201
|
Samuel G, Reeves P. Biosynthesis of O-antigens: genes and pathways involved in nucleotide sugar precursor synthesis and O-antigen assembly. Carbohydr Res 2004; 338:2503-19. [PMID: 14670712 DOI: 10.1016/j.carres.2003.07.009] [Citation(s) in RCA: 387] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The O-antigen is an important component of the outer membrane of Gram-negative bacteria. It is a repeat unit polysaccharide and consists of a number of repeats of an oligosaccharide, the O-unit, which generally has between two and six sugar residues. O-Antigens are extremely variable, the variation lying in the nature, order and linkage of the different sugars within the polysaccharide. The genes involved in O-antigen biosynthesis are generally found on the chromosome as an O-antigen gene cluster, and the structural variation of O-antigens is mirrored by genetic variation seen in these clusters. The genes within the cluster fall into three major groups. The first group is involved in nucleotide sugar biosynthesis. These genes are often found together in the cluster and have a high level of identity. The genes coding for a significant number of nucleotide sugar biosynthesis pathways have been identified and these pathways seem to be conserved in different O-antigen clusters and across a wide range of species. The second group, the glycosyl transferases, is involved in sugar transfer. They are often dispersed throughout the cluster and have low levels of similarity. The third group is the O-antigen processing genes. This review is a summary of the current knowledge on these three groups of genes that comprise the O-antigen gene clusters, focusing on the most extensively studied E. coli and S. enterica gene clusters.
Collapse
Affiliation(s)
- Gabrielle Samuel
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
202
|
Jennison AV, Verma NK. Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev 2004; 28:43-58. [PMID: 14975529 DOI: 10.1016/j.femsre.2003.07.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 07/25/2003] [Accepted: 07/30/2003] [Indexed: 02/08/2023] Open
Abstract
Shigella flexneri is a gram-negative bacterium which causes the most communicable of bacterial dysenteries, shigellosis. Shigellosis causes 1.1 million deaths and over 164 million cases each year, with the majority of cases occurring in the children of developing nations. The pathogenesis of S. flexneri is based on the bacteria's ability to invade and replicate within the colonic epithelium, which results in severe inflammation and epithelial destruction. The molecular mechanisms used by S. flexneri to cross the epithelial barrier, evade the host's immune response and enter epithelial cells have been studied extensively in both in vitro and in vivo models. Consequently, numerous virulence factors essential to bacterial invasion, intercellular spread and the induction of inflammation have been identified in S. flexneri. The inflammation produced by the host has been implicated in both the destruction of the colonic epithelium and in controlling and containing the Shigella infection. The host's humoral response to S. flexneri also appears to be important in protecting the host, whilst the role of the cellular immune response remains unclear. The host's immune response to shigellosis is serotype-specific and protective against reinfection by the same serotype, making vaccination a possibility. Since the 1940s vaccines for S. flexneri have been developed with little success, however, the growing understanding of S. flexneri's pathogenesis and the host's immune response is assisting in the generation of more refined vaccine strategies. Current research encompasses a variety of vaccine types, which despite disparity in their efficacy and safety in humans represent promising progress in S. flexneri vaccine development.
Collapse
Affiliation(s)
- Amy V Jennison
- Faculty of Science, School of Biochemistry and Molecular Biology, The Australian National University, Canberra, ACT 0200, Australia
| | | |
Collapse
|
203
|
Faruque SM, Chowdhury N, Khan R, Hasan MR, Nahar J, Islam MJ, Yamasaki S, Ghosh AN, Nair GB, Sack DA. Shigella dysenteriae type 1-specific bacteriophage from environmental waters in Bangladesh. Appl Environ Microbiol 2004; 69:7028-31. [PMID: 14660345 PMCID: PMC310026 DOI: 10.1128/aem.69.12.7028-7031.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella dysenteriae type 1 is the causative agent of the most severe form of bacillary dysentery, which occurs as epidemics in many developing countries. We isolated a bacteriophage from surface water samples from Bangladesh that specifically lyses strains of S. dysenteriae type 1. This phage, designated SF-9, belongs to the Podoviridae family and has a 41-kb double-stranded DNA genome. Further screening of water samples for the prevalence of the phage revealed 9 of 71 (12.6%) water samples which were positive for the phage. These water samples were also positive in PCR assays for one or more S. dysenteriae type 1-specific genes, including ipaBCD and stx1, and live S. dysenteriae type 1 was isolated from three phage-positive samples. The results of this study suggest that phage SF-9 may have epidemiological applications in tracing the presence of S. dysenteriae type 1 in environmental waters.
Collapse
Affiliation(s)
- Shah M Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka 1212, Bangladesh.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Mavris M, Sansonetti P. Microbial-gut interactions in health and disease. Epithelial cell responses. Best Pract Res Clin Gastroenterol 2004; 18:373-86. [PMID: 15123076 DOI: 10.1016/j.bpg.2003.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pathogenic bacteria use many strategies to secure their survival within the host. Enteropathogens exploit intestinal epithelial cells in many ways, including the manipulation of normal cellular functioning, or of cellular structural components, or by the induction of signalling pathways, such as the production of pro-inflammatory cytokines. However, the enterocyte warns the host of impending danger and, in turn, elicits a protective response. Pathogens are detected by epithelial cells owing to their vast array of surface antigens and secreted products. Epithelial cells have developed both extracellular and intracellular sensing proteins that function as a first line of defence against pathogens; this is followed by acquired immunity, namely IgA, which is used as reinforcement. Thus, in a game of constant attack and defence, the pathogen and the enterocyte aim to outsmart each other in an effort to survive.
