201
|
Kim MJ, Park SC, Choi SO. Dual-nozzle spray deposition process for improving the stability of proteins in polymer microneedles. RSC Adv 2017. [DOI: 10.1039/c7ra10928h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Simultaneous deposition of protein and polymer solutions via the dual-nozzle spray deposition process forms mechanically stable microneedles and shows improved protein's structural stability during microneedle fabrication.
Collapse
Affiliation(s)
- Min Jung Kim
- Nanotechnology Innovation Center of Kansas State (NICKS)
- Department of Anatomy and Physiology
- College of Veterinary Medicine
- Kansas State University
- Manhattan
| | - Seok Chan Park
- Nanotechnology Innovation Center of Kansas State (NICKS)
- Department of Anatomy and Physiology
- College of Veterinary Medicine
- Kansas State University
- Manhattan
| | - Seong-O Choi
- Nanotechnology Innovation Center of Kansas State (NICKS)
- Department of Anatomy and Physiology
- College of Veterinary Medicine
- Kansas State University
- Manhattan
| |
Collapse
|
202
|
Ooi BG, Branning SA. Correlation of Conformational Changes and Protein Degradation with Loss of Lysozyme Activity Due to Chlorine Dioxide Treatment. Appl Biochem Biotechnol 2016; 182:782-791. [PMID: 27966089 DOI: 10.1007/s12010-016-2361-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
Chlorine dioxide (ClO2) is a potent oxidizing agent used for the treatment of drinking water and decontamination of facilities and equipment. The purpose of this research is to elucidate the manner in which ClO2 destroys proteins by studying the effects of ClO2 on lysozyme. The degree of enzyme activity lost can be correlated to the treatment time and levels of the ClO2 used. Lysozyme activity was drastically reduced to 45.3% of original enzyme activity when exposed to 4.3 mM ClO2 in the sample after 3 h. Almost all activities were lost in 3 h after exposure to higher ClO2 concentrations of up to 16.8 and 21.9 mM. Changes in protein conformation and amount as a result of ClO2 treatment were determined using the Raman spectroscopy and gel electrophoresis. Raman shifts and the alteration of spectral features observed in the ClO2-treated lysozyme samples are associated with loss of the α-helix secondary structure, tertiary structure, and disulfide bond. Progressive degradation of the denatured lysozyme by increasing levels of chlorine dioxide was also observed in gel electrophoresis. Hence, ClO2 can effectively cause protein denaturation and degradation resulting in loss of enzyme activity.
Collapse
Affiliation(s)
- Beng Guat Ooi
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.
| | - Sharon Alyssa Branning
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| |
Collapse
|
203
|
Tian X, Liu Y, Ren G, Yin L, Liang X, Geng T, Dang H, An R. Resveratrol limits diabetes-associated cognitive decline in rats by preventing oxidative stress and inflammation and modulating hippocampal structural synaptic plasticity. Brain Res 2016; 1650:1-9. [DOI: 10.1016/j.brainres.2016.08.032] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/15/2022]
|
204
|
Structure-mechanism-based engineering of chemical regulators targeting distinct pathological factors in Alzheimer's disease. Nat Commun 2016; 7:13115. [PMID: 27734843 PMCID: PMC5065625 DOI: 10.1038/ncomms13115] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
The absence of effective therapeutics against Alzheimer's disease (AD) is a result of the limited understanding of its multifaceted aetiology. Because of the lack of chemical tools to identify pathological factors, investigations into AD pathogenesis have also been insubstantial. Here we report chemical regulators that demonstrate distinct specificity towards targets linked to AD pathology, including metals, amyloid-β (Aβ), metal–Aβ, reactive oxygen species, and free organic radicals. We obtained these chemical regulators through a rational structure-mechanism-based design strategy. We performed structural variations of small molecules for fine-tuning their electronic properties, such as ionization potentials and mechanistic pathways for reactivity towards different targets. We established in vitro and/or in vivo efficacies of the regulators for modulating their targets' reactivities, ameliorating toxicity, reducing amyloid pathology, and improving cognitive deficits. Our chemical tools show promise for deciphering AD pathogenesis and discovering effective drugs. To advance our understanding of pathological features associated with Alzheimer's disease (AD), chemical tools with distinct specificity towards AD targets would be valuable. Here the authors used a structure-mechanism-based design strategy to obtain small molecules as chemical regulators for distinct pathological factors linked to AD pathology.
Collapse
|
205
|
Pirota V, Dell'Acqua S, Monzani E, Nicolis S, Casella L. Copper-Aβ Peptides and Oxidation of Catecholic Substrates: Reactivity and Endogenous Peptide Damage. Chemistry 2016; 22:16964-16973. [PMID: 27735097 DOI: 10.1002/chem.201603824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 11/08/2022]
Abstract
The oxidative reactivity of copper complexes with Aβ peptides 1-16 and 1-28 (Aβ16 and Aβ28) against dopamine and related catechols under physiological conditions has been investigated in parallel with the competitive oxidative modification undergone by the peptides. It was found that both Aβ16 and Aβ28 markedly increase the oxidative reactivity of copper(II) towards the catechol compounds, up to a molar ratio of about 4:1 of peptide/copper(II). Copper redox cycling during the catalytic activity induces the competitive modification of the peptide at selected amino acid residues. The main modifications consist of oxidation of His13/14 to 2-oxohistidine and Phe19/20 to ortho-tyrosine, and the formation of a covalent His6-catechol adduct. Competition by the endogenous peptide is rather efficient, as approximately one peptide molecule is oxidized every 10 molecules of 4-methylcatechol.
Collapse
Affiliation(s)
- Valentina Pirota
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Simone Dell'Acqua
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Enrico Monzani
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Stefania Nicolis
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Luigi Casella
- Dipartimento di Chimica, Università di Pavia, Via Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
206
|
Schwartz AJ, Shelley JT, Walton CL, Williams KL, Hieftje GM. Atmospheric-pressure ionization and fragmentation of peptides by solution-cathode glow discharge. Chem Sci 2016; 7:6440-6449. [PMID: 28451101 PMCID: PMC5356034 DOI: 10.1039/c6sc02032a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/24/2016] [Indexed: 12/13/2022] Open
Abstract
Modern "-omics" (e.g., proteomics, glycomics, metabolomics, etc.) analyses rely heavily on electrospray ionization and tandem mass spectrometry to determine the structural identity of target species. Unfortunately, these methods are limited to specialized mass spectrometry instrumentation. Here, a novel approach is described that enables ionization and controlled, tunable fragmentation of peptides at atmospheric pressure. In the new source, a direct-current plasma is sustained between a tapered metal rod and a flowing sample-containing solution. As the liquid stream contacts the electrical discharge, peptides from the solution are volatilized, ionized, and fragmented. At high discharge currents (e.g., 70 mA), electrospray-like spectra are observed, dominated by singly and doubly protonated molecular ions. At lower currents (35 mA), many peptides exhibit extensive fragmentation, with a-, b-, c-, x-, and y-type ion series present as well as complex fragments, such as d-type ions, not previously observed with atmospheric-pressure dissociation. Though the mechanism of fragmentation is currently unclear, observations indicate it could result from the interaction of peptides with gas-phase radicals or ultraviolet radiation generated within the plasma.
