201
|
Augstein P, Heinke P, Salzsieder E, Grimm R, Giebel J, Salzsieder C, Harrison LC. Dominance of cytokine- over FasL-induced impairment of the mitochondrial transmembrane potential (Deltapsim) in the pancreatic beta-cell line NIT-1. Diab Vasc Dis Res 2008; 5:198-204. [PMID: 18777493 DOI: 10.3132/dvdr.2008.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria of pancreatic beta-cells are potential targets of intrinsic and extrinsic apoptotic pathways in the autoimmune pathogenesis of type 1 diabetes. We aimed to investigate whether cytokine- and FasLigand (FasL)-induced apoptosis is associated with impaired mitochondrial transmembrane potential (Deltapsim) in the pancreatic beta-cell line NIT-1. NIT-1 cells were exposed to the interleukin-1beta/interferon-gamma (IL-1beta/IFN-gamma) cytokine combination to induce apoptosis in vitro. Low concentrations of cytokines resulted in Deltapsim impairment, and increasing concentrations had only a minor additional effect. Treatment with the inducible nitric oxide synthase (iNOS) inhibitor Nw-nitro-L-arginine methyl ester hydrochloride (L-NAME) prevented cytokine-mediated Deltapsim impairment, implying that cytokines affect Deltapsim via nitric oxide. The broad-spectrum caspase inhibitor Z-VAD(Ome)-FMK (ZVAD) revealed dichotomic actions. In the presence of ZVAD, cytokine-induced nitrite generation was increased but cell death and Deltapsim impairment were reduced. Deltapsim impairment was also reduced by inhibitors of caspases 1, 6 and 8. Induction of Fas by IL-1beta/IFN-gamma coupled with activation by Super-FasL augmented cytokine-induced cell death. We observed a clear dominance of cytokine- over FasL-induced effects on Deltapsim. Our findings show that IL-1beta/IFN-gamma cytokines have a strong effect to impair Deltaym and prime beta-cells for apoptosis via the intrinsic pathway mediated by iNOS and caspases. Furthermore, at least in NIT-1 cells, the extrinsic FasL/Fas pathway has only a minor additive effect on cytokine-induced Deltapsim impairment.
Collapse
Affiliation(s)
- Petra Augstein
- Institute of Diabetes "Gerhardt Katsch" Karlsburg e.V., Karlsburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
202
|
Yeretssian G, Labbé K, Saleh M. Molecular regulation of inflammation and cell death. Cytokine 2008; 43:380-90. [PMID: 18703350 DOI: 10.1016/j.cyto.2008.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 06/19/2008] [Indexed: 01/01/2023]
Abstract
Cell death and innate immunity are ancient evolutionary conserved processes that utilize a dazzling number of related molecular effectors and parallel signal transduction mechanisms. The investigation of the molecular mechanisms linking the sensing of a danger signal (pathogens or tissue damage) to the induction of an inflammatory response has witnessed a renaissance in the last few years. This was initiated by the identification of pattern recognition receptors (PRRs), including Toll-like receptors (TLRs) and more recently cytosolic Nod-like receptors (NLRs), that brought innate immunity to center stage and opened the field to the study of signal transduction pathways, adaptors and central effectors linked to PRRs. This led to the characterization of the inflammasome, a macromolecular complex, scaffolded by NLRs, that recruits and activates inflammatory caspases, which are essential effectors in inflammation and cell death responses. In this review, we describe the molecular pathways of cell death and innate immunity with a focus on recent advancements in both fields and an emphasis on the striking analogies between NLR innate immunity and mitochondrial apoptosis pathways.
Collapse
Affiliation(s)
- Garabet Yeretssian
- Department of Medicine, Division of Critical Care, and Centre for the Study of Host Resistance, McGill University, Montreal, Que., Canada
| | | | | |
Collapse
|
203
|
Abstract
Caspase-dependent apoptosis has an important role in controlling viruses, and as a result, viruses often encode proteins that target this pathway. Caspase-dependent apoptosis can be activated from within the infected cell as an intrinsic response to replication-associated stresses or through death-inducing signals produced extrinsically by immune cells. Cytomegaloviruses (CMVs) encode a mitochondria-localized inhibitor of apoptosis, vMIA, and a viral inhibitor of caspase activation, vICA, the functional homologs of Bcl-2 related and c-FLIP proteins, respectively. Evidence from viral mutants deleting either vMIA or vICA suggests that each is necessary and sufficient to promote survival of infected cells undergoing caspase-dependent apoptosis. Additional proteins, including pUL38, IE1(491a), and IE2(579aa), can prevent apoptosis induced by various stimuli, while viruses with deletions of UL38, M45, or m41 undergo apoptosis. The viral RNA, beta2.7, binds mitochondrial respiratory complex I, maintains ATP production late in infection, and prevents death induced by a mitochondrial poison. Thus, CMV alters cell intrinsic defenses employing apoptosis, and multiple viral gene products together control death-inducing stimuli to promote survival.
Collapse
Affiliation(s)
- A L McCormick
- Department of Microbiology & Immunology, Emory Vaccine Center, Emory University Atlanta, GA 30322, USA.
| |
Collapse
|
204
|
Kang TB, Oh GS, Scandella E, Bolinger B, Ludewig B, Kovalenko A, Wallach D. Mutation of a Self-Processing Site in Caspase-8 Compromises Its Apoptotic but Not Its Nonapoptotic Functions in Bacterial Artificial Chromosome-Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2008; 181:2522-32. [DOI: 10.4049/jimmunol.181.4.2522] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
205
|
Símová S, Klíma M, Cermak L, Sourková V, Andera L. Arf and Rho GAP adapter protein ARAP1 participates in the mobilization of TRAIL-R1/DR4 to the plasma membrane. Apoptosis 2008; 13:423-36. [PMID: 18165900 DOI: 10.1007/s10495-007-0171-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
TRAIL, a ligand of the TNFalpha family, induces upon binding to its pro-death receptors TRAIL-R1/DR4 and TRAIL-R2/DR5 the apoptosis of cancer cells. Activated receptors incite the formation of the Death-Inducing Signaling Complex followed by the activation of the downstream apoptotic signaling. TRAIL-induced apoptosis is regulated at multiple levels, one of them being the presence and relative number of TRAIL pro- and anti-apoptotic receptors on the cytoplasmic membrane. In a yeast two-hybrid search for proteins that interact with the intracellular part (ICP) of DR4, we picked ARAP1, an adapter protein with ArfGAP and RhoGAP activities. In yeast, DR4(ICP) interacts with the alternatively spliced ARAP1 lacking 11 amino acids from the PH5 domain. Transfected ARAP1 co-precipitates with DR4 and co-localizes with it in the endoplasmic reticulum/Golgi, at the cytoplasmic membrane and in early endosomes of TRAIL-treated cells. ARAP1 knockdown significantly compromises the localization of DR4 at the cell surface of several tumor cell lines and slows down their TRAIL-induced death. ARAP1 overexpressed in HEL cells does not affect their TRAIL-induced apoptosis or the membrane localization of DR4, but it enhances the cell-surface presentation of phosphatidyl serine. Our data indicate that ARAP1 is likely involved in the regulation of the cell-specific trafficking of DR4 and might thus affect the efficacy of TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Sárka Símová
- Laboratory of Cell Signaling and Apoptosis, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídenská 1083, 14220, Praha 4, Czech Republic
| | | | | | | | | |
Collapse
|
206
|
Zhao YF, Kong QZ. Tetrazolium violet inhibits cell growth and induces cell death in C127 mouse breast tumor cells. Chem Biol Interact 2008; 174:19-26. [PMID: 18547555 DOI: 10.1016/j.cbi.2008.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 04/04/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
Abstract
Tetrazolium violet (TV), a tetrazolium salt, has been applied in several fields, including estimating respiration rate, as a redox indicator of microbial growth, and for estimating the number of viable animal cells. It has recently been found that TV is capable of inducing apoptosis in rat glioblastoma cells by way of an elusive mechanism. In this study, we demonstrated that TV also induced apoptosis in mouse breast tumor C127 cells as evidenced by nucleus condensation and nucleus fragmentation. Our data showed that TV caused activation of caspase-3 and caspase-8, but not caspase-9. An enhancement in Fas and its two ligands, membrane-bound Fas ligand (mFasL) and soluble Fas ligand (sFasL), might be responsible for the apoptotic effect induced by TV. Also, the results first reported that TV not only inhibited C127 cells proliferation but also blocked cell cycle progression in the G1 and G2 phase, determined by MTT assay and flow cytometry analysis. Immunofluorescence assay demonstrated that TV significantly increased the expression of p53 protein, which caused cell cycle arrest. Taken together, p53, Fas/FasL, and the caspase apoptotic system may participate in the antiproliferative activity of TV in C127 cells.