Collapse
Affiliation(s)
- Maria Mavris
- Unité de Pathogénie Microbienne Moléculaire, INSERM U389, Institut Pasteur, 28, rue du Dr Roux, 75724 Paris 15, France.
| | | |
Collapse
|
205
|
Abstract
In this review, we focus on a group of mobile genetic elements designated pathogenicity islands (PAI). These elements play a pivotal role in the virulence of bacterial pathogens of humans and are also essential for virulence in pathogens of animals and plants. Characteristic molecular features of PAI of important human pathogens and their role in pathogenesis are described. The availability of a large number of genome sequences of pathogenic bacteria and their benign relatives currently offers a unique opportunity for the identification of novel pathogen-specific genomic islands. However, this knowledge has to be complemented by improved model systems for the analysis of virulence functions of bacterial pathogens. PAI apparently have been acquired during the speciation of pathogens from their nonpathogenic or environmental ancestors. The acquisition of PAI not only is an ancient evolutionary event that led to the appearance of bacterial pathogens on a timescale of millions of years but also may represent a mechanism that contributes to the appearance of new pathogens within a human life span. The acquisition of knowledge about PAI, their structure, their mobility, and the pathogenicity factors they encode not only is helpful in gaining a better understanding of bacterial evolution and interactions of pathogens with eukaryotic host cells but also may have important practical implications such as providing delivery systems for vaccination, tools for cell biology, and tools for the development of new strategies for therapy of bacterial infections.
Collapse
Affiliation(s)
- Herbert Schmidt
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | | |
Collapse
|
206
|
Escobar-Páramo P, Giudicelli C, Parsot C, Denamur E. The evolutionary history of Shigella and enteroinvasive Escherichia coli revised. J Mol Evol 2004; 57:140-8. [PMID: 14562958 DOI: 10.1007/s00239-003-2460-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 01/14/2003] [Indexed: 10/26/2022]
Abstract
In Shigella and enteroinvasive Escherichia coli (EIEC), the etiologic agents of shigellosis in humans, the determinants responsible for entry of bacteria into and dissemination within epithelial cells are encoded by a virulence plasmid. To understand the evolution of the association between the virulence plasmid and the chromosome, we performed a phylogenetic analysis using the sequences of four chromosomal genes (trpA, trpB, pabB, and putP) and three virulence plasmid genes (ipaB, ipaD, and icsA) of a collection of 51 Shigella and EIEC strains. The phylogenetic tree derived from chromosomal genes showed a typical "star" phylogeny, indicating a fast diversification of Shigella and EIEC groups. Phylogenetic groups obtained from the chromosomal and plasmidic genes were similar, suggesting that the virulence plasmid and the chromosome share similar evolutionary histories. The few incongruences between the trees could be attributed to exchanges of fragments of different plasmids and not to the transfer of an entire plasmid. This indicates that the virulence plasmid was not transferred between the different Shigella and EIEC groups. These data support a model of evolution in which the acquisition of the virulence plasmid in an ancestral E. coli strain preceded the diversification by radiation of all Shigella and EIEC groups, which led to highly diversified but highly specialized pathogenic groups.
Collapse
|
207
|
Korres H, Verma NK. Topological analysis of glucosyltransferase GtrV of Shigella flexneri by a dual reporter system and identification of a unique reentrant loop. J Biol Chem 2004; 279:22469-76. [PMID: 15028730 DOI: 10.1074/jbc.m401316200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipopolysaccharide, particularly the O-antigen component, is one of many virulence determinants necessary for Shigella flexneri pathogenesis. O-Antigen modification is mediated by glucosyltransferase genes (gtr) encoded by temperate serotype-converting bacteriophages. The gtrV gene encodes the GtrV glucosyltransferase, an integral membrane protein that catalyzes the transfer of a glucosyl residue via an alpha1,3 linkage to rhamnose II of the O-antigen unit. This mediates conversion of S. flexneri serotype Y to serotype 5a. Analysis of the GtrV amino acid sequence using computer prediction programs indicated that GtrV had 9-11 transmembrane segments. The computer prediction models were tested by genetically fusing C-terminal deletions of GtrV to a dual reporter system composed of alkaline phosphatase and beta-galactosidase. Sandwiched GtrV-PhoA/LacZ fusions were also constructed at predetermined positions. The enzyme activities of cells with the GtrV-PhoA/LacZ fusions and the particular location of the fusions in the gtrV indicated that GtrV has nine transmembrane segments and one large N-terminal periplasmic loop with the N and C termini located on the cytoplasmic and periplasmic sides of the membrane, respectively. The existence of a unique reentrant loop was discovered after transmembrane segment IV, a feature not documented in other bacterial glycosyltransferases. Its potential role in mediating serotype conversion in S. flexneri is discussed.
Collapse
Affiliation(s)
- Haralambos Korres
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra ACT 0200, Australia
| | | |
Collapse
|
208
|
Feng L, Senchenkova SN, Yang J, Shashkov AS, Tao J, Guo H, Zhao G, Knirel YA, Reeves P, Wang L. Structural and genetic characterization of the Shigella boydii type 13 O antigen. J Bacteriol 2004; 186:383-92. [PMID: 14702307 PMCID: PMC305744 DOI: 10.1128/jb.186.2.383-392.2004] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella is an important human pathogen. It is generally agreed that Shigella and Escherichia coli constitute a single species; the only exception is Shigella boydii type 13, which is more distantly related to E. coli and other Shigella forms and seems to represent another species. This gives S. boydii type 13 an important status in evolution. O antigen is the polysaccharide part of the lipopolysaccharide in the outer membrane of gram-negative bacteria and plays an important role in pathogenicity. The chemical structure and genetic organization of the S. boydii type 13 O antigen were investigated. The O polysaccharide was found to be acid labile owing to the presence of a glycosyl phosphate linkage in the main chain. The structure of the linear pentasaccharide phosphate repeating unit (O unit) was established by nuclear magnetic resonance spectroscopy, including two-dimensional COSY, TOCSY, ROESY, and H-detected 1H, 13C and 1H, 31P HMQC experiments, along with chemical methods. The O antigen gene cluster of S. boydii type 13 was located and sequenced. Genes for synthesis of UDP-2-acetamido-2,6-dideoxy-L-glucose and genes that encode putative sugar transferases, O unit flippase, and O antigen polymerase were identified. Seven genes were found to be specific to S. boydii type 13. The S. boydii type 13 O antigen gene cluster has higher levels of sequence similarity with Vibrio cholerae gene clusters and may be evolutionarily related to these gene clusters.