Collapse
Affiliation(s)
- Andrew J Schwartz
- Department of Chemistry , Indiana University , Bloomington , IN 47405 , USA . ; Tel: +1-330-672-2986
| | - Jacob T Shelley
- Department of Chemistry and Biochemistry , Kent State University , Kent , OH 44242 , USA
| | - Courtney L Walton
- Department of Chemistry and Biochemistry , Kent State University , Kent , OH 44242 , USA
| | - Kelsey L Williams
- Department of Chemistry and Biochemistry , Kent State University , Kent , OH 44242 , USA
| | - Gary M Hieftje
- Department of Chemistry , Indiana University , Bloomington , IN 47405 , USA . ; Tel: +1-330-672-2986
| |
Collapse
|
207
|
Bobály B, Sipkó E, Fekete J. Challenges in liquid chromatographic characterization of proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:3-22. [DOI: 10.1016/j.jchromb.2016.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/07/2016] [Accepted: 04/22/2016] [Indexed: 01/11/2023]
|
208
|
Davies MJ. Detection and characterisation of radicals using electron paramagnetic resonance (EPR) spin trapping and related methods. Methods 2016; 109:21-30. [DOI: 10.1016/j.ymeth.2016.05.013] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/16/2022] Open
|
209
|
Wright TH, Bower BJ, Chalker JM, Bernardes GJL, Wiewiora R, Ng WL, Raj R, Faulkner S, Vallée MRJ, Phanumartwiwath A, Coleman OD, Thézénas ML, Khan M, Galan SRG, Lercher L, Schombs MW, Gerstberger S, Palm-Espling ME, Baldwin AJ, Kessler BM, Claridge TDW, Mohammed S, Davis BG. Posttranslational mutagenesis: A chemical strategy for exploring protein side-chain diversity. Science 2016; 354:science.aag1465. [PMID: 27708059 DOI: 10.1126/science.aag1465] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/12/2016] [Indexed: 12/26/2022]
Abstract
Posttranslational modification of proteins expands their structural and functional capabilities beyond those directly specified by the genetic code. However, the vast diversity of chemically plausible (including unnatural but functionally relevant) side chains is not readily accessible. We describe C (sp3)-C (sp3) bond-forming reactions on proteins under biocompatible conditions, which exploit unusual carbon free-radical chemistry, and use them to form Cβ-Cγ bonds with altered side chains. We demonstrate how these transformations enable a wide diversity of natural, unnatural, posttranslationally modified (methylated, glycosylated, phosphorylated, hydroxylated), and labeled (fluorinated, isotopically labeled) side chains to be added to a common, readily accessible dehydroalanine precursor in a range of representative protein types and scaffolds. This approach, outside of the rigid constraints of the ribosome and enzymatic processing, may be modified more generally for access to diverse proteins.
Collapse
Affiliation(s)
- Tom H Wright
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Ben J Bower
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Justin M Chalker
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | | | - Rafal Wiewiora
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Wai-Lung Ng
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Ritu Raj
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Sarah Faulkner
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | | | | | - Oliver D Coleman
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Marie-Laëtitia Thézénas
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 7FZ, UK
| | - Maola Khan
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | | | - Lukas Lercher
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | | | | | | | - Andrew J Baldwin
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 7FZ, UK
| | | | - Shabaz Mohammed
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK.
| |
Collapse
|
210
|
Rahmeier FL, Zavalhia LS, Tortorelli LS, Huf F, Géa LP, Meurer RT, Machado AC, Gomez R, Fernandes MDC. The effect of taurine and enriched environment on behaviour, memory and hippocampus of diabetic rats. Neurosci Lett 2016; 630:84-92. [PMID: 27471162 DOI: 10.1016/j.neulet.2016.07.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/03/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
Abstract
Diabetes mellitus (DM) has been studied recently as a major cause of cognitive deficits, memory and neurodegenerative damage. Taurine and enriched environment have stood out for presenting neuroprotective and stimulating effects that deserve further study. In this paper, we examined the effects of taurine and enriched environment in the context of diabetes, evaluating effects on behaviour, memory, death and cellular activity. Eighty-eight Wistar rats were divided into 2 groups (E=enriched environment; C=standard housing). Some animals (24/group) underwent induction of diabetes, and within each group, some animals (half of diabetics (D) and half of non-diabetics (ND)/group) were treated for 30days with taurine (T). Untreated animals received saline (S). In total, there were eight subgroups: DTC, DSC, NDTC, NDSC, DTE, DSE, NDTE and NDSE. During the experiment, short-term memory was evaluated. After 30th day of experiment, the animals were euthanized and was made removal of brains used to immunohistochemistry procedures for GFAP and cleaved caspase-3. As a result, we observed that animals treated with taurine showed better performance in behavioural and memory tasks, and the enriched environment had positive effects, especially in non-diabetic animals. Furthermore, taurine and enriched environment seemed to be able to interfere with neuronal apoptosis and loss of glial cells, and in some instances, these two factors seemed to have synergistic effects. From these data, taurine and enriched environment may have important neurostimulant and neuroprotective effects.
Collapse
Affiliation(s)
- Francine Luciano Rahmeier
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil.
| | - Lisiane Silveira Zavalhia
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil.
| | - Lucas Silva Tortorelli
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil.
| | - Fernanda Huf
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil.
| | - Luiza Paul Géa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rosalva Thereza Meurer
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil.
| | - Aryadne Cardoso Machado
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil.
| | - Rosane Gomez
- Laboratório de Álcool e Tabaco, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil.
| | - Marilda da Cruz Fernandes
- Laboratório de Pesquisa em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
211
|
Chu C, Erickson PR, Lundeen RA, Stamatelatos D, Alaimo PJ, Latch DE, McNeill K. Photochemical and Nonphotochemical Transformations of Cysteine with Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6363-6373. [PMID: 27172378 DOI: 10.1021/acs.est.6b01291] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cysteine (Cys) plays numerous key roles in the biogeochemistry of natural waters. Despite its importance, a full assessment of Cys abiotic transformation kinetics, products and pathways under environmental conditions has not been conducted. This study is a mechanistic evaluation of the photochemical and nonphotochemical (dark) transformations of Cys in solutions containing chromophoric dissolved organic matter (CDOM). The results show that Cys underwent abiotic transformations under both dark and irradiated conditions. Under dark conditions, the transformation rates of Cys were moderate and were highly pH- and temperature-dependent. Under UVA or natural sunlight irradiations, Cys transformation rates were enhanced by up to two orders of magnitude compared to rates under dark conditions. Product analysis indicated cystine and cysteine sulfinic acid were the major photooxidation products. In addition, this study provides an assessment of the contributions of singlet oxygen, hydroxyl radical, hydrogen peroxide, and triplet dissolved organic matter to the CDOM-sensitized photochemical oxidation of Cys. The results suggest that another unknown pathway was dominant in the CDOM-sensitized photodegradation of Cys, which will require further study to identify.
Collapse
Affiliation(s)
- Chiheng Chu
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Paul R Erickson
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Rachel A Lundeen
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Dimitrios Stamatelatos
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Peter J Alaimo
- Department of Chemistry, Seattle University , Seattle, Washington 98122, United States
| | - Douglas E Latch
- Department of Chemistry, Seattle University , Seattle, Washington 98122, United States
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
212
|
Hami J, Vafaei-Nezhad S, Ghaemi K, Sadeghi A, Ivar G, Shojae F, Hosseini M. Stereological study of the effects of maternal diabetes on cerebellar cortex development in rat. Metab Brain Dis 2016; 31:643-52. [PMID: 26842601 DOI: 10.1007/s11011-016-9802-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
Diabetes during pregnancy is associated with the deficits in balance and motor coordination and altered social behaviors in offspring. In the present study, we have investigated the effect of maternal diabetes and insulin treatment on the cerebellar volume and morphogenesis of the cerebellar cortex of rat neonates during the first two postnatal weeks. Sprague Dawley female rats were maintained diabetic from a week before pregnancy through parturition. At the end of pregnancy, the male offspring euthanized on postnatal days (P) 0, 7, and 14. Cavalieri's principle and fractionator methods were used to estimate the cerebellar volume, the thickness and the number of cells in the different layers of the cerebellar cortex. In spite of P0, there was a significant reduction in the cerebellar volume and the thickness of the external granule, molecular, and internal granule layers between the diabetic and the control animals. In diabetic group, the granular and purkinje cell densities were increased at P0. Moreover, the number of granular and purkinje cells in the cerebellum of diabetic neonates was reduced in comparison with the control group at P7 and P14. There were no significant differences in either the volume and thickness or the number of cells in the different layers of the cerebellar cortex between the insulin-treated diabetic group and controls. Our data indicate that diabetes in pregnancy disrupts the morphogenesis of cerebellar cortex. This dysmorphogenesis may be part of the cascade of events through which diabetes during pregnancy affects motor coordination and social behaviors in offspring.
