZ allele demonstrate that these Blimp1(+) cells give rise to the mature SpA-TGCs, canal TGCs, and glycogen trophoblasts. In sum, the transcriptional repressor Blimp1/Prdm1 is required for terminal differentiation of SpA-TGCs and defines a lineage-restricted progenitor cell population contributing to placental growth and morphogenesis.
Collapse
Affiliation(s)
- Arne Mould
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | | | | | |
Collapse
|
224
|
Shalom-Barak T, Zhang X, Chu T, Timothy Schaiff W, Reddy JK, Xu J, Sadovsky Y, Barak Y. Placental PPARγ regulates spatiotemporally diverse genes and a unique metabolic network. Dev Biol 2012; 372:143-55. [PMID: 22967998 DOI: 10.1016/j.ydbio.2012.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 07/10/2012] [Accepted: 08/15/2012] [Indexed: 12/31/2022]
Abstract
The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is essential for placental development. For insights into its functions in the placenta, we screened for PPARγ-regulated genes by integrating expression profiles of Pparg-null and Rxra-null placentas with those of WT and Pparg-null trophoblast stem cells differentiated in the presence or absence of a PPARγ agonist. Intersection of these paradigms identified high-probability PPARγ target genes. A few of these genes were previously reported as PPARγ targets in other tissues, but most are new in the context of either PPARγ or placental biology. Transcriptional profiling demonstrated a widespread role for the coactivator NCOA6/AIB3, but not MED1/PBP, in PPARγ-dependent placental gene expression. Spatial and temporal expression analyses revealed that PPARγ impacts genes in diverse trophoblast lineages and during different stages of differentiation. We further validated the Ldhb gene, which encodes the H isoform of lactate dehydrogenase, as a robust PPARγ target in trophoblasts, and propose a hypothetical model that integrates it with a network of PPARγ-regulated genes into a novel pathway of placental fuel metabolism. These findings offer insights not only into the placental functions of PPARγ, but also into unique, previously unsuspected biosynthetic functions of trophoblasts.
Collapse
Affiliation(s)
- Tali Shalom-Barak
- Magee-Womens Research Institute, Department of OBGYN and Reproductive Sciences, University of Pittsburgh, 204 Craft Avenue, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
225
|
Koch Y, van Fürden B, Kaiser S, Klein D, Kibschull M, Schorle H, Carpinteiro A, Gellhaus A, Winterhager E. Connexin 31 (GJB3) deficiency in mouse trophoblast stem cells alters giant cell differentiation and leads to loss of oxygen sensing. Biol Reprod 2012; 87:37. [PMID: 22623621 DOI: 10.1095/biolreprod.111.098079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The nonphysiological placental oxidative environment has been implicated in many complications during human pregnancy. Oxygen tension can influence a broad spectrum of molecular changes leading to alterations in trophoblast cell lineage development. In this study, we report that mouse wild-type trophoblast stem cells (TSCs) react to low oxygen (3%) with an enhanced differentiation into the giant cell pathway, indicated by a downregulation of the early stem cell markers Eomes and Cdx2 as well as by a significant upregulation of Tfap2c and the differentiation markers Tpbpa and Prl3d1. Here we demonstrated that connexin 31/GJB3-deficient TSCs failed to stabilize HIF-1A under low oxygen, resulting in nonresponsiveness of different marker genes, such as Cdx2 and Eomes and Tfap2c and Tpbpa. Moreover, connexin 31-deficient TSCs revealed a shift in giant cell differentiation from Prl3d1 expressing parietal giant cells to Ctsq, Prl3b1, and Prl2c2-positive giant cells, probably sinusoidal and canal lining trophoblast giant cells. Thus, loss of connexin 31 led to different giant cell subtypes which bypass the progenitor regulators Tfap2c and Tpbpa under low oxygen conditions.