Collapse
Affiliation(s)
- Lu Feng
- College of Life Sciences, Nankai University, Tianjin 300071, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Surdeanu M, Ciudin L, Pencu E, Straut M. Comparative study of three different DNA fingerprint techniques for molecular typing of Shigella flexneri strains isolated in Romania. Eur J Epidemiol 2003; 18:703-10. [PMID: 12952147 DOI: 10.1023/a:1024831609901] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, 97 epidemiologically unrelated Shigella flexneri strains isolated during 1994 (69 isolates) and 1997 (28 isolates) were characterised by ribotyping, enterobacterial repetitive intergenic consensus sequence-based PCR typing, and pulsed-field gel electrophoresis. Number of strains belonging to each of the six serotypes is selected equal to their distribution in Romania. The isolates comprise 24 ribotypes based on combination of two restriction patterns obtained with HindlII and PstI, respectively, 7 enterobacterial repetitive intergenic consensus (ERIC)-PCR types, and 92 XbaI pulsed-field gel electrophoresis (PFGE) patterns grouped in 31 pulsotypes at Dice coefficients of 85% similarity. We find no significant difference in the distribution of isolates collected during the two periods. Macrorestriction analysis by PFGE offers maximal discrimination. There seems to be little genetic variability among circulating S. flexneri strains of serotype 2a, suggesting that even a combination of several molecular techniques, including PFGE, could not easily differentiate an outbreak strain from temporally associated independent isolates.
Collapse
MESH Headings
- DNA Fingerprinting/methods
- DNA Fingerprinting/standards
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- Deoxyribonucleases, Type II Site-Specific
- Discriminant Analysis
- Disease Outbreaks/statistics & numerical data
- Dysentery, Bacillary/epidemiology
- Dysentery, Bacillary/microbiology
- Electrophoresis, Gel, Pulsed-Field/methods
- Electrophoresis, Gel, Pulsed-Field/standards
- Genetic Variation/genetics
- Genotype
- Humans
- Molecular Epidemiology
- Phylogeny
- Polymerase Chain Reaction/methods
- Polymerase Chain Reaction/standards
- Polymorphism, Restriction Fragment Length
- Ribotyping/methods
- Ribotyping/standards
- Romania/epidemiology
- Serotyping/methods
- Serotyping/standards
- Shigella flexneri/genetics
- Site-Specific DNA-Methyltransferase (Adenine-Specific)
Collapse
Affiliation(s)
- Maria Surdeanu
- Molecular Epidemiology Laboratory, Cantacuzino Institute, Bucharest, Romania
| | | | | | | |
Collapse
|
210
|
Abstract
The identification of accessory genetic elements (plasmids, phages and chromosomal 'pathogenicity islands') encoding virulence-associated genes has facilitated our efforts to understand the origination of pathogenic microorganisms. Toxigenic Vibrio cholerae, the etiologic agent of cholera, represents a paradigm for this process in that this organism evolved from environmental nonpathogenic V. cholerae by acquisition of virulence genes. The major virulence genes in V. cholerae, which are clustered in several chromosomal regions, appear to have been recently acquired from phages or through undefined horizontal gene transfer events. Evidence is accumulating that the interactions of phages with each other can also influence the emergence of pathogenic clones of V. cholerae. Therefore, to track the evolution of pathogens from their nonpathogenic progenitors, it is also crucial to identify and characterize secondary genetic elements that mediate lateral transfer of virulence genes in trans. Understanding the evolutionary events that lead to the emergence of pathogenic clones might provide new approaches to the control of cholera and other infectious diseases.
Collapse
Affiliation(s)
- Shah M Faruque
- Molecular Genetics Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka-1212, Bangladesh.
| | | |
Collapse
|
211
|
Reeves PR, Pacinelli E, Wang L. O antigen gene clusters of Yersinia pseudotuberculosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 529:199-206. [PMID: 12756757 DOI: 10.1007/0-306-48416-1_39] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Peter R Reeves
- School of Molecular and Microbial Biosciences, University of Sydney, NSW2006, Australia
| | | | | |
Collapse
|
212
|
Chen JH, Hsu WB, Chiou CS, Chen CM. Conversion of Shigella flexneri serotype 2a to serotype Y in a shigellosis patient due to a single amino acid substitution in the protein product of the bacterial glucosyltransferase gtrII gene. FEMS Microbiol Lett 2003; 224:277-83. [PMID: 12892893 DOI: 10.1016/s0378-1097(03)00470-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Conversion of serotype from 2a to Y was demonstrated with five Shigella flexneri isolates recovered from an infected patient. When introduced into the serotype Y isolate, the glucosyltransferase (gtr) II gene of the serotype 2a isolate is capable of inducing the conversion from serotype Y to 2a. In contrast, the gtrII of the serotype Y isolate lacks the capacity to change serotype, resulting from a Cys-->Tyr substitution in its predicted protein sequence. The protein product of the gtrII gene was detected. This is the first report of serotype conversion of S. flexneri in humans, and successful detection of the protein product from a gtr gene.
Collapse
Affiliation(s)
- Jiann-Hwa Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
213
|
Langley R, Kenna DT, Vandamme P, Ure R, Govan JRW. Lysogeny and bacteriophage host range within the Burkholderia cepacia complex. J Med Microbiol 2003; 52:483-490. [PMID: 12748267 DOI: 10.1099/jmm.0.05099-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Burkholderia cepacia complex comprises a group of nine closely related species that have emerged as life-threatening pulmonary pathogens in immunocompromised patients, particularly individuals with cystic fibrosis or chronic granulomatous disease. Attempts to explain the genomic plasticity, adaptability and virulence of the complex have paid little attention to bacteriophages, particularly the potential contribution of lysogenic conversion and transduction. In this study, lysogeny was observed in 10 of 20 representative strains of the B. cepacia complex. Three temperate phages and five lytic phages isolated from soils, river sediments or the plant rhizosphere were chosen for further study. Six phages exhibited T-even morphology and two were lambda-like. The host range of individual phages, when tested against 66 strains of the B. cepacia complex and a representative panel of other pseudomonads, was not species-specific within the B. cepacia complex and, in some phages, included Burkholderia gladioli and Pseudomonas aeruginosa. These new data indicate a potential role for phages of the B. cepacia complex in the evolution of these soil bacteria as pathogens of plants, humans and animals, and as novel therapeutic agents.
