201
|
Paszti-Gere E, Szeker K, Csibrik-Nemeth E, Csizinszky R, Marosi A, Palocz O, Farkas O, Galfi P. Metabolites of Lactobacillus plantarum 2142 prevent oxidative stress-induced overexpression of proinflammatory cytokines in IPEC-J2 cell line. Inflammation 2013; 35:1487-99. [PMID: 22476971 DOI: 10.1007/s10753-012-9462-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotics have already proven beneficial effects in the treatment of several intestinal infections, but the underlying mechanisms how the probiotics can affect responses of porcine IPEC-J2 enterocytes to oxidative stress remained to be elucidated. The immunomodulatory effect of five bacterial strains (Lactobacillus plantarum 2142, Lactobacillus casei Shirota, Bifidobacterium animalis subsp. lactis BB-12, Bacillus amyloliquefaciens CECT 5940 and Enterococcus faecium CECT 4515) on 1 mM peroxide-triggered upregulation of interleukin (IL)-8 and tumor necrosis factor alpha (TNF-α) level was screened by q RT-PCR. Our data revealed that spent culture supernatant (SCS) of L. plantarum 2142 had significant lowering effect on IL-8 and TNF-α level with concomitant promoting activity on protective Hsp70 gene expression. According to our results, lactic acid (racemic, D: - and L: -lactic acid) and acetic acid produced by lactobacilli had no protective effect in quenching upregulation of proinflammatory cytokines. Furthermore, L. plantarum 2142-specific supernatant peptides were detected by gel electrophoresis and capillary zone electrophoresis.
Collapse
Affiliation(s)
- Erzsebet Paszti-Gere
- Department of Pharmacology and Toxicology, Faculty of Veterinary Sciences, Szent István University, István u. 2, 1078, Budapest, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Sananmuang T, Phutikanit N, Nguyen C, Manee-In S, Techakumphu M, Tharasanit T. In vitro culture of feline embryos increases stress-induced heat shock protein 70 and apoptotic related genes. J Reprod Dev 2013; 59:180-8. [PMID: 23358310 PMCID: PMC3934196 DOI: 10.1262/jrd.2012-116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Developmental competence and quality of in vitro produced embryos has been demonstrated to be lower than in vivo derived embryos. This study aimed specifically to determine the effects of in vitro culture of feline embryos using various culture densities on developmental competence and expression of stress- and apoptotic-related genes in terms of heat shock protein 70 (HSP70) and apoptotic-related (BAX and BCL-2) gene expressions. In experiment 1, we characterized the inducible form of a feline-specific HSP70 mRNA sequence, as it has not been previously reported. The primers for feline HSP70 mRNA were synthesized and tested on heat-treated cat fibroblasts. In experiment 2, feline embryos were cultured at different culture densities (embryo:culture volume; 1:1.25, 1:5 and 1:20). The developmental competence was determined along with HSP70, BAX and BCL-2 transcript abundances using quantitative RT-PCR. In vivo derived embryos were used as a control group. A partial cat HSP70 mRNA sequence (190 bp) was characterized and exhibited high nucleotide identity (93 to 96%) with other species. Cleaved embryos cultured at high density (1:1.25) developed to blastocysts at a lower rate than those generated from lower densities. Irrespective of the culture densities used, in vitro cultured blastocysts showed increased levels of HSP70 and BAX transcripts compared with in vivo counterparts. Blastocysts derived from the highest culture density (1:1.25) showed higher levels of upregulation of HSP70 and BAX transcripts than those cultured at lower culture densities (1:5 and 1:20). In conclusion, increased levels of pro-apoptotic (BAX) and stress-response (HSP70) transcripts correlated with developmental incompetence of embryos cultured at high embryonic density, indicating that stress accumulated during in vitro embryo culture affected the fate for embryo development and quality.
Collapse
Affiliation(s)
- Thanida Sananmuang
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | |
Collapse
|
203
|
Zhang Y, Yao K, Yu Y, Ni S, Zhang L, Wang W, Lai K. Effects of 1.8 GHz radiofrequency radiation on protein expression in human lens epithelial cells. Hum Exp Toxicol 2013; 32:797-806. [PMID: 23338683 DOI: 10.1177/0960327112472353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of the present study was to observe the effects of 1.8 GHz radiofrequency (RF) radiation on the protein expression of human lens epithelial cells (hLECs) in vitro. METHODS The hLECs were exposed and sham-exposed to 1.8 GHz RF radiation (specific absorption rate (SAR) of 4 W/kg) for 2 h. After exposure, the proteins extracted from LECs were loaded on the Ettan MDLC system connected to the LTQ-Orbitrap MS for screening the candidate protein biomarkers induced by RF. The quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the levels of messenger RNA of candidate biomarkers. After the hLECs were exposed to 1.8 GHz RF (SAR of 2, 3 and 4 W/kg) for 2 h, the Western blot assay was utilized to measure the expression levels of the above-screened candidate protein biomarkers. RESULTS The results of shotgun proteomic analysis indicated that there were eight proteins with differential expression between exposure and sham exposure groups. The results of qRT-PCR showed that there were three genes with expressional differences (valosin containing protein (VCP), ubiquitin specific peptidase 35 (USP35) and signal recognition particle 68 kDa (SRP68)) between exposure and sham exposure groups. The results of Western blot assay exhibited that the expressional levels of VCP and USP35 proteins significantly increased and the expressional level of protein SRP68 significantly decreased in hLECs exposed to 1.8 GHz RF radiation (SAR of 3 and 4 W/kg) for 2 h when compared with the corresponding sham groups (p < 0.05). CONCLUSION The shotgun proteomics technique can be applied to screen the proteins with differential expression between hLECs exposed to 1.8 GHz RF and hLECs sham-exposed to 1.8 GHz RF, and three protein biomarkers associated with RF radiation were validated by Western blot assay.
Collapse
Affiliation(s)
- Y Zhang
- Eye Center, Affiliated Second Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
204
|
Weber MH, da Rocha RF, Schnorr CE, Schröder R, Moreira JCF. Changes in lymphocyte HSP70 levels in women handball players throughout 1 year of training: the role of estrogen levels. J Physiol Biochem 2013; 68:365-75. [PMID: 22294379 DOI: 10.1007/s13105-012-0148-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 01/19/2012] [Indexed: 01/24/2023]
Abstract
Heat shock protein 70 (HSP70) is a chaperone that maintains protein conformation during heat stress. It has recently been observed that HSP70 may be released from cells in response to increased energy demand (e.g., exercise) and/or oxidative stress. Since HSP70 levels should change in response to athletic training, we have investigated whether blood HSP70 levels in young women handball players change over a complete training season. Thirty women handball players (12-24 years old) were divided into low (≥30 pg mL(-1)) (LE) and normal (30-330 pg mL(-1)) (NE) estradiol groups. HSP70 levels in lymphocytes and plasma and blood redox parameters were evaluated over 1 year (2009), with sampling at the beginning, middle, and end of the season. We observed no changes in superoxide dismutase activity or protein carbonyl or extracellular HSP70 levels, while catalase activity increased at the middle of the season in the NE group, and the thiobarbituric acid species levels in both groups were higher at the beginning of the season than at the middle or end. The lymphocyte HSP70 content was higher at the middle and end than at the beginning of the season in the NE group and also higher in the LE group than in the NE group at the beginning of the season. These results suggest that plasma estradiol levels may play an important role in exercise training and that the intracellular HSP70 content, a biomarker for inflammation, is affected by both estradiol levels and exercise-induced oxidative stress.
Collapse
Affiliation(s)
- Maria Helena Weber
- Nutrition, Clinic, Institute of Health Sciences, Superior Teaching Establishment Federation University (Universidade FEEVALE), Novo Hamburgo, Rio Grande do Sul, Brazil.
| | | | | | | | | |
Collapse
|
205
|
Fujita M, Nakano K, Funato A, Sugita Y, Kubo T, Maeda H, Okafuji N, Hasegawa H, Kawakami T. Heat shock protein27 expression and cell differentiation in ameloblastomas. Int J Med Sci 2013; 10:1271-7. [PMID: 23983585 PMCID: PMC3753412 DOI: 10.7150/ijms.6597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 07/18/2013] [Indexed: 11/05/2022] Open
Abstract
The expression of HSP27 and some CKs were examined the 40 cases of typical solid/multicystic ameloblastoma using immunohistochemical techniques. In order to examine the relevance of HSP in cell differentiation, we focused on the cytoskeletal expression of CK. CK19 is a marker of typical odontogenic epithelium widely observed in follicular and plexiform types of ameloblastomas. Since staining with CK14 is one of the measures of the differentiation potential of squamous cells and is extensively expressed in both follicular and plexiform types, it implies that squamous differentiation of each type can occur. CK8 was strongly detected in tumor nests in plexiform type but weakly detected in follicular type. It was considered that the expression of HSP27 in plexiform type correlated with the expression of CK8 suggesting that HSP27 might have regulated the expression of CK8.
