201
|
Shimozono S, Iimura T, Kitaguchi T, Higashijima SI, Miyawaki A. Visualization of an endogenous retinoic acid gradient across embryonic development. Nature 2013; 496:363-6. [PMID: 23563268 DOI: 10.1038/nature12037] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 02/25/2013] [Indexed: 12/12/2022]
|
202
|
Smoczer C, Hooker L, Brode S, Wolanski M, KhosrowShahian F, Crawford M. The Xenopus homeobox gene pitx3 impinges upon somitogenesis and laterality. Biochem Cell Biol 2013; 91:79-87. [PMID: 23527636 DOI: 10.1139/bcb-2012-0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pitx3 has been identified as the causative locus in a developmental eye mutation associated with mammalian anterior segment dysgenesis, congenital cataracts, and aphakia. In recent studies of frog eye development we discovered that pitx3 expresses symmetrically in the somites and lateral plate mesoderm and asymmetrically during cardiac and gut looping. We report that disruption of pitx3 activity on one side of an embryo relative to the other, either by over- or underexpression of pitx3, elicits a crooked dorsal axis in embryos that is a consequence of a retarded progression through somitogenesis. Unlike in amniotes, Xenopus somites form as cohorts of presomitic cells that rotate perpendicular to the dorsal axis. Since no vertebral anomalies have been reported in mouse and human Pitx3 mutants, we attempt to distinguish whether the segmentation clock is uniquely affected in frog or if the pitx3 perturbation inhibits the cellular changes that are necessary to rotation of presomitic cells. In Xenopus, pitx3 appears to inhibit the rotation of presomitic cell cohorts and to be necessary to the bilaterally symmetric expression of pitx2 in somites.
Collapse
Affiliation(s)
- Cristine Smoczer
- Biological Science, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | | | | | | | | | | |
Collapse
|
203
|
Lawton AK, Nandi A, Stulberg MJ, Dray N, Sneddon MW, Pontius W, Emonet T, Holley SA. Regulated tissue fluidity steers zebrafish body elongation. Development 2013; 140:573-82. [PMID: 23293289 DOI: 10.1242/dev.090381] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tailbud is the posterior leading edge of the growing vertebrate embryo and consists of motile progenitors of the axial skeleton, musculature and spinal cord. We measure the 3D cell flow field of the zebrafish tailbud and identify changes in tissue fluidity revealed by reductions in the coherence of cell motion without alteration of cell velocities. We find a directed posterior flow wherein the polarization between individual cell motion is high, reflecting ordered collective migration. At the posterior tip of the tailbud, this flow makes sharp bilateral turns facilitated by extensive cell mixing due to increased directional variability of individual cell motions. Inhibition of Wnt or Fgf signaling or cadherin 2 function reduces the coherence of the flow but has different consequences for trunk and tail extension. Modeling and additional data analyses suggest that the balance between the coherence and rate of cell flow determines whether body elongation is linear or whether congestion forms within the flow and the body axis becomes contorted.
Collapse
Affiliation(s)
- Andrew K Lawton
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Oscillatory links of Fgf signaling and Hes7 in the segmentation clock. Curr Opin Genet Dev 2013; 23:484-90. [PMID: 23465881 DOI: 10.1016/j.gde.2013.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 01/21/2023]
Abstract
Somitogenesis is controlled by the segmentation clock, where the oscillatory expression of cyclic genes such as Hes7 leads to the periodic expression of Mesp2, a master gene for somite formation. Fgf signaling induces the oscillatory expression of Hes7 while Hes7 drives coupled oscillations in Fgf and Notch signaling, which inhibits and activates Mesp2 expression, respectively. Because of different oscillatory dynamics, oscillation in Fgf signaling dissociates from oscillation in Notch signaling in S-1, a prospective somite region, where Notch signaling induces Mesp2 expression when Fgf signaling becomes off. Thus, oscillation in Fgf signaling regulates the timing of Mesp2 expression and the pace of somitogenesis. In addition, Fgf signaling was found to be a primary target for hypoxia, which causes phenotypic variations of heterozygous mutations in Hes7 or Mesp2, suggesting gene-environment interaction through this signaling.
Collapse
|
205
|
Giampietro PF. Genetic aspects of congenital and idiopathic scoliosis. SCIENTIFICA 2012; 2012:152365. [PMID: 24278672 PMCID: PMC3820596 DOI: 10.6064/2012/152365] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 11/11/2012] [Indexed: 06/02/2023]
Abstract
Congenital and idiopathic scoliosis represent disabling conditions of the spine. While congenital scoliosis (CS) is caused by morphogenic abnormalities in vertebral development, the cause(s) for idiopathic scoliosis is (are) likely to be varied, representing alterations in skeletal growth, neuromuscular imbalances, disturbances involving communication between the brain and spine, and others. Both conditions are characterized by phenotypic and genetic heterogeneities, which contribute to the difficulties in understanding their genetic basis that investigators face. Despite the differences between these two conditions there is observational and experimental evidence supporting common genetic mechanisms. This paper focuses on the clinical features of both CS and IS and highlights genetic and environmental factors which contribute to their occurrence. It is anticipated that emerging genetic technologies and improvements in phenotypic stratification of both conditions will facilitate improved understanding of the genetic basis for these conditions and enable targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Philip F. Giampietro
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
206
|
Abstract
The vertebrate A-P axis is a time axis. The head is made first and more and more posterior levels are made at later and later stages. This is different to the situation in most other animals, for example, in Drosophila. Central to this timing is Hox temporal collinearity (see below). This occurs rarely in the animal kingdom but is characteristic of vertebrates and is used to generate the primary axial Hox pattern using time space translation and to integrate successive derived patterns (see below). This is thus a different situation than in Drosophila, where the primary pattern guiding Hox spatial collinearity is generated externally, by the gap and segmentation genes.
Collapse
Affiliation(s)
- Aj Durston
- Institute of Biology, University of Leiden, Sylvius Laboratory, Wassenaarseweg 72, 2333 BE, Leiden, Netherlands
| | | | | | | |
Collapse
|
207
|
Williams T, Blachuta B, Hegna TA, Nagy LM. Decoupling elongation and segmentation: notch involvement in anostracan crustacean segmentation. Evol Dev 2012; 14:372-82. [PMID: 22765208 DOI: 10.1111/j.1525-142x.2012.00555.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Repeated body segments are a key feature of arthropods. The formation of body segments occurs via distinct developmental pathways within different arthropod clades. Although some species form their segments simultaneously without any accompanying measurable growth, most arthropods add segments sequentially from the posterior of the growing embryo or larva. The use of Notch signaling is increasingly emerging as a common feature of sequential segmentation throughout the Bilateria, as inferred from both the expression of proteins required for Notch signaling and the genetic or pharmacological disruption of Notch signaling. In this study, we demonstrate that blocking Notch signaling by blocking γ-secretase activity causes a specific, repeatable effect on segmentation in two different anostracan crustaceans, Artemia franciscana and Thamnocephalus platyurus. We observe that segmentation posterior to the third or fourth trunk segment is arrested. Despite this marked effect on segment addition, other aspects of segmentation are unaffected. In the segments that develop, segment size and boundaries between segments appear normal, engrailed stripes are normal in size and alignment, and overall growth is unaffected. By demonstrating Notch involvement in crustacean segmentation, our findings expand the evidence that Notch plays a crucial role in sequential segmentation in arthropods. At the same time, our observations contribute to an emerging picture that loss-of-function Notch phenotypes differ significantly between arthropods suggesting variability in the role of Notch in the regulation of sequential segmentation. This variability in the function of Notch in arthropod segmentation confounds inferences of homology with vertebrates and lophotrochozoans.
Collapse
Affiliation(s)
- Terri Williams
- Department of Biology, Trinity College, Hartford, CT 06106, USA.
| | | | | | | |
Collapse
|
208
|
Richmond DL, Oates AC. The segmentation clock: inherited trait or universal design principle? Curr Opin Genet Dev 2012; 22:600-6. [PMID: 23149154 DOI: 10.1016/j.gde.2012.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/16/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
Abstract
Metamerism is a widespread feature of multicellular body plans; however, our understanding of the underlying mechanisms that generate these patterns is currently based on only a few model organisms. In particular, vertebrate embryos use a segmentation clock to rhythmically and sequentially add segments in concert with posterior elongation of their body. Recent evidence of a segmentation clock acting in arthropods indicates that this mechanism may be a widely used strategy for generating serial anatomy in animals. Whether this is due to homology or convergence is not yet known, but the recent discovery of an oscillatory process associated with the production of sequential root primordia in plants suggests that a segmentation clock is a fundamental patterning principle in growing tissues, independent of ancestry. In this review, we consider the principles of the segmentation clock that may be conserved across the animal and plant kingdoms, and discuss opportunities for cross-fertilization between these active fields of research.