Collapse
Affiliation(s)
- Ross Langley
- Department of Medical Microbiology, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK 2Laboratorium voor Mikrobiologie, Faculteit Wetenschappen, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium#dReceived 11 October 2002 Accepted 12 February 2003
| | - Dervla T Kenna
- Department of Medical Microbiology, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK 2Laboratorium voor Mikrobiologie, Faculteit Wetenschappen, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium#dReceived 11 October 2002 Accepted 12 February 2003
| | - Peter Vandamme
- Department of Medical Microbiology, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK 2Laboratorium voor Mikrobiologie, Faculteit Wetenschappen, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium#dReceived 11 October 2002 Accepted 12 February 2003
| | - Rebecca Ure
- Department of Medical Microbiology, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK 2Laboratorium voor Mikrobiologie, Faculteit Wetenschappen, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium#dReceived 11 October 2002 Accepted 12 February 2003
| | - John R W Govan
- Department of Medical Microbiology, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, UK 2Laboratorium voor Mikrobiologie, Faculteit Wetenschappen, Universiteit Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium#dReceived 11 October 2002 Accepted 12 February 2003
| |
Collapse
|
214
|
Allison GE, Angeles DC, Huan PT, Verma NK. Morphology of temperate bacteriophage SfV and characterisation of the DNA packaging and capsid genes: the structural genes evolved from two different phage families. Virology 2003; 308:114-27. [PMID: 12706095 DOI: 10.1016/s0042-6822(03)00198-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The entire genome of SfV, a temperate serotype-converting bacteriophage of Shigella flexneri, has recently been sequenced (Allison, G.E., Angeles, D., Tran-Dinh, N., Verma, N.K. 2002, J. Bacteriol. 184, 1974-1987). Based on the sequence analysis, we further characterised the SfV virion structure and morphogenesis. Electron microscopy indicated that SfV belongs to the Myoviridae morphology family. Analysis of the proteins encoded by orf1, orf2, and orf3 revealed that they were homologous to small and large terminase subunits, and portal proteins, respectively; the protein encoded by orf5 showed homology to capsid proteins. Western immunoblot of the phage with anti-SfV sera revealed two antigenic proteins, and the N-terminal amino acid sequence of the 32-kDa protein corresponded to amino acids 116 to 125 of the ORF5 protein, suggesting that the capsid may be processed. Functional analysis of orf4 showed that it encodes the phage capsid protease. The proteins encoded by orfs1, 2, 3, 4, and 5 are homologous to similar proteins in the Siphoviridae phage family of both gram-positive and gram-negative origin. The capsid and morphogenesis genes are upstream and adjacent to the genes encoding Myoviridae (Mu-like) tail proteins. The organisation of the structural genes of SfV is therefore unique as the head and tail genes originate from different morphology groups.
Collapse
Affiliation(s)
- Gwen E Allison
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | |
Collapse
|
215
|
Kenna DT, Barcus VA, Langley RJ, Vandamme P, Govan JRW. Lack of correlation between O-serotype, bacteriophage susceptibility and genomovar status in the Burkholderia cepacia complex. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 2003; 35:87-92. [PMID: 12628542 DOI: 10.1016/s0928-8244(02)00442-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Burkholderia cepacia complex comprises at least nine phylogenetically related genomic species (genomovars) which cause life-threatening infection in immunocompromised humans, particularly individuals with cystic fibrosis or chronic granulomatous disease. Prior to recognition that 'B. cepacia' comprise multiple species, in vitro studies revealed that the lipopolysaccharide (LPS) of these Gram-negative bacteria is strongly endotoxic. In this study, we used 117 B. cepacia complex isolates to determine if there is a correlation between O-antigen serotype and genomovar status. Isolates were also tested for their ability to act as bacterial hosts for the LPS-binding bacteriophages NS1 and NS2. The absence of genomovar II (Burkholderia multivorans) in 'historical B. cepacia' isolates was notable. Neither O-serotype nor phage susceptibility correlated with genomovar status. We conclude that variability in LPS may contribute to the success of these highly adaptable bacteria as human pathogens.
Collapse
Affiliation(s)
- Dervla T Kenna
- Cystic Fibrosis Laboratory, Medical Microbiology, University of Edinburgh Medical School, Teviot Place, Edinburgh EH8 9AG, UK.