Collapse
Affiliation(s)
- Yvonne Koch
- Institute of Molecular Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Nagao T, Kagawa N, Saito Y, Komada M. Developmental effects of oral exposure to diethylstilbestrol on mouse placenta. J Appl Toxicol 2012; 33:1213-21. [PMID: 22733484 DOI: 10.1002/jat.2766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/09/2012] [Accepted: 03/19/2012] [Indexed: 11/05/2022]
Abstract
Placental growth and function are of biological significance in that placental tissue promotes prenatal life and the maintenance of pregnancy. Exposure to synthetic estrogens causes embryonic mortality and placental growth restriction in mice. The aim of the present study was to examine the effects of diethylstilbestrol (DES) on placenta in mice. DES at 1, 5, 10 or 15 µg kg(-1) day(-1) , or 17β-estradiol (E2 ) at 50 µg kg(-1) day(-1) , was administered orally to ICR mice on days 4 through to 8 of gestation. Expression of ERα, ERβ, ERRβ or ERRγ mRNA in the junctional or labyrinth zone of the placentas on day 13 was assessed using RT-PCR, as well as the embrynic mortality, embryonic and placental weight, histological changes of labyrinth and ultrastructural changes of the trophoblast giant cells (TGCs). Embryo mortalities in the DES 10 and 15 µg kg(-1) day(-1) groups were markedly increased. No significant changes in embryonic and placental weight were observed in any DES- or E2 -exposed groups. Expression of ERα mRNA in the junctional zone with male embryos in the 5 µg kg(-1) day(-1) group was significantly higher than that in the control, whereas expression was not determined in the 15 µg kg(-1) day(-1) group. Histological observation revealed that the placentas exposed to DES at 10 µg kg(-1) day(-1) lacked the developing labyrinth. Ultrastructural observation of the TGCs showed poor rough-surfaced endoplasmic reticulum in the DES 10 µg kg(-1) day(-1) group. The present data suggest that developmental changes induced by DES may be related to interference with the nutrition and oxygen exchange between mother and embryo or decreased protein synthesis, resulting in a high frequency of embryo mortality.
Collapse
Affiliation(s)
- Tetsuji Nagao
- Laboratory of Developmental Biology, Department of Life Science, Kinki University, Osaka, 577-8502, Japan
| | | | | | | |
Collapse
|
227
|
Ouseph MM, Li J, Chen HZ, Pécot T, Wenzel P, Thompson JC, Comstock G, Chokshi V, Byrne M, Forde B, Chong JL, Huang K, Machiraju R, de Bruin A, Leone G. Atypical E2F repressors and activators coordinate placental development. Dev Cell 2012; 22:849-62. [PMID: 22516201 DOI: 10.1016/j.devcel.2012.01.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 11/23/2011] [Accepted: 01/18/2012] [Indexed: 02/06/2023]
Abstract
The evolutionarily ancient arm of the E2f family of transcription factors consisting of the two atypical members E2f7 and E2f8 is essential for murine embryonic development. However, the critical tissues, cellular processes, and molecular pathways regulated by these two factors remain unknown. Using a series of fetal and placental lineage-specific cre mice, we show that E2F7/E2F8 functions in extraembryonic trophoblast lineages are both necessary and sufficient to carry fetuses to term. Expression profiling and biochemical approaches exposed the canonical E2F3a activator as a key family member that antagonizes E2F7/E2F8 functions. Remarkably, the concomitant loss of E2f3a normalized placental gene expression programs, corrected placental defects, and fostered the survival of E2f7/E2f8-deficient embryos to birth. In summary, we identified a placental transcriptional network tightly coordinated by activation and repression through two distinct arms of the E2F family that is essential for extraembryonic cell proliferation, placental development, and fetal viability.
Collapse
Affiliation(s)
- Madhu M Ouseph
- Solid Tumor Biology Program, Department of Molecular Virology, Immunology and Medical Genetics, Human Cancer Genetics Program, Comprehensive Cancer Center, College of Medicine and Public Health, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Hemberger M. Health during pregnancy and beyond: Fetal trophoblast cells as chief co-ordinators of intrauterine growth and reproductive success. Ann Med 2012; 44:325-37. [PMID: 22409432 DOI: 10.3109/07853890.2012.663930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Abstract Differentiation of extra-embryonic tissues and organs, notably the placenta, is vital for embryonic development and growth throughout gestation, starting from a few days after fertilization when the trophoblast cell lineage arises until parturition. In utero metabolic programming events may even extend the impact of placental function well into adulthood as they may predispose the offspring to common pathologies such as diabetes and cardiovascular disease. This review summarizes key steps that lead up to formation of a functional placenta. It highlights recent insights that have advanced our view of how early trophoblast expansion is achieved and how sufficient maternal blood supply to the developing fetus is secured. Exciting cumulative data have revealed the importance of a close cross-talk between the embryo proper and extra-embryonic trophoblast cells that involves extracellular matrix components in the establishment of a stem cell-like niche and proliferation compartment. Remarkably, placental function also relies on beneficial interactions between trophoblast cells and maternal immune cells at the implantation site. Our growing knowledge of the molecular mechanisms involved in trophoblast differentiation and function will help to devise informed approaches aimed at deciphering how placentation is controlled in humans as an essential process for reproductive success and long-term health.