Collapse
Affiliation(s)
- David L Richmond
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | |
Collapse
|
209
|
Genetic analysis of vertebral regionalization and number in medaka (Oryzias latipes) inbred lines. G3-GENES GENOMES GENETICS 2012; 2:1317-23. [PMID: 23173083 PMCID: PMC3484662 DOI: 10.1534/g3.112.003236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 08/23/2012] [Indexed: 11/19/2022]
Abstract
Vertebral number is the most variable trait among vertebrates. In addition to the vertebral number, the ratio of abdominal to caudal vertebrae is a variable trait. The vertebral number and the ratio of abdominal to caudal vertebrae contribute to vertebrate diversity. It is very interesting to know how to determine the vertebral number and the ratio of abdominal to caudal vertebrae. In this study, we identify differences in the vertebral number and the ratio of abdominal vertebrae to vertebral number between two inbred lines of medaka, namely, Hd-rRII1 and Kaga. To identify the genetic factor of those differences, we performed quantitative trait locus (QTL) analysis for vertebral number and the ratio of abdominal vertebrae to vertebral number using 200 F2 fish. Our results show a suggestive QTL of the ratio of abdominal vertebrae to vertebral number on chromosome 15, and five QTL of vertebral number on chromosomes 1, 10, 11, 17, and 23. The QTL on chromosome 15 contains hoxDb cluster genes. The QTL of vertebral number include some genes related to the segmentation clock and axial elongation. In addition, we show that the difference in vertebral number between two inbred lines is derived from differences in the anteroposterior length of somites. Our results emphasize that the developmental process should be considered in genetic analyses for vertebral number.
Collapse
|
210
|
El-Sherif E, Averof M, Brown SJ. A segmentation clock operating in blastoderm and germband stages of Tribolium development. Development 2012; 139:4341-6. [PMID: 23095886 DOI: 10.1242/dev.085126] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Drosophila, all segments form in the blastoderm where morphogen gradients spanning the entire anterior-posterior axis of the embryo provide positional information. However, in the beetle Tribolium castaneum and most other arthropods, a number of anterior segments form in the blastoderm, and the remaining segments form sequentially from a posterior growth zone during germband elongation. Recently, the cyclic nature of the pair-rule gene Tc-odd-skipped was demonstrated in the growth zone of Tribolium, indicating that a vertebrate-like segmentation clock is employed in the germband stage of its development. This suggests that two mechanisms might function in the same organism: a Drosophila-like mechanism in the blastoderm, and a vertebrate-like mechanism in the germband. Here, we show that segmentation at both blastoderm and germband stages of Tribolium is based on a segmentation clock. Specifically, we show that the Tribolium primary pair-rule gene, Tc-even-skipped (Tc-eve), is expressed in waves propagating from the posterior pole and progressively slowing until they freeze into stripes; such dynamics are a hallmark of clock-based segmentation. Phase shifts between Tc-eve transcripts and protein confirm that these waves are due to expression dynamics. Moreover, by tracking cells in live embryos and by analyzing mitotic profiles, we found that neither cell movement nor oriented cell division could explain the observed wave dynamics of Tc-eve. These results pose intriguing evolutionary questions, as Drosophila and Tribolium segment their blastoderms using the same genes but different mechanisms.
Collapse
Affiliation(s)
- Ezzat El-Sherif
- Genetics Program, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
211
|
Pasini A, Manenti R, Rothbächer U, Lemaire P. Antagonizing retinoic acid and FGF/MAPK pathways control posterior body patterning in the invertebrate chordate Ciona intestinalis. PLoS One 2012; 7:e46193. [PMID: 23049976 PMCID: PMC3458022 DOI: 10.1371/journal.pone.0046193] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022] Open
Abstract
Vertebrate embryos exploit the mutual inhibition between the RA and FGF signalling pathways to coordinate the proliferative elongation of the main body axis with the progressive patterning and differentiation of its neuroectodermal and paraxial mesodermal structures. The evolutionary history of this patterning system is still poorly understood. Here, we investigate the role played by the RA and FGF/MAPK signals during the development of the tail structures in the tunicate Ciona intestinalis, an invertebrate chordate belonging to the sister clade of vertebrates, in which the prototypical chordate body plan is established through very derived morphogenetic processes. Ciona embryos are constituted of few cells and develop according to a fixed lineage; elongation of the tail occurs largely by rearrangement of postmitotic cells; mesoderm segmentation and somitogenesis are absent. We show that in the Ciona embryo, the antagonism of the RA and FGF/MAPK signals is required to control the anteroposterior patterning of the tail epidermis. We also demonstrate that the RA, FGF/MAPK and canonical Wnt pathways control the anteroposterior patterning of the tail peripheral nervous system, and reveal the existence of distinct subpopulations of caudal epidermal neurons with different responsiveness to the RA, FGF/MAPK and canonical Wnt signals. Our data provide the first demonstration that the use of the antagonism between the RA and FGF signals to pattern the main body axis predates the emergence of vertebrates and highlight the evolutionary plasticity of this patterning strategy, showing that in different chordates it can be used to pattern different tissues within the same homologous body region.
Collapse
Affiliation(s)
- Andrea Pasini
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR7288, CNRS/Université Aix-Marseille, Marseille, France.
| | | | | | | |
Collapse
|
212
|
Stulberg MJ, Lin A, Zhao H, Holley SA. Crosstalk between Fgf and Wnt signaling in the zebrafish tailbud. Dev Biol 2012; 369:298-307. [PMID: 22796649 PMCID: PMC3423502 DOI: 10.1016/j.ydbio.2012.07.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor (Fgf) and Wnt signaling are necessary for the intertwined processes of tail elongation, mesodermal development and somitogenesis. Here, we use pharmacological modifiers and time-resolved quantitative analysis of both nascent transcription and protein phosphorylation in the tailbud, to distinguish early effects of signal perturbation from later consequences related to cell fate changes. We demonstrate that Fgf activity elevates Wnt signaling by inhibiting transcription of the Wnt antagonists dkk1 and notum1a. PI3 kinase signaling also increases Wnt signaling via phosphorylation of Gsk3β. Conversely, Wnt can increase signaling within the Mapk branch of the Fgf pathway as Gsk3β phosphorylation elevates phosphorylation levels of Erk. Despite the reciprocal positive regulation between Fgf and Wnt, the two pathways generally have opposing effects on the transcription of co-regulated genes. This opposing regulation of target genes may represent a rudimentary relationship that manifests as out-of-phase oscillation of Fgf and Wnt target genes in the mouse and chick tailbud. In summary, these data suggest that Fgf and Wnt signaling are tightly integrated to maintain proportional levels of activity in the zebrafish tailbud, and this balance is important for axis elongation, cell fate specification and somitogenesis.