Collapse
Affiliation(s)
- Javad Hami
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Vafaei-Nezhad
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Kazem Ghaemi
- Department of Neurosurgery, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Akram Sadeghi
- Department of Anatomy and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ghasem Ivar
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Shojae
- Department of Anatomy, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hosseini
- Department of Public Health, Research Centre of Experimental Medicine, Deputy of Research and Technology, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
213
|
Li G, Liu X, An T, Wong PK, Zhao H. A novel method developed for estimating mineralization efficiencies and its application in PC and PEC degradations of large molecule biological compounds with unknown chemical formula. WATER RESEARCH 2016; 95:150-158. [PMID: 26994335 DOI: 10.1016/j.watres.2016.02.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
A new method to estimate the photocatalytic (PC) and photoelectrocatalytic (PEC) mineralization efficiencies of large molecule biological compounds with unknown chemical formula in water was firstly developed and experimentally validated. The method employed chemical oxidation under the standard dichromate chemical oxygen demand (COD) conditions to obtain QCOD values of model compounds with unknown chemical formula. The measured QCOD values were used as the reference to replace QCOD values of model compounds for calculation of the mineralization efficiencies (in %) by assuming the obtained QCOD values are the measure of the theoretical charge required for the complete mineralization of organic pollutants. Total organic carbon (TOC) was also employed as a reference to confirm the mineralization capacity of dichromate chemical oxidation. The developed method was applied to determine the degradation extent of model compounds, such as bovine serum albumin (BSA), lecithin and bacterial DNA, by PC and PEC. Incomplete PC mineralization of all large molecule biological compounds was observed, especially for BSA. But the introduction of electrochemical technique into a PC oxidation process could profoundly improve the mineralization efficiencies of model compounds. PEC mineralization efficiencies of bacterial DNA was the highest, while that of lecithin was the lowest. Overall, PEC degradation method was found to be much effective than PC method for all large molecule biological compounds investigated, with PEC/PC mineralization ratios followed an order of BSA > lecithin > DNA.
Collapse
Affiliation(s)
- Guiying Li
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia
| | - Xiaolu Liu
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Taicheng An
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland, 4222, Australia.
| |
Collapse
|
214
|
Green MC, Nakata H, Fedorov DG, Slipchenko LV. Radical damage in lipids investigated with the fragment molecular orbital method. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
215
|
Ipson BR, Fisher AL. Roles of the tyrosine isomers meta-tyrosine and ortho-tyrosine in oxidative stress. Ageing Res Rev 2016; 27:93-107. [PMID: 27039887 DOI: 10.1016/j.arr.2016.03.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/20/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022]
Abstract
The damage to cellular components by reactive oxygen species, termed oxidative stress, both increases with age and likely contributes to age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and cataract formation. In the setting of oxidative stress, hydroxyl radicals can oxidize the benzyl ring of the amino acid phenylalanine, which then produces the abnormal tyrosine isomers meta-tyrosine or ortho-tyrosine. While elevations in m-tyrosine and o-tyrosine concentrations have been used as a biological marker of oxidative stress, there is emerging evidence from bacterial, plant, and mammalian studies demonstrating that these isomers, particularly m-tyrosine, directly produce adverse effects to cells and tissues. These new findings suggest that the abnormal tyrosine isomers could in fact represent mediators of the effects of oxidative stress. Consequently the accumulation of m- and o-tyrosine may disrupt cellular homeostasis and contribute to disease pathogenesis, and as result, effective defenses against oxidative stress can encompass not only the elimination of reactive oxygen species but also the metabolism and ultimately the removal of the abnormal tyrosine isomers from the cellular amino acid pool. Future research in this area is needed to clarify the biologic mechanisms by which the tyrosine isomers damage cells and disrupt the function of tissues and organs and to identify the metabolic pathways involved in removing the accumulated isomers after exposure to oxidative stress.
Collapse
Affiliation(s)
- Brett R Ipson
- MD/PhD Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Department of Cell and Structural Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alfred L Fisher
- Center for Healthy Aging, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; Department of Medicine, Division of Geriatrics, Gerontology, and Palliative Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; GRECC, South Texas VA Health Care System, San Antonio, TX, United States.
| |
Collapse
|
216
|
Mu X, Lau JKC, Lai CK, Siu KWM, Hopkinson AC, Chu IK. Nucleophilic substitution by amide nitrogen in the aromatic rings of [zn - H]˙⁺ ions; the structures of the [b₂ - H - 17]˙⁺ and [c1 - 17]⁺ ions. Phys Chem Chem Phys 2016; 18:11168-75. [PMID: 27048940 DOI: 10.1039/c6cp00405a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Peptide radical cations that contain an aromatic amino acid residue cleave to give [zn - H]˙⁺ ions with [b2 - H - 17]˙⁺ and [c1 - 17](+) ions, the dominant products in the dissociation of [zn - H]˙⁺, also present in lower abundance in the CID spectra. Isotopic labeling in the aromatic ring of [Yπ˙GG](+) establishes that in the formation of [b2 - H - 17]˙⁺ ions a hydrogen from the δ-position of the Y residue is lost, indicating that nucleophilic substitution on the aromatic ring has occurred. A preliminary DFT investigation of nine plausible structures for the [c1 - 17](+) ion derived from [Y(π)˙GG](+) shows that two structures resulting from attack on the aromatic ring by oxygen and nitrogen atoms from the peptide backbone have significantly better energies than other isomers. A detailed study of [Y(π)˙GG](+) using two density functionals, B3LYP and M06-2X, with a 6-31++G(d,p) basis set gives a higher barrier for attack on the aromatic ring of the [zn - H]˙⁺ ion by nitrogen than by the carbonyl oxygen. However, subsequent rearrangements involving proton transfers are much higher in energy for the oxygen-substituted isomer leading to the conclusion that the [c1 - 17](+) ions are the products of nucleophilic attack by nitrogen, protonated 2,7-dihydroxyquinoline ions. The [b2 - H - 17]˙⁺ ions are formed by loss of glycine from the same intermediates involved in the formation of the [c1 - 17](+) ions.
Collapse
Affiliation(s)
- Xiaoyan Mu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada. and Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Cheuk-Kuen Lai
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - K W Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada. and Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Alan C Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto ON, M3J 1P3, Canada.
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
217
|
Wood GPF, Sreedhara A, Moore JM, Wang J, Trout BL. Mechanistic Insights into Radical-Mediated Oxidation of Tryptophan from ab Initio Quantum Chemistry Calculations and QM/MM Molecular Dynamics Simulations. J Phys Chem A 2016; 120:2926-39. [DOI: 10.1021/acs.jpca.6b02429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Geoffrey P. F. Wood
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, E19-502b, Cambridge, Massachusetts 02139, United States
| | - Alavattam Sreedhara
- Late
Stage Pharmaceutical Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Jamie M. Moore
- Late
Stage Pharmaceutical Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Bernhardt L. Trout
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, E19-502b, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
218
|
Green MC, Dubnicka LJ, Davis AC, Rypkema HA, Francisco JS, Slipchenko LV. Thermodynamics and Kinetics for the Free Radical Oxygen Protein Oxidation Pathway in a Model for β-Structured Peptides. J Phys Chem A 2016; 120:2493-503. [PMID: 27055125 DOI: 10.1021/acs.jpca.5b12549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mandy C. Green
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Laura J. Dubnicka
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alex C. Davis
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Heather A. Rypkema
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joseph S. Francisco
- Department
of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Lyudmila V. Slipchenko
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
219
|
Sabow AB, Zulkifli I, Goh YM, Ab Kadir MZA, Kaka U, Imlan JC, Abubakar AA, Adeyemi KD, Sazili AQ. Bleeding Efficiency, Microbiological Quality and Oxidative Stability of Meat from Goats Subjected to Slaughter without Stunning in Comparison with Different Methods of Pre-Slaughter Electrical Stunning. PLoS One 2016; 11:e0152661. [PMID: 27035716 PMCID: PMC4817978 DOI: 10.1371/journal.pone.0152661] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/17/2016] [Indexed: 02/02/2023] Open
Abstract
The influence of pre-slaughter electrical stunning techniques and slaughter without stunning on bleeding efficiency and shelf life of chevon during a 14 d postmortem aging were assessed. Thirty two Boer crossbred bucks were randomly assigned to four slaughtering techniques viz slaughter without stunning (SWS), low frequency head-only electrical stunning (LFHO; 1 A for 3 s at a frequency of 50 Hz), low frequency head-to-back electrical stunning (LFHB; 1 A for 3 s at a frequency of 50 Hz) and high frequency head-to-back electrical stunning (HFHB; 1 A for 3 s at a frequency of 850 Hz). The SWS, LFHO and HFHB goats had higher (p<0.05) blood loss and lower residual hemoglobin in muscle compared to LFHB. The LFHB meat had higher (p<0.05) TBARS value than other treatments on d 7 and 14 d postmortem. Slaughtering methods had no effect on protein oxidation. Higher bacterial counts were observed in LFHB meat compared to those from SWS, LFHO and HFHB after 3 d postmortem. Results indicate that the low bleed-out in LFHB lowered the lipid oxidative stability and microbiological quality of chevon during aging.
