201
|
Xu D, Dai J, Tang L, Pan J, Zhang H. Nontargeted metabolomics reveals sequential changes in amino acid and ferroptosis-related metabolism in Parkinson's disease. Biomed Chromatogr 2024; 38:e5834. [PMID: 38308389 DOI: 10.1002/bmc.5834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Parkinson's disease (PD) is inseparable from metabolic disorders but lacks assessment of specific metabolite alteration. To explore the sequential metabolic changes in PD progression, we evenly divided 78 C57BL/6 mice (10 weeks) into six groups (one control group and five experimental groups) and collected the hippocampus tissue of mice after treating with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and probenecid (twice a week) at five periods (1, 2, 3, 4, and 5 weeks) for metabolome analysis. Our study identified 567 differentially abundant metabolites (DAMs) (total 4348 metabolites). Compared with controls, 145, 146, 171, 208, and 213 DAMs were obtained from the five experimental groups, respectively. Notably, 40 shared DAMs were present in five experimental groups, of which 22 shared DAMs formed a new metabolic network based on amino acid metabolism. Compared with group W3, 84 DAMs were identified in group W5, including 12 unique DAMs. DAMs in different stages of PD were significantly enriched in amino acid metabolism pathway, lipid metabolism pathway, and ferroptosis pathway. l-Glutamine, spermidine, and l-tryptophan were the key hubs in the whole metabolic process of PD. N-Formyl-l-methionine gradually increased in abundance with PD progression, whereas 5-methylcytosine gradually decreased. The study emphasized the sequential changes in DAMs in PD progression, stimulating subsequent studies.
Collapse
Affiliation(s)
- Delai Xu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Dai
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liuxing Tang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hua Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
202
|
Liu C, Su Y, Ma X, Wei Y, Qiao R. How close are we to a breakthrough? The hunt for blood biomarkers in Parkinson's disease diagnosis. Eur J Neurosci 2024; 59:2563-2576. [PMID: 38379501 DOI: 10.1111/ejn.16290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
Parkinson's disease (PD), being the second largest neurodegenerative disease, poses challenges in early detection, resulting in a lack of timely treatment options to effectively manage the disease. By the time clinical diagnosis becomes possible, more than 60% of dopamine neurons in the substantia nigra (SN) of patients have already degenerated. Therefore, early diagnosis or identification of warning signs is crucial for the prompt and timely beginning of the treatment. However, conducting invasive or complex diagnostic procedures on asymptomatic patients can be challenging, making routine blood tests a more feasible approach in such cases. Numerous studies have been conducted over an extended period to search for effective diagnostic biomarkers in blood samples. However, thus far, no highly effective biomarkers have been confirmed. Besides classical proteins like α-synuclein (α-syn), phosphorylated α-syn and oligomeric α-syn, other molecules involved in disease progression should also be given equal attention. In this review, we will not only discuss proposed biomarkers that are currently under investigation but also delve into the mechanisms underlying the disease, focusing on processes such as α-syn misfolding, intercellular transmission and the crossing of the blood-brain barrier (BBB). Our aim is to provide an updated overview of molecules based on these processes that may potentially serve as blood biomarkers.
Collapse
Affiliation(s)
- Cheng Liu
- Peking University Third Hospital, Beijing, China
| | - Yang Su
- Peking University Third Hospital, Beijing, China
| | - Xiaolong Ma
- Peking University Third Hospital, Beijing, China
| | - Yao Wei
- Peking University Third Hospital, Beijing, China
| | - Rui Qiao
- Peking University Third Hospital, Beijing, China
| |
Collapse
|
203
|
Yan S, Lu J, Li Y, Cho J, Zhang S, Zhu W, Wang Y. Spatiotemporal patterns of brain iron-oxygen metabolism in patients with Parkinson's disease. Eur Radiol 2024; 34:3074-3083. [PMID: 37853173 DOI: 10.1007/s00330-023-10283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/21/2023] [Accepted: 08/08/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVES Iron deposition and mitochondrial dysfunction are closely associated with the genesis and progression of Parkinson's disease (PD). This study aims to extract susceptibility and oxygen extraction fraction (OEF) values of deep grey matter (DGM) to explore spatiotemporal progression patterns of brain iron-oxygen metabolism in PD. METHODS Ninety-five PD patients and forty healthy controls (HCs) were included. Quantitative susceptibility mapping (QSM) and OEF maps were computed from MRI multi-echo gradient echo data. Analysis of covariance (ANCOVA) was used to compare mean susceptibility and OEF values in DGM between early-stage PD (ESP), advanced-stage PD (ASP) patients and HCs. Then Granger causality analysis on the pseudo-time-series of MRI data was applied to assess the causal effect of early altered nuclei on iron content and oxygen extraction in other DGM nuclei. RESULTS The susceptibility values in substantia nigra (SN), red nucleus, and globus pallidus (GP) significantly increased in PD patients compared with HCs, while the iron content in GP did not elevate obviously until the late stage. The mean OEF values for the caudate nucleus, putamen, and dentate nucleus were higher in ESP patients than in ASP patients or/and HCs. We also found that iron accumulation progressively expands from the midbrain to the striatum. These alterations were correlated with clinical features and improved AUC for early PD diagnosis to 0.824. CONCLUSIONS Abnormal cerebral iron deposition and tissue oxygen utilization in PD measured by QSM and OEF maps could reflect pathological alterations in neurodegenerative processes and provide valuable indicators for disease identification and management. CLINICAL RELEVANCE STATEMENT Noninvasive assessment of cerebral iron-oxygen metabolism may serve as clinical evidence of pathological changes in PD and improve the validity of diagnosis and disease monitoring. KEY POINTS • Quantitative susceptibility mapping and oxygen extraction fraction maps indicated the cerebral pathology of abnormal iron accumulation and oxygen metabolism in Parkinson's disease. • Iron deposition is mainly in the midbrain, while altered oxygen metabolism is concentrated in the striatum and cerebellum. • The susceptibility and oxygen extraction fraction values in subcortical nuclei were associated with clinical severity.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China
| | - Jun Lu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China
- Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, 107 North Second Road, Shihezi, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030, China.