| | | | | | | | | |
Collapse
|
216
|
Talukder KA, Islam Z, Islam MA, Dutta DK, Safa A, Ansaruzzaman M, Faruque ASG, Shahed SN, Nair GB, Sack DA. Phenotypic and genotypic characterization of provisional serotype Shigella flexneri 1c and clonal relationships with 1a and 1b strains isolated in Bangladesh. J Clin Microbiol 2003; 41:110-7. [PMID: 12517835 PMCID: PMC149623 DOI: 10.1128/jcm.41.1.110-117.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2002] [Revised: 09/14/2002] [Accepted: 10/06/2002] [Indexed: 11/20/2022] Open
Abstract
The serotypes of 144 strains of Shigella flexneri serotype 1 (serotypes 1a, 1b, and 1c) isolated from patients attending the Dhaka treatment center of the International Centre for Diarrhoeal Disease Research, Bangladesh, between 1997 and 2001 were serologically confirmed by using commercially available antisera and a panel of monoclonal antibodies specific for S. flexneri group and type factor antigen (MASF). Among serotype 1 isolates, the prevalence of provisional serotype S. flexneri 1c increased from 0 to 56% from 1978 to 2001 in Bangladesh. Detailed biochemical studies revealed that none of the strains of serotype 1 produced indole, while all the strains fermented mannose, mannitol, and trehalose. Twenty percent of the serotype 1c and all the serotype 1a strains fermented maltose and 53% of the serotype 1c strains and 60% of the serotype 1a strains fermented arabinose, whereas all serotype 1b strains were negative for fermentation of these sugars. Only 18% of serotype 1b strains were resistant to nalidixic acid, and most of the serotype 1c and 1b strains were resistant to ampicillin, tetracycline, and trimethoprim-sulfamethoxazole. All the strains of serotypes 1a and 1b and about 88% of the serotype 1c strains were found to be invasive by the Sereny test, had a 140-MDa plasmid, and had Congo red absorption ability. Plasmid profile analysis showed that 26% of the strains of serotype 1 contained identical patterns. Most of the serotype 1c strains (72%) had the 1.6-MDa plasmid, which was not found in either serotype 1a or 1b strains. A self-transmissible middle-range plasmid (35 to 80 MDa) was found in some strains carrying the multiple-antibiotic-resistance gene. Pulsed-field gel electrophoresis analysis yielded three types (types A, B, and C) with numerous subtypes among the serotype 1c strains, whereas serotypes 1b and 1a yielded only one type for each serotype, and those types were related to the types for serotype 1c strains. Ribotyping analysis yielded three patterns for serotype 1c strains and one pattern each for serotype 1a and 1b strains which were similar to the patterns for the serotype 1c strains. Overall analysis of the results concluded that subserotype 1c is closely related to serotypes 1a and 1b. Furthermore, the high rate of prevalence of serotype 1c necessitates the commercial production of antibody against this subserotype to allow the determination of the actual burden of shigellosis caused by provisional serotype 1c.
Collapse
Affiliation(s)
- Kaisar A Talukder
- Enteric Laboratory., Laboratory Sciences Division, International Centre for Diarrhoeal Diseases Research, Bangladesh.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Boyd EF, Brüssow H. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 2002; 10:521-9. [PMID: 12419617 DOI: 10.1016/s0966-842x(02)02459-9] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There are common themes among bacteriophage-encoded virulence factors, which include the well-characterized bacterial toxins and proteins that alter antigenicity as well as several new classes of bacteriophage-encoded proteins such as superantigens, effectors translocated by a type III secretion system, and proteins required for intracellular survival and host cell attachment. These virulence factors are encoded by a diversity of bacteriophages, members of the viral families Siphoviridae, Podoviridae, Myoviridae and Inoviridae, with some bacteriophages having characteristics of more than one virus family. The location of virulence genes within the bacteriophage genomes is non-random and consistent with an origin via imprecise prophage excision or as either transferable cassettes or integral components of the bacteriophage genome.
Collapse
Affiliation(s)
- E Fidelma Boyd
- Dept of Microbiology, UCC, National University of Ireland, Cork, Ireland
| | | |
Collapse
|
218
|
Allison GE, Angeles D, Tran-Dinh N, Verma NK. Complete genomic sequence of SfV, a serotype-converting temperate bacteriophage of Shigella flexneri. J Bacteriol 2002; 184:1974-87. [PMID: 11889106 PMCID: PMC134923 DOI: 10.1128/jb.184.7.1974-1987.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Accepted: 01/08/2002] [Indexed: 11/20/2022] Open
Abstract
Bacteriophage SfV is a temperate serotype-converting phage of Shigella flexneri. SfV encodes the factors involved in type V O-antigen modification, and the serotype conversion and integration-excision modules of the phage have been isolated and characterized. We now report on the complete sequence of the SfV genome (37,074 bp). A total of 53 open reading frames were predicted from the nucleotide sequence, and analysis of the corresponding proteins was used to construct a functional map. The general organization of the genes in the SfV genome is similar to that of bacteriophage lambda, and numerous features of the sequence are described. The superinfection immunity system of SfV includes a lambda-like repression system and a P4-like transcription termination mechanism. Sequence analysis also suggests that SfV encodes multiple DNA methylases, and experiments confirmed that orf-41 encodes a Dam methylase. Studies conducted to determine if the phage-encoded methylase confers host DNA methylation showed that the two S. flexneri strains analyzed encode their own Dam methylase. Restriction mapping and sequence analysis revealed that the phage genome has cos sites at the termini. The tail assembly and structural genes of SfV show homology to those of phage Mu and Mu-like prophages in the genome of Escherichia coli O157:H7 and Haemophilus influenzae. Significant homology (30% of the genome in total) between sections of the early, regulatory, and structural regions of the SfV genome and the e14 and KpLE1 prophages in the E. coli K-12 genome were noted, suggesting that these three phages have common evolutionary origins.