Collapse
Affiliation(s)
- Muneteru Fujita
- Hard Tissue Pathology Unit, Matsumoto Dental University Graduate School of Oral Medicine, Shiojiri, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
206
|
General Stress Responses in the Honey Bee. INSECTS 2012; 3:1271-98. [PMID: 26466739 PMCID: PMC4553576 DOI: 10.3390/insects3041271] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/09/2012] [Accepted: 11/20/2012] [Indexed: 11/25/2022]
Abstract
The biological concept of stress originated in mammals, where a “General Adaptation Syndrome” describes a set of common integrated physiological responses to diverse noxious agents. Physiological mechanisms of stress in mammals have been extensively investigated through diverse behavioral and physiological studies. One of the main elements of the stress response pathway is the endocrine hypothalamo-pituitary-adrenal (HPA) axis, which underlies the “fight-or-flight” response via a hormonal cascade of catecholamines and corticoid hormones. Physiological responses to stress have been studied more recently in insects: they involve biogenic amines (octopamine, dopamine), neuropeptides (allatostatin, corazonin) and metabolic hormones (adipokinetic hormone, diuretic hormone). Here, we review elements of the physiological stress response that are or may be specific to honey bees, given the economical and ecological impact of this species. This review proposes a hypothetical integrated honey bee stress pathway somewhat analogous to the mammalian HPA, involving the brain and, particularly, the neurohemal organ corpora cardiaca and peripheral targets, including energy storage organs (fat body and crop). We discuss how this system can organize rapid coordinated changes in metabolic activity and arousal, in response to adverse environmental stimuli. We highlight physiological elements of the general stress responses that are specific to honey bees, and the areas in which we lack information to stimulate more research into how this fascinating and vital insect responds to stress.
Collapse
|
207
|
Choi YJ, Om JY, Kim NH, Chang JE, Park JH, Kim JY, Lee HJ, Kim SS, Chun W. Heat shock transcription factor-1 suppresses apoptotic cell death and ROS generation in 3-nitropropionic acid-stimulated striatal cells. Mol Cell Biochem 2012; 375:59-67. [PMID: 23225230 DOI: 10.1007/s11010-012-1528-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/23/2012] [Indexed: 12/25/2022]
Abstract
Striatal neuronal cell death is one of the pathological features of Huntington's disease (HD). Overexpression of some heat shock proteins (HSPs) has been reported to suppress the aggregate formation of mutant huntingtin and concurrent cell death. Heat shock transcription factor-1 (HSF 1), a major transcription factor of HSPs, has also been reported to be increased in HD models. However, the exact role of HSF 1 in the pathogenesis of HD has not been clearly elucidated. 3-Nitropropionic acid (3NP), an irreversible inhibitor of the mitochondrial complex II, induces selective damage to the striatum in animals and produces clinical features of HD. To investigate roles of HSF 1 on 3NP-induced oxidative stress, HSF 1 was transiently overexpressed in striatal cells. Expression of HSF 1 significantly attenuated 3NP-induced apoptotic striatal cell death and resulted in increased expression of HSP 70. Furthermore, expression of HSF 1 significantly attenuated 3NP-induced intracellular reactive oxygen species (ROS) generation. Taken together, the present study clearly demonstrates that HSF 1 attenuates 3NP-induced apoptotic striatal cell death and ROS generation, possibly through HSP70 expression, suggesting that HSF 1 might be a valuable therapeutic target in the treatment of HD.
Collapse
Affiliation(s)
- Yong-Joon Choi
- Department of Pharmacology, College of Medicine, Kangwon National University, Hyoja-2, Chunchon, Kangwon 200-701, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Wiegant F. Hormesis and Cellular Quality Control: A Possible Explanation for the Molecular Mechanisms that Underlie the Benefits of Mild Stress. Dose Response 2012; 11:413-30. [PMID: 23983668 PMCID: PMC3748852 DOI: 10.2203/dose-response.12-030.wiegant] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
In contrast to the detrimental action of severe stress conditions, the beneficial effects of mild stress, known as hormesis, is increasingly discussed and studied. A variety of applications for hormesis in risk assessment processes, anti-ageing strategies and clinical therapies have been proposed. The molecular mechanisms underlying the phenomenon of hormesis, however, are not yet fully understood. A possible mechanism that has been proposed for hormesis, the homoeostasis overshoot hypothesis, assumes that an overshoot of repair- and self-recovery mechanisms in response to mild damage can be held responsible for the beneficial effects of hormesis. The present paper proposes 'cellular quality control' as a further explanation of the molecular mechanisms underlying the benefits observed after exposure to mild stress. The most important quality control mechanisms are outlined and their known and hypothesised actions in hormesis are discussed. As an example, different aspects of protein quality control will be described in more detail, which includes the reaction of the cell upon stress-induced protein damage and -aggregation. The regulation of Heat Shock Proteins and components from the ubiquitin proteasome system as part of cellular quality control is described in relation to its beneficial role in hormesis.
Collapse
Affiliation(s)
- F.A.C. Wiegant
- University College Utrecht, Science Department, Utrecht University, and Faculty of Science; Department of Biology, Institute of Education, Utrecht University
| |
Collapse
|
209
|
West JD, Wang Y, Morano KA. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 2012; 25:2036-53. [PMID: 22799889 DOI: 10.1021/tx300264x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases.
Collapse
Affiliation(s)
- James D West
- Biochemistry and Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, USA.
| | | | | |
Collapse
|
210
|
Foldbjerg R, Irving ES, Hayashi Y, Sutherland DS, Thorsen K, Autrup H, Beer C. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 2012; 130:145-57. [PMID: 22831968 DOI: 10.1093/toxsci/kfs225] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The toxic effects of silver nanoparticles (AgNPs) on cells are well established, but only limited studies on the effect of AgNPs and silver ions on the cellular transcriptome have been performed. In this study, the effect of AgNPs on the gene expression in the human lung epithelial cell line A549 exposed to 12.1 µg/ml AgNPs (EC20) for 24 and 48h was compared with the response to control and silver ion (Ag(+)) treated cells (1.3 µg/ml) using microarray analysis. Twenty-four hours to AgNP altered the regulation of more than 1000 genes (more than twofold regulation), whereas considerably fewer genes responded to Ag(+) (133 genes). The upregulated genes included members of the metallothionein, heat shock protein, and histone families. As expected from the induction of meta l lothionein and heat shock protein genes, Ag(+) and AgNP treatment resulted in intracellular production of reactive oxygen species but did not induce apoptosis or necrosis at the concentrations used in this study. In addition, the exposure to AgNPs influenced the cell cycle and led to an arrest in the G2/M phase as shown by cell cycle studies by flow cytometry and microscopy. In conclusion, although the transcriptional response to Ag(+) exposure was highly related to the response caused by AgNPs, our findings suggest that AgNPs, due to their particulate form, affect exposed cells in a more complex way.
Collapse
Affiliation(s)
- Rasmus Foldbjerg
- Department of Public Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
211
|
Chen P, Kanehira K, Sonezaki S, Taniguchi A. Detection of cellular response to titanium dioxide nanoparticle agglomerates by sensor cells using heat shock protein promoter. Biotechnol Bioeng 2012; 109:3112-8. [PMID: 22729720 DOI: 10.1002/bit.24583] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/22/2012] [Accepted: 06/12/2012] [Indexed: 01/25/2023]
Abstract
Nanotechnology is becoming increasingly important for products used in our daily lives, such as the masses of titanium dioxide nanoparticle agglomerates (TiO(2) NPs) used in the pharmaceutical industry, for cosmetic products, or for pigments. Meanwhile, a serious lack of detailed information concerning the interaction between the nanomaterials and cells limits their biological and medical applications. Sensing technology is very important for understanding these interactions. We have shown that TiO(2) NPs induce heat shock protein 70B' (HSP70B') mRNA [Okuda-Shimazaki et al., 2010. Int J Mol Sci 11:2383-2392]. In the current work, sensor cells for detection of cellular responses to NPs were prepared by transfecting an HSP70B' promoter-reporter plasmid. First, to find suitable cells for detection, five different mammalian cell lines were chosen as potential sensor cells. The results showed TiO(2) NP response in some cell lines, although different sensor cells had different TiO(2) NP response levels, as heat shock response ability is important for the detection. Then, we studied the TiO(2) NP time-course response and dose response. The results indicated that our sensor cells can detect TiO(2) NP cellular responses. Our work should aid in understanding the interactions between bio-nanomaterials and cells.
Collapse
Affiliation(s)
- Peng Chen
- Cell-Materials Interaction Group, Biomaterials Unit, Nano-Bio Field, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | |
Collapse
|
212
|
Arockiaraj J, Vanaraja P, Easwvaran S, Singh A, Othman RY, Bhassu S. Gene expression and functional studies of small heat shock protein 37 (MrHSP37) from Macrobrachium rosenbergii challenged with infectious hypodermal and hematopoietic necrosis virus (IHHNV). Mol Biol Rep 2012; 39:6671-6682. [PMID: 22290288 DOI: 10.1007/s11033-012-1473-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 01/24/2012] [Indexed: 11/29/2022]
Abstract
In this study, we have reported a full length of small heat shock protein 37 (designated MrHSP37) gene, identified from the transcriptome database of freshwater prawn Macrobrachium rosenbergii. The complete gene sequence of the MrHSP37 is 2,425 base pairs in length, and encodes 338 amino acids. MrHSP37 contains a long heat shock protein family profile in the amino acid sequence between 205 and 288. The mRNA expressions of MrHSP37 in healthy and the infectious hypodermal and hematopoietic necrosis virus (IHHNV) challenged M. rosenbergii were examined using quantitative real time polymerase chain reaction (qRT-PCR). MrHSP37 is highly expressed in hepatopancreas and all the other tissues (walking leg, gills, muscle, stomach, haemocyte, intestine, pleopods, brain and eye stalk) of M. rosenbergii taken for analysis. The expression is strongly up-regulated after IHHNV challenge. To understand its biological activity, the recombinant MrHSP37 gene was constructed and expressed in Escherichia coli BL21 (DE3). The results of ATPase assay showed that the recombinant MrHSP37 protein exhibited apparent ATPase activity which increased with the concentration of the protein. And also the purified recombinant MrHSP37 protein was used for thermal aggregation assay (chaperone activity). It showed that the recombinant MrHSP37 protein is an active chaperone in this assay. Taken together, these results suggest that MrHSP37 is potentially involved in the immune responses against IHHNV challenge in M. rosenbergii.