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
204
|
Maniscalchi A, Benzi Juncos ON, Conde MA, Funk MI, Fermento ME, Facchinetti MM, Curino AC, Uranga RM, Alza NP, Salvador GA. New insights on neurodegeneration triggered by iron accumulation: Intersections with neutral lipid metabolism, ferroptosis, and motor impairment. Redox Biol 2024; 71:103074. [PMID: 38367511 PMCID: PMC10879836 DOI: 10.1016/j.redox.2024.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 02/03/2024] [Indexed: 02/19/2024] Open
Abstract
Brain iron accumulation constitutes a pathognomonic indicator in several neurodegenerative disorders. Metal accumulation associated with dopaminergic neuronal death has been documented in Parkinson's disease. Through the use of in vivo and in vitro models, we demonstrated that lipid dysregulation manifests as a neuronal and glial response during iron overload. In this study, we show that cholesterol content and triacylglycerol (TAG) hydrolysis were strongly elevated in mice midbrain. Lipid cacostasis was concomitant with the loss of dopaminergic neurons, astrogliosis and elevated expression of α-synuclein. Exacerbated lipid peroxidation and markers of ferroptosis were evident in the midbrain from mice challenged with iron overload. An imbalance in the activity of lipolytic and acylation enzymes was identified, favoring neutral lipid hydrolysis, and consequently reducing TAG and cholesteryl ester levels. Notably, these observed alterations were accompanied by motor impairment in iron-treated mice. In addition, neuronal and glial cultures along with their secretomes were used to gain further insight into the mechanism underlying TAG hydrolysis and cholesterol accumulation as cellular responses to iron accumulation. We demonstrated that TAG hydrolysis in neurons is triggered by astrocyte secretomes. Moreover, we found that the ferroptosis inhibitor, ferrostatin-1, effectively prevents cholesterol accumulation both in neurons and astrocytes. Taken together, these results indicate that lipid disturbances occur in iron-overloaded mice as a consequence of iron-induced oxidative stress and depend on neuron-glia crosstalk. Our findings suggest that developing therapies aimed at restoring lipid homeostasis may lead to specific treatment for neurodegeneration associated with ferroptosis and brain iron accumulation.
Collapse
Affiliation(s)
- Athina Maniscalchi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina
| | - Oriana N Benzi Juncos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Melisa A Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Melania I Funk
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina
| | - María E Fermento
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María M Facchinetti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Alejandro C Curino
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Romina M Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia P Alza
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Química - UNS, Bahía Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina.
| |
Collapse
|
205
|
Morandini HAE, Watson PA, Barbaro P, Rao P. Brain iron concentration in childhood ADHD: A systematic review of neuroimaging studies. J Psychiatr Res 2024; 173:200-209. [PMID: 38547742 DOI: 10.1016/j.jpsychires.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Iron deficiency may play a role in the pathophysiology of Attention Deficit/Hyperactivity Disorder (ADHD). Due to its preponderant function in monoamine catecholamine and myelin synthesis, brain iron concentration may be of primary interest in the investigation of iron dysregulation in ADHD. This study reviewed current evidence of brain iron abnormalities in children and adolescents with ADHD using magnetic resonance imaging methods, such as relaxometry and quantitative susceptibility mapping, to assess brain iron estimates. The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A literature search was performed for studies published between January 1, 2008 and July 7, 2023 in Medline, Scopus and Proquest. Regions of interest, brain iron index values and phenotypical information were extracted from the relevant studies. Risk of bias was assessed using a modified version of the National Heart, Lung, and Blood Institute quality assessment tool. Seven cross-sectional studies comparing brain iron estimates in children with ADHD with neurotypical children were included. Significantly reduced brain iron content in medication-naïve children with ADHD was a consistent finding. Two studies found psychostimulant use may increase and normalize brain iron concentration in children with ADHD. The findings were consistent across the studies despite differing methodologies and may lay the early foundation for the recognition of a potential biomarker in ADHD, although longitudinal prospective neuroimaging studies using larger sample sizes are required. Lastly, the effects of iron supplementation on brain iron concentration in children with ADHD need to be elucidated.