Collapse
|
229
|
Koshi K, Suzuki Y, Nakaya Y, Imai K, Hosoe M, Takahashi T, Kizaki K, Miyazawa T, Hashizume K. Bovine trophoblastic cell differentiation and binucleation involves enhanced endogenous retrovirus element expression. Reprod Biol Endocrinol 2012; 10:41. [PMID: 22632112 PMCID: PMC3419082 DOI: 10.1186/1477-7827-10-41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 05/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endogenous retrovirus (ERV) envelope (env) genes are involved in the differentiation of trophoblastic cells in humans and mice. However, there is limited information about their roles in ruminant trophoblastic cells. Thus, we attempted to explore the possible roles of ERV elements in the binucleation of bovine trophoblastic cells using in vitro bovine trophoblastic (BT) cell lines. METHODS In this study, blastocysts and elongated embryos were obtained from Japanese Black cows, and endometrial and fetal membrane tissues were collected from day 17 to 37 of gestation. The gene expression levels of four ERV elements, bERVE (bovine endogenous retrovirus envelope element-like transcript) -A, bERVE-B, BERV (bovine endogenous retrovirus) -K1 env, and BERV-K2 env, were analyzed in the fetal and endometrial tissue and cultured BT cell lines using quantitative RT-PCR. On-Matrigel gel and on-collagen gel culturing were used to induce binucleate cell (BNC) formation in the BT cell lines. How the culture conditions affected the expression of BNC-specific genes and ERV elements was examined by quantitative RT-PCR and immunocytochemistry. RESULTS bERVE-A, bERVE-B, BERV-K1 env, and BERV-K2 env were expressed in almost all BT cell lines; however, only bERVE-A and BERV-K1 env were detected in trophoblastic tissues during the peri-implantation period. In the on-Matrigel cultures, the expression levels of BNC-specific genes and molecules were enhanced in the BT cells. The expression levels of bERVE-A and BERV-K1 env were also increased in the BT cells during on-Matrigel culturing. The BT cell expression levels of these ERV elements were consistent with those of BNC-specific genes during on-Matrigel culturing (P < 0.01). CONCLUSIONS These results suggest that bERVE-A and BERV-K1 env are involved in the expression of BNC-specific genes and the progression of bovine trophoblastic cell binucleation, as their expression levels increased during periods of increased BNC-specific molecule expression, which is strongly suggestive of the development of BNC from mononucleate trophoblastic cells. The on-Matrigel culture system is a convenient in vitro tool for studying bovine trophoblastic cell lineages.
Collapse
Affiliation(s)
- Katsuo Koshi
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu, 501-1193, Japan
| | - Yasunori Suzuki
- United Graduate School of Veterinary Science, Gifu University, Gifu, 501-1193, Japan
- Tokyo Metropolitan Institute of Public Health, Tokyo, 169-0073, Japan
| | - Yuki Nakaya
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kei Imai
- National Livestock Breeding Center, Nishigo-mura, Fukushima, 961-8511, Japan
| | - Misa Hosoe
- Department of Developmental Biology, National Institute of Agrobiological Sciences, Ikenodai 2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Toru Takahashi
- Department of Developmental Biology, National Institute of Agrobiological Sciences, Ikenodai 2, Tsukuba, Ibaraki, 305-8602, Japan
| | - Keiichiro Kizaki
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu, 501-1193, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kazuyoshi Hashizume
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 020-8550, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu, 501-1193, Japan
| |
Collapse
|
230
|
Niakan KK, Han J, Pedersen RA, Simon C, Pera RAR. Human pre-implantation embryo development. Development 2012; 139:829-41. [PMID: 22318624 DOI: 10.1242/dev.060426] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding human pre-implantation development has important implications for assisted reproductive technology (ART) and for human embryonic stem cell (hESC)-based therapies. Owing to limited resources, the cellular and molecular mechanisms governing this early stage of human development are poorly understood. Nonetheless, recent advances in non-invasive imaging techniques and molecular and genomic technologies have helped to increase our understanding of this fascinating stage of human development. Here, we summarize what is currently known about human pre-implantation embryo development and highlight how further studies of human pre-implantation embryos can be used to improve ART and to fully harness the potential of hESCs for therapeutic goals.