Collapse
Affiliation(s)
- Jesu Arockiaraj
- Centre for Biotechnology in Agriculture Research, Division of Genetics & Molecular Biology, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
213
|
Péter M, Balogh G, Gombos I, Liebisch G, Horváth I, Török Z, Nagy E, Maslyanko A, Benkő S, Schmitz G, Harwood JL, Vígh L. Nutritional lipid supply can control the heat shock response of B16 melanoma cells in culture. Mol Membr Biol 2012; 29:274-89. [PMID: 22583025 DOI: 10.3109/09687688.2012.680203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The in vitro culture of cells offers an extremely valuable method for probing biochemical questions and many commonly-used protocols are available. For mammalian cells a source of lipid is usually provided in the serum component. In this study we examined the question as to whether the nature of the lipid could become limiting at high cell densities and, therefore, prospectively influence the metabolism and physiology of the cells themselves. When B16 mouse melanoma cells were cultured, we noted a marked decrease in the proportions of n-3 and n-6 polyunsaturated fatty acids (PUFAs) with increasing cell density. This was despite considerable quantities of these PUFAs still remaining in the culture medium and seemed to reflect the preferential uptake of unesterified PUFA rather than other lipid classes from the media. The reduction in B16 total PUFA was reflected in changes in about 70% of the molecular species of membrane phosphoglycerides which were analysed by mass spectrometry. The importance of this finding lies in the need for n-3 and n-6 PUFA in mammalian cells (which cannot synthesize their own). Although the cholesterol content of cells was unchanged the amount of cholesterol enrichment in membrane rafts (as assessed by fluorescence) was severely decreased, simultaneous with a reduced heat shock response following exposure to 42°C. These data emphasize the pivotal role of nutrient supply (in this case for PUFAs) in modifying responses to stress and highlight the need for the careful control of culture conditions when assessing cellular responses in vitro.
Collapse
Affiliation(s)
- Mária Péter
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Fan-xin M, Li-mei S, Bei S, Xin Q, Yu Y, Yu C. Heat shock factor 1 regulates the expression of theTRPV1gene in the rat preoptic-anterior hypothalamus area during lipopolysaccharide-induced fever. Exp Physiol 2012; 97:730-40. [DOI: 10.1113/expphysiol.2011.064204] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
215
|
Abstract
Mss4 (mammalian suppressor of Sec4) is an evolutionarily highly conserved protein and shows high sequence and structural similarity to nucleotide exchange factors. Although Mss4 tightly binds a series of exocytic Rab GTPases, it exercises only a low catalytic activity. Therefore Mss4 was proposed to work rather as a chaperone, protecting nucleotide free Rabs from degradation than as a nucleotide exchange factor. Here we provide further evidence for chaperone-like properties of Mss4. We show that expression levels of cellular Mss4 mRNA and protein are rapidly changed in response to a broad range of extracellular stress stimuli. The alterations are regulated mostly via the (c-jun NH2-terminal kinase) JNK stress MAPK signaling pathway and the mode of regulation resembles that of heat shock proteins. Similar to heat shock proteins, upregulation of Mss4 after stress stimulation functions protectively against the programmed cell death. Molecular analysis of the Mss4-mediated inhibition of apoptosis showed that interaction of Mss4 with eIF3f (eukaryotic translation initiation factor 3 subunit f), a member of the translation initiation complex and a protein with distinct pro-apoptotic properties, is the critical event in the anti-apoptotic action of Mss4.
Collapse
|
216
|
A novel dehydrin-like protein from Aspergillus fumigatus regulates freezing tolerance. Fungal Genet Biol 2012; 49:210-6. [DOI: 10.1016/j.fgb.2012.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/10/2012] [Accepted: 01/18/2012] [Indexed: 11/22/2022]
|
217
|
Calabrò E, Condello S, Currò M, Ferlazzo N, Caccamo D, Magazù S, Ientile R. Modulation of heat shock protein response in SH-SY5Y by mobile phone microwaves. World J Biol Chem 2012; 3:34-40. [PMID: 22371824 PMCID: PMC3286792 DOI: 10.4331/wjbc.v3.i2.34] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/19/2011] [Accepted: 09/26/2011] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate putative biological damage caused by GSM mobile phone frequencies by assessing electromagnetic fields during mobile phone working. METHODS Neuron-like cells, obtained by retinoic-acid-induced differentiation of human neuroblastoma SH-SY5Y cells, were exposed for 2 h and 4 h to microwaves at 1800 MHz frequency bands. RESULTS Cell stress response was evaluated by MTT assay as well as changes in the heat shock protein expression (Hsp20, Hsp27 and Hsp70) and caspase-3 activity levels, as biomarkers of apoptotic pathway. Under our experimental conditions, neither cell viability nor Hsp27 expression nor caspase-3 activity was significantly changed. Interestingly, a significant decrease in Hsp20 expression was observed at both times of exposure, whereas Hsp70 levels were significantly increased only after 4 h exposure. CONCLUSION The modulation of the expression of Hsps in neuronal cells can be an early response to radiofrequency microwaves.
Collapse
Affiliation(s)
- Emanuele Calabrò
- Emanuele Calabrò, Salvatore Magazù, Department of Physics, University of Messina, 98166 Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
218
|
The dual behavior of heat shock protein 70 and asymmetric dimethylarginine in relation to serum CRP levels in type 2 diabetes. Gene 2012; 498:107-11. [PMID: 22349026 DOI: 10.1016/j.gene.2012.01.085] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/30/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Experimental evidence suggests that heat shock proteins (HSP) and asymmetric dimethylarginine (ADMA) are induced in the state of chronic inflammation and stress conditions. They are both inhibitors of nitric oxide synthase (NOS). The aim of this study was to evaluate the correlation between ADMA and HSP70, in patients with type 2 diabetes with respect to serum levels of C reactive protein (CRP). METHODS We quantified serum HSP70, ADMA and CRP in 80 newly-diagnosed patients with type 2 diabetes plus 80 age-, sex and BMI-matched healthy controls. The patients and controls were also stratified into groups of high and low CRP levels (cut-point: 2.5mg/ml). RESULTS Patients with type 2 diabetes had significantly higher serum HSP70 (0.52 [0.51-0.66] vs. 0.27 [0.26-0.36], p<0.001), ADMA (0.86 [0.81-0.92] vs. 0.72 [0.71-0.85], p<0.05) and CRP (2.9 [1.7-3.4] vs. 1.6[1.2-2.3], p<0.05) compared with healthy controls. Serum HSP70 and ADMA levels were significantly correlated in patients with high CRP levels (r=0.89, p<0.01), whereas there were no correlation in patients with low CRP (r=-0.37, p=0.07) and controls. This correlation was significant (r=0.77, p<0.001) in patients with high CRP and also in patients with low CRP levels (r=-0.51, p<0.05), after multiple adjustments for LDL and HDL levels. DISCUSSION We showed that, in a state of high inflammation; serum levels of ADMA parallel the HSP70 levels. However in low inflammation, they are negatively correlated. The duality in HSP70 and ADMA correlation may be related to the duality of NOS function in low and high CRP levels.
Collapse
|
219
|
Burgess STG, Downing A, Watkins CA, Marr EJ, Nisbet AJ, Kenyon F, McNair C, Huntley JF. Development of a cDNA microarray for the measurement of gene expression in the sheep scab mite Psoroptes ovis. Parasit Vectors 2012; 5:30. [PMID: 22316180 PMCID: PMC3296576 DOI: 10.1186/1756-3305-5-30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 02/08/2012] [Indexed: 03/14/2023] Open
Abstract
Background Sheep scab is caused by the ectoparasitic mite Psoroptes ovis which initiates a profound cutaneous inflammatory response, leading to the development of the skin lesions which are characteristic of the disease. Existing control strategies rely upon injectable endectocides and acaricidal dips but concerns over residues, eco-toxicity and the development of acaricide resistance limit the sustainability of this approach. In order to identify alternative means of disease control, a deeper understanding of both the parasite and its interaction with the host are required. Methods Herein we describe the development and utilisation of an annotated P. ovis cDNA microarray containing 3,456 elements for the measurement of gene expression in this economically important ectoparasite. The array consists of 981 P. ovis EST sequences printed in triplicate along with 513 control elements. Array performance was validated through the analysis of gene expression differences between fed and starved P. ovis mites. Results Sequences represented on the array include homologues of major house dust mite allergens and tick salivary proteins, along with factors potentially involved in mite reproduction and xenobiotic metabolism. In order to validate the performance of this unique resource under biological conditions we used the array to analyse gene expression differences between fed and starved P. ovis mites. These analyses identified a number of house dust mite allergen homologues up-regulated in fed mites and P. ovis transcripts involved in stress responses, autophagy and chemosensory perception up-regulated in starved mites. Conclusion The P. ovis cDNA microarray described here has been shown to be both robust and reproducible and will enable future studies to analyse gene expression in this important ectoparasite.