Collapse
Affiliation(s)
- Azad Behnan Sabow
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Animal Resource, University of Salahaddin, Erbil, Kurdistan Region, Iraq
| | - Idrus Zulkifli
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yong Meng Goh
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Preclinical Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Zainal Abidin Ab Kadir
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Centre for Electromagnetic and Lighting Protection Research, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ubedullah Kaka
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Surgery and Obstetrics, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Sindh, Pakistan
| | - Jurhamid Columbres Imlan
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmed Abubakar Abubakar
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Kazeem Dauda Adeyemi
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Animal Production, University of Ilorin, Ilorin, Nigeria
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Tropical Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
220
|
Calycosin ameliorates diabetes-induced cognitive impairments in rats by reducing oxidative stress via the PI3K/Akt/GSK-3β signaling pathway. Biochem Biophys Res Commun 2016; 473:428-34. [DOI: 10.1016/j.bbrc.2016.03.024] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/07/2016] [Indexed: 01/18/2023]
|
221
|
Abstract
Proteins are major targets for radicals and two-electron oxidants in biological systems due to their abundance and high rate constants for reaction. With highly reactive radicals damage occurs at multiple side-chain and backbone sites. Less reactive species show greater selectivity with regard to the residues targeted and their spatial location. Modification can result in increased side-chain hydrophilicity, side-chain and backbone fragmentation, aggregation via covalent cross-linking or hydrophobic interactions, protein unfolding and altered conformation, altered interactions with biological partners and modified turnover. In the presence of O2, high yields of peroxyl radicals and peroxides (protein peroxidation) are formed; the latter account for up to 70% of the initial oxidant flux. Protein peroxides can oxidize both proteins and other targets. One-electron reduction results in additional radicals and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function. Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides inhibit these pathways and this may contribute to the accumulation of modified proteins in cells. Available evidence supports an association between protein oxidation and multiple human pathologies, but whether this link is causal remains to be established.
Collapse
Affiliation(s)
- Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| |
Collapse
|
222
|
Lung extracellular matrix and redox regulation. Redox Biol 2016; 8:305-15. [PMID: 26938939 PMCID: PMC4777985 DOI: 10.1016/j.redox.2016.02.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/28/2022] Open
Abstract
Pulmonary fibrosis affects millions worldwide and, even though there has been a significant investment in understanding the processes involved in wound healing and maladaptive repair, a complete understanding of the mechanisms responsible for lung fibrogenesis eludes us, and interventions capable of reversing or halting disease progression are not available. Pulmonary fibrosis is characterized by the excessive expression and uncontrolled deposition of extracellular matrix (ECM) proteins resulting in erosion of the tissue structure. Initially considered an 'end-stage' process elicited after injury, these events are now considered pathogenic and are believed to contribute to the course of the disease. By interacting with integrins capable of signal transduction and by influencing tissue mechanics, ECM proteins modulate processes ranging from cell adhesion and migration to differentiation and growth factor expression. In doing so, ECM proteins help orchestrate complex developmental processes and maintain tissue homeostasis. However, poorly controlled deposition of ECM proteins promotes inflammation, fibroproliferation, and aberrant differentiation of cells, and has been implicated in the pathogenesis of pulmonary fibrosis, atherosclerosis and cancer. Considering their vital functions, ECM proteins are the target of investigation, and oxidation-reduction (redox) reactions have emerged as important regulators of the ECM. Oxidative stress invariably accompanies lung disease and promotes ECM expression directly or through the overproduction of pro-fibrotic growth factors, while affecting integrin binding and activation. In vitro and in vivo investigations point to redox reactions as targets for intervention in pulmonary fibrosis and related disorders, but studies in humans have been disappointing probably due to the narrow impact of the interventions tested, and our poor understanding of the factors that regulate these complex reactions. This review is not meant to provide a comprehensive review of this field, but rather to highlight what has been learned and to raise interest in this area in need of much attention.
Collapse
|
223
|
Khosravian N, Kamaraj B, Neyts EC, Bogaerts A. Structural modification of P-glycoprotein induced by OH radicals: Insights from atomistic simulations. Sci Rep 2016; 6:19466. [PMID: 26857381 PMCID: PMC4746567 DOI: 10.1038/srep19466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/09/2015] [Indexed: 11/09/2022] Open
Abstract
This study reports on the possible effects of OH radical impact on the transmembrane domain 6 of P-glycoprotein, TM6, which plays a crucial role in drug binding in human cells. For the first time, we employ molecular dynamics (MD) simulations based on the self-consistent charge density functional tight binding (SCC-DFTB) method to elucidate the potential sites of fragmentation and mutation in this domain upon impact of OH radicals, and to obtain fundamental information about the underlying reaction mechanisms. Furthermore, we apply non-reactive MD simulations to investigate the long-term effect of this mutation, with possible implications for drug binding. Our simulations indicate that the interaction of OH radicals with TM6 might lead to the breaking of C-C and C-N peptide bonds, which eventually cause fragmentation of TM6. Moreover, according to our simulations, the OH radicals can yield mutation in the aromatic ring of phenylalanine in TM6, which in turn affects its structure. As TM6 plays an important role in the binding of a range of cytotoxic drugs with P-glycoprotein, any changes in its structure are likely to affect the response of the tumor cell in chemotherapy. This is crucial for cancer therapies based on reactive oxygen species, such as plasma treatment.
Collapse
Affiliation(s)
- N Khosravian
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - B Kamaraj
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - E C Neyts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - A Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| |
Collapse
|
224
|
Lee SH, Oe T. Oxidative stress-mediated N-terminal protein modifications and MS-based approaches for N-terminal proteomics. Drug Metab Pharmacokinet 2016; 31:27-34. [DOI: 10.1016/j.dmpk.2015.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023]
|
225
|
Li AB, Kluge JA, Guziewicz NA, Omenetto FG, Kaplan DL. Silk-based stabilization of biomacromolecules. J Control Release 2015; 219:416-430. [PMID: 26403801 PMCID: PMC4656123 DOI: 10.1016/j.jconrel.2015.09.037] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/19/2015] [Indexed: 11/26/2022]
Abstract
Silk fibroin is a high molecular weight amphiphilic protein that self-assembles into robust biomaterials with remarkable properties including stabilization of biologicals and tunable release kinetics correlated to processing conditions. Cells, antibiotics,monoclonal antibodies and peptides, among other biologics, have been encapsulated in silk using various processing approaches and material formats. The mechanistic basis for the entrapment and stabilization features, along with insights into the modulation of release of the entrained compounds from silks will be reviewed with a focus on stabilization of bioactive molecules.
Collapse
Affiliation(s)
- Adrian B Li
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jonathan A Kluge
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Nicholas A Guziewicz
- Drug Product Technologies, Amgen, 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
226
|
Abstract
UV photodissociation (UVPD) action spectroscopy is reported to provide a sensitive tool for the detection of radical sites in gas-phase peptide ions. UVPD action spectra of peptide cation radicals of the z-type generated by electron-transfer dissociation point to the presence of multiple structures formed as a result of spontaneous isomerizations by hydrogen atom migration. N-terminal Cα radicals are identified as the dominant components, but the content of isomers differing in the radical defect position in the backbone or side chain depends on the nature of the aromatic residue with phenylalanine being more prone to isomerization than tryptophan. These results illustrate that spontaneous hydrogen atom migrations can occur in peptide cation-radicals upon electron-transfer dissociation.