Collapse
Affiliation(s)
- Michael J. Stulberg
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Aiping Lin
- Keck Biostatistics Resource, Yale University, New Haven, CT 06511, USA
| | - Hongyu Zhao
- Keck Biostatistics Resource, Yale University, New Haven, CT 06511, USA
- Department of Epidemiology and Public Health, Yale University, New Haven, CT 06511, USA
| | - Scott A. Holley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
213
|
Boulet AM, Capecchi MR. Signaling by FGF4 and FGF8 is required for axial elongation of the mouse embryo. Dev Biol 2012; 371:235-45. [PMID: 22954964 DOI: 10.1016/j.ydbio.2012.08.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 08/16/2012] [Accepted: 08/21/2012] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor (FGF) signaling has been shown to play critical roles in vertebrate segmentation and elongation of the embryonic axis. Neither the exact roles of FGF signaling, nor the identity of the FGF ligands involved in these processes, has been conclusively determined. Fgf8 is required for cell migration away from the primitive streak when gastrulation initiates, but previous studies have shown that drastically reducing the level of FGF8 later in gastrulation has no apparent effect on somitogenesis or elongation of the embryo. In this study, we demonstrate that loss of both Fgf8 and Fgf4 expression during late gastrulation resulted in a dramatic skeletal phenotype. Thoracic vertebrae and ribs had abnormal morphology, lumbar and sacral vertebrae were malformed or completely absent, and no tail vertebrae were present. The expression of Wnt3a in the tail and the amount of nascent mesoderm expressing Brachyury were both severely reduced. Expression of genes in the NOTCH signaling pathway involved in segmentation was significantly affected, and somite formation ceased after the production of about 15-20 somites. Defects seen in the mutants appear to result from a failure to produce sufficient paraxial mesoderm, rather than a failure of mesoderm precursors to migrate away from the primitive streak. Although the epiblast prematurely decreases in size, we did not detect evidence of a change in the proliferation rate of cells in the tail region or excessive apoptosis of epiblast or mesoderm cells. We propose that FGF4 and FGF8 are required to maintain a population of progenitor cells in the epiblast that generates mesoderm and contributes to the stem cell population that is incorporated in the tailbud and required for axial elongation of the mouse embryo after gastrulation.
Collapse
Affiliation(s)
- Anne M Boulet
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
214
|
Sheeba CJ, Andrade RP, Palmeirim I. Joint interpretation of AER/FGF and ZPA/SHH over time and space underlies hairy2 expression in the chick limb. Biol Open 2012; 1:1102-10. [PMID: 23213390 PMCID: PMC3507187 DOI: 10.1242/bio.20122386] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/11/2012] [Indexed: 12/15/2022] Open
Abstract
Embryo development requires precise orchestration of cell proliferation and differentiation in both time and space. A molecular clock operating through gene expression oscillations was first described in the presomitic mesoderm (PSM) underlying periodic somite formation. Cycles of HES gene expression have been further identified in other progenitor cells, including the chick distal limb mesenchyme, embryonic neural progenitors and both mesenchymal and embryonic stem cells. In the limb, hairy2 is expressed in the distal mesenchyme, adjacent to the FGF source (AER) and along the ZPA-derived SHH gradient, the two major regulators of limb development. Here we report that hairy2 expression depends on joint AER/FGF and ZPA/SHH signaling. FGF plays an instructive role on hairy2, mediated by Erk and Akt pathway activation, while SHH acts by creating a permissive state defined by Gli3-A/Gli3-R>1. Moreover, we show that AER/FGF and ZPA/SHH present distinct temporal and spatial signaling properties in the distal limb mesenchyme: SHH acts at a long-term, long-range on hairy2, while FGF has a short-term, short-range action. Our work establishes limb hairy2 expression as an output of integrated FGF and SHH signaling in time and space, providing novel clues for understanding the regulatory mechanisms underlying HES oscillations in multiple systems, including embryonic stem cell pluripotency.
Collapse
Affiliation(s)
- Caroline J Sheeba
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , 4710-057 Braga , Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal ; Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve , 8005-139 Faro , Portugal; IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, 8005-139 Faro, Portugal
| | | | | |
Collapse
|
215
|
Ten Broek CMA, Bakker AJ, Varela-Lasheras I, Bugiani M, Van Dongen S, Galis F. Evo-Devo of the Human Vertebral Column: On Homeotic Transformations, Pathologies and Prenatal Selection. Evol Biol 2012; 39:456-471. [PMID: 23226903 PMCID: PMC3514701 DOI: 10.1007/s11692-012-9196-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022]
Abstract
Homeotic transformations of vertebrae are particularly common in humans and tend to come associated with malformations in a wide variety of organ systems. In a dataset of 1,389 deceased human foetuses and infants a majority had cervical ribs and approximately half of these individuals also had missing twelfth ribs or lumbar ribs. In ~10 % of all cases there was an additional shift of the lumbo-sacral boundary and, hence, homeotic transformations resulted in shifts of at least three vertebral boundaries. We found a strong coupling between the abnormality of the vertebral patterns and the amount and strength of associated malformations, i.e., the longer the disturbance of the vertebral patterning has lasted, the more associated malformations have developed and the more organ systems are affected. The germ layer of origin of the malformations was not significantly associated with the frequency of vertebral patterns. In contrast, we find significant associations with the different developmental mechanisms that are involved in the causation of the malformations, that is, segmentation, neural crest development, left-right patterning, etc. Our results, thus, suggest that locally perceived developmental signals are more important for the developmental outcome than the origin of the cells. The low robustness of vertebral A-P patterning apparent from the large number of homeotic transformations is probably caused by the strong interactivity of developmental processes and the low redundancy of involved morphogens during early organogenesis. Additionally, the early irreversibility of the specification of the A-P identity of vertebrae probably adds to the vulnerability of the process by limiting the possibility for recovery from developmental disturbances. The low developmental robustness of vertebral A-P patterning contrasts with a high robustness of the A-P patterning of the vertebral regions. Not only the order is invariable, also the variation in the number of vertebrae per region is small. This robustness is in agreement with the evolutionary stability of vertebral regions in tetrapods. Finally, we propose a new hypothesis regarding the constancy of the presacral number of vertebrae in mammals.
Collapse
Affiliation(s)
- Clara M A Ten Broek
- Group of Evolutionary Ecology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium ; Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
216
|
Zhu H, Zhao J, Zhou W, Li H, Zhou R, Zhang L, Zhao H, Cao J, Zhu X, Hu H, Ma G, He L, Yao Z, Yao L, Guo X. Ndrg2 regulates vertebral specification in differentiating somites. Dev Biol 2012; 369:308-18. [PMID: 22819676 DOI: 10.1016/j.ydbio.2012.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 12/17/2022]
Abstract
It is generally thought that vertebral patterning and identity are globally determined prior to somite formation. Relatively little is known about the regulators of vertebral specification after somite segmentation. Here, we demonstrated that Ndrg2, a tumor suppressor gene, was dynamically expressed in the presomitic mesoderm (PSM) and at early stage of differentiating somites. Loss of Ndrg2 in mice resulted in vertebral homeotic transformations in thoracic/lumbar and lumbar/sacral transitional regions in a dose-dependent manner. Interestingly, the inactivation of Ndrg2 in osteoblasts or chondrocytes caused defects resembling those observed in Ndrg2(-/-) mice, with a lower penetrance. In addition, forced overexpression of Ndrg2 in osteoblasts or chondrocytes also conferred vertebral defects, which were distinct from those in Ndrg2(-/-) mice. These genetic analyses revealed that Ndrg2 modulates vertebral identity in segmented somites rather than in the PSM. At the molecular level, combinatory alterations of the amount of Hoxc8-11 gene transcripts were detected in the differentiating somites of Ndrg2(-/-) embryos, which may partially account for the vertebral defects in Ndrg2 mutants. Nevertheless, Bmp/Smad signaling activity was elevated in the differentiating somites of Ndrg2(-/-) embryos. Collectively, our findings unveiled Ndrg2 as a novel regulator of vertebral specification in differentiating somites.
Collapse
Affiliation(s)
- Huang Zhu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Abstract
A segmented body plan is fundamental to all vertebrate species and this bestows both rigidity and flexibility on the body. Segmentation is initiated through the process of somitogenesis. This article aims to provide a broad and balanced cross-species overview of somitogenesis and to highlight the key molecular and cellular events involved in each stage of segmentation. We highlight where our understanding of this multifaceted process relies on strong experimental evidence as well as those aspects where our understanding still relies largely on models.