Collapse
Affiliation(s)
- Stewart T G Burgess
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, Midlothian EH26 0PZ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Armstrong CL, Duffin CA, McFarland R, Vogel MW. Mechanisms of compartmental purkinje cell death and survival in the lurcher mutant mouse. THE CEREBELLUM 2012; 10:504-14. [PMID: 21104177 DOI: 10.1007/s12311-010-0231-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Lurcher mutant mouse is characterized by its ataxic gait and loss of cerebellar Purkinje cells and their afferents, granule cells and olivary neurons, during the first weeks of postnatal development. For the 50 years since its discovery, the heterozygous Lurcher mutant has served as an important model system for studying neuron-target interactions in the developing cerebellum and cerebellar function. The identification of the Lurcher (Lc) gene over 10 years ago as a gain-of-function mutation in the δ2 glutamate receptor (GluRδ2) led to extensive studies of cell death mechanisms in the Lc/+ cerebellum. The advantage of this model system is that GluRδ2(+) receptors and GluRδ2(Lc) channels are expressed predominantly in Purkinje cells, making it possible to study the effects of a well-characterized leak current in a well-defined cell type during a critical phase of neuronal development. Yet there is still controversy surrounding the mechanisms of neuronal death in Lc/+ Purkinje cells with competing hypotheses for necrotic, apoptotic, and autophagic cell death pathways as a consequence of the excitotoxic stress caused by the GluRδ2(Lc) leak current. The goal of this review is to summarize recent studies that critically test the role of various cell death pathways in Lc/+ Purkinje cell degeneration with respect to evidence for the molecular heterogeneity of Purkinje cells. We propose that the expression of putative survival factors, such as heat shock proteins, in a subset of cerebellar Purkinje cells may affect cell death pathways and account for the pattern and diverse mechanisms of Lc/+ Purkinje degeneration.
Collapse
Affiliation(s)
- Carol L Armstrong
- Department of Chemical and Biological Sciences, Mt Royal University, Calgary, AB, Canada, T3E 6K6
| | | | | | | |
Collapse
|
221
|
HSP70 Gene Expression in the Zebrafish Retina After Optic Nerve Injury: A Comparative Study Under Heat Shock Stresses. RETINAL DEGENERATIVE DISEASES 2012; 723:663-8. [DOI: 10.1007/978-1-4614-0631-0_84] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
222
|
Swuec P, Barlow DJ. Prediction of inhibitory activities of Hsp90 inhibitors. Bioorg Med Chem 2012; 20:408-14. [DOI: 10.1016/j.bmc.2011.10.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/21/2011] [Accepted: 10/24/2011] [Indexed: 10/15/2022]
|
223
|
Taylor-Harding B, Agadjanian H, Nassanian H, Kwon S, Guo X, Miller C, Karlan BY, Orsulic S, Walsh CS. Indole-3-carbinol synergistically sensitises ovarian cancer cells to bortezomib treatment. Br J Cancer 2011; 106:333-43. [PMID: 22166800 PMCID: PMC3261668 DOI: 10.1038/bjc.2011.546] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Bortezomib is a proteasome inhibitor with minimal clinical activity as a monotherapy in solid tumours, but its combination with other targeted therapies is being actively investigated as a way to increase its anticarcinogenic properties. Here, we evaluate the therapeutic potential of co-treatment with bortezomib and indole-3-carbinol (I3C), a natural compound found in cruciferous vegetables, in human ovarian cancer. METHODS We examined the effects of I3C, bortezomib and cisplatin in several human ovarian cancer cell lines. Synergy was determined using proliferation assays and isobologram analysis. Cell cycle and apoptotic effects were assessed by flow cytometry. The mechanism of I3C and bortezomib action was determined by RNA microarray studies, quantitative RT-PCR and western blotting. Antitumour activity of I3C and bortezomib was evaluated using an OVCAR5 xenograft mouse model. RESULTS I3C sensitised ovarian cancer cell lines to bortezomib treatment through potent synergistic mechanisms. Combination treatment with bortezomib and I3C led to profound cell cycle arrest and apoptosis as well as disruptions to multiple pathways, including those regulating endoplasmic reticulum stress, cytoskeleton, chemoresistance and carcinogen metabolism. Moreover, I3C and bortezomib co-treatment sensitised ovarian cancer cells to the standard chemotherapeutic agents, cisplatin and carboplatin. Importantly, in vivo studies demonstrated that co-treatment with I3C and bortezomib significantly inhibited tumour growth and reduced tumour weight compared with either drug alone. CONCLUSION Together, these data provide a novel rationale for the clinical application of I3C and bortezomib in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- B Taylor-Harding
- Women's Cancer Program and Division of Gynecologic Oncology, Burns and Allen Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Guimarães AJ, de Cerqueira MD, Nosanchuk JD. Surface architecture of histoplasma capsulatum. Front Microbiol 2011; 2:225. [PMID: 22121356 PMCID: PMC3220077 DOI: 10.3389/fmicb.2011.00225] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/25/2011] [Indexed: 12/22/2022] Open
Abstract
The dimorphic fungal pathogen Histoplasma capsulatum is the most frequent cause of clinically significant fungal pneumonia in humans. H. capsulatum virulence is achieved, in part, through diverse and dynamic alterations to the fungal cell surface. Surface components associated with H. capsulatum pathogenicity include carbohydrates, lipids, proteins, and melanins. Here, we describe the various structures comprising the cell surface of H. capsulatum that have been associated with virulence and discuss their involvement in the pathobiology of disease.
Collapse
Affiliation(s)
- Allan J Guimarães
- Department of Microbiology and Imunology, Albert Einstein College of Medicine of Yeshiva University Bronx, NY, USA
| | | | | |
Collapse
|
225
|
Kariithi HM, Ince IA, Boeren S, Abd-Alla AMM, Parker AG, Aksoy S, Vlak JM, van Oers MM. The salivary secretome of the tsetse fly Glossina pallidipes (Diptera: Glossinidae) infected by salivary gland hypertrophy virus. PLoS Negl Trop Dis 2011; 5:e1371. [PMID: 22132244 PMCID: PMC3222630 DOI: 10.1371/journal.pntd.0001371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/05/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs. METHODOLOGY/PRINCIPAL FINDINGS After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (∼1.8%) Glossina and three (∼12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins. CONCLUSIONS/SIGNIFICANCE SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies to block SGHV infections in tsetse production facilities such as using SGHV-specific antibodies and phage display-selected gut epithelia-binding peptides.
Collapse
Affiliation(s)
- Henry M. Kariithi
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
- Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Ikbal A. Ince
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, Turkey
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Andrew G. Parker
- Insect Pest Control Laboratory, Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Serap Aksoy
- Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Just M. Vlak
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
226
|
DeDiego ML, Nieto-Torres JL, Jiménez-Guardeño JM, Regla-Nava JA, Alvarez E, Oliveros JC, Zhao J, Fett C, Perlman S, Enjuanes L. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis. PLoS Pathog 2011; 7:e1002315. [PMID: 22028656 PMCID: PMC3197621 DOI: 10.1371/journal.ppat.1002315] [Citation(s) in RCA: 161] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/29/2011] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome virus (SARS-CoV) that lacks the envelope (E) gene (rSARS-CoV-ΔE) is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1) of the unfolded protein response, but not the PKR-like ER kinase (PERK) or activating transcription factor 6 (ATF-6) pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE. To identify potential mechanisms mediating the in vivo attenuation of SARS-CoV lacking the E gene (rSARS-CoV-ΔE), the effect of the presence of the E gene on host gene expression was studied. In rSARS-CoV-ΔE-infected cells, the expression of at least 25 stress response genes was preferentially upregulated, compared to cells infected with rSARS-CoV. E protein supplied in trans reversed the increase in stress response genes observed in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, and by treatment with drugs causing stress by different mechanisms. Furthermore, in the presence of the E protein a subset (IRE-1 pathway), but not two others (PERK and ATF-6), of the unfolded protein response was also reduced. Nevertheless, the activation of the unfolded protein response to control cell homeostasis was not sufficient to alleviate cell stress, and an increase in cell apoptosis in cells infected with the virus lacking E protein was observed. This apoptotic response was probably induced to protect the host by limiting virus production and dissemination. In cells infected with rSARS-CoV-ΔE, genes associated with the proinflammatory pathway were down-regulated compared to cells infected with virus expressing E protein, supporting the idea that a reduction in inflammation was also relevant in the attenuation of the virus deletion mutant.
Collapse
Affiliation(s)
- Marta L DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Dawkar VV, Chikate YR, Gupta VS, Slade SE, Giri AP. Assimilatory Potential of Helicoverpa armigera Reared on Host (Chickpea) and Nonhost (Cassia tora) Diets. J Proteome Res 2011; 10:5128-38. [DOI: 10.1021/pr200591m] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vishal V. Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Yojana R. Chikate
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Vidya S. Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Susan E. Slade
- Warwick/Waters Centre for BioMedical Mass Spectrometry and Proteomics, School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Ashok P. Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| |
Collapse
|
228
|
Lin S, Zhao Y, Xia T, Meng H, Zhaoxia J, Liu R, George S, Xiong S, Wang X, Zhang H, Pokhrel S, Mädler L, Damoiseaux R, Lin S, Nel AE. High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS NANO 2011; 5:7284-95. [PMID: 21851096 PMCID: PMC4136441 DOI: 10.1021/nn202116p] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Zebrafish is an aquatic organism that can be used for high content safety screening of engineered nanomaterials (ENMs). We demonstrate, for the first time, the use of high content bright-field and fluorescence-based imaging to compare the toxicological effect of transition metal oxide (CuO, ZnO, NiO, and Co(3)O(4)) nanoparticles in zebrafish embryos and larvae. High content bright-field imaging demonstrated potent and dose-dependent hatching interference in the embryos, with the exception of Co(3)O(4) which was relatively inert. We propose that the hatching interference was due to the shedding of Cu and Ni ions, compromising the activity of the hatching enzyme, ZHE1, similar to what we previously proposed for Zn(2+). This hypothesis is based on the presence of metal-sensitive histidines in the catalytic center of this enzyme. Co-introduction of a metal ion chelator, diethylene triamine pentaacetic acid (DTPA), reversed the hatching interference of Cu, Zn, and Ni. While neither the embryos nor larvae demonstrated morphological abnormalities, high content fluorescence-based imaging demonstrated that CuO, ZnO, and NiO could induce increased expression of the heat shock protein 70:enhanced green fluorescence protein (hsp70:eGFP) in transgenic zebrafish larvae. Induction of this response by CuO required a higher nanoparticle dose than the amount leading to hatching interference. This response was also DTPA-sensitive. We demonstrate that high content imaging of embryo development, morphological abnormalities, and HSP70 expression can be used for hazard ranking and determining the dose-response relationships leading to ENM effects on the development of the zebrafish embryo.