Collapse
Affiliation(s)
- Yun-Feng Zhao
- School of Life Science, Qufu Normal University, No. 57, Qufu Jingxuan West Road, Qufu 273165, Shandong Province, PR China.
| | | |
Collapse
|
207
|
Abstract
Death receptors induce apoptosis through either the Type I or II pathway. In Type I cells, the initiator caspase-8 directly activates effector caspases such as caspase-3, whereas in Type II cells, the death signal is amplified through mitochondria thereby activating effector caspases causing cell death. Recently, there have been advances in elucidating the early events in the CD95 signaling pathways and how post-translational modifications regulate CD95 signaling. This review will focus on recent insights into the mechanisms of the two different types of CD95 signaling pathways, and will introduce miRNAs as regulators of death receptor signaling.
Collapse
Affiliation(s)
- Sun-Mi Park
- The Ben May Department for Cancer Research, The University of Chicago, 924 E 57th Street, Chicago, IL 60637, Phone: 773-702-4728, FAX: 773-702-3701
| | - Marcus E. Peter
- The Ben May Department for Cancer Research, The University of Chicago, 924 E 57th Street, Chicago, IL 60637, Phone: 773-702-4728, FAX: 773-702-3701
| |
Collapse
|
208
|
Abstract
Cell death has historically been subdivided into regulated and unregulated mechanisms. Apoptosis, a form of regulated cell death, reflects a cell's decision to die in response to cues and is executed by intrinsic cellular machinery. Unregulated cell death (often called necrosis) is caused by overwhelming stress that is incompatible with cell survival. Emerging evidence, however, suggests that these two processes do not adequately explain the various cell death mechanisms. Recent data point to the existence of multiple non-apoptotic, regulated cell death mechanisms, some of which overlap or are mutually exclusive with apoptosis. Here we examine how and why these different cell death programmes have evolved, with an eye towards new cytoprotective therapeutic opportunities.
Collapse
|
209
|
Fas/CD95-mediated apoptosis of type II cells is blocked by Toxoplasma gondii primarily via interference with the mitochondrial amplification loop. Infect Immun 2008; 76:2905-12. [PMID: 18411295 DOI: 10.1128/iai.01546-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The intracellular protozoan Toxoplasma gondii induces persistent infections in various hosts and is an important opportunistic pathogen of humans with immature or deficient immune responses. The ability to survive intracellularly largely depends on the blocking of different proapoptotic signaling cascades of its host cell. Fas/CD95 triggers an apoptotic cascade that is crucial for immunity and the outcome of infectious diseases. We have determined the mechanism by which T. gondii counteracts death receptor-mediated cell death in type II cells that transduce Fas/CD95 ligation via caspase 8-mediated activation of the mitochondrial amplification loop. The results showed that infection with T. gondii significantly reduced Fas/CD95-triggered apoptosis in HeLa cells by inhibiting the activities of initiator caspases 8 and 9 and effector caspase 3/7. Parasitic infection dose dependently diminished cleavage of caspase 8, the BH3-only protein Bid, and the downstream caspases 9 and 3. Importantly, interference with Fas/CD95-triggered caspase 8 and caspase 3/7 activities after parasitic infection was largely dependent on the presence of caspase 9. Within the mitochondrial amplification loop, T. gondii significantly inhibited the Fas/CD95-triggered release of cytochrome c into the host cell cytosol. These results indicate that T. gondii inhibits Fas/CD95-mediated apoptosis in type II cells primarily by decreasing the apoptogenic function of mitochondria.
Collapse
|
210
|
Kim MJ, Lee KH, Lee SJ. Ionizing radiation utilizes c-Jun N-terminal kinase for amplification of mitochondrial apoptotic cell death in human cervical cancer cells. FEBS J 2008; 275:2096-108. [DOI: 10.1111/j.1742-4658.2008.06363.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
211
|
Chetoui N, Sylla K, Gagnon-Houde JV, Alcaide-Loridan C, Charron D, Al-Daccak R, Aoudjit F. Down-regulation of mcl-1 by small interfering RNA sensitizes resistant melanoma cells to fas-mediated apoptosis. Mol Cancer Res 2008; 6:42-52. [PMID: 18234961 DOI: 10.1158/1541-7786.mcr-07-0080] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance of malignant melanoma cells to Fas-mediated apoptosis is among the mechanisms by which they escape immune surveillance. However, the mechanisms contributing to their resistance are not completely understood, and it is still unclear whether antiapoptotic Bcl-2-related family proteins play a role in this resistance. In this study, we report that treatment of Fas-resistant melanoma cell lines with cycloheximide, a general inhibitor of de novo protein synthesis, sensitizes them to anti-Fas monoclonal antibody (mAb)-induced apoptosis. The cycloheximide-induced sensitization to Fas-induced apoptosis is associated with a rapid down-regulation of Mcl-1 protein levels, but not that of Bcl-2 or Bcl-xL. Targeting Mcl-1 in these melanoma cell lines with specific small interfering RNA was sufficient to sensitize them to both anti-Fas mAb-induced apoptosis and activation of caspase-9. Furthermore, ectopic expression of Mcl-1 in a Fas-sensitive melanoma cell line rescues the cells from Fas-mediated apoptosis. Our results further show that the expression of Mcl-1 in melanoma cells is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) and not by phosphatidylinositol 3-kinase/AKT signaling pathway. Inhibition of ERK signaling with the mitogen-activated protein/ERK kinase-1 inhibitor or by expressing a dominant negative form of mitogen-activated protein/ERK kinase-1 also sensitizes resistant melanoma cells to anti-Fas mAb-induced apoptosis. Thus, our study identifies mitogen-activated protein kinase/ERK/Mcl-1 as an important survival signaling pathway in the resistance of melanoma cells to Fas-mediated apoptosis and suggests that its targeting may contribute to the elimination of melanoma tumors by the immune system.
Collapse
Affiliation(s)
- Nizar Chetoui
- Centre de Recherche en Rhumatologie et Immunologie, CHUQ Pavillon CHUL, Ste-Foy, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
212
|
Sellner J, Greeve I, Findling O, Grandgirard D, Leib SL, Mattle HP. Atorvastatin does not alter serum levels of sCD95 and sCD95L in multiple sclerosis. Clin Exp Immunol 2008; 152:280-4. [PMID: 18341614 DOI: 10.1111/j.1365-2249.2008.03630.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Elimination of autoreactive T cells by apoptosis is critical for restricting immune responses to self-antigens. An errant lytic interaction between the CD95 death receptor and its ligand CD95L is presumed to be involved in the pathogenesis of multiple sclerosis (MS). Statins are promising agents for the treatment of MS and were shown to modulate levels of soluble death receptors. Here, we evaluated the in vivo effects by interferon (IFN)-beta and atorvastatin on soluble CD95 (sCD95) and sCD95L in serum of patients with MS. Concentrations of sCD95 and sCD95L did not show any differences between MS and healthy control subjects. In patients with MS, treatment with IFN-beta increased serum levels of sCD95 and sCD95L significantly (P < 0.01 and P < 0.05 respectively). Addition of atorvastatin to IFN-beta did not alter serum levels of sCD95 and sCD95L significantly. Our study suggests that atorvastatin does not affect IFN-beta-induced increases of the soluble death receptors in the serum of patients with MS.
Collapse
Affiliation(s)
- J Sellner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
213
|
Bokelmann I, Mahlknecht U. Valproic acid sensitizes chronic lymphocytic leukemia cells to apoptosis and restores the balance between pro- and antiapoptotic proteins. Mol Med 2008; 14:20-7. [PMID: 17973028 DOI: 10.2119/2007-00084.bokelmann] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 10/22/2007] [Indexed: 11/06/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is one of the most common leukemias in adults in the developed world. Despite significant advances in the treatment of cancer, CLL remains incurable. The main feature of the disease is the generation of circulating B-cells with prolonged survival caused by aberrant apoptosis. In this study, we observe that valproic acid (VPA), a well-established histone deacetylase (HDAC) inhibitor, mediates apoptosis in CLL cells ex vivo through caspase activation via both the extrinsic and the intrinsic apoptosis pathways, as indicated by the activation of the caspase proteins 8 and 9, and cleavage of the proapoptotic protein BID. The Bcl-2/Bax ratio was decreased as a consequence of decreased bcl-2 mRNA levels in response to treatment with VPA. With the results presented in this study, we have identified the HDAC inhibitor VPA as restoring the apoptotic pathways in CLL cells and thus their ability to undergo apoptosis.
Collapse
Affiliation(s)
- Imke Bokelmann
- Department of Hematology/Oncology, University of Heidelberg Medical Center, Im Neuenheimer Feld 410, Heidelberg, Germany
| | | |
Collapse
|
214
|
Cadet JL, Krasnova IN. Interactions of HIV and methamphetamine: cellular and molecular mechanisms of toxicity potentiation. Neurotox Res 2008; 12:181-204. [PMID: 17967742 DOI: 10.1007/bf03033915] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant drug, whose abuse has reached epidemic proportions worldwide. METH use is disproportionally represented among populations at high risks for developing HIV infection or who are already infected with the virus. Psychostimulant abuse has been reported to exacerbate the cognitive deficits and neurodegenerative abnormalities observed in HIV-positive patients. Thus, the purpose of the present paper is to review the clinical and basic observations that METH potentiates the adverse effects of HIV infection. An additional purpose is to provide a synthesis of the cellular and molecular mechanisms that might be responsible for the increased toxicity observed in co-morbid patients. The reviewed data indicate that METH and HIV proteins, including gp120, gp41, Tat, Vpr and Nef, converge on various caspase-dependent death pathways to cause neuronal apoptosis. The role of reactive microgliosis in METH- and in HIV-induced toxicity is also discussed.