Collapse
Affiliation(s)
- Gwen E Allison
- School of Biochemistry and Molecular Biology, Faculty of Science, The Australian National University, Canberra ACT 0200, Australia
| | | | | | | |
Collapse
|
219
|
Lerouge I, Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 2002; 26:17-47. [PMID: 12007641 DOI: 10.1111/j.1574-6976.2002.tb00597.x] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Current data from bacterial pathogens of animals and from bacterial symbionts of plants support some of the more general proposed functions for lipopolysaccharides (LPS) and underline the importance of LPS structural versatility and adaptability. Most of the structural heterogeneity of LPS molecules is found in the O-antigen polysaccharide. In this review, the role and mechanisms of this striking flexibility in molecular structure of the O-antigen in bacterial pathogens and symbionts are illustrated by some recent findings. The variation in O-antigen that gives rise to an enormous structural diversity of O-antigens lies in the sugar composition and the linkages between monosaccharides. The chemical composition and structure of the O-antigen is strain-specific (interstrain LPS heterogeneity) but can also vary within one bacterial strain (intrastrain LPS heterogeneity). Both LPS heterogeneities can be achieved through variations at different levels. First of all, O-polysaccharides can be modified non-stoichiometrically with sugar moieties, such as glucosyl and fucosyl residues. The addition of non-carbohydrate substituents, i.e. acetyl or methyl groups, to the O-antigen can also occur with regularity, but in most cases these modifications are again non-stoichiometric. Understanding LPS structural variation in bacterial pathogens is important because several studies have indicated that the composition or size of the O-antigen might be a reliable indicator of virulence potential and that these important features often differ within the same bacterial strain. In general, O-antigen modifications seem to play an important role at several (at least two) stages of the infection process, including the colonization (adherence) step and the ability to bypass or overcome host defense mechanisms. There are many reports of modifications of O-antigen in bacterial pathogens, resulting either from altered gene expression, from lysogenic conversion or from lateral gene transfer followed by recombination. In most cases, the mechanisms underlying these changes have not been resolved. However, in recent studies some progress in understanding has been made. Changes in O-antigen structure mediated by lateral gene transfer, O-antigen conversion and phase variation, including fucosylation, glucosylation, acetylation and changes in O-antigen size, will be discussed. In addition to the observed LPS heterogeneity in bacterial pathogens, the structure of LPS is also altered in bacterial symbionts in response to signals from the plant during symbiosis. It appears to be part of a molecular communication between bacterium and host plant. Experiments ex planta suggest that the bacterium in the rhizosphere prepares its LPS for its roles in symbiosis by refining the LPS structure in response to seed and root compounds and the lower pH at the root surface. Moreover, modifications in LPS induced by conditions associated with infection are another indication that specific structures are important. Also during the differentiation from bacterium to bacteroid, the LPS of Rhizobium undergoes changes in the composition of the O-antigen, presumably in response to the change of environment. Recent findings suggest that, during symbiotic bacteroid development, reduced oxygen tension induces structural modifications in LPS that cause a switch from predominantly hydrophilic to predominantly hydrophobic molecular forms. However, the genetic mechanisms by which the LPS epitope changes are regulated remain unclear. Finally, the possible roles of O-antigen variations in symbiosis will be discussed.
Collapse
Affiliation(s)
- Inge Lerouge
- Centre of Microbial and Plant Genetics, Katholieke Universtiteit Leuven, Kasteelpark Arenberg 20, B-3001, Heverlee, Belgium
| | | |
Collapse
|
220
|
|
221
|
Pathogenicity Islands of Shigella. Curr Top Microbiol Immunol 2002. [DOI: 10.1007/978-3-662-09217-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
222
|
Strauch E, Lurz R, Beutin L. Characterization of a Shiga toxin-encoding temperate bacteriophage of Shigella sonnei. Infect Immun 2001; 69:7588-95. [PMID: 11705937 PMCID: PMC98851 DOI: 10.1128/iai.69.12.7588-7595.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Shiga toxin (Stx)-encoding temperate bacteriophage of Shigella sonnei strain CB7888 was investigated for its morphology, DNA similarity, host range, and lysogenization in Shigella and Escherichia coli strains. Phage 7888 formed plaques on a broad spectrum of Shigella strains belonging to different species and serotypes, including Stx-producing Shigella dysenteriae type 1. With E. coli, only strains with rough lipopolysaccharide were sensitive to this phage. The phage integrated into the genome of nontoxigenic S. sonnei and laboratory E. coli K-12 strains, which became Stx positive upon lysogenization. Moreover, phage 7888 is capable of transducing chromosomal genes in E. coli K-12. The relationships of phage 7888 with the E. coli Stx1-producing phage H-19B and the E. coli Stx2-producing phage 933W were investigated by DNA cross-hybridization of phage genomes and by nucleotide sequencing of an 8,053-bp DNA region of the phage 7888 genome flanking the stx genes. By these methods, a high similarity was found between phages 7888 and 933W. Much less similarity was found between phages H-19B and 7888. As in the other Stx phages, a regulatory region involved in Q-dependent expression is found upstream of stxA and stxB (stx gene) in phage 7888. The morphology of phage 7888 was similar to that of phage 933W, which shows a hexagonal head and a short tail. Our findings demonstrate that stx genes are naturally transferable and are expressed in strains of S. sonnei, which points to the continuous evolution of human-pathogenic Shigella by horizontal gene transfer.
Collapse
Affiliation(s)
- E Strauch
- Robert Koch-Institut, D-13353 Berlin, Germany
| | | | | |
Collapse
|
223
|
Trent MS, Ribeiro AA, Doerrler WT, Lin S, Cotter RJ, Raetz CR. Accumulation of a polyisoprene-linked amino sugar in polymyxin-resistant Salmonella typhimurium and Escherichia coli: structural characterization and transfer to lipid A in the periplasm. J Biol Chem 2001; 276:43132-44. [PMID: 11535605 DOI: 10.1074/jbc.m106962200] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polymyxin-resistant mutants of Escherichia coli and Salmonella typhimurium accumulate a novel minor lipid that can donate 4-amino-4-deoxy-l-arabinose units (l-Ara4N) to lipid A. We now report the purification of this lipid from a pss(-) pmrA(C) mutant of E. coli and assign its structure as undecaprenyl phosphate-alpha-l-Ara4N. Approximately 0.2 mg of homogeneous material was isolated from an 8-liter culture by solvent extraction, followed by chromatography on DEAE-cellulose, C18 reverse phase resin, and silicic acid. Matrix-assisted laser desorption ionization/time of flight mass spectrometry in the negative mode yielded a single species [M - H](-) at m/z 977.5, consistent with undecaprenyl phosphate-alpha-l-Ara4N (M(r) = 978.41). (31)P NMR spectroscopy showed a single phosphorus atom at -0.44 ppm characteristic of a phosphodiester linkage. Selective inverse decoupling difference spectroscopy demonstrated that the undecaprenyl phosphate group is attached to the anomeric carbon of the l-Ara4N unit. One- and two-dimensional (1)H NMR studies confirmed the presence of a polyisoprene chain and a sugar moiety with chemical shifts and coupling constants expected for an equatorially substituted arabinopyranoside. Heteronuclear multiple-quantum coherence spectroscopy analysis demonstrated that a nitrogen atom is attached to C-4 of the sugar residue. The purified donor supports in vitro conversion of lipid IV(A) to lipid II(A), which is substituted with a single l-Ara4N moiety. The identification of undecaprenyl phosphate-alpha-l-Ara4N implies that l-Ara4N transfer to lipid A occurs in the periplasm of polymyxin-resistant strains, and establishes a new enzymatic pathway by which Gram-negative bacteria acquire antibiotic resistance.