Collapse
Affiliation(s)
- Sijie Lin
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Center for NanoBiology and Predictive Toxicology, University of Bremen, Germany
| | - Yan Zhao
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, United States
| | - Tian Xia
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center for NanoBiology and Predictive Toxicology, University of Bremen, Germany
| | - Huan Meng
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Ji Zhaoxia
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Rong Liu
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Saji George
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
| | - Sijing Xiong
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiang Wang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Haiyuan Zhang
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Suman Pokhrel
- IWT Foundation Institute of Materials Science, Department of Production Engineering, University of Bremen, Germany
| | - Lutz Mädler
- IWT Foundation Institute of Materials Science, Department of Production Engineering, University of Bremen, Germany
| | - Robert Damoiseaux
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Molecular Shared Screening Resource, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Shuo Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, United States
| | - Andre E. Nel
- Center for Environmental Implications of Nanotechnology, California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, California 90095, United States
- Center for NanoBiology and Predictive Toxicology, University of Bremen, Germany
- Corresponding Author: Andre Nel, M.D., Department of Medicine, Division of NanoMedicine, UCLA School of Medicine, 52-175 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095-1680. Tel: (310) 825-6620, Fax: (310) 206-8107,
| |
Collapse
|
229
|
Schuster TB, Costina V, Findeisen P, Neumaier M, Ahmad-Nejad P. Identification and functional characterization of 14-3-3 in TLR2 signaling. J Proteome Res 2011; 10:4661-70. [PMID: 21827211 DOI: 10.1021/pr200461p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Interleukin-1/Toll-like receptor signaling pathway is a crucial signaling pathway within the innate immune system and the use of mass spectrometric techniques became valuable to investigate signal transduction pathways. To date only a few reports exist that focus on the mass spectrometric identification of novel signaling intermediates within the TLR signal transduction pathway. Here we used this approach systematically to identify new interaction partners of the TLR signaling pathway and subsequently characterized them functionally. We identified 14-3-3 theta as a new member of the TLR signaling complex. With genetic complementation assays, we demonstrate that 14-3-3 negatively regulates TLR2-dependent NF-κB activity and amplifies the TLR4-dependent activation of the transcription factor. While 14-3-3 has no effect on TLR-induced apoptosis in innate immune cells, it controls the release of the inflammatory, IRF3-dependent cytokines like RANTES and IP-10 after stimulation with LPS. Most strikingly, 14-3-3 controls the production of proinflammatory cytokines like IL-6, IL-8, and TNFα in a different manner. Our results identify 14-3-3 theta as a new and important regulatory protein in the TLR signaling suppressing the MyD88-dependent pathway.
Collapse
Affiliation(s)
- Tobias B Schuster
- Institute for Clinical Chemistry, Medical Faculty Mannheim, University of Heidelberg , Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| | | | | | | | | |
Collapse
|
230
|
Pshenichkin S, Surin A, Surina E, Klauzińska M, Grajkowska E, Luchenko V, Dolińska M, Wroblewska B, Wroblewski JT. Heat shock enhances CMV-IE promoter-driven metabotropic glutamate receptor expression and toxicity in transfected cells. Neuropharmacology 2011; 60:1292-300. [PMID: 21241715 PMCID: PMC3380641 DOI: 10.1016/j.neuropharm.2011.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/18/2010] [Accepted: 01/10/2011] [Indexed: 11/20/2022]
Abstract
In CHO-K1 cells, heat shock strongly activated reporter-gene expression driven by the cytomegalovirus immediate-early (CMV-IE) promoter from adenoviral and plasmid vectors. Heat shock treatment (2h at 42.5 °C) significantly enhanced the promoter DNA-binding activity in nuclear extracts. In CHO cells expressing mGluR1a and mGluR5a receptors under the control of the CMV promoter, heat shock increased receptor protein expression, mRNA levels and receptor function estimated by measurement of PI hydrolysis, intracellular Ca²+ and cAMP. Hyperthermia increased average amplitudes of Ca²+ responses, the number of responding cells, and revealed the toxic properties of mGluR1a receptor. Heat shock also effectively increased the expression of EGFP. Hence, heat shock effects on mGluR expression and function in CHO cells may be attributed to the activation of the CMV promoter. Moreover, this effect was not limited to CHO cells as heat shock also increased EGFP expression in PC-12 and HEK293 cells. Heat shock treatment may be a useful tool to study the function of proteins expressed in heterologous systems under control of the CMV promoter. It may be especially valuable for increasing protein expression in transient transfections, for enhancing receptor expression in drug screening applications and to control the expression of proteins endowed with toxic properties. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Sergey Pshenichkin
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road, NW, Washington, DC 20057, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Wang A, Wang Y, Gu Z, Li S, Shi Y, Guo X. Development of expressed sequence tags from the pearl oyster, Pinctada martensii Dunker. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:275-283. [PMID: 20505969 DOI: 10.1007/s10126-010-9296-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 03/27/2010] [Indexed: 05/29/2023]
Abstract
The pearl oyster, Pinctada martensii, is the primary species used for the aquaculture production of marine pearls in China and Japan. Genetic tools and resources are needed to study the genome of this species and to understand the molecular basis of development, growth, host defense, pearl formation, and other important traits. In this study, we developed a set of expressed sequence tags (ESTs) for P. martensii. We constructed cDNA libraries from adult tissues and sequenced 7,128 ESTs. Clustering analysis identified 788 contigs (covering 5,769 ESTs) and 1,351 singletons, yielding a total of 2,139 unique genes. Of these unique genes, only 935 had significant (E-value ≤ 0.005) hits in GenBank, and the remaining 1,204 (56.3%) were novel. Most of the known genes are related to cellular structure, protein binding, and metabolic processes. Putative host-defense genes (86) were identified including C-type lectin, ferritin, polyubiquitin, proteases, protease inhibitors, scavenger receptors, heat shock proteins, and RAS oncogenes. The EST sequences developed in this study provide a valuable resource for future efforts on gene identification, marker development, and studies on molecular mechanism of host defense in pearl oysters.
Collapse
Affiliation(s)
- Aimin Wang
- Key Laboratory of Aquatic Genetic Resources and Aquaculture Ecosystem, Ministry of Agriculture, College of Fisheries and Life Science, Shanghai Ocean University, 201306, Shanghai, China
| | | | | | | | | | | |
Collapse
|
232
|
Krepp J, Gelmedin V, Hawdon JM. Characterisation of hookworm heat shock factor binding protein (HSB-1) during heat shock and larval activation. Int J Parasitol 2011; 41:533-43. [PMID: 21172351 PMCID: PMC3062737 DOI: 10.1016/j.ijpara.2010.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 11/30/2022]
Abstract
When hookworm infective L3s infect their mammalian host, they undergo a temperature shift from that of the ambient environment to that of their endothermic host. Additionally, L3s living in the environment can be exposed to temperature extremes associated with weather fluctuations. The heat shock response (HSR) is a conserved response to heat shock and other stress that involves the expression of protective heat shock proteins (HSPs). The HSR is controlled by heat shock factor-1 (HSF-1), a conserved transcription factor that binds to a heat shock element in the promoter of HSPs, causing their expression. HSF-1 is negatively regulated in part by a HSF binding protein (HSB-1) that binds to and removes HSF-1 trimers bound to HSP gene promoters, resulting in attenuation of the HSR. Herein we describe an HSB-1 orthologue, Ac-HSB-1, from the hookworm Ancylostoma caninum. The Ac-hsb-1 cDNA encodes a 79 amino acid protein that is 71% identical to the Caenorhabditis elegans HSB-1, and is predicted to share the characteristic coiled-coil structural motif comprised of two interacting alpha helices. Recombinant Ac-HSB-1 immunoprecipitated Ce-HSF-1 expressed in mammalian cells that had been heat shocked for 1h at 42°C, but not from cells incubated at 37°C, indicating that HSB-1 only bound to the active DNA binding form of HSF-1. Expression of Ac-hsb-1 transcripts decreased following 1h of heat shock, but increased when L3s were incubated at 37°C for 1h. Activation of hookworm L3s induces a five-sixfold increase in Ac-hsb-1 expression that peaks at 12h, coincident with L3 feeding, but that subsequently decreases to two-threefold above control at 24h. Recombinant Ac-HSB-1 immunoprecipitates greater amounts of 70 and 40kDa proteins from extracts of activated L3s than from non-activated L3s. We propose that an increase in Ac-hsb-1 levels early in activation allows feeding to resume, but that a subsequent decrease in expression permits a HSR that protects non-developing L3s at host-like temperatures. Further investigations of the HSR will clarify the role of HSB-1 and HSF-1 in hookworm infection.