Collapse
Affiliation(s)
- J L Cadet
- Molecular Neuropsychiatry Branch, NIH/NIDA Intramural Research Program, Baltimore, MD 21224, USA.
| | | |
Collapse
|
215
|
Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCγ1- and Ca2+-dependent apoptosis. Blood 2008; 111:2354-63. [DOI: 10.1182/blood-2007-06-096198] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Herbs have successfully been used in traditional Chinese medicine for centuries. However, their curative mechanisms remain largely unknown. In this study, we show that Wogonin, derived from the traditional Chinese medicine Huang-Qin (Scutellaria baicalensis Georgi), induces apoptosis in malignant T cells in vitro and suppresses growth of human T-cell leukemia xenografts in vivo. Importantly, Wogonin shows almost no toxicity on T lymphocytes from healthy donors. Wogonin induces prolonged activation of PLCγ1 via H2O2 signaling in malignant T cells, which leads to sustained elevation of cytosolic Ca2+ in malignant but not normal T cells. Subsequently, a Ca2+ overload leads to disruption of the mitochondrial membrane. The selective effect of Wogonin is due to its differential regulation of the redox status of malignant versus normal T cells. In addition, we show that the L-type voltage-dependent Ca2+ channels are involved in the intracellular Ca2+ mobilization in T cells. Furthermore, we show that malignant T cells possess elevated amounts of voltage-dependent Ca2+ channels compared with normal T cells, which further enhance the cytotoxicity of Wogonin for malignant T cells. Taken together, our data show a therapeutic potential of Wogonin for the treatment of hematologic malignancies.
Collapse
|
216
|
A cell-type-specific requirement for IFN regulatory factor 5 (IRF5) in Fas-induced apoptosis. Proc Natl Acad Sci U S A 2008; 105:2556-61. [PMID: 18268344 DOI: 10.1073/pnas.0712295105] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Apoptosis is a highly regulated process of cell suicide that occurs during development, host defense, and pathophysiology. The transcription factor IFN regulatory factor 5 (IRF5), known to be involved in the activation of innate immune responses, recently has been shown to be critical for DNA damage-induced apoptosis and tumor suppression. Here, we report on a cell-type-specific role of IRF5 in promoting apoptosis upon signaling through the death receptor Fas (CD95/APO-1/TNFRSF6). In particular, we show that mice deficient in the Irf5 gene are resistant to hepatic apoptosis and lethality in response to the in vivo administration of a Fas-activating monoclonal antibody, and that IRF5 is involved in a stage of Fas signaling that precedes the activation of caspase 8 and c-Jun N-terminal kinase (JNK). In addition to hepatocytes, IRF5 is also required for apoptosis in dendritic cells activated by hypomethylated CpG but not in thymocytes and embryonic fibroblasts in vitro. Thus, these findings reveal a cell-type-specific function for IRF5 in the complex regulatory mechanism of death-receptor-induced apoptosis.
Collapse
|
217
|
Okazaki N, Asano R, Kinoshita T, Chuman H. Simple computational models of type I/type II cells in Fas signaling-induced apoptosis. J Theor Biol 2008; 250:621-33. [DOI: 10.1016/j.jtbi.2007.10.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 09/21/2007] [Accepted: 10/26/2007] [Indexed: 12/21/2022]
|
218
|
Petrovas C, Mueller YM, Yang G, Altork SR, Jacobson JM, Pitsakis PG, Mounzer KC, Altman JD, Katsikis PD. Actin integrity is indispensable for CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells. Apoptosis 2008; 12:2175-86. [PMID: 17891455 DOI: 10.1007/s10495-007-0128-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We have recently provided data suggesting a potential role for mitochondria and Bcl-2-family molecules in apoptosis sensitivity of HIV-specific CD8+ T cells. Here, we report on the role of filamentous (F) actin in this process. Disruption of actin by cytochalasin D (cytD) or lantrunculin A remarkably reduced CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells while their spontaneous apoptosis was unaffected. This inhibition cannot be attributed to changes of CD95/Fas distribution or levels in these cells. Furthermore, cytD treatment reduced CD95/Fas-induced apoptosis of CD8+ T cells from HIV+ patients independently of their differentiation status. CD95/Fas-induced apoptosis of both CD38+ and CD38- HIV-specific CD8+ T cells was inhibited by cytD treatment indicating that actin mediates this apoptotic process independently of the activation level of these cells. CytD was found to reduce the activation of caspase-8 induced by short treatment of purified CD8+ T cells from HIV+ patients with anti-CD95/Fas. Our data reveal actin as a critical mediator of HIV-specific CD8+ T cell apoptosis; further analysis of the molecular mechanisms governing this process may potentially contribute to design new therapies targeting the enhancement of the immune system in HIV infection.
Collapse
Affiliation(s)
- Constantinos Petrovas
- Department of Microbiology and Immunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Drexel University, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
219
|
Nevado C, Benito M, Valverde AM. Role of insulin receptor and balance in insulin receptor isoforms A and B in regulation of apoptosis in simian virus 40-immortalized neonatal hepatocytes. Mol Biol Cell 2008; 19:1185-98. [PMID: 18172021 DOI: 10.1091/mbc.e07-05-0473] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have investigated the unique role of the insulin receptor (IR) and the balance of its isoforms A and B in the regulation of apoptosis in simian virus 40 (SV40)-immortalized neonatal hepatocytes. Immortalized hepatocytes lacking (HIR KO) or expressing the entire IR (HIR LoxP), and cells expressing either IRA (HIR RecA) or IRB (HIR RecB) have been generated. IR deficiency in hepatocytes increases sensitivity to the withdrawal of growth factors, because these cells display an increase in reactive oxygen species, a decrease in Bcl-x(L), a rapid accumulation of nuclear Foxo1, and up-regulation of Bim. These events resulted in acceleration of caspase-3 activation, DNA laddering, and cell death. The single expression of either IRA or IRB produced a stronger apoptotic phenotype. In these cells, protein complexes containing IRA or IRB and Fas/Fas-associating protein with death domain activated caspase-8, and, ultimately, caspase-3. In hepatocytes expressing IRA, Bid cleavage and cytochrome C release were increased whereas direct activation of caspase-3 by caspase-8 and a more rapid apoptotic process occurred in hepatocytes expressing IRB. Conversely, coexpression of IRA and IRB in IR-deficient hepatocytes rescued from apoptosis. Our results suggest that balance alteration of IRA and IRB may serve as a ligand-independent apoptotic trigger in hepatocytes, which may regulate liver development.
Collapse
Affiliation(s)
- Carmen Nevado
- Departamento de Bioquimica y Biologia Molecular II, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | |
Collapse
|
220
|
Li H, Cai X, Fan X, Moquin B, Stoicov C, Houghton J. Fas Ag-FasL coupling leads to ERK1/2-mediated proliferation of gastric mucosal cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G263-75. [PMID: 17991709 DOI: 10.1152/ajpgi.00267.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
When cells within the gastric mucosa progress from metaplasia to dysplasia to cancer, they acquire a Fas Ag apoptosis-resistant phenotype. It is unusual to completely abolish the pathway, suggesting other forms of Fas Ag signaling may be important or even necessary for gastric cancer to progress. Little is known about alternate signaling of the Fas Ag pathway in gastric mucosal cells. Using a cell culture model of rat gastric mucosal cells, we show that gastric mucosal cells utilize a type II signaling pathway for apoptosis. Under conditions of low receptor stimulation or under conditions where apoptosis is blocked downstream of the death-inducing signal complex, Fas Ag signaling proceeds toward proliferative signaling. Under conditions favoring proliferative signaling, cFLIP is recruited to the Fas-associated death domain-like interleukin-1beta-converting enzyme at the death-inducing signal complex and activates ERK1/2. ERK1/2 in turn activates NF-kappaB. ERK1/2 stimulates proliferation, whereas NF-kappaB activation results in upregulation of the antiapoptotic protein survivin, further promoting proliferation over apoptosis. These results suggest that factors that inhibit apoptosis confer a growth advantage to the cells beyond the survival advantage of avoiding apoptosis and in effect convert the Fas Ag signaling pathway from a tumor suppressor to a tumor promoter.