Collapse
Affiliation(s)
- Miguel Maroto
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Robert A. Bone
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - J. Kim Dale
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
218
|
Tiedemann HB, Schneltzer E, Zeiser S, Hoesel B, Beckers J, Przemeck GKH, de Angelis MH. From dynamic expression patterns to boundary formation in the presomitic mesoderm. PLoS Comput Biol 2012; 8:e1002586. [PMID: 22761566 PMCID: PMC3386180 DOI: 10.1371/journal.pcbi.1002586] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 04/24/2012] [Indexed: 11/19/2022] Open
Abstract
The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM) precedes the rhythmic budding of nascent somites at its anterior end, which later develops into epithelialized structures, the somites. Although many in silico models describing partial aspects of somitogenesis already exist, simulations of a complete causal chain from gene expression in the growth zone via the interaction of multiple cells to segmentation are rare. Here, we present an enhanced gene regulatory network (GRN) for mice in a simulation program that models the growing PSM by many virtual cells and integrates WNT3A and FGF8 gradient formation, periodic gene expression and Delta/Notch signaling. Assuming Hes7 as core of the somitogenesis clock and LFNG as modulator, we postulate a negative feedback of HES7 on Dll1 leading to an oscillating Dll1 expression as seen in vivo. Furthermore, we are able to simulate the experimentally observed wave of activated NOTCH (NICD) as a result of the interactions in the GRN. We esteem our model as robust for a wide range of parameter values with the Hes7 mRNA and protein decays exerting a strong influence on the core oscillator. Moreover, our model predicts interference between Hes1 and HES7 oscillators when their intrinsic frequencies differ. In conclusion, we have built a comprehensive model of somitogenesis with HES7 as core oscillator that is able to reproduce many experimentally observed data in mice.
Collapse
Affiliation(s)
- Hendrik B. Tiedemann
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Elida Schneltzer
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Bastian Hoesel
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universitaet Muenchen, Center of Life and Food Sciences Weihenstephan, Chair of Experimental Genetics, Freising, Germany
| | - Gerhard K. H. Przemeck
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Technische Universitaet Muenchen, Center of Life and Food Sciences Weihenstephan, Chair of Experimental Genetics, Freising, Germany
- * E-mail:
| |
Collapse
|
219
|
Saga Y. The mechanism of somite formation in mice. Curr Opin Genet Dev 2012; 22:331-8. [PMID: 22742849 DOI: 10.1016/j.gde.2012.05.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/30/2012] [Accepted: 05/15/2012] [Indexed: 12/11/2022]
Abstract
Somitogenesis is a series of dynamic morphogenetic events that involve cyclical signaling. The periodicity of somitogenesis is controlled by segmentation clock operating in the presomitic mesoderm (PSM), the precursor of somites. Notch signaling plays important roles not only in the segmentation clock mechanism but also as an output signal of the clock to induce Mesp2 transcription that controls somite formation. In the present review, recent advances in the understanding of the molecular mechanisms underlying the translation of clock information into the spatial patterning of segmental somites in mice are discussed. Particular attention is paid to the interplay between two the distinct signaling pathways of Notch and FGF and the Mesp2 transcription factor acting as an effector molecule during mouse somitogenesis.
Collapse
Affiliation(s)
- Yumiko Saga
- Division of Mammalian Development, National institute of Genetics and Department of Genetics, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
220
|
Ares S, Morelli LG, Jörg DJ, Oates AC, Jülicher F. Collective modes of coupled phase oscillators with delayed coupling. PHYSICAL REVIEW LETTERS 2012; 108:204101. [PMID: 23003147 DOI: 10.1103/physrevlett.108.204101] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Indexed: 06/01/2023]
Abstract
We study the effects of delayed coupling on timing and pattern formation in spatially extended systems of dynamic oscillators. Starting from a discrete lattice of coupled oscillators, we derive a generic continuum theory for collective modes of long wavelengths. We use this approach to study spatial phase profiles of cellular oscillators in the segmentation clock, a dynamic patterning system of vertebrate embryos. Collective wave patterns result from the interplay of coupling delays and moving boundary conditions. We show that the phase profiles of collective modes depend on coupling delays.
Collapse
Affiliation(s)
- Saúl Ares
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| | | | | | | | | |
Collapse
|
221
|
Grieneisen VA, Scheres B, Hogeweg P, M Marée AF. Morphogengineering roots: comparing mechanisms of morphogen gradient formation. BMC SYSTEMS BIOLOGY 2012; 6:37. [PMID: 22583698 PMCID: PMC3681314 DOI: 10.1186/1752-0509-6-37] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 03/15/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND In developmental biology, there has been a recent focus on the robustness of morphogen gradients as possible providers of positional information. It was shown that functional morphogen gradients present strong biophysical constraints and lack of robustness to noise. Here we explore how the details of the mechanism which underlies the generation of a morphogen gradient can influence those properties. RESULTS We contrast three gradient-generating mechanisms, (i) a source-decay mechanism; and (ii) a unidirectional transport mechanism; and (iii) a so-called reflux-loop mechanism. Focusing on the dynamics of the phytohormone auxin in the root, we show that only the reflux-loop mechanism can generate a gradient that would be adequate to supply functional positional information for the Arabidopsis root, for biophysically reasonable kinetic parameters. CONCLUSIONS We argue that traits that differ in spatial and temporal time-scales can impose complex selective pressures on the mechanism of morphogen gradient formation used for the development of the particular organism.
Collapse
Affiliation(s)
- Verônica A Grieneisen
- Computational & Systems Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | | | | | | |
Collapse
|
222
|
Kageyama R, Niwa Y, Isomura A, González A, Harima Y. Oscillatory gene expression and somitogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:629-41. [PMID: 23799565 DOI: 10.1002/wdev.46] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A bilateral pair of somites forms periodically by segmentation of the anterior ends of the presomitic mesoderm (PSM). This periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic gene expression. Expression of her1 and her7 in zebrafish and Hes7 in mice oscillates by negative feedback, and mathematical models have been used to generate and test hypotheses to aide elucidation of the role of negative feedback in regulating oscillatory expression. her/Hes genes induce oscillatory expression of the Notch ligand deltaC in zebrafish and the Notch modulator Lunatic fringe in mice, which lead to synchronization of oscillatory gene expression between neighboring PSM cells. In the mouse PSM, Hes7 induces coupled oscillations of Notch and Fgf signaling, while Notch and Fgf signaling cooperatively regulate Hes7 oscillation, indicating that Hes7 and Notch and Fgf signaling form the oscillator networks. Notch signaling activates, but Fgf signaling represses, expression of the master regulator for somitogenesis Mesp2, and coupled oscillations in Notch and Fgf signaling dissociate in the anterior PSM, which allows Notch signaling-induced synchronized cells to express Mesp2 after these cells are freed from Fgf signaling. These results together suggest that Notch signaling defines the prospective somite region, while Fgf signaling regulates the pace of segmentation. It is likely that these oscillator networks constitute the core of the segmentation clock, but it remains to be determined whether as yet unknown oscillators function behind the scenes.
Collapse
|
223
|
Oates AC, Morelli LG, Ares S. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 2012; 139:625-39. [PMID: 22274695 DOI: 10.1242/dev.063735] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The segmentation clock is an oscillating genetic network thought to govern the rhythmic and sequential subdivision of the elongating body axis of the vertebrate embryo into somites: the precursors of the segmented vertebral column. Understanding how the rhythmic signal arises, how it achieves precision and how it patterns the embryo remain challenging issues. Recent work has provided evidence of how the period of the segmentation clock is regulated and how this affects the anatomy of the embryo. The ongoing development of real-time clock reporters and mathematical models promise novel insight into the dynamic behavior of the clock.
Collapse
Affiliation(s)
- Andrew C Oates
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden, Germany.
| | | | | |
Collapse
|
224
|
Eckalbar WL, Fisher RE, Rawls A, Kusumi K. Scoliosis and segmentation defects of the vertebrae. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:401-23. [PMID: 23801490 DOI: 10.1002/wdev.34] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vertebral column derives from somites, which are transient paired segments of mesoderm that surround the neural tube in the early embryo. Somites are formed by a genetic mechanism that is regulated by cyclical expression of genes in the Notch, Wnt, and fibroblast growth factor (FGF) signaling pathways. These oscillators together with signaling gradients within the presomitic mesoderm help to set somitic boundaries and rostral-caudal polarity that are essential for the precise patterning of the vertebral column. Disruption of this mechanism has been identified as the cause of severe segmentation defects of the vertebrae in humans. These segmentation defects are part of a spectrum of spinal disorders affecting the skeletal elements and musculature of the spine, resulting in curvatures such as scoliosis, kyphosis, and lordosis. While the etiology of most disorders with spinal curvatures is still unknown, genetic and developmental studies of somitogenesis and patterning of the axial skeleton and musculature are yielding insights into the causes of these diseases.