Collapse
Affiliation(s)
- Joseph Krepp
- Department of Microbiology, Immunology, and Tropical Medicine, the George Washington University Medical Center, 2300 I St. NW, Washington, D.C. 20037, USA
| | - Verena Gelmedin
- Department of Microbiology, Immunology, and Tropical Medicine, the George Washington University Medical Center, 2300 I St. NW, Washington, D.C. 20037, USA
| | - John M. Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, the George Washington University Medical Center, 2300 I St. NW, Washington, D.C. 20037, USA
| |
Collapse
|
233
|
Heck TG, Schöler CM, de Bittencourt PIH. HSP70 expression: does it a novel fatigue signalling factor from immune system to the brain? Cell Biochem Funct 2011; 29:215-26. [PMID: 21374645 DOI: 10.1002/cbf.1739] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 01/14/2011] [Accepted: 01/18/2011] [Indexed: 12/12/2022]
Abstract
Integrative physiology studies have shown that immune system and central nervous system interplay very closely towards behavioural modulation. Since the 70-kDa heat shock proteins (HSP70s), whose heavy expression during exercise is well documented in the skeletal muscle and other tissues, is also extremely well conserved in nature during all evolutionary periods of species, it is conceivable that HSP70s might participate of physiologic responses such as fatigue induced by some types of physical exercise. In this way, increased circulating levels of extracellular HSP70 (eHSP70) could be envisaged as an immunomodulatory mechanism induced by exercise, besides other chemical messengers (e.g. cytokines) released during an exercise effort, that are able to binding a number of receptors in neural cells. Studies from this laboratory led us to believe that increased levels of eHSP70 in the plasma during exercise and the huge release of eHSP70 from lymphocytes during high-load exercise bouts may participate in the fatigue sensation, also acting as a danger signal from the immune system.
Collapse
Affiliation(s)
- Thiago Gomes Heck
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | | | | |
Collapse
|
234
|
Nagashima M, Fujikawa C, Mawatari K, Mori Y, Kato S. HSP70, the earliest-induced gene in the zebrafish retina during optic nerve regeneration: its role in cell survival. Neurochem Int 2011; 58:888-95. [PMID: 21338645 DOI: 10.1016/j.neuint.2011.02.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/31/2011] [Accepted: 02/12/2011] [Indexed: 12/22/2022]
Abstract
Fish retinal ganglion cells (RGCs) can survive and regrow their axons after optic nerve injury. Injured RGCs express anti-apoptotic proteins, such as Bcl-2, after nerve injury; however, upstream effectors of this anti-apoptotic protein are not yet fully understood. Heat shock proteins (HSPs) play a crucial role in cell survival against various stress conditions. In this study, we focused on HSP70 expression in the zebrafish retina after optic nerve injury. HSP70 mRNA and protein levels increased rapidly 2.3-fold in RGCs by 1-6 h after injury and returned to control levels by 1-3 days. HSP70 transcription is regulated by heat shock factor 1 (HSF1). HSF1 mRNA and phosphorylated-HSF1 protein rapidly increased by 2.2-fold in RGCs 0.5-6 h after injury. Intraocular injection of HSP inhibitor I significantly suppressed the induction of HSP70 expression after nerve injury. It also suppressed Bcl-2 protein induction and resulted in TUNEL-positive cell death of RGCs at 5 days post-injury. Zebrafish treated with HSP inhibitor I retarded axonal elongation or visual function after injury, as analyzed by GAP43 expression and behavioral analysis of optomotor response, respectively. These results strongly indicate that HSP70, the earliest induced gene in the zebrafish retina after optic nerve injury, is a crucial factor for RGCs survival and optic nerve regeneration in fish.
Collapse
Affiliation(s)
- Mikiko Nagashima
- Division of Health Sciences, Graduate School of Medicine, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | | | | | | | | |
Collapse
|
235
|
Guimarães AJ, Nakayasu ES, Sobreira TJP, Cordero RJB, Nimrichter L, Almeida IC, Nosanchuk JD. Histoplasma capsulatum heat-shock 60 orchestrates the adaptation of the fungus to temperature stress. PLoS One 2011; 6:e14660. [PMID: 21347364 PMCID: PMC3037374 DOI: 10.1371/journal.pone.0014660] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 01/13/2011] [Indexed: 01/06/2023] Open
Abstract
Heat shock proteins (Hsps) are among the most widely distributed and evolutionary conserved proteins. Hsps are essential regulators of diverse constitutive metabolic processes and are markedly upregulated during stress. A 62 kDa Hsp (Hsp60) of Histoplasma capsulatum (Hc) is an immunodominant antigen and the major surface ligand to CR3 receptors on macrophages. However little is known about the function of this protein within the fungus. We characterized Hc Hsp60-protein interactions under different temperature to gain insights of its additional functions oncell wall dynamism, heat stress and pathogenesis. We conducted co-immunoprecipitations with antibodies to Hc Hsp60 using cytoplasmic and cell wall extracts. Interacting proteins were identified by shotgun proteomics. For the cell wall, 84 common interactions were identified among the 3 growth conditions, including proteins involved in heat-shock response, sugar and amino acid/protein metabolism and cell signaling. Unique interactions were found at each temperature [30°C (81 proteins), 37°C (14) and 37/40°C (47)]. There were fewer unique interactions in cytoplasm [30°C (6), 37°C (25) and 37/40°C (39)] and four common interactions, including additional Hsps and other known virulence factors. These results show the complexity of Hsp60 function and provide insights into Hc biology, which may lead to new avenues for the management of histoplasmosis.
Collapse
Affiliation(s)
- Allan Jefferson Guimarães
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Ernesto S. Nakayasu
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Tiago J. P. Sobreira
- Group of Computational Biology, Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), São Paulo, Brazil
| | - Radames J. B. Cordero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
| | - Leonardo Nimrichter
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Igor C. Almeida
- Department of Biological Sciences, The Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Joshua Daniel Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- Department of Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
236
|
Deng Y, Meyer SA, Guan X, Escalon BL, Ai J, Wilbanks MS, Welti R, Garcia-Reyero N, Perkins EJ. Analysis of common and specific mechanisms of liver function affected by nitrotoluene compounds. PLoS One 2011; 6:e14662. [PMID: 21346803 PMCID: PMC3035612 DOI: 10.1371/journal.pone.0014662] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 12/06/2010] [Indexed: 12/20/2022] Open
Abstract
Background Nitrotoluenes are widely used chemical manufacturing and munitions applications. This group of chemicals has been shown to cause a range of effects from anemia and hypercholesterolemia to testicular atrophy. We have examined the molecular and functional effects of five different, but structurally related, nitrotoluenes on using an integrative systems biology approach to gain insight into common and disparate mechanisms underlying effects caused by these chemicals. Methodology/Principal Findings Sprague-Dawley female rats were exposed via gavage to one of five concentrations of one of five nitrotoluenes [2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2ADNT) 4-amino-2,6-dinitrotoulene (4ADNT), 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT)] with necropsy and tissue collection at 24 or 48 h. Gene expression profile results correlated well with clinical data and liver histopathology that lead to the concept that hematotoxicity was followed by hepatotoxicity. Overall, 2,4DNT, 2,6DNT and TNT had stronger effects than 2ADNT and 4ADNT. Common functional terms, gene expression patterns, pathways and networks were regulated across all nitrotoluenes. These pathways included NRF2-mediated oxidative stress response, aryl hydrocarbon receptor signaling, LPS/IL-1 mediated inhibition of RXR function, xenobiotic metabolism signaling and metabolism of xenobiotics by cytochrome P450. One biological process common to all compounds, lipid metabolism, was found to be impacted both at the transcriptional and lipid production level. Conclusions/Significance A systems biology strategy was used to identify biochemical pathways affected by five nitroaromatic compounds and to integrate data that tie biochemical alterations to pathological changes. An integrative graphical network model was constructed by combining genomic, gene pathway, lipidomic, and physiological endpoint results to better understand mechanisms of liver toxicity and physiological endpoints affected by these compounds.
Collapse
Affiliation(s)
- Youping Deng
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Bao Y, Wang Q, Liu H, Lin Z. A small HSP gene of bloody clam (Tegillarca granosa) involved in the immune response against Vibrio parahaemolyticus and lipopolysaccharide. FISH & SHELLFISH IMMUNOLOGY 2011; 30:729-733. [PMID: 21172441 DOI: 10.1016/j.fsi.2010.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/01/2010] [Accepted: 12/03/2010] [Indexed: 05/30/2023]
Abstract
Small heat shock proteins (sHSPs) associate with nuclei, cytoskeleton and membranes, and as molecular chaperones they bind partially denatured proteins, thereby preventing irreversible protein aggregation during stress. In the present study, the small heat shock proteins of Tegillarca granosa (Tg-sHSP) were identified from hemocytes by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consisted of 1005 bp with a 594 bp open reading frame encoding 197 amino acids. Sequence comparison showed that Tg-sHSP had low degree of homology to sHSP of other organisms, such as 47.8% similarity with sHSP from Zhikong scallop Chlamys farreri (AAR11780), 34.8% similarity with silkworm Bombyx mori (NP_001036941). A sHSP feature domain Alpha-crystallin domain (ACD) and V/IXI/V motif in the C-terminal extension were identified in Tg-sHSP, indicating that Tg-sHSP should be a new member of sHSP family. Quantitative RT-PCR assay was developed to detect the mRNA expression of Tg-sHSP in five different tissues. Higher-level mRNA expression of Tg-sHSP was detected in the tissues of hemocytes and mantle. The up-regulation of Tg-sHSP after bacteria Vibrio parahaemolyticus and lipopolysaccharide (LPS) challenge showed that sHSPs play a pivotal role in anti-bacterial immunity. These results together indicated that Tg-sHSP would provide candidate promising therapeutic or prophylactic agents in health management and diseases control of clam aquaculture.