Collapse
Affiliation(s)
- Hanchen Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
221
|
4-hydroperoxy-cyclophosphamide mediates caspase-independent T-cell apoptosis involving oxidative stress-induced nuclear relocation of mitochondrial apoptogenic factors AIF and EndoG. Cell Death Differ 2007; 15:332-43. [DOI: 10.1038/sj.cdd.4402272] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
222
|
Yu W, Park SK, Jia L, Tiwary R, Scott WW, Li J, Wang P, Simmons-Menchaca M, Sanders BG, Kline K. RRR-gamma-tocopherol induces human breast cancer cells to undergo apoptosis via death receptor 5 (DR5)-mediated apoptotic signaling. Cancer Lett 2007; 259:165-76. [PMID: 18022315 DOI: 10.1016/j.canlet.2007.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 10/05/2007] [Accepted: 10/08/2007] [Indexed: 11/17/2022]
Abstract
Goal of this study was to investigate the pro-apoptotic properties of RRR-gamma-tocopherol (gammaT) in human breast cancer cells. gammaT was shown to induce cancer cells but not normal cells to undergo apoptosis, sensitize cancer cells to Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL)-induced apoptosis, and increase death receptor 5 (DR5) mRNA, protein and cell surface expression. Knockdown of DR5 attenuated gammaT-induced apoptosis. Investigations of post-receptor signaling showed: caspase-8, Bid and Bax activation, increases in mitochondria permeability, cytochrome c release and caspase-9 activation. Thus, gammaT is a potent pro-apoptotic agent for human breast cancer cells inducing apoptosis via activation of DR5-mediated apoptotic pathway.
Collapse
Affiliation(s)
- Weiping Yu
- School of Biological Sciences, University of Texas at Austin, Austin, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
223
|
Ying SX, Seal S, Abbassi N, Hockenbery DM, Kiem HP, Li X, Pagel JM, Gopal AK, Deeg HJ. Differential effects of bexarotene on intrinsic and extrinsic pathways in TRAIL-induced apoptosis in two myeloid leukemia cell lines. Leuk Lymphoma 2007; 48:1003-14. [PMID: 17487744 DOI: 10.1080/10428190701242358] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces programmed cell death (apoptosis) preferentially in tumor cells. However, not all cancer cells are sensitive to TRAIL. We determined whether ligation of the retinoid receptor, RXR, would sensitize cells to TRAIL-mediated apoptosis. The leukemic cell lines KG1a (apoptosis-resistant) and ML-1 (apoptosis-sensitive) were treated with the RXR-specific retinoid bexarotene, TRAIL, or both, and apoptosis was determined. In KG1a cells, bexarotene downregulated FLIP(Long) and activated caspase-8, thereby allowing for TRAIL-triggered apoptosis. Overexpression of FLIP(Long) in ML-1 cells abrogated apoptosis. In unmodified ML-1 cells bexarotene enhanced programmed cell death via truncation of Bid and release of cytochrome C. Blockade of caspase-8 prevented enhancement in both cell lines; blockade of caspase-9 had a significant effect only in ML-1 cells. Thus, the effect of bexarotene on TRAIL-mediated programmed cell death involved proximal events of the extrinsic pathway; however, downstream signals involved the intrinsic pathway in ML-1 but not in KG1a cells. These studies add further information to the regulation of programmed cell death in leukemic cells that have to be considered when designing therapeutic strategies.
Collapse
Affiliation(s)
- Shao Xu Ying
- Shanghai Sixth Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Wang SH, Van Antwerp M, Kuick R, Gauger PG, Doherty GM, Fan YY, Baker JR. Microarray analysis of cytokine activation of apoptosis pathways in the thyroid. Endocrinology 2007; 148:4844-52. [PMID: 17640998 DOI: 10.1210/en.2007-0126] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It has been suggested that Fas-mediated apoptosis plays an important role in the pathogenesis of autoimmune thyroid diseases. Our previous studies have demonstrated that normal primary thyroid epithelial cells are resistant to Fas-mediated apoptosis, but the resistance can be overcome by pretreatment with a combination of interferon-gamma (IFN-gamma) and IL-1beta. To understand the molecular mechanism responsible for the IFN-gamma/IL-1beta effects, we profiled changes in the transcription induced by these two cytokines in normal human thyroid cells, using cDNA microarrays. We found that IFN-gamma/IL-1beta showed a significant increase in apoptosis-related genes such as inducible nitric oxide synthase (iNOS), receptor-interacting protein 2 (RIP2), and caspases 10. These increases were confirmed by other methods, including real-time PCR and Western blot. Furthermore, the sensitization of primary thyroid epithelial cells to Fas-mediated apoptosis by IFN-gamma/IL-1beta was significantly blocked by a general caspase inhibitor, z-VAD, or by the combination of two specific individual caspase inhibitors. In addition, our results showed that IFN-gamma/IL-1beta enhance p38 MAPK phosphorylation and that SB 203580, a p38 MAPK inhibitor, can inhibit IFN-gamma/IL-1beta-induced p38 MAPK phosphorylation. SB 203580 also significantly prevented cytokine-induced iNOS expression and caspase activation and thus blocked Fas-mediated apoptosis of thyroid cells sensitized by IFN-gamma/IL-1beta. In conclusion, our data suggest that both p38 MAPK and iNOS are involved in IFN-gamma/IL-1beta-induced sensitization of the thyroid cells to Fas-mediated apoptosis via the activation of caspases 3, 7, and 10 and that this pathway may be further activated by BID. This hints that inflammatory cytokines regulate death-receptor-mediated apoptosis at multiple points in the process.
Collapse
Affiliation(s)
- Su He Wang
- Department of Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0648, USA
| | | | | | | | | | | | | |
Collapse
|
225
|
Riddle-Taylor E, Nagasaki K, Lopez J, Esquivel CO, Martinez OM, Krams SM. Mutations to bid cleavage sites protect hepatocytes from apoptosis after ischemia/reperfusion injury. Transplantation 2007; 84:778-85. [PMID: 17893612 PMCID: PMC4084732 DOI: 10.1097/01.tp.0000281555.18782.2b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Apoptosis of hepatocytes contributes to many forms of liver pathology and can compromise liver function. Hepatocytes have been shown to require mitochondrial disruption to execute apoptosis, a process that is controlled by members of the Bcl-2 family. Bid is a proapoptotic Bcl-2 family member that is cleaved to its active form, tBid, by caspase 8 and granzyme B. Studies in the Bid-deficient mouse have established that hepatocytes require Bid to undergo apoptosis. METHODS We generated aspartic acid to glutamic acid mutations in the rat Bid protein, at the caspase 8 and granzyme B cleavage sites, and utilized recombinant adenoviruses to express this protein in hepatoma cells and in the livers of rats. RESULTS Cells transduced with recombinant adenoviruses encoding Bid containing mutations to the caspase 8 and granzyme B cleavage sites are significantly protected from both tumor necrosis factor-alpha-induced and cell-mediated apoptosis. Protection occurs through a mechanism that includes decreased Bid cleavage, caspase activation, and mitochondrial membrane damage. Further, after warm ischemia/reperfusion injury, we show that rats expressing cleavage-resistant Bid in the liver display significantly less hepatocyte apoptosis as compared to control rat livers and this results in improved liver function and survival. CONCLUSION Our results suggest that reagents that prevent the cleavage of Bid would be an effective strategy to inhibit hepatocyte apoptosis and decrease liver injury.
Collapse
Affiliation(s)
- Erica Riddle-Taylor
- Department of Surgery, Division of Transplantation, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
226
|
Zhang L, Cui L. A cytotoxin isolated from Agkistrodon acutus snake venom induces apoptosis via Fas pathway in A549 cells. Toxicol In Vitro 2007; 21:1095-103. [PMID: 17544616 DOI: 10.1016/j.tiv.2007.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 04/09/2007] [Accepted: 04/17/2007] [Indexed: 10/23/2022]
Abstract
ACTX-6 is a protein isolated from Agkistrodon acutus snake venom and demonstrated cytotoxic activity to various cancer cells in vitro. In this paper the exact mechanism in ACTX-6-induced cell death was investigated and it was found that ACTX-6 could induce cell apoptosis. The results of Western blot and RT-PCR showed that ACTX-6 could induce Fas and FasL protein expression. When Fas signaling pathway was blocked by neutralizing antibodies to Fas or FasL, ACTX-6-induced apoptosis was inhibited. DISC formation was also detected by immunoprecipitation. These results suggested that Fas pathway was involved in ACTX-6-induced apoptosis. The activities of caspase-3, 8 and 9 were assayed and the activation of caspase-9 demonstrated that mitochondrial pathway was also involved in ACTX-6-induced apoptosis. Bid cleavage and dissipation of mitochondrial membrane potential (delta psi(m)) verified the involvement of mitochondria. ACTX-6 is an L-amino acid oxidase and can oxidize L-amino acid to generate hydrogen peroxide. The production of ROS in ACTX-6-treated cells was detected and the ROS scavenger catalase could inhibit ACTX-6-induced apoptosis. Western blot analysis showed that JNK was phosphorylated in ACTX-6-treated cells and c-Jun was also activated. JNK inhibitor SP600125 could inhibit ACTX-6-induced apoptosis and catalase could inhibit JNK and c-Jun phosphorylation. It could be concluded that JNK pathway was necessary in ACTX-6-induced apoptosis and the oxidative stress generated by ACTX-6 was responsible for the activation of JNK.