Collapse
Affiliation(s)
- Kathy K Niakan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | | | |
Collapse
|
231
|
Human placentation from nidation to 5 weeks of gestation. Part I: What do we know about formative placental development following implantation? Placenta 2012; 33:327-34. [DOI: 10.1016/j.placenta.2012.01.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/19/2012] [Accepted: 01/30/2012] [Indexed: 11/19/2022]
|
232
|
Bevilacqua E, Gomes SZ, Lorenzon AR, Hoshida MS, Amarante-Paffaro AM. NADPH oxidase as an important source of reactive oxygen species at the mouse maternal-fetal interface: putative biological roles. Reprod Biomed Online 2012; 25:31-43. [PMID: 22560120 DOI: 10.1016/j.rbmo.2012.03.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 11/30/2022]
Abstract
Oxygen derivatives that comprise the large family of reactive oxygen species (ROS) are actively involved in placental biology. They are generated at the maternal-fetal interface at the level of decidual, trophoblast and mesenchymal components. In normal conditions, ROS produced in low concentrations participate in different functions as signalling molecules, regulating activation of redox-sensitive transcription factors and protein kinases involved in cell survival, proliferation and apoptosis, hence much of cell functioning. Physiological ROS generation is also associated with such defence mechanisms as phagocytosis and microbiocidal activities. In mice, particularly but not exclusively, trophoblast cells phagocytose intensively during implantation and post-implantation periods and express enzymic machinery to address a ROS-producing response to changes in the environment. The cells directly associated with ROS production are trophoblast giant cells, which mediate each and every relationship with the maternal organism. In this review, the production of ROS by the implanting mouse trophoblast is discussed, focusing on NADPH oxidase expression, regulatory mechanisms and similarities with NOX2 from phagocytes. Some of the current controversies are assessed by attempting to integrate data from studies in human trophoblast and mouse models.
Collapse
Affiliation(s)
- Estela Bevilacqua
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
233
|
A placenta for life. Reprod Biomed Online 2012; 25:5-11. [PMID: 22578825 DOI: 10.1016/j.rbmo.2012.03.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/22/2022]
Abstract
The chorioallantoic placenta is the defining organ of eutherians that has enabled prolonged intrauterine gestation. As such, normal placental development and function are essential for mammalian reproductive success. Reflecting the key role of this organ in providing nutrients to the embryo, the characteristic cell type that forms substantial parts of the placenta is called 'trophoblast' (from Greek trephein 'to feed' and blastos 'germinator'). However, in addition to regulating nutrient supply, the placenta also exerts a number of other pivotal functions that highlight the importance of normal trophoblast differentiation for a successful pregnancy. In this guest symposium, 'Trophoblast Development', several contributors summarize insights gained from recent studies in the mouse that have advanced our understanding of trophoblast biology. This includes how the earliest trophoblast cells are set aside to expand in a stem- or progenitor-cell compartment under tight genetic and epigenetic control and how subsequent differentiation into the various placental cell types is controlled to ensure normal placentation. The relevance of these contributions range from early developmental cell fate decisions, stem cell biology and placental development for healthy pregnancy to the impact of placental failures on long-term health, with important clinical implications for assisted reproductive technology procedures and pregnancy-associated complications.
Collapse
|
234
|
Lefebvre L. The placental imprintome and imprinted gene function in the trophoblast glycogen cell lineage. Reprod Biomed Online 2012; 25:44-57. [PMID: 22560119 DOI: 10.1016/j.rbmo.2012.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/08/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
Abstract
Imprinted genes represent a unique class of autosomal genes expressed from only one of the parental alleles during development. The choice of the expressed allele is not random but rather is determined by the parental origin of the allele. Consequently, the mouse genome contains more than 100 genes expressed preferentially or exclusively from the maternally or the paternally inherited allele. Current research efforts are focused on understanding the molecular mechanism of this epigenetic phenomenon as well as the biological functions of the genes under its regulation. Both theoretical considerations and experimental results support a role for genomic imprinting in the regulation of embryonic growth and placental biology. In this review, recent efforts to establish the complete set of genes showing imprinted expression in the mouse placenta are first discussed. Then, the evidence suggesting that imprinted genes might be implicated in the emergence, maintenance and function of trophoblast glycogen cells is presented. Although the origin and functions of this trophoblast cell lineage are currently unknown, the analysis of mutations in imprinted genes in the mouse are providing new insights into these issues. The implications of this work for placental pathologies in human are also discussed.