Collapse
Affiliation(s)
- Yongbo Bao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, 8 South Qianhu Road, Ningbo, Zhejiang 315100, China
| | | | | | | |
Collapse
|
238
|
Puerto M, Campos A, Prieto A, Cameán A, de Almeida AM, Coelho AV, Vasconcelos V. Differential protein expression in two bivalve species; Mytilus galloprovincialis and Corbicula fluminea; exposed to Cylindrospermopsis raciborskii cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:109-116. [PMID: 20970860 DOI: 10.1016/j.aquatox.2010.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/10/2010] [Accepted: 09/18/2010] [Indexed: 05/30/2023]
Abstract
The cyanobacteria Cylindrospermopsis raciborskii is considered a threat to aquatic organisms due to the production of the toxin cylindrospermopsin (CYN). Despite the numerous reports evidencing the toxic effects of C. raciborskii cells and CYN in different species, not much is known regarding the toxicity mechanisms associated with this toxin and the cyanobacteria. In this work, a proteomics approach based in the two-dimensional gel electrophoresis and mass spectrometry was used to study the effects of the exposure of two bivalve species, Mytilus galloprovincialis and Corbicula fluminea, to CYN producing (CYN+) and non-producing (CYN-) C. raciborskii cells. Additionally the activities of glutathione S-transferase (GST) and glutathione peroxidase (GPx) were determined. Alterations in actin and tubulin isoforms were detected in gills of both bivalve species and digestive gland of M. galloprovincialis when exposed to CYN- and CYN+ cells. Moreover, GST and GPx activities changed in gills and digestive tract of bivalves exposed to both C. raciborskii freeze dried cells, in comparison to control animals exposed to the green alga Chlorella vulgaris. These results suggest the induction of physiological stress and tissue injury in bivalves by C. raciborskii. This condition is supported by the changes observed in GPx and GST activities which indicate alterations in the oxidative stress defense mechanisms. The results also evidence the capacity of CYN non-producing C. raciborskii to induce biochemical responses and therefore its toxicity potential to bivalves. The heat shock protein 60 (HSP60), extrapallial (EP) fluid protein and triosephosphate isomerase homologous proteins from gills of M. galloprovincialis were down-regulated specifically with the presence of CYN+ C. raciborskii cells. The presence of CYN may lead to additional toxic effects in M. galloprovincialis. This work demonstrates that proteomics is a powerful approach to characterize the biochemical effects of C. raciborskii and to investigate the physiological condition of the exposed organisms.
Collapse
Affiliation(s)
- Maria Puerto
- Area of Toxicology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
239
|
Moon A, Bacchini P, Bertoni F, Olvi LG, Santini-Araujo E, Kim YW, Park YK. Expression of heat shock proteins in osteosarcomas. Pathology 2010; 42:421-5. [PMID: 20632817 DOI: 10.3109/00313025.2010.493866] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Heat shock proteins (HSPs) protect cells against stress-associated injuries and are overexpressed in several malignant tumours. We investigated the potential roles of HSP27, HSP60, and HSP70 in conventional and low grade central osteosarcoma. METHODS Expressions of HSP27, HSP60, and HSP70 were analysed using immunohistochemistry on tissue sections from 52 cases of conventional osteosarcoma and 21 cases of low grade central osteosarcoma. We evaluated the expression of each protein and examined its relationship with clinicopathological parameters. RESULTS We found significantly different expressions of HSP27 and HSP70 between conventional and low grade central osteosarcoma [34.6% versus 4.8% (p = 0.008), 88.5% versus 14.3% (p < 0.001)]. However, HSP60 was highly expressed in both kinds of osteosarcoma (92.3% versus 85.7%). In conventional osteosarcoma, a higher expression of HSP27 was significantly related to distant metastasis (p = 0.034) and histological subtype [osteoblastic versus non-osteoblastic (p = 0.041)]. The expressions of HSP60 and HSP70 were not significantly related to any tested clinicopathological parameter. CONCLUSIONS HSP27 and HSP70 may be used as differential markers to distinguish conventional and low grade central osteosarcoma. HSP27 may be used as a possible prognostic marker in conventional osteosarcoma cases.
Collapse
Affiliation(s)
- Ahrim Moon
- Department of Pathology, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
240
|
Mustafa DAM, Sieuwerts AM, Zheng PP, Kros JM. Overexpression of Colligin 2 in Glioma Vasculature is Associated with Overexpression of Heat Shock Factor 2. GENE REGULATION AND SYSTEMS BIOLOGY 2010; 4:103-7. [PMID: 21072323 PMCID: PMC2976072 DOI: 10.4137/grsb.s4546] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In previous studies we found expression of the protein colligin 2 (heat shock protein 47 (HSP47), SERPINH1) in glioma neovasculature while not in normal brain tissue. Generally, the regulation of heat shock gene expression in eukaryotes is mediated by heat shock factors (HSF). In mammals, three heat shock transcription factors, HSF-1, -2, and -4, have been isolated. Here we investigated the relation between the expression of colligin 2 and these heat shock factors at the mRNA level using real-time reverse transcriptase PCR (qRT-PCR) in different grades of astrocytic tumorigenesis, viz., low-grade glioma and glioblastoma. Endometrium samples, representing physiological angiogenesis, were included as controls. Since colligin 2 is a chaperon for collagens, the gene expression of collagen I (COL1A1) was also investigated. The blood vessel density of the samples was monitored by expression of the endothelial marker CD31 (PECAM1). Because NG2-immunopositive pericytic cells are involved in glioma neovascularization, the expression of NG2 (CSPG4) was also measured. We demonstrate overexpression of HSF2 in both stages of glial tumorigenesis (reaching significance only in low-grade glioma) and also minor elevated levels of HSF1 as compared to normal brain. There were no differences in expression of HSF4 between low-grade glioma and normal brain while HSF4 was downregulated in glioblastoma. In the endometrium samples, none of the HSFs were upregulated. In the low-grade gliomas SERPINH appeared to be slightly overexpressed with a parallel 4-fold upregulation of COL1A1, while in glioblastoma there was over 5-fold overexpression of SERPINH1 and more than 150-fold overexpression of COL1A1. In both the lowgrade gliomas and the glioblastomas overexpression of CSPG4 was found and overexpression of PECAM1 was only found in the latter. Our data suggest that the upregulated expression of colligin 2 in glioma is accompanied by upregulation of COL1A1, CSPG4, HSF2 and to a lesser extent, HSF1. Further studies will unravel the association of these factors with colligin 2 expression, possibly leading to keys for therapeutic intervention.
Collapse
|
241
|
Zhang L, Jiang H, Gao X, Zou Y, Liu M, Liang Y, Yu Y, Zhu W, Chen H, Ge J. Heat shock transcription factor-1 inhibits H2O2-induced apoptosis via down-regulation of reactive oxygen species in cardiac myocytes. Mol Cell Biochem 2010; 347:21-8. [PMID: 20941531 DOI: 10.1007/s11010-010-0608-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 09/28/2010] [Indexed: 12/22/2022]
Abstract
Heat shock transcription factor-1 (HSF1) protects against cardiac diseases such as ischemia/reperfusion injury and myocardial infarction. However, the mechanisms have not yet been fully characterized. In this study, we investigated the effects of reactive oxygen species (ROS) and apoptosis signal-regulating kinase-1 (ASK1) in HSF1-regulated cardiomyocyte protection. Cultured cardiomyocytes of neonatal rats were transfected with HSF1, ASK1 or both of them before exposure to H(2)O(2), and the ROS generation, c-Jun N-terminal kinase (JNK) activity and apoptosis were examined. H(2)O(2) significantly increased intracellular ROS generation and apoptotic cells as expected, and all these cellular events were greatly inhibited by overexpression of HSF1. However, H(2)O(2)-induced increases in JNK phosphorylation and cell apoptosis were largely enhanced by ASK1 overexpression whereas the similar transfection did not affect the ROS generation in the cells. Moreover, inhibition of H(2)O(2)-increased ROS generation, JNK phosphorylation, and cellular apoptosis by overexpression of HSF1 tended to be disappeared, when the cells were co-transfected with ASK1. These results suggest that HSF1 protects cardiomyocytes from apoptosis under oxidative stress via down-regulation of intracellular ROS generation and inhibition of JNK phosphorylation. Although ASK1 itself has no effect on intracellular ROS generation, it may affect the inhibitory effects of HSF1 on ROS generation, JNK activity, and cardiomyocyte injury.
Collapse
Affiliation(s)
- Lei Zhang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Yu Y, Yao K. Non-thermal cellular effects of lowpower microwave radiation on the lens and lens epithelial cells. J Int Med Res 2010; 38:729-36. [PMID: 20819410 DOI: 10.1177/147323001003800301] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Because of the increased use of modern radiofrequency devices, public concern about the possible health effects of exposure to microwave radiation has arisen in many countries. It is well established that high-power microwave radiation can induce cataracts via its thermal effects. It remains unclear whether low-power microwave radiation, especially at levels below the current exposure limits, is cataractogenic. This review summarizes studies on the biological effects of low-power microwave radiation on lens and lens epithelial cells (LECs). It has been reported that exposure affects lens transparency, alters cell proliferation and apoptosis, inhibits gap junctional intercellular communication, and induces genetic instability and stress responses in LECs. These results raise the question of whether the ambient microwave environment can induce non-thermal effects in the lens and whether such effects have potential health consequences. Further in vivo studies on the effects on the lens of exposure to low-power microwave radiation are needed.