Collapse
Affiliation(s)
- Liang Zhang
- School of Pharmacy, Soochow University, Renai Road, Soochow, Jiangsu Province 215123, China.
| | | |
Collapse
|
227
|
Kendrick JE, Estes JM, Straughn JM, Alvarez RD, Buchsbaum DJ. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its therapeutic potential in breast and gynecologic cancers. Gynecol Oncol 2007; 106:614-21. [PMID: 17602728 DOI: 10.1016/j.ygyno.2007.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Revised: 05/30/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The relationship between the apoptotic pathway and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising area of scientific interest for cancer researchers. TRAIL-receptor-activating agents have demonstrated favorable in vitro and in vivo activity for the treatment of several malignancies including breast and gynecologic cancers. METHODS This article reviews the available peer-reviewed literature and our own institution's experience with specific TRAIL-receptor-activating agents. Emphasis was placed on the apoptotic/TRAIL mechanism, preclinical evaluation, and phase I studies in various malignancies. RESULTS Preclinical and early phase I studies indicate that these novel agents are safe with enhanced target specificity for malignancy. When these targeted agents are combined with conventional chemotherapy drugs or radiation therapy, they appear to increase cell death over single-agent modalities. CONCLUSIONS TRAIL-receptor-activating agents represent an exciting new class of targeted therapies that hold promise to improve the treatment of women with breast and gynecologic malignancies.
Collapse
Affiliation(s)
- James E Kendrick
- Division of Gynecologic Oncology, The University of Alabama at Birmingham, 619 19th Street South, OHB 538, Birmingham, AL 35249, USA.
| | | | | | | | | |
Collapse
|
228
|
Prall WC, Czibere A, Jäger M, Spentzos D, Libermann TA, Gattermann N, Haas R, Aivado M. Age-related transcription levels of KU70, MGST1 and BIK in CD34+ hematopoietic stem and progenitor cells. Mech Ageing Dev 2007; 128:503-10. [PMID: 17714764 DOI: 10.1016/j.mad.2007.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 06/02/2007] [Accepted: 06/24/2007] [Indexed: 01/17/2023]
Abstract
Despite the known longevity of human hematopoietic stem and progenitor cells (HSC), numerous functional impairments of these cells can be observed in an age-dependent manner. However, the molecular alterations associated with aging of HSC are largely unknown. Therefore, we scrutinized gene expression patterns of HSC from newborn, young and old healthy donors. CD34+ HSC were isolated via immuno-magnetic separation and evaluated by FACS analysis. We performed cDNA macroarray analyses on a first set of CD34+ samples (n=13). We found the genes encoding KU-antigen 70 kD (KU70), microsomal glutathione S-transferase 1 (MGST1) and BCL2-interacting killer (BIK) to possess age-related mRNA expression levels. KU70 is a DNA repair gene and part of the DNA-dependent protein kinase (DNA-PK) complex. Its expression was negatively correlated with donor age showing highest expression levels in newborn, 2.6-fold lower levels in young and 6.3-fold lower levels in old donors. The transcription levels of MGST1, a gene protecting against oxidative stress, progressively increased with age. Expression was lowest in newborn, 2.6-fold higher in young and 4.3-fold higher in old donors. BIK is a proapoptotic gene and its expression was positively correlated with donor age: lowest in newborn, 1.8-fold higher in young and 4.1-fold higher in old donors. These findings were confirmed with an independent, second set of CD34+ samples (n=16) by means of quantitative real-time RT-PCR. Elucidation of age-dependent molecular alterations in healthy HSC facilitate a better understanding of functional impairments in hematopoiesis and may become valuable for anti-aging drug development and the emerging field of regenerative medicine.
Collapse
Affiliation(s)
- Wolf C Prall
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University of Duesseldorf, 40225 Duesseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
229
|
Cadet JL, Krasnova IN, Jayanthi S, Lyles J. Neurotoxicity of substituted amphetamines: Molecular and cellular mechanisms. Neurotox Res 2007; 11:183-202. [PMID: 17449459 DOI: 10.1007/bf03033567] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The amphetamines, including amphetamine (AMPH), methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA), are among abused drugs in the US and throughout the world. Their abuse is associated with severe neurologic and psychiatric adverse events including the development of psychotic states. These neuropsychiatric complications might, in part, be related to drug-induced neurotoxic effects, which include damage to dopaminergic and serotonergic terminals, neuronal apoptosis, as well as activated astroglial and microglial cells in the brain. The purpose of the present review is to summarize the toxic effects of AMPH, METH and MDMA. The paper also presents some of the factors that are thought to underlie this toxicity. These include oxidative stress, hyperthermia, excitotoxicity and various apoptotic pathways. Better understanding of the cellular and molecular mechanisms involved in their toxicity should help to generate modern therapeutic approaches to prevent or attenuate the long-term consequences of amphetamine use disorders in humans.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Branch, DHHS/NIH/NIDA, Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
230
|
Verbrugge I, de Vries E, Tait SWG, Wissink EHJ, Walczak H, Verheij M, Borst J. Ionizing radiation modulates the TRAIL death-inducing signaling complex, allowing bypass of the mitochondrial apoptosis pathway. Oncogene 2007; 27:574-84. [PMID: 17684487 DOI: 10.1038/sj.onc.1210696] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In many tumor cell types, ionizing radiation (IR) or DNA-damaging anticancer drugs enhance sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, which is of great clinical interest. We have investigated the molecular mechanism underlying the response to combined modality treatment in p53-mutant Jurkat T leukemic cells overexpressing Bcl-2. These cells are largely resistant to individual treatment with TRAIL or IR, but sensitive to combined treatment, in vitro as well as in vivo. We demonstrate that IR and DNA-damaging anticancer drugs enable TRAIL receptor-2 and CD95/Fas to bypass the mitochondrial pathway for effector caspase activation. This was validated by RNA interference for Bax and Bak and by overexpression of dominant-negative Caspase-9. Improved effector caspase activation was neither caused by altered expression of proapoptotic components nor by impaired activity of inhibitor of apoptosis proteins or nuclear factor-kappaB signaling. Rather, we found that pretreatment of cells with IR caused quantitative and qualitative changes in death receptor signaling. It strongly improved the capacity of ligand-bound receptors to recruit FADD and activate Caspase-8 and -10 in the death-inducing signaling complex, while c-FLIP(L) levels were unaffected.
Collapse
Affiliation(s)
- I Verbrugge
- Division of Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
231
|
Villa-Morales M, Santos J, Pérez-Gómez E, Quintanilla M, Fernández-Piqueras J. A Role for the Fas/FasL System in Modulating Genetic Susceptibility to T-Cell Lymphoblastic Lymphomas. Cancer Res 2007; 67:5107-16. [PMID: 17545588 DOI: 10.1158/0008-5472.can-06-4006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Fas/FasL system mediates induced apoptosis of immature thymocytes and peripheral T lymphocytes, but little is known about its implication in genetic susceptibility to T-cell malignancies. In this article, we report that the expression of FasL increases early in all mice after gamma-radiation treatments, maintaining such high levels for a long time in mice that resisted tumor induction. However, its expression is practically absent in T-cell lymphoblastic lymphomas. Interestingly, there exist significant differences in the level of expression between two mice strains exhibiting extremely distinct susceptibilities that can be attributed to promoter functional polymorphisms. In addition, several functional nucleotide changes in the coding sequences of both Fas and FasL genes significantly affect their biological activity. These results lead us to propose that germ-line functional polymorphisms affecting either the levels of expression or the biological activity of both Fas and FasL genes could be contributing to the genetic risk to develop T-cell lymphoblastic lymphomas and support the use of radiotherapy as an adequate procedure to choose in the treatment of T-cell malignancies.