Collapse
|
225
|
Eckalbar WL, Lasku E, Infante CR, Elsey RM, Markov GJ, Allen AN, Corneveaux JJ, Losos JB, DeNardo DF, Huentelman MJ, Wilson-Rawls J, Rawls A, Kusumi K. Somitogenesis in the anole lizard and alligator reveals evolutionary convergence and divergence in the amniote segmentation clock. Dev Biol 2012; 363:308-19. [DOI: 10.1016/j.ydbio.2011.11.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/22/2011] [Accepted: 11/29/2011] [Indexed: 12/11/2022]
|
226
|
Rolland-Lagan AG, Paquette M, Tweedle V, Akimenko MA. Morphogen-based simulation model of ray growth and joint patterning during fin development and regeneration. Development 2012; 139:1188-97. [PMID: 22318227 DOI: 10.1242/dev.073452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The fact that some organisms are able to regenerate organs of the correct shape and size following amputation is particularly fascinating, but the mechanism by which this occurs remains poorly understood. The zebrafish (Danio rerio) caudal fin has emerged as a model system for the study of bone development and regeneration. The fin comprises 16 to 18 bony rays, each containing multiple joints along its proximodistal axis that give rise to segments. Experimental observations on fin ray growth, regeneration and joint formation have been described, but no unified theory has yet been put forward to explain how growth and joint patterns are controlled. We present a model for the control of fin ray growth during development and regeneration, integrated with a model for joint pattern formation, which is in agreement with published, as well as new, experimental data. We propose that fin ray growth and joint patterning are coordinated through the interaction of three morphogens. When the model is extended to incorporate multiple rays across the fin, it also accounts for how the caudal fin acquires its shape during development, and regains its correct size and shape following amputation.
Collapse
|
227
|
Keyte A, Smith KK. Heterochrony in somitogenesis rate in a model marsupial,Monodelphis domestica. Evol Dev 2012; 14:93-103. [DOI: 10.1111/j.1525-142x.2011.00524.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anna Keyte
- Duke University; Department of Biology; Durham NC 27708 USA
| | | |
Collapse
|
228
|
A complex 'mRNA degradation code' controls gene expression during animal development. Trends Genet 2012; 28:78-88. [PMID: 22257633 DOI: 10.1016/j.tig.2011.10.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/26/2011] [Accepted: 10/27/2011] [Indexed: 11/22/2022]
Abstract
Current understanding of the molecular mechanisms underlying mRNA degradation indicates that specific mRNA degradation rates are primarily encoded within the mRNA message itself in the form of cis-regulatory elements bearing particular primary sequences and/or secondary-structures. Such control elements are operated by RNA-binding proteins (RBPs) and/or miRNA-containing complexes. Based on the large number of RBPs and miRNAs encoded in metazoan genomes, their complex developmental expression and that specific RBP and miRNA interactions with mRNAs can lead to distinct degradation rates, I propose that developmental gene expression is shaped by a complex 'mRNA degradation code' with high information capacity. Localised cellular events involving the modification of RBP and/or miRNA target sequences in mRNAs by alternative polyadenylation added to the activation of specific RBP and miRNA activities via cell signalling are predicted to further expand the capacity of the mRNA degradation code by coupling it to dynamic events experienced by cells at specific spatiotemporal coordinates within the developing embryo.
Collapse
|
229
|
Venters SJ, Ordahl CP. Somite unit chronometry to analyze teratogen phase specificity in the paraxial mesoderm. Methods Mol Biol 2012; 798:103-123. [PMID: 22130834 DOI: 10.1007/978-1-61779-343-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phase specificity, the temporal and tissue restriction of teratogen-induced defects during embryonic -development, is a poorly understood but common property of teratogens, an important source of human birth defects. Somite counting and somite units are novel chronometric tools used here to identify stages of paraxial mesoderm development that are sensitive to pulse-chase exposure (2 to >16 h) to 5-bromodeoxyuridine (BrdU). In all cases, it was the presomitic mesoderm (PSM) that was sensitive to BrdU induced segmentation anomalies. At high concentration (1.0 × 10(-2) M BrdU), PSM presegment stages ss-IV and earlier were irreversibly inhibited from completing segmentation. At low concentration (2.6 × 10(-6) M), BrdU induced periodic focal defects that predominantly trace back to PSM presegments between ss-V and ss-IX. Phase specificity is characteristic of both types of segmentation anomalies. Focal segmentation defects are phase-specific because they result from disruption of 2-3 presegments in the PSM while adjacent -rostral and caudal presegments are (apparently) unaffected. Irreversible inhibition of segmentation is also phase-specific because only PSM presegments ss-IV or earlier were affected while older segments (ss-III to ss-I) were able to complete segmentation. The presegments predominantly affected have not yet passed the determination front, the point at which the segmentation clock establishes somite rostro-caudal -polarity. Somite unit chronometry provides a means to identify specific PSM presegment stages that are susceptible to induced segmentation defects and the biological processes that underlie that vulnerability.
Collapse
Affiliation(s)
- Sara J Venters
- Department of Neurosurgery, School of Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
230
|
The structural biology of the FGF19 subfamily. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 728:1-24. [PMID: 22396159 DOI: 10.1007/978-1-4614-0887-1_1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability of the Fibroblast Growth Factor (FGF) 19 subfamily to signal in an endocrine fashion sets this subfamily apart from the remaining five FGF subfamilies known for their paracrine functions during embryonic development. Compared to the members of paracrine FGF subfamiles, the three members of the FGF19 subfamily, namely FGF19, FGF21 and FGF23, have poor affinity for heparan sulfate (HS) and therefore can diffuse freely in the HS-rich extracellular matrix to enter into the bloodstream. In further contrast to paracrine FGFs, FGF19 subfamily members have unusually poor affinity for their cognate FGF receptors (FGFRs) and therefore cannot bind and activate them in a solely HS-dependent fashion. As a result, the FGF19 subfamily requires α/βklotho coreceptor proteins in order to bind, dimerize and activate their cognate FGFRs. This klotho-dependency also determines the tissue specificity of endocrine FGFs. Recent structural and biochemical studies have begun to shed light onto the molecular basis for the klotho-dependent endocrine mode of action of the FGF19 subfamily. Crystal structures of FGF19 and FGF23 show that the topology of the HS binding site (HBS) of FGF19 subfamily members deviates drastically from the common topology adopted by the paracrine FGFs. The distinct topologies of the HBS of FGF19 and FGF23 prevent HS from direct hydrogen bonding with the backbone atoms of the HBS of these ligands and accordingly decrease the HS binding affinity of this subfamily. Recent biochemical data reveal that the ?klotho ectodomain binds avidly to the ectodomain of FGFR1c, the main cognate FGFR of FGF23, creating a de novo high affinity binding site for the C-terminal tail of FGF23. The isolated FGF23 C-terminus can be used to effectively inhibit the formation of the FGF23-FGFR1c-αklotho complex and alleviate hypophosphatemia in renal phosphate disorders due to elevated levels of FGF23.
Collapse
|
231
|
François P. Evolution In Silico: From Network Structure to Bifurcation Theory. EVOLUTIONARY SYSTEMS BIOLOGY 2012; 751:157-82. [DOI: 10.1007/978-1-4614-3567-9_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
232
|
Peter Lopez T, Fan CM. A transgenic Tbx6;CreERT2 line for inducible gene manipulation in the presomitic mesoderm. Genesis 2011; 50:490-5. [PMID: 22121035 DOI: 10.1002/dvg.20827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 12/28/2022]
Abstract
The rhythmic segmentation process of the presomitic mesoderm (PSM) orchestrates the formation of somites, the fundamental units for the vertebrate axial body plan. To aid the investigation of molecular components governing the conversion from PSM into somites, we generated a transgenic mouse line that expresses a tamoxifen (tmx) inducible CreER(T2) under the control of a 2.5 kb enhancer element of Tbx6, a gene essential for PSM formation and somite patterning. Combined with Cre reporters, this Tbx6;CreER(T2) line displays robust tmx-inducible Cre activity in the PSM at various embryonic stages. This tool should be useful for studying gene function during somitogenesis by either conditional inactivation or mis-expression, and potentially coupled with cell marking.