Collapse
Affiliation(s)
- Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
235
|
Expression pattern of tumor necrosis factor alpha in placentae of idiopathic fetal growth restriction. J Mol Histol 2012; 43:253-61. [DOI: 10.1007/s10735-012-9410-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
|
236
|
Charron J, Bissonauth V, Nadeau V. Implication of MEK1 and MEK2 in the establishment of the blood-placenta barrier during placentogenesis in mouse. Reprod Biomed Online 2012; 25:58-67. [PMID: 22561024 DOI: 10.1016/j.rbmo.2012.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/02/2012] [Accepted: 02/02/2012] [Indexed: 02/07/2023]
Abstract
The ERK/MAPK signalling cascade is involved in many cellular functions. In mice, the targeted ablation of genes coding for members of this pathway is often associated with embryonic death due to the abnormal development of the placenta. The placenta is essential for nutritional and gaseous exchanges between maternal and embryonic circulations, as well as for the elimination of metabolic waste. These exchanges occur without direct contact between the two circulations. In mice, the blood-placenta barrier consists of a triple layer of trophoblast cells adjacent to endothelial cells from the embryo. In the ERK/MAPK cascade, MEK1 and MEK2 are dual-specificity kinases responsible for the activation of the ERK1 and ERK2 kinases. Inactivation of Mek1 causes placental malformations resulting from defective proliferation and differentiation of the labyrinthine trophoblast cells and leading to a severe delay in the development and the vascularization of the placenta, which explains the embryonic death. Although Mek2(-/-) mutants survive without any apparent phenotype, a large proportion of Mek1(+/-)Mek2(+/-) double heterozygous mutants die during gestation from placenta anomalies affecting the establishment of the blood-placenta barrier. Together, these data reveal how crucial is the role of the ERK/MAPK pathway during the formation of the placenta.
Collapse
Affiliation(s)
- Jean Charron
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec, L'Hôtel-Dieu de Québec, Canada.
| | | | | |
Collapse
|
237
|
Kuckenberg P, Kubaczka C, Schorle H. The role of transcription factor Tcfap2c/TFAP2C in trophectoderm development. Reprod Biomed Online 2012; 25:12-20. [PMID: 22560121 DOI: 10.1016/j.rbmo.2012.02.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/23/2012] [Accepted: 02/22/2012] [Indexed: 11/17/2022]
Abstract
In recent years, knowledge regarding the genetic and epigenetic programmes governing specification, maintenance and differentiation of the extraembryonic lineage has advanced substantially. Establishment and analysis of mice deficient in genes implicated in trophoblast lineage and the option to generate and manipulate murine stem cell lines from the inner cell mass and the trophectoderm in vitro represent major advances. The activating enhancer binding protein 2 (AP2) family of transcription factors is expressed during mammalian development and in certain malignant diseases. This article summarizes the data regarding expression and function of murine Tcfap2 and human TFAP2 in extraembryonic development and differentiation. It also presents a model integrating Tcfap2c into the framework of trophoblast development and highlights the requirement of Tcfap2c to maintain trophoblast stem cells. With regard to human trophoblast cell-lineage restriction, the role of TFAP2C in lineage specification and maintenance is speculated upon. Furthermore, an overview of target genes of AP2 in mouse and human affecting placenta development and function is provided and the evidence suggesting that defects in regulating TFAP2 members might contribute to placental defects is discussed.
Collapse
Affiliation(s)
- Peter Kuckenberg
- Institute of Pathology, Department of Developmental Pathology, University of Bonn, Germany
| | | | | |
Collapse
|
238
|
Abstract
This review summarises current knowledge about the specification, commitment and maintenance of the trophoblast lineage in mice and cattle. Results from gene expression studies, in vivo loss-of-function models and in vitro systems using trophoblast and embryonic stem cells have been assimilated into a model seeking to explain trophoblast ontogeny via gene regulatory networks. While trophoblast differentiation is quite distinct between cattle and mice, as would be expected from their different modes of implantation, recent studies have demonstrated that differences arise much earlier during trophoblast development.