Collapse
Affiliation(s)
- María Villa-Morales
- Laboratorio de Genética Molecular Humana, Departamento de Biología, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
232
|
Tolcher AW, Tolcher AW. Other Novel Targeted Therapies in Lung Cancer. Lung Cancer 2007. [DOI: 10.3109/9781420020359.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
233
|
Galluzzi L, Maiuri MC, Vitale I, Zischka H, Castedo M, Zitvogel L, Kroemer G. Cell death modalities: classification and pathophysiological implications. Cell Death Differ 2007; 14:1237-43. [PMID: 17431418 DOI: 10.1038/sj.cdd.4402148] [Citation(s) in RCA: 556] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- L Galluzzi
- INSERM, Unit Apoptosis, Cancer and Immunity, Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
234
|
Takahashi S, Gobe GC, Yoshimura Y, Kohgo T, Yamamoto T, Wakita M. Participation of the Fas and Fas ligand systems in apoptosis during atrophy of the rat submandibular glands. Int J Exp Pathol 2007; 88:9-17. [PMID: 17244334 PMCID: PMC2517292 DOI: 10.1111/j.1365-2613.2006.00511.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Most acinar cells and some duct cells undergo apoptosis during atrophy of the submandibular gland. The present study was designed to elucidate whether Fas and its receptor ligand (FasL) are involved during apoptotic atrophy of the gland. The excretory duct of the right submandibular gland of rats was doubly ligated with metal clips from 1 to 14 days for induction of gland atrophy. Control rats were untreated. Fas and FasL expression in the atrophied submandibular gland was detected using immunohistochemistry (IHC) and Western immunoblot. Expression of activated caspase 8 and activated caspase 3 was also detected with IHC. Fas-positive acinar and duct cells and FasL-positive duct cells increased in the atrophic glands at 3 and 5 days after duct ligation when apoptotic cells were commonly observed. Thereafter, Fas- and FasL-positive cells declined in number. Patterns of expression of Fas and FasL using Western immunoblots concurred with the IHC results. Activated caspase 8-positive cells were present at every time interval but peaked at 3 and 5 days following duct ligation. The cells showing immunoreaction for activated caspase 3 first appeared on day 3, with the peak in apoptosis, after which they decreased. The results indicate that the Fas/FasL systems likely play an important role in apoptotic pathways during atrophy of the submandibular gland.
Collapse
Affiliation(s)
- Shigeru Takahashi
- Department of Oral Health Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan.
| | | | | | | | | | | |
Collapse
|
235
|
Garnett TO, Filippova M, Duerksen-Hughes PJ. Bid is cleaved upstream of caspase-8 activation during TRAIL-mediated apoptosis in human osteosarcoma cells. Apoptosis 2007; 12:1299-315. [PMID: 17431792 DOI: 10.1007/s10495-007-0058-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
TRAIL induces apoptosis in many malignant cell types. In this study, we used the human papilloma virus (HPV) 16 E6 protein as a molecular tool to probe the TRAIL pathway in HCT116 colon carcinoma cells and U2OS osteosarcoma cells. Intriguingly, we found that while E6 protected HCT116 cells from TRAIL, U2OS cells expressing E6 remained sensitive to TRAIL. Furthermore, silencing FADD and procaspase-8 expression with siRNA did not prevent TRAIL-induced apoptosis in U2OS cells. However, siBid provided significant protection from TRAIL, and the cleavage kinetics of Bid and caspase-8 revealed that Bid was cleaved prior to the activation of caspase-8. Cathepsin B activity in U2OS cells was significantly activated shortly after exposure to TRAIL, and the cathepsin B inhibitor, CA074Me, inhibited both TRAIL- and anti-DR5-mediated apoptosis and delayed the cleavage of Bid. These findings suggest that TRAIL activates a pathway dependent on Bid, but largely independent of FADD and caspase-8, in U2OS cells.
Collapse
Affiliation(s)
- Theodore O Garnett
- Department of Biochemistry and Microbiology, Loma Linda University School of Medicine, 11085 Campus Street, 121 Mortensen Hall, Loma Linda, CA, 92354, USA
| | | | | |
Collapse
|
236
|
Manicassamy S, Sun Z. The critical role of protein kinase C-theta in Fas/Fas ligand-mediated apoptosis. THE JOURNAL OF IMMUNOLOGY 2007; 178:312-9. [PMID: 17182568 DOI: 10.4049/jimmunol.178.1.312] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A functional immune system not only requires rapid expansion of antigenic specific T cells, but also requires efficient deletion of clonally expanded T cells to avoid accumulation of T cells. Fas/Fas ligand (FasL)-mediated apoptosis plays a critical role in the deletion of activated peripheral T cells, which is clearly demonstrated by superantigen-induced expansion and subsequent deletion of T cells. In this study, we show that in the absence of protein kinase C-theta (PKC-theta), superantigen (staphylococcal enterotoxin B)-induced deletion of Vbeta8(+) CD4(+) T cells was defective in PKC-theta(-/-) mice. In response to staphylococcal enterotoxin B challenge, up-regulation of FasL, but not Fas, was significantly reduced in PKC-theta(-/-) mice. PKC-theta is thus required for maximum up-regulation of FasL in vivo. We further show that stimulation of FasL expression depends on PKC-theta-mediated activation of NF-AT pathway. In addition, PKC-theta(-/-) T cells displayed resistance to Fas-mediated apoptosis as well as activation-induced cell death (AICD). In the absence of PKC-theta, Fas-induced activation of apoptotic molecules such as caspase-8, caspase-3, and Bid was not efficient. However, AICD as well as Fas-mediated apoptosis of PKC-theta(-/-) T cells were restored in the presence of high concentration of IL-2, a critical factor required for potentiating T cells for AICD. PKC-theta is thus required for promoting FasL expression and for potentiating Fas-mediated apoptosis.
Collapse
Affiliation(s)
- Santhakumar Manicassamy
- Department of Microbiology and Immunology, School of Medicine, University of Illinois, Chicago, IL 60612, USA
| | | |
Collapse
|
237
|
Kohlhaas SL, Craxton A, Sun XM, Pinkoski MJ, Cohen GM. Receptor-mediated endocytosis is not required for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. J Biol Chem 2007; 282:12831-41. [PMID: 17327223 DOI: 10.1074/jbc.m700438200] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is selectively toxic to tumor compared with normal cells. Other members of the TNF family of death ligands (TNF, CD95L) engage their respective receptors (TNF-R1 and CD95), resulting in internalization of receptor and ligand and recruitment of adaptor proteins to the caspase activation platform known as the death-inducing signaling complex (DISC). Recently, TNF-R1 and CD95 have been shown to induce apoptosis with an absolute requirement for internalization of their corresponding receptors in the formation of a DISC. We show that TRAIL and its receptors are rapidly endocytosed in a time- and concentration-dependent manner. Blockade of receptor internalization with hyperosmotic sucrose did not inhibit TRAIL-induced apoptosis but, rather, amplified the apoptotic signaling of TRAIL. Plate-bound and soluble TRAIL induced similar levels of apoptosis. Together these results suggest that neither ligand nor receptor internalization is required for TRAIL-induced apoptosis. Internalization of TRAIL is mediated primarily by clathrin-dependent endocytosis and also by clathrin-independent pathways. Inhibition of clathrin-dependent internalization by overexpression of dominant negative forms of dynamin or AP180 did not inhibit TRAIL-induced apoptosis. Consistent with the finding that neither internalization of TRAIL nor its receptors is required for transmission of its apoptotic signal, recruitment of FADD (Fas-associated death domain) and procaspase-8 to form the TRAIL-associated DISC occurred at 4 degrees C, independent of endocytosis. Our findings demonstrate that TRAIL and TRAIL receptor 1/2, unlike TNF-TNF-R1 or CD95L-CD95, do not require internalization for formation of the DISC, activation of caspase-8, or transmission of an apoptotic signal in BJAB type I cells.
Collapse
Affiliation(s)
- Susan L Kohlhaas
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, P. O. Box 138, Lancaster Road, Leicester LE1 9HN, United Kingdom
| | | | | | | | | |
Collapse
|
238
|
Vutova P, Wirth M, Hippe D, Gross U, Schulze-Osthoff K, Schmitz I, Lüder CGK. Toxoplasma gondii inhibits Fas/CD95-triggered cell death by inducing aberrant processing and degradation of caspase 8. Cell Microbiol 2007; 9:1556-70. [PMID: 17298390 DOI: 10.1111/j.1462-5822.2007.00893.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ligation of the death receptor Fas/CD95 activates an apoptotic cascade and plays critical roles during infectious diseases. Previous work has established that infection with the intracellular parasite Toxoplasma gondii renders cells resistant to multiple inducers of apoptosis. However, the effect of T. gondii on the death receptor pathway is poorly characterized. Here we have determined the impact of the parasite on apoptosis in type I cells that transduce Fas/CD95 engagement via the death receptor pathway without the need of a mitochondrial amplification loop. The results have shown that T. gondii significantly reduced Fas/CD95-triggered apoptosis by impairing activation of the initiator caspase 8. Parasitic infection diminished the cellular amount of procaspase 8, resulting in its decreased recruitment to the death-inducing signalling complex and the impaired activation of effector caspases. Remarkably, downregulation of caspase 8 protein in T. gondii-infected cells also occurred in the absence of Fas/CD95 engagement and was associated with the appearance of non-canonical caspase 8 cleavage fragments. Distinct parasite proteins were associated with caspase 8 and its proteolytic fragments. These findings indicate that T. gondii aberrantly processes and finally degrades the initiator caspase 8, thereby, blocking Fas/CD95-mediated apoptosis which signals independently of the apoptogenic function of host cell mitochondria.