Collapse
Affiliation(s)
- M S Trent
- Department of Biochemistry and the Duke NMR Spectroscopy Center, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
224
|
Abstract
Bacterial lipopolysaccharides (LPS) typically consist of a hydrophobic domain known as lipid A (or endotoxin), a nonrepeating "core" oligosaccharide, and a distal polysaccharide (or O-antigen). Recent genomic data have facilitated study of LPS assembly in diverse Gram-negative bacteria, many of which are human or plant pathogens, and have established the importance of lateral gene transfer in generating structural diversity of O-antigens. Many enzymes of lipid A biosynthesis like LpxC have been validated as targets for development of new antibiotics. Key genes for lipid A biosynthesis have unexpectedly also been found in higher plants, indicating that eukaryotic lipid A-like molecules may exist. Most significant has been the identification of the plasma membrane protein TLR4 as the lipid A signaling receptor of animal cells. TLR4 belongs to a family of innate immunity receptors that possess a large extracellular domain of leucine-rich repeats, a single trans-membrane segment, and a smaller cytoplasmic signaling region that engages the adaptor protein MyD88. The expanding knowledge of TLR4 specificity and its downstream signaling pathways should provide new opportunities for blocking inflammation associated with infection.
Collapse
Affiliation(s)
- Christian R H Raetz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
225
|
Dobrindt U, Blum-Oehler G, Hartsch T, Gottschalk G, Ron EZ, Fünfstück R, Hacker J. S-Fimbria-encoding determinant sfa(I) is located on pathogenicity island III(536) of uropathogenic Escherichia coli strain 536. Infect Immun 2001; 69:4248-56. [PMID: 11401961 PMCID: PMC98494 DOI: 10.1128/iai.69.7.4248-4256.2001] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sfa(I) determinant encoding the S-fimbrial adhesin of uropathogenic Escherichia coli strains was found to be located on a pathogenicity island of uropathogenic E. coli strain 536. This pathogenicity island, designated PAI III(536), is located at 5.6 min of the E. coli chromosome and covers a region of at least 37 kb between the tRNA locus thrW and yagU. As far as it has been determined, PAI III(536) also contains genes which code for components of a putative enterochelin siderophore system of E. coli and Salmonella spp. as well as for colicin V immunity. Several intact or nonfunctional mobility genes of bacteriophages and insertion sequence elements such as transposases and integrases are present on PAI III(536). The presence of known PAI III(536) sequences has been investigated in several wild-type E. coli isolates. The results demonstrate that the determinants of the members of the S-family of fimbrial adhesins may be located on a common pathogenicity island which, in E. coli strain 536, replaces a 40-kb DNA region which represents an E. coli K-12-specific genomic island.
Collapse
Affiliation(s)
- U Dobrindt
- Institut für Molekulare Infektionsbiologie der Universität Würzburg, 97070 Würzburg, Klinikum der Universität Jena, 07740 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
226
|
Kooistra O, Lüneberg E, Lindner B, Knirel YA, Frosch M, Zähringer U. Complex O-acetylation in Legionella pneumophila serogroup 1 lipopolysaccharide. Evidence for two genes involved in 8-O-acetylation of legionaminic acid. Biochemistry 2001; 40:7630-40. [PMID: 11412117 DOI: 10.1021/bi002946r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A putative gene encoding an O-acetyl transferase, lag-1, is involved in biosynthesis of the O-polysaccharide (polylegionaminic acid) in some Legionella pneumophila serogroup 1 strains. To study the effect of the presence and absence of the gene on the O-polysaccharide O-acetylation, lag-1 from strain Philadelphia 1 was expressed in trans in the naturally lag-1-negative OLDA strain RC1, and immunoblot analysis revealed that the lag-1-encoded O-acetyl transferase is active. O-Polysaccharides of different size were prepared from the lipopolysaccharides of wild-type and transformant strains by mild acid degradation followed by gel-permeation chromatography. Using NMR spectroscopy and MALDI-TOF mass spectrometry, it was found that O-acetylation of the first three legionaminic acid residues next to the core occurs in the short-chain O-polysaccharide (<10 sugars) from both strains. Hence, there is another O-acetyl transferase encoded by a gene different from lag-1. In the longer-chain O-polysaccharide, a legionaminic acid residue proximal to the core is N-methylated and could be further 8-O-acetylated in the lag-1-dependent manner. Only strains expressing a functional lag-1 gene were recognized in Western blot analysis by monoclonal antibody 3/1 requiring 8-O-acetylated polylegionaminic acid for binding. The highly O-acetylated outer core region of the lipopolysaccharide is involved in the epitope of another serogroup 1-specific monoclonal antibody termed LPS-1. The O-acetylation pattern of the L. pneumophila serogroup 1 core oligosaccharide was revised using MALDI-TOF mass spectrometry. lag-1-independent O-acetylation of the core and short-chain O-polysaccharide was found to be a common feature of L. pneumophila serogroup 1 strains. The biological importance of conserved lag-1-independent and variable lag-1-dependent O-acetylation is discussed.