Collapse
|
239
|
Pennisi D, Kinna G, Chiu H, Simmons D, Wilkinson L, Little M. Crim1 has an essential role in glycogen trophoblast cell and sinusoidal-trophoblast giant cell development in the placenta. Placenta 2012; 33:175-82. [DOI: 10.1016/j.placenta.2011.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 10/14/2022]
|
240
|
Chhabra A, Lechner AJ, Ueno M, Acharya A, Van Handel B, Wang Y, Iruela-Arispe ML, Tallquist MD, Mikkola HKA. Trophoblasts regulate the placental hematopoietic niche through PDGF-B signaling. Dev Cell 2012; 22:651-9. [PMID: 22387002 DOI: 10.1016/j.devcel.2011.12.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/10/2011] [Accepted: 12/22/2011] [Indexed: 01/13/2023]
Abstract
The placenta is a hematopoietic organ that supports hematopoietic stem/progenitor cell (HSPC) generation and expansion without promoting differentiation. We identified PDGF-B signaling in trophoblasts as a key component of the unique placental hematopoietic microenvironment that protects HSPCs from premature differentiation. Loss of PDGF-B or its receptor, PDGFRβ, induced definitive erythropoiesis in placental labyrinth vasculature. This was evidenced by accumulation of CFU-Es and actively proliferating definitive erythroblasts that clustered around central macrophages, highly reminiscent of erythropoiesis in the fetal liver. Ectopic erythropoiesis was not due to a requirement of PDGF-B signaling in hematopoietic cells but rather in placental trophoblasts, which upregulated Epo in the absence of PDGF-B signaling. Furthermore, overexpression of hEPO specifically in the trophoblasts in vivo was sufficient to convert the placenta into an erythropoietic organ. These data provide genetic evidence of a signaling pathway that is required to restrict erythroid differentiation to specific anatomical niches during development.
Collapse
Affiliation(s)
- Akanksha Chhabra
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Cherukad J, Wainwright V, Watson ED. Spatial and temporal expression of folate-related transporters and metabolic enzymes during mouse placental development. Placenta 2012; 33:440-8. [PMID: 22365888 DOI: 10.1016/j.placenta.2012.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/12/2012] [Accepted: 02/06/2012] [Indexed: 11/16/2022]
Abstract
It is well understood that maternal folate deficiency can cause abnormal fetal development. However, the extent to which placental development and function are also dependent upon folate uptake and metabolism remains unclear. To understand which trophoblast cell types may be affected by folate deficiency or abnormal folate metabolism, we completed a comprehensive spatial and temporal protein expression analysis of folate receptor (Folr), folate transporters (proton-coupled folate receptor [Slc46a1 or PCFT] and reduced folate carrier-1 [Rfc1]) and folate metabolic enzymes (5,10-methylenetetrahydrofolate reductase [Mthfr] and methionine synthase [Mtr]) in histological sections of mouse placentas from early development (E8.5) until term (E18.5). We observed that the highest level of protein expression was during early development (E8.5-E10.5), prior to the formation of the three main layers of the mature placenta suggesting that folate uptake and metabolism may be required for placental development, itself. As expected, the labyrinth trophoblast cells, which are responsible for nutrient transport, expressed these proteins throughout pregnancy, including robust expression in the sinusoidal trophoblast giant cells that line the maternal blood spaces. Other trophoblast giant cell (TGC) subtypes (parietal-TGCs and canal-TGCs), whose function does not include nutrient transport, expressed folate transporters and enzymes from E8.5 onwards. Remarkably, these proteins were also detected in glycogen trophoblast cells from E12.5-E18.5 suggesting a new role in folate uptake and metabolism for these cells. Together, these data provide evidence that folate may be necessary for normal placental development and function, and perturbations in its availability or metabolism may lead to secondary effects on fetal development.