Collapse
Affiliation(s)
- Polya Vutova
- Institute for Medical Microbiology, Georg-August-University, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
239
|
Gusdon AM, Votyakova TV, Reynolds IJ, Mathews CE. Nuclear and Mitochondrial Interaction Involving mt-Nd2 Leads to Increased Mitochondrial Reactive Oxygen Species Production. J Biol Chem 2007; 282:5171-9. [PMID: 17189252 DOI: 10.1074/jbc.m609367200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
NADH dehydrogenase subunit 2, encoded by the mtDNA, has been associated with resistance to autoimmune type I diabetes (T1D) in a case control study. Recently, we confirmed a role for the mouse ortholog of the protective allele (mt-Nd2(a)) in resistance to T1D using genetic analysis of outcrosses between T1D-resistant ALR and T1D-susceptible NOD mice. We sought to determine the mechanism of disease protection by elucidating whether mt-Nd2(a) affects basal mitochondrial function or mitochondrial function in the presence of oxidative stress. Two lines of reciprocal conplastic mouse strains were generated: one with ALR nuclear DNA and NOD mtDNA (ALR.mt(NOD)) and the reciprocal with NOD nuclear DNA and ALR mtDNA (NOD.mt(ALR)). Basal mitochondrial respiration, transmembrane potential, and electron transport system enzymatic activities showed no difference among the strains. However, ALR.mt(NOD) mitochondria supported by either complex I or complex II substrates produced significantly more reactive oxygen species when compared with both parental strains, NOD.mt(ALR) or C57BL/6 controls. Nitric oxide inhibited respiration to a similar extent for mitochondria from the five strains due to competitive antagonism with molecular oxygen at complex IV. Superoxide and hydrogen peroxide generated by xanthine oxidase did not significantly decrease complex I function. The protein nitrating agents peroxynitrite or nitrogen dioxide radicals significantly decreased complex I function but with no significant difference among the five strains. In summary, mt-Nd2(a) does not confer elevated resistance to oxidative stress; however, it plays a critical role in the control of the mitochondrial reactive oxygen species production.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Department of Pediatrics, the University of Pittsburgh School of Medicine and The Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
240
|
García-Fuster MJ, Miralles A, García-Sevilla JA. Effects of opiate drugs on Fas-associated protein with death domain (FADD) and effector caspases in the rat brain: regulation by the ERK1/2 MAP kinase pathway. Neuropsychopharmacology 2007; 32:399-411. [PMID: 16482086 DOI: 10.1038/sj.npp.1301040] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study was designed to assess the effects of opiate treatment on the expression of Fas-associated protein with death domain (FADD) in the rat brain. FADD is involved in the transmission of Fas-death signals that have been suggested to contribute to the development of opiate tolerance and addiction. Acute treatments with high doses of sufentanil and morphine (mu-agonists), SNC-80 (delta-agonist), and U50488H (kappa-agonist) induced significant decreases (30-60%) in FADD immunodensity in the cerebral cortex, through specific opioid receptor mechanisms (effects antagonized by naloxone, naltrindole, or nor-binaltorphimine). The cannabinoid CB1 receptor agonist WIN 55,212-2 did not alter FADD content in the brain. Chronic (5 days) morphine (10-100 mg/kg), SNC-80 (10 mg/kg), or U50488H (10 mg/kg) was associated with the induction of tachyphylaxis to the acute effects. In morphine- and SNC-80-tolerant rats, antagonist-precipitated (2 h) or spontaneous withdrawal (24-48 h) induced a new and sustained inhibition of FADD (13-50%). None of these treatments altered the densities of caspases 8/3 (including the active cleaved forms) in the brain. Pretreatment of rats with SL 327 (a selective MEK1/2 inhibitor that blocks ERK activation) fully prevented the reduction of FADD content induced by SNC-80 in the cerebral cortex (43%) and corpus striatum (29%), demonstrating the direct involvement of ERK1/2 signaling in the regulation of FADD by the opiate agonist. The results indicate that mu- and delta-opioid receptors have a prominent role in the modulation of FADD (opposite to that of Fas) shortly after initiating treatment. Opiate drugs (and specifically the delta-agonists) could promote survival signals in the brain through inhibition of FADD, which in turn is dependent on the activation of the antiapoptotic ERK1/2 signaling pathway.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Caspases, Effector/drug effects
- Caspases, Effector/metabolism
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiopathology
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/physiopathology
- Disease Models, Animal
- Drug Tolerance/physiology
- Extracellular Signal-Regulated MAP Kinases/drug effects
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Fas-Associated Death Domain Protein/drug effects
- Fas-Associated Death Domain Protein/metabolism
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/physiology
- Male
- Narcotic Antagonists/pharmacology
- Opioid-Related Disorders/metabolism
- Opioid-Related Disorders/physiopathology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Substance Withdrawal Syndrome/metabolism
- Substance Withdrawal Syndrome/physiopathology
Collapse
Affiliation(s)
- María-Julia García-Fuster
- Laboratori de Neurofarmacologia, Institut Universitari d'Investigació en Ciències de la Salut, Universitat de les Illes Balears, Palma de Mallorca, Balears, Spain
| | | | | |
Collapse
|
241
|
Contini P, Zocchi MR, Pierri I, Albarello A, Poggi A. In vivo apoptosis of CD8(+) lymphocytes in acute myeloid leukemia patients: involvement of soluble HLA-I and Fas ligand. Leukemia 2007; 21:253-260. [PMID: 17170722 DOI: 10.1038/sj.leu.2404494] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/20/2006] [Accepted: 10/26/2006] [Indexed: 11/09/2022]
Abstract
In this study, we show that high serum levels of soluble human leukocyte antigens (HLA) class I molecules (sHLA-I, range: 0.7-1.7 micro g/ml) and soluble Fas ligand (FasL, range: 0.4-1.9 ng/ml) are detected in patients with acute myeloid leukemia (AML) at diagnosis, compared with healthy donors (HD) (sHLA-I, range: 0.1-0.6 micro g/ml; sFasL, range: 0.1-0.4 ng/ml). Patients' sera were able to induce transcription and secretion of FasL in CD8(+) T cells, followed by apoptosis in vitro; this apoptosis was inhibited by anti-HLA-I-specific monoclonal antibodies, suggesting that sHLA-I is responsible for cell death. These findings closely relate to the in vivo upregulation of FasL transcription observed in peripheral blood (PB) lymphocytes from AML patients; in the same cells, mRNA for the antiapoptotic proteins Bcl-2 and Bcl-x(L) was downregulated. Interestingly, caspase-8 and caspase-3, both downstream mediators of death receptor-induced apoptosis, were activated in CD8(+) cells of AML patients; one-third of these cells were already apoptotic in vivo, at variance with lymphocytes of HD. These data strongly suggest that in AML, increased levels of sHLA-I molecules may contribute to the elimination of potentially anti-tumor effector cells through a FasL/Fas interaction.
Collapse
Affiliation(s)
- P Contini
- Laboratory of Immunology, University of Genoa, Genoa, Italy
| | | | | | | | | |
Collapse
|
242
|
Abstract
Apoptosis of keratinocytes is a key mechanism required for epidermal homeostasis and the renewal of damaged cells. Its dysregulation has been implicated in many skin diseases including cancer and hyperproliferative disorders. In the present study, the effect of sodium butyrate, a histone deacetylase inhibitor, on keratinocyte apoptosis was investigated using the HaCaT human keratinocyte cell line. Sodium butyrate induced morphological changes associated with apoptosis and nuclear fragmentation of HaCaTs. Annexin V staining demonstrated that sodium butyrate induced apoptosis in a dose and time-dependent manner with 50% of HaCaTs apoptotic after exposure to 0.8 mg/ml sodium butyrate for 24 h. Apoptosis was associated with upregulation of cell surface expression of the death receptor Fas and activation of the extrinsic caspase pathway, with induction of caspase 8 activity peaking after 8 h. Caspase 3 activity peaked after 24 h and was associated with cleavage of the caspase 3 substrate, poly (ADP-ribose) polymerase (PARP). The intrinsic caspase pathway was not activated as caspase 9 activity was not detected, and there was no change in the expression of terminal differentiation markers keratin 10 and involucrin following sodium butyrate treatment. Together these results indicate that sodium butyrate is a potent inducer of Fas associated apoptosis via caspase activation in HaCaT keratinocytes, an effect that is independent of the induction of terminal differentiation.