Collapse
Affiliation(s)
- T Peter Lopez
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | | |
Collapse
|
233
|
Wang CH, Lin WD, Bau DT, Chou IC, Tsai FJ. Genetic and clinical profiles of spondylocostal dysostosis patients in Taiwan. Am J Med Genet A 2011; 155A:3132-5. [PMID: 22052723 DOI: 10.1002/ajmg.a.34301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2010] [Accepted: 08/17/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Chung-Hsing Wang
- Department of Pediatrics, China Medical University and Hospital, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
234
|
Pedersen L, Jensen MH, Krishna S. Dickkopf1--a new player in modelling the Wnt pathway. PLoS One 2011; 6:e25550. [PMID: 22022411 PMCID: PMC3192063 DOI: 10.1371/journal.pone.0025550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 09/07/2011] [Indexed: 01/22/2023] Open
Abstract
The Wnt signaling pathway transducing the stabilization of β-catenin is essential for metazoan embryo development and is misregulated in many diseases such as cancers. In recent years models have been proposed for the Wnt signaling pathway during the segmentation process in developing embryos. Many of these include negative feedback loops where Axin2 plays a key role. However, Axin2 null mice show no segmentation phenotype. We therefore propose a new model where the negative feedback involves Dkk1 rather than Axin2. We show that this model can exhibit the same type of oscillations as the previous models with Axin2 and as observed in experiments. We show that a spatial Wnt gradient can consistently convert this temporal periodicity into the spatial periodicity of somites, provided the oscillations in new cells arising in the presomitic mesoderm are synchronized with the oscillations of older cells. We further investigate the hypothesis that a change in the Wnt level in the tail bud during the later stages of somitogenesis can lengthen the time period of the oscillations and hence the size and separation of the later somites.
Collapse
Affiliation(s)
- Lykke Pedersen
- Center for Models of Life, Niels Bohr Institute, Copenhagen, Denmark.
| | | | | |
Collapse
|
235
|
Hester SD, Belmonte JM, Gens JS, Clendenon SG, Glazier JA. A multi-cell, multi-scale model of vertebrate segmentation and somite formation. PLoS Comput Biol 2011; 7:e1002155. [PMID: 21998560 PMCID: PMC3188485 DOI: 10.1371/journal.pcbi.1002155] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 06/27/2011] [Indexed: 12/23/2022] Open
Abstract
Somitogenesis, the formation of the body's primary segmental structure common to all vertebrate development, requires coordination between biological mechanisms at several scales. Explaining how these mechanisms interact across scales and how events are coordinated in space and time is necessary for a complete understanding of somitogenesis and its evolutionary flexibility. So far, mechanisms of somitogenesis have been studied independently. To test the consistency, integrability and combined explanatory power of current prevailing hypotheses, we built an integrated clock-and-wavefront model including submodels of the intracellular segmentation clock, intercellular segmentation-clock coupling via Delta/Notch signaling, an FGF8 determination front, delayed differentiation, clock-wavefront readout, and differential-cell-cell-adhesion-driven cell sorting. We identify inconsistencies between existing submodels and gaps in the current understanding of somitogenesis mechanisms, and propose novel submodels and extensions of existing submodels where necessary. For reasonable initial conditions, 2D simulations of our model robustly generate spatially and temporally regular somites, realistic dynamic morphologies and spontaneous emergence of anterior-traveling stripes of Lfng. We show that these traveling stripes are pseudo-waves rather than true propagating waves. Our model is flexible enough to generate interspecies-like variation in somite size in response to changes in the PSM growth rate and segmentation-clock period, and in the number and width of Lfng stripes in response to changes in the PSM growth rate, segmentation-clock period and PSM length.
Collapse
Affiliation(s)
- Susan D Hester
- Biocomplexity Institute and Department of Physics, Indiana University Bloomington, Bloomington, Indiana, United States of America.
| | | | | | | | | |
Collapse
|
236
|
Ten Tusscher KH, Hogeweg P. Evolution of networks for body plan patterning; interplay of modularity, robustness and evolvability. PLoS Comput Biol 2011; 7:e1002208. [PMID: 21998573 PMCID: PMC3188509 DOI: 10.1371/journal.pcbi.1002208] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 08/08/2011] [Indexed: 11/30/2022] Open
Abstract
A major goal of evolutionary developmental biology (evo-devo) is to understand how multicellular body plans of increasing complexity have evolved, and how the corresponding developmental programs are genetically encoded. It has been repeatedly argued that key to the evolution of increased body plan complexity is the modularity of the underlying developmental gene regulatory networks (GRNs). This modularity is considered essential for network robustness and evolvability. In our opinion, these ideas, appealing as they may sound, have not been sufficiently tested. Here we use computer simulations to study the evolution of GRNs' underlying body plan patterning. We select for body plan segmentation and differentiation, as these are considered to be major innovations in metazoan evolution. To allow modular networks to evolve, we independently select for segmentation and differentiation. We study both the occurrence and relation of robustness, evolvability and modularity of evolved networks. Interestingly, we observed two distinct evolutionary strategies to evolve a segmented, differentiated body plan. In the first strategy, first segments and then differentiation domains evolve (SF strategy). In the second scenario segments and domains evolve simultaneously (SS strategy). We demonstrate that under indirect selection for robustness the SF strategy becomes dominant. In addition, as a byproduct of this larger robustness, the SF strategy is also more evolvable. Finally, using a combined functional and architectural approach, we determine network modularity. We find that while SS networks generate segments and domains in an integrated manner, SF networks use largely independent modules to produce segments and domains. Surprisingly, we find that widely used, purely architectural methods for determining network modularity completely fail to establish this higher modularity of SF networks. Finally, we observe that, as a free side effect of evolving segmentation and differentiation in combination, we obtained in-silico developmental mechanisms resembling mechanisms used in vertebrate development.
Collapse
Affiliation(s)
- Kirsten H Ten Tusscher
- Theoretical Biology and Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
237
|
Soroldoni D, Oates AC. Live transgenic reporters of the vertebrate embryo's Segmentation Clock. Curr Opin Genet Dev 2011; 21:600-5. [PMID: 21963131 DOI: 10.1016/j.gde.2011.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/23/2011] [Accepted: 09/06/2011] [Indexed: 01/14/2023]
Abstract
Imaging rapidly changing gene expression during embryogenesis is a challenge for the development of probes and imaging techniques. The vertebrate Segmentation Clock is a genetic network that controls the subdivision of the elongating embryonic body axis into somites, the precursors of adult segmented structures, such as vertebrae. Because of its rapid oscillations, direct observation of gene expression in this system has proven difficult, and so is a benchmark for transgene design and imaging in vivo. Transgenic approaches using destabilized reporter cassettes in the mouse embryo have provided the first glimpses of this dynamic expression system. Nevertheless, improvements in temporal and spatial resolution, paired with the ability to make precise quantifications, will be necessary to connect observations and theory.
Collapse
Affiliation(s)
- Daniele Soroldoni
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | |
Collapse
|
238
|
Jacobs-McDaniels NL, Albertson RC. Chd7 plays a critical role in controlling left-right symmetry during zebrafish somitogenesis. Dev Dyn 2011; 240:2272-80. [PMID: 21901784 DOI: 10.1002/dvdy.22722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2011] [Indexed: 01/18/2023] Open
Abstract
Somitogenesis is a complex process during early vertebrate development involving interactions between many factors to form a bilateral somite series. A role for chromatin remodelers in somitogenesis has not yet been demonstrated. Here, we investigate the function of chromodomain helicase DNA binding protein 7 (chd7) during zebrafish somitogenesis. We show that Chd7 deficiency leads to asymmetric segmentation of the presomitic mesoderm (PSM), as revealed by expression of the somitogenesis genes, cdx1a, dlc, her7, mespa, and ripply1. Moreover, we show that abrogation of Chd7 results in the loss of asymmetric expression of spaw in the lateral plate mesoderm, which is consistent with more general laterality defects. Based on the observation that insufficient Chd7 leads to left-right asymmetry defects during PSM segmentation, and because CHD7 has been linked to human spinal deformities, we suggest that zebrafish chd7 morphants may be a good in vivo model to examine the pathophysiology of these diseases.