Collapse
Affiliation(s)
- Huong T H Nguyen
- Department of Chemistry, University of Washington , Bagley Hall, Box 351700, Seattle, Washington 981195-1700, United States
| | - Christopher J Shaffer
- Department of Chemistry, University of Washington , Bagley Hall, Box 351700, Seattle, Washington 981195-1700, United States
| | - Robert Pepin
- Department of Chemistry, University of Washington , Bagley Hall, Box 351700, Seattle, Washington 981195-1700, United States
| | - František Tureček
- Department of Chemistry, University of Washington , Bagley Hall, Box 351700, Seattle, Washington 981195-1700, United States
| |
Collapse
|
227
|
Shaffer CJ, Pepin R, Tureček F. Combining UV photodissociation action spectroscopy with electron transfer dissociation for structure analysis of gas-phase peptide cation-radicals. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1438-1442. [PMID: 26634979 DOI: 10.1002/jms.3717] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/22/2015] [Accepted: 10/09/2015] [Indexed: 06/05/2023]
Abstract
We report the first example of using ultraviolet (UV) photodissociation action spectroscopy for the investigation of gas-phase peptide cation-radicals produced by electron transfer dissociation. z-Type fragment ions (●) Gly-Gly-Lys(+), coordinated to 18-crown-6-ether (CE), are generated, selected by mass and photodissociated in the 200-400 nm region. The UVPD action spectra indicate the presence of valence-bond isomers differing in the position of the Cα radical defect, (α-Gly)-Gly-Lys(+) (CE), Gly-(α-Gly)-Lys(+) (CE) and Gly-Gly-(α-Lys(+))(CE). The isomers are readily distinguishable by UV absorption spectra obtained by time-dependent density functional theory (TD-DFT) calculations. In contrast, conformational isomers of these radical types are calculated to have similar UV spectra. UV photodissociation action spectroscopy represents a new tool for the investigation of transient intermediates of ion-electron reactions. Specifically, z-type cation radicals are shown to undergo spontaneous hydrogen atom migrations upon electron transfer dissociation.
Collapse
Affiliation(s)
- Christopher J Shaffer
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, 98195-1700, USA
| | - Robert Pepin
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, 98195-1700, USA
| | - František Tureček
- Department of Chemistry, University of Washington, Bagley Hall, Box 351700, Seattle, WA, 98195-1700, USA
| |
Collapse
|
228
|
Alipour M, Adineh F, Mosatafavi H, Aminabadi A, Monirinasab H, Jafari MR. Effect of chronic intraperitoneal aminoguanidine on memory and expression of Bcl-2 family genes in diabetic rats. Can J Physiol Pharmacol 2015; 94:669-75. [PMID: 27210113 DOI: 10.1139/cjpp-2015-0357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term hyperglycemia associates with memory defects via hippocampal cells damaging. The aim of the present study was to examine the effect of 1 month of i.p. injections of AG on passive avoidance learning (PAL) and hippocampal apoptosis in rat. Eighty male rats were divided into 10 groups: control, nondiabetics and STZ-induced diabetics treated with AG (50, 100, 200, and 400 mg/kg, i.p.). PAL and the Bcl-2 family gene expressions were determined. Diabetes resulted in memory and Bcl-2 family gene expression deficits. AG (50 and 100 mg/kg) significantly improved the learning and Bcl-2, Bcl-xl, Bax, and Bak impairment in diabetic rats. However, negative effects were indicated by higher doses of the drug (200 and 400 mg/kg). Present study suggests that 1 month of i.p. injections of lower doses of AG, may improve the impaired cognitive tasks in STZ-induced diabetic rats possibly by modulating Bcl-2 family gene expressions.
Collapse
Affiliation(s)
- Mohsen Alipour
- a Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Adineh
- a Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Mosatafavi
- a Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Azam Aminabadi
- a Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hananeh Monirinasab
- b Department of Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Reza Jafari
- a Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
229
|
Insulin-Like Growth Factor-1 Receptor Is Differentially Distributed in Developing Cerebellar Cortex of Rats Born to Diabetic Mothers. J Mol Neurosci 2015; 58:221-32. [DOI: 10.1007/s12031-015-0661-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/30/2015] [Indexed: 01/04/2023]
|
230
|
Mohammadpour T, Hosseini M, Naderi A, Karami R, Sadeghnia HR, Soukhtanloo M, Vafaee F. Protection against brain tissues oxidative damage as a possible mechanism for the beneficial effects of Rosa damascena hydroalcoholic extract on scopolamine induced memory impairment in rats. Nutr Neurosci 2015; 18:329-336. [PMID: 24974980 DOI: 10.1179/1476830514y.0000000137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Hypnotic, analgesic, anticonvulsant, and antioxidant effects of Rosa damascena have been reported. This study, investigated the effect of R. damascena hydroalcoholic extract on memory performance in a scopolamine-induced memory impairment model. METHODS The rats were divided into control group received just saline; scopolamine group was treated by saline for 2 weeks, but was injected by scopolamine 30 minutes before each trial in Morris water maze test; treatment groups (scopolamine + extract 50; Sco + Ext 50) and (scopolamine + extract 250; Sco + Ext 250) were daily treated by 50 and 250 mg/kg of R. damascena extract (2 weeks) and were finally injected by scopolamine before each trial in Morris water maze. The brains were removed for biochemical measurements. RESULTS Time latency and path length in the scopolamine group were higher than control (P < 0.01 to <0.001). Both treatment groups showed shorter traveled distance and time latency compared with scopolamine group (P < 0.05 to <0.001). Time spent in target quadrant by scopolamine group was lower than control (P < 0.05), while Sco + Ext 250 group spent longer time in target quadrant than scopolamine group (P < 0.05). Malondialdehyde concentrations in hippocampal and cortical tissues of scopolamine group were higher, while thiol concentrations were lower than control ones (P < 0.001). Treatment by both doses of the extract decreased the malondialdehyde concentration, while increased the thiol concentration (P < 0.05 to <0.001). DISCUSSION The results of this study showed that the hydroalcoholic extract of R. damascena prevents scopolamine-induced memory deficits. This finding suggests that memory improvement may be in part due to the antioxidant effects.
Collapse
|
231
|
Baba T, Campbell JL. Capturing Polyradical Protein Cations after an Electron Capture Event: Evidence for their Stable Distonic Structures in the Gas Phase. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1695-1701. [PMID: 26231348 DOI: 10.1007/s13361-015-1207-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
We report on the formation and "capture" of polyradical protein cations after an electron capture event. Performed in a unique electron-capture dissociation (ECD) instrument, these experiments can generate reduced forms of multiply protonated proteins by sequential charge reduction using electrons with ~1 eV. The true structures of these possible polyradicals is considered: Do the introduced unpaired electrons recombine quickly to form a new two-electron bond, or do these unpaired electrons exist as radical sites with appropriate chemical reactivity? Using an established chemical probe--radical quenching with molecular oxygen--we demonstrate that these charge-reduced protein cations are indeed polyradicals that form adducts with up to three molecules of oxygen (i.e., tri-radical protein cations) that are stable for at least 100 ms.
Collapse
Affiliation(s)
- Takashi Baba
- Sciex, 71 Four Valley Drive, Concord, ON, L4K 4V8, Canada.
| | | |
Collapse
|
232
|
Tureček F. Benchmarking Electronic Excitation Energies and Transitions in Peptide Radicals. J Phys Chem A 2015; 119:10101-11. [DOI: 10.1021/acs.jpca.5b06235] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- František Tureček
- Department of Chemistry, University of Washington, Bagley Hall,
Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
233
|
Dong X, Zhang Z, Zhao D, Liu Y, Meng Y, Zhang Y, Zhang D, Liu C. Ultraviolet light triggers the conversion of Cu2+-bound Aβ42 aggregates into cytotoxic species in a copper chelation-independent manner. Sci Rep 2015; 5:13897. [PMID: 26350232 PMCID: PMC4563556 DOI: 10.1038/srep13897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 07/10/2015] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence indicates that abnormal Cu2+ binding to Aβ peptides are responsible for the formation of soluble Aβ oligomers and ROS that play essential roles in AD pathogenesis. During studying the Cu2+-chelating treatment of Cu2+-bound Aβ42 aggregates, we found that UV light exposure pronouncedly enhances cytotoxicity of the chelator-treated and -untreated Cu2+-bound Aβ42 aggregates. This stimulated us to thoroughly investigate (1) either the chelation treatment or UV light exposure leads to the increased cytotoxicity of the aggregates, and (2) why the chelator-treated and -untreated Cu2+-bound Aβ42 aggregates exhibit the increased cytotoxicity following UV light exposure if the latter is the case. The data indicated that the controlled UV exposure induced the dissociation of Cu2+-free and -bound Aβ42 aggregates into SDS-stable soluble oligomers and the production of ROS including H2O2 in an UV light intensity- and time-dependent, but Cu2+ chelation-independent manner. Although we can't fully understand the meaning of this finding at the current stage, the fact that the UV illuminated Aβ42 aggregates can efficiently kill HeLa cells implies that the aggregates after UV light exposure could be used to decrease the viability of skin cancer cells through skin administration.