Collapse
Affiliation(s)
- Ilse S Daehn
- Child Health Research Institute, Women's and Children's Hospital, North Adelaide, SA, Australia
| | | | | |
Collapse
|
243
|
López-Hernández FJ, Ortiz MA, Piedrafita FJ. The extrinsic and intrinsic apoptotic pathways are differentially affected by temperature upstream of mitochondrial damage. Apoptosis 2007; 11:1339-47. [PMID: 16703261 DOI: 10.1007/s10495-006-7689-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
It is well known that mild hypothermia prevents neuronal cell death following cerebral ischemia, although it can also cause apoptosis in other cell types. Thus, incubation at room temperature (RT) has been shown to induce apoptosis in hematopoietic cells, including Jurkat T leukemia cells. To further understand the apoptotic events that can be activated at RT, we compared the induction of apoptosis by several apoptotic insults in Jurkat cells stimulated at 37 degrees C or RT. Retinoid-related molecules, which induce apoptosis via the intrinsic pathway, failed to induce apoptosis when cells were treated at RT, as determined by various apoptotic parameters including cytochrome c release and activation of caspase 3. In contrast, most apoptotic events were enhanced by lower temperatures when cells were stimulated with anti-Fas antibody via the extrinsic pathway. Ultraviolet radiation produced partial effects at RT, correlating with its capacity to activate both pathways. Our results indicate that the core caspase machinery is operational under mild hypothermia conditions. Experiments using purified recombinant caspases and cell-free assays confirmed that caspases are fully functional at RT. Other hallmark events of apoptosis, such as phosphatidylserine externalization and formation of apoptotic bodies were variably affected by RT in a stimulus-dependent manner, suggesting the existence of critical steps that are sensitive to temperature. Thus, analysis of apoptosis at RT might be useful to (i) discriminate between the extrinsic and intrinsic pathways in Jurkat cells treated with prospective stimuli, and (ii) to unravel temperature-sensitive steps of apoptotic signaling cascades.
Collapse
|
244
|
Lemmers B, Salmena L, Bidère N, Su H, Matysiak-Zablocki E, Murakami K, Ohashi PS, Jurisicova A, Lenardo M, Hakem R, Hakem A. Essential role for caspase-8 in Toll-like receptors and NFkappaB signaling. J Biol Chem 2007; 282:7416-23. [PMID: 17213198 DOI: 10.1074/jbc.m606721200] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In addition to its pro-apoptotic function in the death receptor pathway, roles for caspase-8 in mediating T-cell proliferation, maintaining lymphocyte homeostasis, and suppressing immunodeficiency have become evident. Humans with a germline point mutation of CASPASE-8 have multiple defects in T cells, B cells, and NK cells, most notably attenuated activation and immunodeficiency. By generating mice with B-cell-specific inactivation of caspase-8 (bcasp8(-/-)), we show that caspase-8 is dispensable for B-cell development, but its loss in B cells results in attenuated antibody production upon in vivo viral infection. We also report an important role for caspase-8 in maintaining B-cell survival following stimulation of the Toll-like receptor (TLR)2, -3, and -4. In response to TLR4 stimulation, caspase-8 is recruited to a complex containing IKKalphabeta, and its loss resulted in delayed NFkappaB nuclear translocation and impaired NFkappaB transcriptional activity. Our study supports dual roles for caspase-8 in apoptotic and nonapoptotic functions and demonstrates its requirement for TLR signaling and in the regulation of NFkappaB function.
Collapse
Affiliation(s)
- Bénédicte Lemmers
- Ontario Cancer Institute, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Ying S, Pettengill M, Ojcius DM, Häcker G. Host-Cell Survival and Death During Chlamydia Infection. CURRENT IMMUNOLOGY REVIEWS 2007; 3:31-40. [PMID: 18843378 PMCID: PMC2562443 DOI: 10.2174/157339507779802179] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Different Chlamydia trachomatis strains are responsible for prevalent bacterial sexually-transmitted disease and represent the leading cause of preventable blindness worldwide. Factors that predispose individuals to disease and mechanisms by which chlamydiae cause inflammation and tissue damage remain unclear. Results from recent studies indicate that prolonged survival and subsequent death of infected cells and their effect on immune effector cells during chlamydial infection may be important in determining the outcome. Survival of infected cells is favored at early times of infection through inhibition of the mitochondrial pathway of apoptosis. Death at later times displays features of both apoptosis and necrosis, but pro-apoptotic caspases are not involved. Most studies on chlamydial modulation of host-cell death until now have been performed in cell lines. The consequences for pathogenesis and the immune response will require animal models of chlamydial infection, preferably mice with targeted deletions of genes that play a role in cell survival and death.
Collapse
Affiliation(s)
- Songmin Ying
- Institute for Medical Microbiology, Technische Universität München, D-81675 Munich, Germany
| | | | | | | |
Collapse
|
246
|
Festjens N, Cornelis S, Lamkanfi M, Vandenabeele P. Caspase-containing complexes in the regulation of cell death and inflammation. Biol Chem 2006; 387:1005-16. [PMID: 16895469 DOI: 10.1515/bc.2006.124] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Caspases are a family of cysteine proteases that are essential in the initiation and execution of apoptosis and the proteolytic maturation of inflammatory cytokines such as IL-1beta and IL-18. Caspases can be subdivided into those that have a large prodomain and those that have not. In general, apoptotic and inflammatory signalling pathways are initiated when large-prodomain caspases are recruited to large protein complexes via homotypic interactions involving death domain folds. The formation of these specialised multimeric platforms involves three major functions: (1) the sensing of cellular stress, damage, infection or inflammation; (2) multimerisation of the platform; and (3) recruitment and conformational activation of caspases. In this overview we discuss the complexes implicated in the regulation of cell death and inflammatory processes such as the death-inducing signalling complex (DISC), the apoptosome, the inflammasomes and the PIDDosome. We describe their sensing functions, compositions and functional outcomes. Inhibitory protein families such as FLIPs and CARD-only proteins prevent the recruitment of caspases in these sensing complexes, avoiding inappropriate initiation of cell death or inflammation.
Collapse
Affiliation(s)
- Nele Festjens
- Molecular Signalling and Cell Death Unit, Department for Molecular Biomedical Research, VIB and Ghent University, Fiers-Schell-Van Montagu Building, Technologiepark 927, B-9052 Ghent, Belgium
| | | | | | | |
Collapse
|
247
|
Feig C, Tchikov V, Schütze S, Peter ME. Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J 2006; 26:221-31. [PMID: 17159907 PMCID: PMC1782382 DOI: 10.1038/sj.emboj.7601460] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 10/31/2006] [Indexed: 01/15/2023] Open
Abstract
Apoptosis signaling through CD95 (Fas/APO-1) involves aggregation and clustering of the receptor followed by its actin-dependent internalization. Internalization is required for efficient formation of the death-inducing signaling complex (DISC) with maximal recruitment of FADD, caspase-8/10 and c-FLIP occurring when the receptor has reached an endosomal compartment. The first detectable event during CD95 signaling is the formation of SDS-stable aggregates likely reflecting intense oligomerization of the receptor. We now demonstrate that these SDS-stable forms of CD95 correspond to very high molecular weight DISC complexes (hiDISC) and are the sites of caspase-8 activation. hiDISCs are found both inside and outside of detergent-resistant membranes. The formation of SDS-stable CD95 aggregates involves palmitoylation of the membrane proximal cysteine 199 in CD95. Cysteine 199 mutants no longer form SDS-stable aggregates, and inhibition of palmitoylation reduces internalization of CD95 and activation of caspase-8. Our data demonstrate that SDS-stable forms of CD95 are the sites of apoptosis initiation and represent an important early step in apoptosis signaling through CD95 before activation of caspases.
Collapse
Affiliation(s)
- Christine Feig
- The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Vladimir Tchikov
- Institute of Immunology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Schütze
- Institute of Immunology, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marcus E Peter
- The Ben May Institute for Cancer Research, University of Chicago, Chicago, IL, USA
- The Ben May Institute for Cancer Research, University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA. Tel.: +1 773 702 4728; Fax: +1 773 702 3701; E-mail:
| |
Collapse
|
248
|
Grimm D, Bauer J, Infanger M, Cogoli A. The use of the random positioning machine for the study of gravitational effects on signal transduction in mammalian cells. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200600103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
249
|
|
250
|
Taha TA, Mullen TD, Obeid LM. A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1758:2027-36. [PMID: 17161984 PMCID: PMC1766198 DOI: 10.1016/j.bbamem.2006.10.018] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/25/2006] [Accepted: 10/28/2006] [Indexed: 12/20/2022]
Abstract
Programmed cell death is an important physiological response to many forms of cellular stress. The signaling cascades that result in programmed cell death are as elaborate as those that promote cell survival, and it is clear that coordination of both protein- and lipid-mediated signals is crucial for proper cell execution. Sphingolipids are a large class of lipids whose diverse members share the common feature of a long-chain sphingoid base, e.g., sphingosine. Many sphingolipids have been shown to play essential roles in both death signaling and survival. Ceramide, an N-acylsphingosine, has been implicated in cell death following a myriad of cellular stresses. Sphingosine itself can induce cell death but via pathways both similar and dissimilar to those of ceramide. Sphingosine-1-phosphate, on the other hand, is an anti-apoptotic molecule that mediates a host of cellular effects antagonistic to those of its pro-apoptotic sphingolipid siblings. Extraordinarily, these lipid mediators are metabolically juxtaposed, suggesting that the regulation of their metabolism is of the utmost importance in determining cell fate. In this review, we briefly examine the role of ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death and highlight the potential roles that these lipids play in the pathway to apoptosis.
Collapse
Affiliation(s)
- Tarek A. Taha
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Thomas D. Mullen
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lina M. Obeid
- Division of General Internal Medicine, Ralph H. Johnson Veterans Administration Hospital, Charleston, South Carolina 29401; and Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|