Collapse
|
239
|
Bénazéraf B, François P, Denans N, Little CD, Pourquié O. [A non directional cell migration gradient in the presomitic mesoderm contributes to axis elongation in chicken embryos]. Biol Aujourdhui 2011; 205:95-103. [PMID: 21831340 DOI: 10.1051/jbio/2011014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Indexed: 11/14/2022]
Abstract
Vertebrates are characterized by an elongated antero-posterior (AP) body axis. This particular shape arises during embryogenesis by mophogenetic events leading to elongation. Although elongation mechanisms that lead to the formation of the anterior part of the body are well described, the ones concerning the posterior part still remain poorly studied. Here, we used tissue ablation in the chicken embryo to demonstrate that caudal presomitic mesoderm (PSM) has a key role in axis elongation. Using time-lapse microscopy, we characterized a clear posterior-to-anterior gradient of cell and tissue motility in the PSM during embryo elongation. Subtracting the tissue movement from the global motion of cells we demonstrated that this gradient correspond to a gradient of cell motility lacking any directionality, indicating that the posterior cell movements associated with axis elongation in the PSM are not intrinsic but reflect tissue deformation. Both FGF signaling gain- and loss-of-function experiments lead to disruption of the motility gradient and a slowing down of axis elongation. Finally we performed experiments indicating that FGF effect on elongation is due to its effect on cell migration and not to regulation of the cell cycle. We propose a new elongation model in which the gradient of non directional cell motility in the PSM controls posterior elongation of the embryo axis.
Collapse
|
240
|
Martínez-Morales PL, Diez del Corral R, Olivera-Martínez I, Quiroga AC, Das RM, Barbas JA, Storey KG, Morales AV. FGF and retinoic acid activity gradients control the timing of neural crest cell emigration in the trunk. ACTA ACUST UNITED AC 2011; 194:489-503. [PMID: 21807879 PMCID: PMC3153641 DOI: 10.1083/jcb.201011077] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coordination between functionally related adjacent tissues is essential during development. For example, formation of trunk neural crest cells (NCCs) is highly influenced by the adjacent mesoderm, but the molecular mechanism involved is not well understood. As part of this mechanism, fibroblast growth factor (FGF) and retinoic acid (RA) mesodermal gradients control the onset of neurogenesis in the extending neural tube. In this paper, using gain- and loss-of-function experiments, we show that caudal FGF signaling prevents premature specification of NCCs and, consequently, premature epithelial-mesenchymal transition (EMT) to allow cell emigration. In contrast, rostrally generated RA promotes EMT of NCCs at somitic levels. Furthermore, we show that FGF and RA signaling control EMT in part through the modulation of elements of the bone morphogenetic protein and Wnt signaling pathways. These data establish a clear role for opposition of FGF and RA signaling in control of the timing of NCC EMT and emigration and, consequently, coordination of the development of the central and peripheral nervous system during vertebrate trunk elongation.
Collapse
|
241
|
Harrison NC, Diez del Corral R, Vasiev B. Coordination of cell differentiation and migration in mathematical models of caudal embryonic axis extension. PLoS One 2011; 6:e22700. [PMID: 21829483 PMCID: PMC3145656 DOI: 10.1371/journal.pone.0022700] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 07/05/2011] [Indexed: 12/02/2022] Open
Abstract
Vertebrate embryos display a predominant head-to-tail body axis whose formation is associated with the progressive development of post-cranial structures from a pool of caudal undifferentiated cells. This involves the maintenance of active FGF signaling in this caudal region as a consequence of the restricted production of the secreted factor FGF8. FGF8 is transcribed specifically in the caudal precursor region and is down-regulated as cells differentiate and the embryo extends caudally. We are interested in understanding the progressive down-regulation of FGF8 and its coordination with the caudal movement of cells which is also known to be FGF-signaling dependent. Our study is performed using mathematical modeling and computer simulations. We use an individual-based hybrid model as well as a caricature continuous model for the simulation of experimental observations (ours and those known from the literature) in order to examine possible mechanisms that drive differentiation and cell movement during the axis elongation. Using these models we have identified a possible gene regulatory network involving self-repression of a caudal morphogen coupled to directional domain movement that may account for progressive down-regulation of FGF8 and conservation of the FGF8 domain of expression. Furthermore, we have shown that chemotaxis driven by molecules, such as FGF8 secreted in the stem zone, could underlie the migration of the caudal precursor zone and, therefore, embryonic axis extension. These mechanisms may also be at play in other developmental processes displaying a similar mode of axis extension coupled to cell differentiation.
Collapse
Affiliation(s)
- Nigel C. Harrison
- Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Bakhtier Vasiev
- Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
242
|
Niwa Y, Shimojo H, Isomura A, González A, Miyachi H, Kageyama R. Different types of oscillations in Notch and Fgf signaling regulate the spatiotemporal periodicity of somitogenesis. Genes Dev 2011; 25:1115-20. [PMID: 21632822 DOI: 10.1101/gad.2035311] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Somitogenesis is controlled by cyclic genes such as Notch effectors and by the wave front established by morphogens such as Fgf8, but the precise mechanism of how these factors are coordinated remains to be determined. Here, we show that effectors of Notch and Fgf pathways oscillate in different dynamics and that oscillations in Notch signaling generate alternating phase shift, thereby periodically segregating a group of synchronized cells, whereas oscillations in Fgf signaling released these synchronized cells for somitogenesis at the same time. These results suggest that Notch oscillators define the prospective somite region, while Fgf oscillators regulate the pace of segmentation.
Collapse
Affiliation(s)
- Yasutaka Niwa
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
243
|
Chalamalasetty RB, Dunty WC, Biris KK, Ajima R, Iacovino M, Beisaw A, Feigenbaum L, Chapman DL, Yoon JK, Kyba M, Yamaguchi TP. The Wnt3a/β-catenin target gene Mesogenin1 controls the segmentation clock by activating a Notch signalling program. Nat Commun 2011; 2:390. [PMID: 21750544 PMCID: PMC3622708 DOI: 10.1038/ncomms1381] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/08/2011] [Indexed: 12/13/2022] Open
Abstract
Segmentation is an organizing principle of body plans. The segmentation clock, a molecular oscillator best illustrated by the cyclic expression of Notch signalling genes, controls the periodic cleavage of somites from unsegmented presomitic mesoderm during vertebrate segmentation. Wnt3a controls the spatiotemporal expression of cyclic Notch genes; however, the underlying mechanisms remain obscure. Here we show by transcriptional profiling of Wnt3a (-/-) embryos that the bHLH transcription factor, Mesogenin1 (Msgn1), is a direct target gene of Wnt3a. To identify Msgn1 targets, we conducted genome-wide studies of Msgn1 activity in embryonic stem cells. We show that Msgn1 is a major transcriptional activator of a Notch signalling program and synergizes with Notch to trigger clock gene expression. Msgn1 also indirectly regulates cyclic genes in the Fgf and Wnt pathways. Thus, Msgn1 is a central component of a transcriptional cascade that translates a spatial Wnt3a gradient into a temporal pattern of clock gene expression.
Collapse
Affiliation(s)
- Ravindra B. Chalamalasetty
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - William C. Dunty
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Kristin K. Biris
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Rieko Ajima
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Michelina Iacovino
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Arica Beisaw
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Lionel Feigenbaum
- Laboratory Animal Sciences Program, National Cancer Institute-Frederick Frederick, MD 21702, USA
| | - Deborah L. Chapman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jeong Kyo Yoon
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Terry P. Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| |
Collapse
|
244
|
Murray PJ, Maini PK, Baker RE. The clock and wavefront model revisited. J Theor Biol 2011; 283:227-38. [PMID: 21635902 DOI: 10.1016/j.jtbi.2011.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/24/2011] [Accepted: 05/03/2011] [Indexed: 01/12/2023]
Abstract
The currently accepted interpretation of the clock and wavefront model of somitogenesis is that a posteriorly moving molecular gradient sequentially slows the rate of clock oscillations, resulting in a spatial readout of temporal oscillations. However, while molecular components of the clocks and wavefronts have now been identified in the pre-somitic mesoderm (PSM), there is not yet conclusive evidence demonstrating that the observed molecular wavefronts act to slow clock oscillations. Here we present an alternative formulation of the clock and wavefront model in which oscillator coupling, already known to play a key role in oscillator synchronisation, plays a fundamentally important role in the slowing of oscillations along the anterior-posterior (AP) axis. Our model has three parameters which can be determined, in any given species, by the measurement of three quantities: the clock period in the posterior PSM, somite length and the length of the PSM. A travelling wavefront, which slows oscillations along the AP axis, is an emergent feature of the model. Using the model we predict: (a) the distance between moving stripes of gene expression; (b) the number of moving stripes of gene expression and (c) the oscillator period profile along the AP axis. Predictions regarding the stripe data are verified using existing zebrafish data. We simulate a range of experimental perturbations and demonstrate how the model can be used to unambiguously define a reference frame along the AP axis. Comparing data from zebrafish, chick, mouse and snake, we demonstrate that: (a) variation in patterning profiles is accounted for by a single nondimensional parameter; the ratio of coupling strengths; and (b) the period profile along the AP axis is conserved across species. Thus the model is consistent with the idea that, although the genes involved in pattern propagation in the PSM vary, there is a conserved patterning mechanism across species.