Collapse
Affiliation(s)
- J Cherukad
- Centre for Trophoblast Research, Dept of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratories, Downing Street, Cambridge CB2 3EG, UK
| | | | | |
Collapse
|
242
|
Bany BM, Scott CA, Eckstrum KS. Analysis of uterine gene expression in interleukin-15 knockout mice reveals uterine natural killer cells do not play a major role in decidualization and associated angiogenesis. Reproduction 2011; 143:359-75. [PMID: 22187674 DOI: 10.1530/rep-11-0325] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
During decidualization, uterine natural killer (uNK) cells are the most abundant immune cell types found in the uterus. Although it is well known that they play key roles in spiral arteriole modification and the maintenance of decidual integrity seen after mid-pregnancy, their roles in the differentiation of decidual cells and accompanying angiogenesis during the process of decidualization is less well characterized. To address this, we used whole-genome Illumina BeadChip analysis to compare the gene expression profiles in implantation segments of the uterus during decidualization on day 7.5 of pregnancy between wild-type and uNK cell-deficient (interleukin-15-knockout) mice. We found almost 300 differentially expressed genes and verified the differential expression of ~60 using quantitative RT-PCR. Notably, there was a lack of differential expression of genes involved in decidualization and angiogenesis and this was also verified by quantitative RT-PCR. Similar endothelial cell densities and proliferation indices were also found in the endometrium between the implantation site tissues of wild-type and knockout mice undergoing decidualization. Overall, the results of this study reveal that uNK cells likely do not play a major role in decidualization and accompanying angiogenesis during implantation. In addition, the study identifies a large number of genes whose expression in implantation-site uterine tissue during decidualization depends on interleukin-15 expression in mice.
Collapse
Affiliation(s)
- Brent M Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901, USA.
| | | | | |
Collapse
|
243
|
Tunster SJ, Van de Pette M, John RM. Impact of genetic background on placental glycogen storage in mice. Placenta 2011; 33:124-7. [PMID: 22153913 DOI: 10.1016/j.placenta.2011.11.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 11/03/2011] [Accepted: 11/18/2011] [Indexed: 11/27/2022]
Abstract
129 and C57BL/6 are two of the most widely used laboratory mouse strains. While it is well known that genetic modifiers between the two strains can directly influence embryonic and adult phenotypes, less is known regarding morphological differences in placental development. Here we identify differences in the junctional zone, glycogen storage and the maternal-fetal interface between these two strains and provide examples where these differences impact the phenotypic characterisation of placental mutations.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | | | | |
Collapse
|
244
|
Flamini M, Portiansky E, Favaron P, Martins D, Ambrósio C, Mess A, Miglino M, Barbeito C. Chorioallantoic and yolk sac placentation in the plains viscacha (Lagostomus maximus) – A caviomorph rodent with natural polyovulation. Placenta 2011; 32:963-8. [DOI: 10.1016/j.placenta.2011.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 08/03/2011] [Accepted: 09/04/2011] [Indexed: 10/17/2022]
|
245
|
Bang JI, Bae DW, Lee HS, Deb GK, Kim MO, Sohn SH, Han CH, Kong IK. Proteomic analysis of placentas from cloned cat embryos identifies a set of differentially expressed proteins related to oxidative damage, senescence and apoptosis. Proteomics 2011; 11:4454-67. [DOI: 10.1002/pmic.201000772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 08/25/2011] [Accepted: 08/28/2011] [Indexed: 12/16/2022]
|
246
|
A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. Proc Natl Acad Sci U S A 2011; 108:E1164-73. [PMID: 22032925 DOI: 10.1073/pnas.1112304108] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In most mammalian species, a critical step of placenta development is the fusion of trophoblast cells into a multinucleated syncytiotrophoblast layer fulfilling essential fetomaternal exchange functions. Key insights into this process came from the discovery of envelope genes of retroviral origin, the syncytins, independently acquired by the human (syncytin-1 and -2), mouse (syncytin-A and -B), and rabbit (syncytin-Ory1) genomes, with fusogenic properties and placenta-specific expression. We previously showed that mouse syncytin-A is essential for the formation of one of the two syncytiotrophoblast layers and for embryo survival. Here, we have generated syncytin-B KO mice and demonstrate that syncytin-B null placenta displays impaired formation of syncytiotrophoblast layer II (ST-II), with evidence of unfused apposed cells, and enlargement of maternal lacunae disrupting the placenta architecture. Unexpectedly, syncytin-B null embryos are viable, with only limited late-onset growth retardation and reduced neonate number. Microarray analyses identified up-regulation of the connexin 30 gene in mutant placentae, with the protein localized at the fetomaternal interface, suggesting gap junction-mediated compensatory mechanisms. Finally, double-KO mice demonstrate premature death of syncytin-A null embryos if syncytin-B is deleted, indicating cooperation between ST-I and ST-II. These findings establish that both endogenous retrovirus-derived syncytin genes contribute independently to the formation of the two syncytiotrophoblast layers during placenta formation, demonstrating a major role of retroviral gene capture, through convergent evolution, to generate multiple placental structures. Although some are absolutely required for completion of pregnancy, others are still amenable to "epigenetic" compensations, thus illustrating the complexity of the molecular machinery that developed during placental evolution.