Collapse
Affiliation(s)
- O Kooistra
- Forschungszentrum Borstel, Zentrum für Medizin und Biowissenschaften, Parkallee 22, D-23845 Borstel, Germany
| | | | | | | | | | | |
Collapse
|
227
|
Adams MM, Allison GE, Verma NK. Type IV O antigen modification genes in the genome of Shigella flexneri NCTC 8296. MICROBIOLOGY (READING, ENGLAND) 2001; 147:851-860. [PMID: 11283281 DOI: 10.1099/00221287-147-4-851] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genes encoding type IV O antigen glucosylation were characterized from both Escherichia coli and Shigella flexneri. The putative O antigen modification genes from E. coli, o120 o306 o443, were PCR-amplified and introduced into S. flexneri serotype Y strain SFL124. Immunogold labelling and phage sensitivity indicated the presence of both serotype Y and serotype 4a O antigens on the cell surface of the resulting recombinant SFL124 strains, suggesting that only partial serotype conversion was conferred by the E. coli genes. The type IV O antigen modification genes were then isolated and characterized from S. flexneri serotype 4a strain NCTC 8296. A 3.8 kb chromosomal fragment conferred complete conversion to serotype 4a when introduced into SFL124. Sequence analysis of the fragment revealed the presence of three genes, gtrA(IV) gtrB(IV) gtrIV(Sf). DNAs homologous to bacteriophage int and attP were located upstream of gtrA(IV), suggesting that this region of the NCTC 8296 genome may have originated from a bacteriophage; however, a serotype-converting phage could not be induced from this strain nor from other strains used in this study. Comparison of the GtrIV(Sf) and GtrIV(Ec) (o443) proteins revealed that they are 41% identical and 63% similar, which is the highest degree of similarity reported among the S. flexneri O antigen glucosyltransferases.
Collapse
Affiliation(s)
- Mathew M Adams
- Division of Biochemistry and Molecular Biology, School of Life Sciences, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia1
| | - Gwen E Allison
- Division of Biochemistry and Molecular Biology, School of Life Sciences, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia1
| | - Naresh K Verma
- Division of Biochemistry and Molecular Biology, School of Life Sciences, Faculty of Science, The Australian National University, Canberra, ACT 0200, Australia1
| |
Collapse
|
228
|
Lan Z, Fiedler F, Kathariou S. A sheep in wolf's clothing: Listeria innocua strains with teichoic acid-associated surface antigens and genes characteristic of Listeria monocytogenes serogroup 4. J Bacteriol 2000; 182:6161-8. [PMID: 11029438 PMCID: PMC94752 DOI: 10.1128/jb.182.21.6161-6168.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Listeria monocytogenes serotype 4b has been implicated in numerous food-borne epidemics and in a substantial fraction of sporadic listeriosis. A unique lineage of the nonpathogenic species Listeria innocua was found to express teichoic acid-associated surface antigens that were otherwise expressed only by L. monocytogenes of serotype 4b and the rare serotypes 4d and 4e. These L. innocua strains were also found to harbor sequences homologous to the gene gtcA, which has been shown to be essential for teichoic acid glycosylation in L. monocytogenes serotype 4b. Transposon mutagenesis and genetic studies revealed that the gtcA gene identified in this lineage of L. innocua was functional in serotype 4b-like glycosylation of the teichoic acids of these organisms. The genomic organization of the gtcA region was conserved between this lineage of L. innocua and L. monocytogenes serotype 4b. Our data are in agreement with the hypothesis that, in this lineage of L. innocua, gtcA was acquired by lateral transfer from L. monocytogenes serogroup 4. The high degree of nucleotide sequence conservation in the gtcA sequences suggests that such transfer was relatively recent. Transfer events of this type may alter the surface antigenic properties of L. innocua and may eventually lead to evolution of novel pathogenic lineages through additional acquisition of genes from virulent listeriae.
Collapse
Affiliation(s)
- Z Lan
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, USA
| | | | | |
Collapse
|
229
|
Abstract
The sequence of the nonredundant region of the Salmonella enterica serovar Typhimurium temperate, serotype-converting bacteriophage P22 has been completed. The genome is 41,724 bp with an overall moles percent GC content of 47.1%. Numerous examples of potential integration host factor and C1-binding sites were identified in the sequence. In addition, five potential rho-independent terminators were discovered. Sixty-five genes were identified and annotated. While many of these had been described previously, we have added several new ones, including the genes involved in serotype conversion and late control. Two of the serotype conversion gene products show considerable sequence relatedness to GtrA and -B from Shigella phages SfII, SfV, and SfX. We have cloned the serotype-converting cassette (gtrABC) and demonstrated that it results in Salmonella serovar Typhimurium LT2 cells which express antigen O1. Many of the putative proteins show sequence relatedness to proteins from a great variety of other phages, supporting the hypothesis that this phage has evolved through the recombinational exchange of genetic information with other viruses.
Collapse
Affiliation(s)
- C Vander Byl
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | |
Collapse
|
230
|
Dobrindt U, Reidl J. Pathogenicity islands and phage conversion: evolutionary aspects of bacterial pathogenesis. Int J Med Microbiol 2000; 290:519-27. [PMID: 11100826 DOI: 10.1016/s1438-4221(00)80017-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Horizontal gene transfer plays a key role in the generation of novel bacterial pathogens. Besides plasmids and bacteriophages, large genomic regions termed pathogenicity islands (PAIs) can be transferred horizontally. All three mechanisms for DNA exchange or transfer may be important for the evolution of bacterial pathogens.
Collapse
Affiliation(s)
- U Dobrindt
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Germany
| | | |
Collapse
|
231
|
Abstract
The comparative analysis of multiple representatives of the genomes of particular species are leading us away from a view of bacterial genomes as static, monolithic structures towards the view that they are relatively variable, fluid structures. This plasticity is mainly the result of the rearrangement of genes within the genome and the acquisition of novel genes by horizontal transfer systems, e. g. plasmids, bacteriophages, transposons or gene cassettes. These mechanisms often act in concert thus generating a complex genetic structure. Genomic variations are not a phenomenon at the DNA level alone, they influence the phenotype of a bacterium as well and can render a formerly harmless organism into a hazardous pathogen. This review deals not only with the mechanisms of genome rearrangements and the horizontal transfer of genes in Enterobacteriaceae but also points out that mobile genetic elements themselves are subjected to variation.
Collapse
Affiliation(s)
- W Brunder
- Institut für Hygiene und Mikrobiologie der Universität Würzburg, Germany.
| | | |
Collapse
|