Collapse
Affiliation(s)
- Xiongwei Dong
- Key Laboratory of Pesticide &Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan 430079, Hubei
| | - Zhe Zhang
- Key Laboratory of Pesticide &Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan 430079, Hubei
| | - Dan Zhao
- Key Laboratory of Pesticide &Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan 430079, Hubei
| | - Yaojing Liu
- Key Laboratory of Pesticide &Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan 430079, Hubei
| | - Yan Meng
- Key Laboratory of Pesticide &Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan 430079, Hubei
| | - Yong Zhang
- School of Chemical and Materials Engineering, Hubei Polytechnic University, Huangshi, 435003 Hubei, China
| | - Dan Zhang
- Key Laboratory of Pesticide &Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan 430079, Hubei
| | - Changlin Liu
- Key Laboratory of Pesticide &Chemical Biology, Ministry of Education, and School of Chemistry, Central China Normal University, Wuhan 430079, Hubei
| |
Collapse
|
234
|
Zhang YN, Avery RK, Vallmajo-Martin Q, Assmann A, Vegh A, Memic A, Olsen BD, Annabi N, Khademhosseini A. A Highly Elastic and Rapidly Crosslinkable Elastin-Like Polypeptide-Based Hydrogel for Biomedical Applications. ADVANCED FUNCTIONAL MATERIALS 2015; 25:4814-4826. [PMID: 26523134 PMCID: PMC4623594 DOI: 10.1002/adfm.201501489] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Elastin-like polypeptides (ELPs) are promising for biomedical applications due to their unique thermoresponsive and elastic properties. ELP-based hydrogels have been produced through chemical and enzymatic crosslinking or photocrosslinking of modified ELPs. Herein, a photocrosslinked ELP gel using only canonical amino acids is presented. The inclusion of thiols from a pair of cysteine residues in the ELP sequence allows disulfide bond formation upon exposure to UV light, leading to the formation of a highly elastic hydrogel. The physical properties of the resulting hydrogel such as mechanical properties and swelling behavior can be easily tuned by controlling ELP concentrations. The biocompatibility of the engineered ELP hydrogels is shown in vitro as well as corroborated in vivo with subcutaneous implantation of hydrogels in rats. ELP constructs demonstrate long-term structural stability in vivo, and early and progressive host integration with no immune response, suggesting their potential for supporting wound repair. Ultimately, functionalized ELPs demonstrate the ability to function as an in vivo hemostatic material over bleeding wounds.
Collapse
Affiliation(s)
- Yi-Nan Zhang
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Reginald K. Avery
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Queralt Vallmajo-Martin
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Laboratory for Cell and Tissue Engineering, Department of Obstetrics, University Hospital Zurich, Zürich CH-8091, Switzerland
| | - Alexander Assmann
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA. Department of Cardiovascular Surgery, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Andrea Vegh
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S1A4, Canada
| | - Adnan Memic
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA. Department of Chemical Engineering, Northeastern University, Boston, MA 02115-5000, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA. Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA. Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia
| |
Collapse
|
235
|
Weber D, Davies MJ, Grune T. Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions. Redox Biol 2015; 5:367-380. [PMID: 26141921 PMCID: PMC4506980 DOI: 10.1016/j.redox.2015.06.005] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/19/2022] Open
Abstract
Protein oxidation is involved in regulatory physiological events as well as in damage to tissues and is thought to play a key role in the pathophysiology of diseases and in the aging process. Protein-bound carbonyls represent a marker of global protein oxidation, as they are generated by multiple different reactive oxygen species in blood, tissues and cells. Sample preparation and stabilization are key steps in the accurate quantification of oxidation-related products and examination of physiological/pathological processes. This review therefore focuses on the sample preparation processes used in the most relevant methods to detect protein carbonyls after derivatization with 2,4-dinitrophenylhydrazine with an emphasis on measurement in plasma, cells, organ homogenates, isolated proteins and organelles. Sample preparation, derivatization conditions and protein handling are presented for the spectrophotometric and HPLC method as well as for immunoblotting and ELISA. An extensive overview covering these methods in previously published articles is given for researchers who plan to measure protein carbonyls in different samples.
Collapse
Affiliation(s)
- Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| |
Collapse
|
236
|
Yin Z, Yu H, Chen S, Ma C, Ma X, Xu L, Ma Z, Qu R, Ma S. Asiaticoside attenuates diabetes-induced cognition deficits by regulating PI3K/Akt/NF-κB pathway. Behav Brain Res 2015; 292:288-99. [PMID: 26097002 DOI: 10.1016/j.bbr.2015.06.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/11/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
Diabetes-associated cognitive dysfunction, referred as "diabetic encephalopathy", has been confirmed in a great deal of literature. Current evidence support that oxidative stress, inflammation, energy metabolism imbalance, and aberrant insulin signaling are associated with cognition deficits induced by diabetes. The present study explore the effect of asiaticoside on the cognition behaviors, synapses, and oxidative stress in diabetic rats. Asiaticoside could markedly ameliorate the performance in the Morris Water Maze (decreased latency time and path length, and increased time spent in the target quadrant), which was correlated with its capabilities of suppressing oxidative stress, restoring Na(+)-K(+)-ATPase activity and protecting hippocampal synapses. In vitro, asiaticoside could up-regulate synaptic proteins expression via modulating Phosphoinositide 3-kinase (PI3K)/Protein Kinase B(AKT)/Nuclear Factor -kappa B (NF-κB)-mediated inflammatory pathway in SH-SY5Y cells incubated with high glucose chronically. In conclusion, asiaticoside had beneficial effects on the prevention and treatment of diabetes-associated cognitive deficits, which was involved in oxidative stress, PI3K/Akt/NF-κB pathway and synaptic function in the development of cognitive decline induced by diabetes.
Collapse
Affiliation(s)
- Zhujun Yin
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Haiyang Yu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - She Chen
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chunhua Ma
- School of Life Sciences, Nanjing University, Nanjing 210009, PR China
| | - Xiao Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lixing Xu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhanqiang Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China
| | - Rong Qu
- Department of Pharmacology of Traditional Chinese Medical Formulae, Nanjing University of Traditional Chinese Medicine, Nanjing 210029, PR China
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
237
|
Lewis JM, Grove TJ, O'Brien KM. Energetic costs of protein synthesis do not differ between red- and white-blooded Antarctic notothenioid fishes. Comp Biochem Physiol A Mol Integr Physiol 2015; 187:177-83. [PMID: 26051614 DOI: 10.1016/j.cbpa.2015.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022]
Abstract
Antarctic icefishes (Family Channichthyidae) within the suborder Notothenioidei lack the oxygen-binding protein hemoglobin (Hb), and six of the 16 species of icefishes lack myoglobin (Mb) in heart ventricle. As iron-centered proteins, Hb and Mb can promote the formation of reactive oxygen species (ROS) that damage biological macromolecules. Consistent with this, our previous studies have shown that icefishes have lower levels of oxidized proteins and lipids in oxidative muscle compared to red-blooded notothenioids. Because oxidized proteins are usually degraded by the 20S proteasome and must be resynthesized, we hypothesized that rates of protein synthesis would be lower in icefishes compared to red-blooded notothenioids, thereby reducing the energetic costs of protein synthesis and conferring a benefit to the loss of Hb and Mb. Rates of protein synthesis were quantified in hearts, and the fraction of oxygen consumption devoted to protein synthesis was measured in isolated hepatocytes and cardiomyocytes of notothenioids differing in the expression of Hb and cardiac Mb. Neither rates of protein synthesis nor the energetic costs of protein synthesis differed among species, suggesting that red-blooded species do not degrade and replace oxidatively modified proteins at a higher rate compared to icefishes but rather, persist with higher levels of oxidized proteins.