Collapse
|
247
|
Watson ED, Hughes M, Simmons DG, Natale DR, Sutherland AE, Cross JC. Cell-cell adhesion defects in Mrj mutant trophoblast cells are associated with failure to pattern the chorion during early placental development. Dev Dyn 2011; 240:2505-19. [DOI: 10.1002/dvdy.22755] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2011] [Indexed: 11/12/2022] Open
|
248
|
Hu D, Cross JC. Ablation of Tpbpa-positive trophoblast precursors leads to defects in maternal spiral artery remodeling in the mouse placenta. Dev Biol 2011; 358:231-9. [DOI: 10.1016/j.ydbio.2011.07.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/24/2011] [Accepted: 07/27/2011] [Indexed: 11/16/2022]
|
249
|
Hunkapiller NM, Gasperowicz M, Kapidzic M, Plaks V, Maltepe E, Kitajewski J, Cross JC, Fisher SJ. A role for Notch signaling in trophoblast endovascular invasion and in the pathogenesis of pre-eclampsia. Development 2011; 138:2987-98. [PMID: 21693515 DOI: 10.1242/dev.066589] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Placental trophoblasts (TBs) invade and remodel uterine vessels with an arterial bias. This process, which involves vascular mimicry, re-routes maternal blood to the placenta, but fails in pre-eclampsia. We investigated Notch family members in both contexts, as they play important roles in arterial differentiation/function. Immunoanalyses of tissue sections showed step-wise modulation of Notch receptors/ligands during human TB invasion. Inhibition of Notch signaling reduced invasion of cultured human TBs and expression of the arterial marker EFNB2. In mouse placentas, Notch activity was highest in endovascular TBs. Conditional deletion of Notch2, the only receptor upregulated during mouse TB invasion, reduced arterial invasion, the size of maternal blood canals by 30-40% and placental perfusion by 23%. By E11.5, there was litter-wide lethality in proportion to the number of mutant offspring. In pre-eclampsia, expression of the Notch ligand JAG1 was absent in perivascular and endovascular TBs. We conclude that Notch signaling is crucial for TB vascular invasion.
Collapse
Affiliation(s)
- Nathan M Hunkapiller
- Center for Reproductive Sciences, University of California-San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Kröger C, Vijayaraj P, Reuter U, Windoffer R, Simmons D, Heukamp L, Leube R, Magin TM. Placental vasculogenesis is regulated by keratin-mediated hyperoxia in murine decidual tissues. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:1578-90. [PMID: 21435445 DOI: 10.1016/j.ajpath.2010.12.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/22/2010] [Accepted: 12/30/2010] [Indexed: 11/26/2022]
Abstract
The mammalian placenta represents the interface between maternal and embryonic tissues and provides nutrients and gas exchange during embryo growth. Recently, keratin intermediate filament proteins were found to regulate embryo growth upstream of the mammalian target of rapamycin pathway through glucose transporter relocalization and to contribute to yolk sac vasculogenesis through altered bone morphogenetic protein 4 signaling. Whether keratins have vital functions in extraembryonic tissues is not well understood. Here, we report that keratins are essential for placental function. In the absence of keratins, we find hyperoxia in the decidual tissue directly adjacent to the placenta, because of an increased maternal vasculature. Hyperoxia causes impaired vasculogenesis through defective hypoxia-inducible factor 1α and vascular endothelial growth factor signaling, resulting in invagination defects of fetal blood vessels into the chorion. In turn, the reduced labyrinth, together with impaired gas exchange between maternal and embryonic blood, led to increased hypoxia in keratin-deficient embryos. We provide evidence that keratin-positive trophoblast secretion of prolactin-like protein a (Prlpa) and placental growth factor (PlGF) during decidualization are altered in the absence of keratins, leading to increased infiltration of uterine natural killer cells into placental vicinity and increased vascularization of the maternal decidua. Our findings suggest that keratin mutations might mediate conditions leading to early pregnancy loss due to hyperoxia in the decidua.
Collapse
Affiliation(s)
- Cornelia Kröger
- Division of Cell Biochemistry, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|