Collapse
Affiliation(s)
- Y Yu
- Eye Centre, Affiliated Second Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | |
Collapse
|
243
|
Spinaci M, Vallorani C, Bucci D, Bernardini C, Tamanini C, Seren E, Galeati G. Effect of liquid storage on sorted boar spermatozoa. Theriogenology 2010; 74:741-8. [DOI: 10.1016/j.theriogenology.2010.03.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
|
244
|
Eisenberg DP, Carpenter SG, Adusumilli PS, Chan MK, Hendershott KJ, Yu Z, Fong Y. Hyperthermia potentiates oncolytic herpes viral killing of pancreatic cancer through a heat shock protein pathway. Surgery 2010; 148:325-34. [PMID: 20633729 DOI: 10.1016/j.surg.2010.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 05/14/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND Oncolytic herpes simplex virus-1 (HSV-1) is designed to specifically infect, replicate in, and lyse cancer cells. This study investigates a novel therapeutic regimen, combining the effects of NV1066 (a recombinant HSV-1) and hyperthermia in the treatment of pancreatic cancer. METHODS NV1066 is an attenuated HSV-1 that replicates in cells resistant to apoptosis. Heat shock protein 72 (Hsp72) is a member of a family of proteins that is upregulated after hyperthermic insult, lending cellular protection by inhibiting apoptosis. In these experiments, we test the hypothesis that increased Hsp72 expression in response to hyperthermia enhances anti-apoptotic mechanisms, thereby increasing viral replication and tumor cell kill. Hs 700T pancreatic cancer cells were treated with hyperthermia alone (42 degrees C), NV1066 alone, and combination therapy. Cell survival and viral growth were measured. The effect of siRNA-directed Hsp72 knockdown was also measured. RESULTS Combining hyperthermia and viral treatment produced a synergistic effect on cell kill. Viral growth increased greater than 6-fold in the presence of hyperthermia (P < .05). Hyperthermia alone showed minimal cytotoxic activity against Hs 700T cells, while NV1066 infection resulted in approximately 50% cell kill. The combination of hyperthermia and viral infection significantly increased cell kill to approximately 80% (P < .01). Hsp72 knockdown attenuated this synergistic effect. CONCLUSION Hyperthermia enhances NV1066 replication, thereby potentiating the viral oncolytic response against pancreatic cancer cells. This finding has potential clinical application in the use of heated perfusion or permissive hyperthermia for delivery of oncolytic viral therapies.
Collapse
|
245
|
Virus–host cell interactions in vaccine production cell lines infected with different human influenza A virus variants: A proteomic approach. J Proteomics 2010; 73:1656-69. [DOI: 10.1016/j.jprot.2010.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/22/2010] [Accepted: 04/21/2010] [Indexed: 01/02/2023]
|
246
|
Abstract
It has been proposed that the apoptosis is an essential requirement for the evolution of all animals, in fact the apoptotic program is highly conserved from nematodes to mammals. Throughout development, apoptosis is employed by multicellular organisms to eliminate damaged or unnecessary cells. Here, we will discuss both developmental programmed cell death (PCD) under normal conditions and stress induced apoptosis, in sea urchin embryos. Sea urchin represent an excellent model system for studying embryogenesis and cellular processes involved in metamorphosis. PCD plays an essential role in sculpting and remodelling the embryos and larvae undergoing metamorphosis. Moreover, this marine organism directly interacts with its environment, and is susceptible to effects of several aquatic contaminants. Apoptosis can be adopted as a defence mechanism against any environmental chemical, physical and mechanical stress, for removing irreversibly damaged cells. This review, while not comprehensive in its reporting, aims to provide an overview of current knowledge on mechanisms to regulate physiological and the induced apoptotic program in sea urchin embryos.
Collapse
|
247
|
Balogh G, Péter M, Liebisch G, Horváth I, Török Z, Nagy E, Maslyanko A, Benko S, Schmitz G, Harwood JL, Vígh L. Lipidomics reveals membrane lipid remodelling and release of potential lipid mediators during early stress responses in a murine melanoma cell line. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1036-47. [PMID: 20430110 DOI: 10.1016/j.bbalip.2010.04.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 04/15/2010] [Accepted: 04/17/2010] [Indexed: 11/17/2022]
Abstract
Membranes are known to respond rapidly to various environmental perturbations by changing their composition and microdomain organization. In previous work we showed that a membrane fluidizer benzyl alcohol (BA) could mimic the effects of heat stress and enhance heat shock protein synthesis in different mammalian cells. Here we explore heat- and BA-induced stress further by characterizing stress-induced membrane lipid changes in mouse melanoma B16 cells. Lipidomic fingerprints revealed that membrane stress achieved either by heat or BA resulted in pronounced and highly specific alterations in lipid metabolism. The loss in polyenes with the concomitant increase in saturated lipid species was shown to be a consequence of the activation of phopholipases (mainly phopholipase A(2) and C). A phospholipase C-diacylglycerol lipase-monoacylglycerol lipase pathway was identified in B16 cells and contributed significantly to the production of several lipid mediators upon stress including the potent heat shock modulator, arachidonic acid. The accumulation of cholesterol, ceramide and saturated phosphoglyceride species with raft-forming properties observed upon both heat and BA treatments of B16 cells may explain the condensation of ordered plasma membrane domains previously detected by fluorescence microscopy and may serve as a signalling platform in stress responses or as a primary defence mechanism against the noxious effects of stresses.
Collapse
Affiliation(s)
- Gábor Balogh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Multifaceted role of heat shock protein 70 in neurons. Mol Neurobiol 2010; 42:114-23. [PMID: 20354811 DOI: 10.1007/s12035-010-8116-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 03/15/2010] [Indexed: 12/22/2022]
Abstract
Heat shock protein 70 (Hsp70) plays important roles in neural protection from stress by assisting cellular protein folding. In this review we discuss the current understanding of inducible and constitutive Hsp70 in maintaining and protecting neuronal synaptic function under normal and stressed conditions.
Collapse
|
249
|
Kim DW, Kim A, Kim RN, Nam SH, Kang A, Chung WT, Choi SH, Park HS. Comparative analysis of expressed sequence tags from the white-rot fungi (Phanerochaete chrysosporium). Mol Cells 2010; 29:131-44. [PMID: 20069385 DOI: 10.1007/s10059-010-0018-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022] Open
Abstract
Comprehensive analysis of the transcriptome of the P. chrysosporium is a useful approach to improve our understanding of its special and unique enzyme system and fungal evolution in molecular and industrial aspects. In order to unveil the functional diversity of this white-rot fungus in gene level and the expression patterns of its genes, in this study we carried out sequencing and annotation of 4,917 P. chrysosporium expressed sequence tags (ESTs). Through our bioinformatic ESTs analysis, we elucidated that 1,751 genes were derived from the present dataset of 4,917 ESTs, based on clustering and comparative genomic analyses of the ESTs. Of the 1,751 unique ESTs, 1,006 (57.5%) had homologues and orthologues in similarity searches. Our P. chrysosporium ESTs showed many genes for encoding 23 secreted proteins, many proteins for the degradation of cellulose and hemicelluloses, and heat shock proteins for stress resistance, which explain the reason why P. chrysosporium is very important and unique white-rot fungus in dealing with contaminated resources and in degrading lignin and in applying this organism to several industrial aspects.In addition, comparative analysis has shed the fresh light on the mystery about how its unique enzyme system and stress resistance have been evolved differently from its closest relatives.
Collapse
Affiliation(s)
- Dae-Won Kim
- Genome Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Belton M, Rozanski C, Prato FS, Carson JJL. The effect of 100 mT SMF on activation of the hsp70 promoter in a heat shock/luciferase reporter system. J Cell Biochem 2010; 108:956-62. [PMID: 19725048 DOI: 10.1002/jcb.22327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human exposure to magnetic fields, increased through use of new technologies like magnetic resonance imaging (MRI), has prompted investigations into possible effects of static magnetic fields (SMFs) on cellular processes. However, controversy still remains between many studies, which likely results from a lack of uniformity across experimental parameters, including the length of magnetic field exposure, the strength of the magnetic field, and the cell type or organism under investigation. The purpose of this research was to monitor effects of SMF exposure using real-time luminescence photometry. The study investigated the potential interaction of a 100 mT SMF on a heat shock protein (hsp70)/luciferase reporter construct in stably transfected NIH3T3 cells. Changes in heat shock promoter activation following 100 mT SMF exposure were analyzed and detected as bioluminescence in real-time. Two heat parameters were considered in combination with sham- and 100 mT-exposed experiments: no heat or 1,800 s heat. As expected, there was a significant increase in bioluminescence in response to 1,800 s of heat alone. However, no significant difference in average hsp70 promoter activation between sham and 100 mT experiments was observed for no heat or 1,800 s heat experiments. Therefore, a 100 mT SMF was shown to have no effect on the activation of the heat shock protein promoter during SMF exposure or when SMF exposure was combined with a heat insult.
Collapse
Affiliation(s)
- Michelle Belton
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | | | | |
Collapse
|