Collapse
Affiliation(s)
- Johanne M Lewis
- Department of Biology, Georgia Southern University, Statesboro, GA 30458, United States
| | - Theresa J Grove
- Department of Biology, Valdosta State University, Valdosta, GA 31698, United States
| | - Kristin M O'Brien
- Institute of Arctic Biology, University of Alaska, Fairbanks, Fairbanks, AK 99775, United States.
| |
Collapse
|
238
|
Rasool M, Malik A, Khan KM, Qureshi MS, Shabbir B, Zahid S, Asif M, Manan A, Rashid S, Khan SR, Arsalan HM, Alam R, Arooj M, Qazi MH, Chaudhary AGA, Abuzenadah AM, Al-Qahtani MH, Karim S. Assessment of biochemical and antioxidative status in patients suffering from dengue fever. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2015; 35:411-418. [PMID: 26072082 DOI: 10.1007/s11596-015-1446-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/20/2014] [Indexed: 02/07/2023]
Abstract
A multi-centred study was designed to collect dengue epidemiologic data from government and registered private hospitals/clinics and maintained archive of frozen specimens in bio-bank to be used for future dengue epidemic control program, and assess the epidemiology of dengue fever (DF) by evaluating biochemical and oxidative status of patients. ELISA IgM antibodies test was done to confirm DF. From August 2010 to December 2011, 101 confirmed blood samples of DF patients referred to pathology lab of Jinnah Hospital Lahore were subjected to the epidemiologic assessment by evaluating the biochemical and physiological indices and alterations of circulating antioxidants. Clinical features of DF patients and effect of fever on blood components and serum proteins of liver were recorded. The hospital stay in DF, dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) showed significant difference. Significant increases in serum alanine amino transferase (ALT) (P=0.000), aspartate amino transferase (AST) (P=0.000), alkaline phosphatase (ALP) (P=0.000), malondialdehyde (MDA) along with significant decreases in total protein (TP) (P=0.000), reduced glutathione (GSH) (P=0.000), superoxide dismutase (SOD), catalase (CAT) (P=0.000), and sialic acid contents (P=0.016) were observed. A positive correlation existed between bound sialic acid levels, liver enzymes and circulating antioxidants (r=0.656, P=0.016). In the present study, alterations of circulating antioxidants in DF suggest that DF might be a metabolic response to an acute, self-limiting tropical viral infection, and a consequence of the viral inflammatory process.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, 54000, Pakistan
| | - Khalid Mahmud Khan
- Fatima Jinnah Medical College, Sir Gangaram Hospital Lahore, Lahore, 54000, Pakistan
| | - Muhammad Saeed Qureshi
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, 54000, Pakistan
| | - Beenish Shabbir
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, 54000, Pakistan
| | - Sara Zahid
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, 54000, Pakistan
| | - Muhammad Asif
- Department of Biotechnology and Informatics, BUITEMS, Quetta, 87300, Pakistan
| | - Abdul Manan
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, 54000, Pakistan
| | - Sana Rashid
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, 54000, Pakistan
| | - Saima Rubab Khan
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, 54000, Pakistan
| | - Hafiz Muhammad Arsalan
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, 54000, Pakistan
| | - Rabail Alam
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, 54000, Pakistan
| | - Mahwish Arooj
- Center for Research in Molecular Medicine, the University of Lahore, Lahore, 54000, Pakistan
| | - Mahmood Husain Qazi
- Center for Research in Molecular Medicine, the University of Lahore, Lahore, 54000, Pakistan
| | - Adeel Gulzar Ahmed Chaudhary
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Adel Mohammed Abuzenadah
- KACST Technology Innovation Center in Personalized Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed Hussain Al-Qahtani
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sajjad Karim
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
239
|
Perusko M, Al-Hanish A, Cirkovic Velickovic T, Stanic-Vucinic D. Macromolecular crowding conditions enhance glycation and oxidation of whey proteins in ultrasound-induced Maillard reaction. Food Chem 2015; 177:248-57. [DOI: 10.1016/j.foodchem.2015.01.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/03/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
|
240
|
Mel’sitova IV, Yurkova IL. Effect of albumin and water-soluble analogs of vitamins E, Q, and K on the free-radical fragmentation of phospholipids. HIGH ENERGY CHEMISTRY 2015. [DOI: 10.1134/s001814391503011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
241
|
Cockrell GM, Wolfe MS, Wolfe JL, Schöneich C. Photoinduced Aggregation of a Model Antibody–Drug Conjugate. Mol Pharm 2015; 12:1784-97. [DOI: 10.1021/mp5006799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gregory M. Cockrell
- Wolfe Laboratories Incorporated, 134 Coolidge Avenue, Watertown, Massachusetts 02472, United States
| | - Michael S. Wolfe
- Wolfe Laboratories Incorporated, 134 Coolidge Avenue, Watertown, Massachusetts 02472, United States
| | - Janet L. Wolfe
- Wolfe Laboratories Incorporated, 134 Coolidge Avenue, Watertown, Massachusetts 02472, United States
| | - Christian Schöneich
- Department
of Pharmaceutical Chemistry, University of Kansas, 2095 Constant
Avenue, Lawrence, Kansas 66047, United States
| |
Collapse
|
242
|
Trnková L, Dršata J, Boušová I. Oxidation as an important factor of protein damage: Implications for Maillard reaction. J Biosci 2015; 40:419-39. [DOI: 10.1007/s12038-015-9523-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
243
|
Rochette L, Guenancia C, Gudjoncik A, Hachet O, Zeller M, Cottin Y, Vergely C. Anthracyclines/trastuzumab: new aspects of cardiotoxicity and molecular mechanisms. Trends Pharmacol Sci 2015; 36:326-48. [PMID: 25895646 DOI: 10.1016/j.tips.2015.03.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/16/2015] [Accepted: 03/20/2015] [Indexed: 01/26/2023]
Abstract
Anticancer drugs continue to cause significant reductions in left ventricular ejection fraction resulting in congestive heart failure. The best-known cardiotoxic agents are anthracyclines (ANTHs) such as doxorubicin (DOX). For several decades cardiotoxicity was almost exclusively associated with ANTHs, for which cumulative dose-related cardiac damage was the use-limiting step. Human epidermal growth factor (EGF) receptor 2 (HER2; ErbB2) has been identified as an important target for breast cancer. Trastuzumab (TRZ), a humanized anti-HER2 monoclonal antibody, is currently recommended as first-line treatment for patients with metastatic HER2(+) tumors. The use of TRZ may be limited by the development of drug intolerance, such as cardiac dysfunction. Cardiotoxicity has been attributed to free-iron-based, radical-induced oxidative stress. Many approaches have been promoted to minimize these serious side effects, but they are still clinically problematic. A new approach to personalized medicine for cancer that involves molecular screening for clinically relevant genomic alterations and genotype-targeted treatments is emerging.