Collapse
Affiliation(s)
- Philip J Murray
- Centre for Mathematical Biology, Mathematical Institute, 24-29 St Giles', Oxford OX1 3LB, UK.
| | | | | |
Collapse
|
245
|
Abstract
One of the most striking features of the human vertebral column is its periodic organization along the anterior-posterior axis. This pattern is established when segments of vertebrates, called somites, bud off at a defined pace from the anterior tip of the embryo's presomitic mesoderm (PSM). To trigger this rhythmic production of somites, three major signaling pathways--Notch, Wnt/β-catenin, and fibroblast growth factor (FGF)--integrate into a molecular network that generates a traveling wave of gene expression along the embryonic axis, called the "segmentation clock." Recent systems approaches have begun identifying specific signaling circuits within the network that set the pace of the oscillations, synchronize gene expression cycles in neighboring cells, and contribute to the robustness and bilateral symmetry of somite formation. These findings establish a new model for vertebrate segmentation and provide a conceptual framework to explain human diseases of the spine, such as congenital scoliosis.
Collapse
Affiliation(s)
- Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, Illkirch F-67400, France
| |
Collapse
|
246
|
Rapacioli M, Rodríguez Celín A, Duarte S, Ortalli AL, Di Napoli J, Teruel L, Sánchez V, Scicolone G, Flores V. The chick optic tectum developmental stages. A dynamic table based on temporal- and spatial-dependent histogenetic changes: A structural, morphometric and immunocytochemical analysis. J Morphol 2011; 272:675-97. [PMID: 21484853 DOI: 10.1002/jmor.10943] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 11/26/2010] [Accepted: 12/05/2010] [Indexed: 11/07/2022]
Abstract
Development is often described as temporal sequences of developmental stages (DSs). When tables of DS are defined exclusively in the time domain they cannot discriminate histogenetic differences between different positions along a spatial reference axis. We introduce a table of DSs for the developing chick optic tectum (OT) based on time- and space-dependent changes in quantitative morphometric parameters, qualitative histogenetic features and immunocytochemical pattern of several developmentally active molecules (Notch1, Hes5, NeuroD1, β-III-Tubulin, synaptotagmin-I and neurofilament-M). Seven DSs and four transitional stages were defined from ED2 to ED12, when the basic OT cortical organization is established, along a spatial developmental gradient axis extending between a zone of maximal and a zone of minimal development. The table of DSs reveals that DSs do not only progress as a function of time but also display a spatially organized propagation along the developmental gradient axis. The complex and dynamic character of the OT development is documented by the fact that several DSs are simultaneously present at any ED or any embryonic stage. The table of DSs allows interpreting how developmental cell behaviors are temporally and spatially organized and explains how different DSs appear as a function of both time and space. The table of DSs provides a reference system to characterize the OT corticogenesis and to reliably compare observations made in different specimens.
Collapse
Affiliation(s)
- Melina Rapacioli
- Department of Biostructural Sciences, Interdisciplinary Group in Theoretical Biology, Favaloro University, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Pang D, Thompson DNP. Embryology and bony malformations of the craniovertebral junction. Childs Nerv Syst 2011; 27:523-64. [PMID: 21193993 PMCID: PMC3055990 DOI: 10.1007/s00381-010-1358-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 11/23/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND The embryology of the bony craniovertebral junction (CVJ) is reviewed with the purpose of explaining the genesis and unusual configurations of the numerous congenital malformations in this region. Functionally, the bony CVJ can be divided into a central pillar consisting of the basiocciput and dental pivot and a two-tiered ring revolving round the central pivot, comprising the foramen magnum rim and occipital condyles above and the atlantal ring below. Embryologically, the central pillar and the surrounding rings descend from different primordia, and accordingly, developmental anomalies at the CVJ can also be segregated into those affecting the central pillar and those affecting the surrounding rings, respectively. DISCUSSION A logical classification of this seemingly unwieldy group of malformations is thus possible based on their ontogenetic lineage, morbid anatomy, and clinical relevance. Representative examples of the main constituents of this classification scheme are given, and their surgical treatments are selectively discussed.
Collapse
Affiliation(s)
- Dachling Pang
- Department of Neurological Surgery, University of California, Davis, Sacramento, CA, USA.
| | | |
Collapse
|
248
|
Clagett-Dame M, Knutson D. Vitamin A in reproduction and development. Nutrients 2011; 3:385-428. [PMID: 22254103 PMCID: PMC3257687 DOI: 10.3390/nu3040385] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/28/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022] Open
Abstract
The requirement for vitamin A in reproduction was first recognized in the early 1900's, and its importance in the eyes of developing embryos was realized shortly after. A greater understanding of the large number of developmental processes that require vitamin A emerged first from nutritional deficiency studies in rat embryos, and later from genetic studies in mice. It is now generally believed that all-trans retinoic acid (RA) is the form of vitamin A that supports both male and female reproduction as well as embryonic development. This conclusion is based on the ability to reverse most reproductive and developmental blocks found in vitamin A deficiency induced either by nutritional or genetic means with RA, and the ability to recapitulate the majority of embryonic defects in retinoic acid receptor compound null mutants. The activity of the catabolic CYP26 enzymes in determining what tissues have access to RA has emerged as a key regulatory mechanism, and helps to explain why exogenous RA can rescue many vitamin A deficiency defects. In severely vitamin A-deficient (VAD) female rats, reproduction fails prior to implantation, whereas in VAD pregnant rats given small amounts of carotene or supported on limiting quantities of RA early in organogenesis, embryos form but show a collection of defects called the vitamin A deficiency syndrome or late vitamin A deficiency. Vitamin A is also essential for the maintenance of the male genital tract and spermatogenesis. Recent studies show that vitamin A participates in a signaling mechanism to initiate meiosis in the female gonad during embryogenesis, and in the male gonad postnatally. Both nutritional and genetic approaches are being used to elucidate the vitamin A-dependent pathways upon which these processes depend.
Collapse
Affiliation(s)
- Margaret Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA;
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Ave., Madison, WI 53705, USA
| | - Danielle Knutson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA;
| |
Collapse
|
249
|
FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis. Proc Natl Acad Sci U S A 2011; 108:4018-23. [PMID: 21368122 DOI: 10.1073/pnas.1007417108] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Somites form along the embryonic axis by sequential segmentation from the presomitic mesoderm (PSM) and differentiate into the segmented vertebral column as well as other unsegmented tissues. Somites are thought to form via the intersection of two activities known as the clock and the wavefront. Previous work has suggested that fibroblast growth factor (FGF) activity may be the wavefront signal, which maintains the PSM in an undifferentiated state. However, it is unclear which (if any) of the FGFs expressed in the PSM comprise this activity, as removal of any one gene is insufficient to disrupt early somitogenesis. Here we show that when both Fgf4 and Fgf8 are deleted in the PSM, expression of most PSM genes is absent, including cycling genes, WNT pathway genes, and markers of undifferentiated PSM. Significantly, markers of nascent somite cell fate expand throughout the PSM, demonstrating the premature differentiation of this entire tissue, a highly unusual phenotype indicative of the loss of wavefront activity. When WNT signaling is restored in mutants, PSM progenitor markers are partially restored but premature differentiation of the PSM still occurs, demonstrating that FGF signaling operates independently of WNT signaling. This study provides genetic evidence that FGFs are the wavefront signal and identifies the specific FGF ligands that encode this activity. Furthermore, these data show that FGF action maintains WNT signaling, and that both signaling pathways are required in parallel to maintain PSM progenitor tissue.
Collapse
|
250
|
|