Collapse
Affiliation(s)
- Luc Rochette
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France.
| | - Charles Guenancia
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France; Service de Cardiologie, Centre Hospitalier Universitaire Bocage, Dijon, France
| | - Aurélie Gudjoncik
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France; Service de Cardiologie, Centre Hospitalier Universitaire Bocage, Dijon, France
| | - Olivier Hachet
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France; Service de Cardiologie, Centre Hospitalier Universitaire Bocage, Dijon, France
| | - Marianne Zeller
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France
| | - Yves Cottin
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France; Service de Cardiologie, Centre Hospitalier Universitaire Bocage, Dijon, France
| | - Catherine Vergely
- Laboratoire de Physiopathologie et Pharmacologie Cardio-métaboliques (LPPCM), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche 866, Facultés de Médecine et de Pharmacie - Université de Bourgogne, 7 Boulevard Jeanne d'Arc, 21033 Dijon, France
| |
Collapse
|
244
|
The treatment combination of vitamins E and C and astaxanthin prevents high-fat diet induced memory deficits in rats. Pharmacol Biochem Behav 2015; 131:98-103. [DOI: 10.1016/j.pbb.2015.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 12/28/2022]
|
245
|
Salamone M, Basili F, Bietti M. Reactivity and selectivity patterns in hydrogen atom transfer from amino acid C-H bonds to the cumyloxyl radical: polar effects as a rationale for the preferential reaction at proline residues. J Org Chem 2015; 80:3643-50. [PMID: 25774567 DOI: 10.1021/acs.joc.5b00549] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Absolute rate constants for hydrogen atom transfer (HAT) from the C-H bonds of N-Boc-protected amino acids to the cumyloxyl radical (CumO(•)) were measured by laser flash photolysis. With glycine, alanine, valine, norvaline, and tert-leucine, HAT occurs from the α-C-H bonds, and the stability of the α-carbon radical product plays a negligible role. With leucine, HAT from the α- and γ-C-H bonds was observed. The higher kH value measured for proline was explained in terms of polar effects, with HAT that predominantly occurs from the δ-C-H bonds, providing a rationale for the previous observation that proline residues represent favored HAT sites in the reactions of peptides and proteins with (•)OH. Preferential HAT from proline was also observed in the reactions of CumO(•) with the dipeptides N-BocProGlyOH and N-BocGlyGlyOH. The rate constants measured for CumO(•) were compared with the relative rates obtained previously for the corresponding reactions of different hydrogen-abstracting species. The behavior of CumO(•) falls between those observed for the highly reactive radicals Cl(•) and (•)OH and the significantly more stable Br(•). Taken together, these results provide a general framework for the description of the factors that govern reactivity and selectivity patterns in HAT reactions from amino acid C-H bonds.
Collapse
Affiliation(s)
- Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Federica Basili
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
246
|
Vimont A, Fliss I, Jean J. Study of the virucidal potential of organic peroxyacids against norovirus on food-contact surfaces. FOOD AND ENVIRONMENTAL VIROLOGY 2015; 7:49-57. [PMID: 25416069 DOI: 10.1007/s12560-014-9174-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
This study was conducted to evaluate the efficacy of four different peroxyacids, namely peracetic (PAA), perpropionic (PPA), perlactic (PLA), and percitric (PCA) for inactivating viruses in suspension or attached to stainless steel or polyvinyl chloride surfaces. The test virus was a proxy for human norovirus, namely murine norovirus 1. Plaque-forming units in suspension (10(7) per mL) were treated with 50-1,000 mg L(-1) peroxyacid (equilibrium mixture of organic acid, hydrogen peroxide, peroxyacid, and water) for 1-10 min. Inactivation was measured by plaque assay. PAA and PPA were the most effective, with a 5 min treatment at 50 mg L(-1) being sufficient to reduce viral titer by at least 3.0 log10, whether the virus was in suspension or attached to stainless steel or polyvinyl chloride disks under clean or fouled conditions. Combinations of organic acid and hydrogen peroxide were found ineffective. Similar inactivation was observed in the case of virus in artificial biofilm (alginate gel). These short super-oxidizers could be used for safe inactivation of human noroviruses in water or on hard surfaces.
Collapse
Affiliation(s)
- Allison Vimont
- Institute of Nutrition and Functional Foods, Université Laval, Quebec, G1V 0A6, Canada
| | | | | |
Collapse
|
247
|
Mousavi SM, Niazmand S, Hosseini M, Hassanzadeh Z, Sadeghnia HR, Vafaee F, Keshavarzi Z. Beneficial Effects of Teucrium polium and Metformin on Diabetes-Induced Memory Impairments and Brain Tissue Oxidative Damage in Rats. Int J Alzheimers Dis 2015; 2015:493729. [PMID: 25810947 PMCID: PMC4354963 DOI: 10.1155/2015/493729] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 01/01/2015] [Accepted: 01/26/2015] [Indexed: 02/04/2023] Open
Abstract
Objective. The effects of hydroalcoholic extract of Teucrium polium and metformin on diabetes-induced memory impairment and brain tissues oxidative damage were investigated. Methods. The rats were divided into: (1) Control, (2) Diabetic, (3) Diabetic-Extract 100 (Dia-Ext 100), (4) Diabetic-Extract 200 (Dia-Ext 200), (5) Diabetic-Extract 400 (Dia-Ext 400), and (6) Diabetic-Metformin (Dia-Met). Groups 3-6 were treated by 100, 200, and 400 mg/kg of the extract or metformin, respectively, for 6 weeks (orally). Results. In passive avoidance test, the latency to enter the dark compartment in Diabetic group was lower than that of Control group (P < 0.01). In Dia-Ext 100, Dia-Ext 200, and Dia-Ext 400 and Metformin groups, the latencies were higher than those of Diabetic group (P < 0.01). Lipid peroxides levels (reported as malondialdehyde, MDA, concentration) in the brain of Diabetic group were higher than Control (P < 0.001). Treatment by all doses of the extract and metformin decreased the MDA concentration (P < 0.01). Conclusions. The results of present study showed that metformin and the hydroalcoholic extract of Teucrium polium prevent diabetes-induced memory deficits in rats. Protection against brain tissues oxidative damage might have a role in the beneficial effects of the extract and metformin.
Collapse
Affiliation(s)
- S. Mojtaba Mousavi
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Saeed Niazmand
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Mahmoud Hosseini
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Zarha Hassanzadeh
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Farzaneh Vafaee
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Zakieh Keshavarzi
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| |
Collapse
|
248
|
Ďurfinová M, Bartová R, Orešanská K, Valentová N, Uličná O, Ďuračková Z, Muchová J. The effects of fish oil emulsion supplementation on synaptosomal membrane enzyme activities in diabetic rats: Protective effect on K
+
‐paranitrophenylphosphatase activity only in non‐diabetic rats but no significant influence on Na
+
/K
+
‐ATPase activity. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201300493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Monika Ďurfinová
- Faculty of MedicineInstitute of Medical Chemistry, Biochemistry and Clinical BiochemistryComenius UniversityBratislavaSlovakia
| | - Radka Bartová
- Faculty of MedicineInstitute of Medical Chemistry, Biochemistry and Clinical BiochemistryComenius UniversityBratislavaSlovakia
| | - Katarína Orešanská
- Faculty of MedicineInstitute of Medical Chemistry, Biochemistry and Clinical BiochemistryComenius UniversityBratislavaSlovakia
| | - Natália Valentová
- Faculty of MedicineInstitute of Medical Chemistry, Biochemistry and Clinical BiochemistryComenius UniversityBratislavaSlovakia
| | - Oľga Uličná
- Pharmaco‐biochemical LaboratoryThird Internal Clinics of Faculty HospitalFaculty of MedicineComenius UniversityBratislavaSlovakia
| | - Zdeňka Ďuračková
- Faculty of MedicineInstitute of Medical Chemistry, Biochemistry and Clinical BiochemistryComenius UniversityBratislavaSlovakia
| | - Jana Muchová
- Faculty of MedicineInstitute of Medical Chemistry, Biochemistry and Clinical BiochemistryComenius UniversityBratislavaSlovakia
| |
Collapse
|
249
|
Li W, Kerwin JL, Schiel J, Formolo T, Davis D, Mahan A, Benchaar SA. Structural Elucidation of Post-Translational Modifications in Monoclonal Antibodies. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1201.ch003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenzhou Li
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - James L. Kerwin
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - John Schiel
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Trina Formolo
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Darryl Davis
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Andrew Mahan
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| | - Sabrina A. Benchaar
- Amgen Inc., Thousand Oaks, California 91320, United States
- Sanovas Inc., Sausalito, California 94965, United States
- Analytical Chemistry Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Janssen Research and Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
250
|
Ohashi Y, Onuma R, Naganuma T, Ogawa T, Naude R, Nokihara K, Muramoto K. Antioxidant Properties of Tripeptides Revealed by a Comparison of Six Different Assays. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.695] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Yumi Ohashi
- Graduate School of Life Sciences, Tohoku University
| | - Ryo Onuma
- Graduate School of Life Sciences, Tohoku University
| | | | | | - Ryno Naude
- Department of Biochemistry and Microbiology, Nelson Mandela Metropolitan University
| | | | | |
Collapse
|