Collapse
Affiliation(s)
- Hugo A E Morandini
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia; Division of Psychiatry, UWA Medical School, Faculty of Health & Medical Sciences, The University of Western Australia, Australia.
| | - Prue A Watson
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia
| | - Parma Barbaro
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia
| | - Pradeep Rao
- Complex Attention and Hyperactivity Disorders Service, Child and Adolescent Health Services, Perth, WA, Australia; Division of Psychiatry, UWA Medical School, Faculty of Health & Medical Sciences, The University of Western Australia, Australia; Telethon Kids Institute, Perth, Australia
| |
Collapse
|
206
|
McBride DE, Bhattacharya A, Sucharew H, Brunst KJ, Barnas M, Cox C, Altman L, Hilbert TJ, Burkle J, Westneat S, Martin KV, Parsons PJ, Praamsma ML, Palmer CD, Kannan K, Smith DR, Wright R, Amarasiriwardena C, Dietrich KN, Cecil KM, Haynes EN. Child and Adolescent Manganese Biomarkers and Adolescent Postural Balance in Marietta CARES Cohort Participants. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:57010. [PMID: 38780454 PMCID: PMC11114102 DOI: 10.1289/ehp13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Manganese (Mn) plays a significant role in both human health and global industries. Epidemiological studies of exposed populations demonstrate a dose-dependent association between Mn and neuromotor effects ranging from subclinical effects to a clinically defined syndrome. However, little is known about the relationship between early life Mn biomarkers and adolescent postural balance. OBJECTIVES This study investigated the associations between childhood and adolescent Mn biomarkers and adolescent postural balance in participants from the longitudinal Marietta Communities Actively Researching Exposures Study (CARES) cohort. METHODS Participants were recruited into CARES when they were 7-9 y old, and reenrolled at 13-18 years of age. At both time points, participants provided samples of blood, hair, and toenails that were analyzed for blood Mn and lead (Pb), serum cotinine, hair Mn, and toenail Mn. In adolescence, participants completed a postural balance assessment. Greater sway indicates postural instability (harmful effect), whereas lesser sway indicates postural stability (beneficial effect). Multivariable linear regression models were conducted to investigate the associations between childhood and adolescent Mn biomarkers and adolescent postural balance adjusted for age, sex, height-weight ratio, parent/caregiver intelligence quotient, socioeconomic status, blood Pb, and serum cotinine. RESULTS CARES participants who completed the adolescent postural balance assessment (n = 123 ) were 98% White and 54% female and had a mean age of 16 y (range: 13-18 y). In both childhood and adolescence, higher Mn biomarker concentrations were significantly associated with greater adolescent sway measures. Supplemental analyses revealed sex-specific associations; higher childhood Mn biomarker concentrations were significantly associated with greater sway in females compared with males. DISCUSSION This study found childhood and adolescent Mn biomarkers were associated with subclinical neuromotor effects in adolescence. This study demonstrates postural balance as a sensitive measure to assess the association between Mn biomarkers and neuromotor function. https://doi.org/10.1289/EHP13381.
Collapse
Affiliation(s)
- Danielle E. McBride
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Amit Bhattacharya
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Heidi Sucharew
- Department of Emergency Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kelly J. Brunst
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mary Barnas
- Department of Psychology, Marietta College, Marietta, Ohio, USA
| | - Cyndy Cox
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Lorenna Altman
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Timothy J. Hilbert
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jeff Burkle
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Susan Westneat
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Kaitlin Vollet Martin
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Patrick J. Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Meredith L. Praamsma
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Christopher D. Palmer
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, New York, USA
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA
| | - Robert Wright
- Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, New York, USA
| | - Chitra Amarasiriwardena
- Environmental Medicine and Public Health, Mount Sinai School of Medicine, New York, New York, USA
| | - Kim N. Dietrich
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kim M. Cecil
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erin N. Haynes
- Department of Epidemiology and Environmental Health, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
207
|
Feng Y, Wei H, Lyu M, Yu Z, Chen J, Lyu X, Zhuang F. Iron retardation in lysosomes protects senescent cells from ferroptosis. Aging (Albany NY) 2024; 16:7683-7703. [PMID: 38683121 PMCID: PMC11131988 DOI: 10.18632/aging.205777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/09/2024] [Indexed: 05/01/2024]
Abstract
Ferroptosis, an iron-triggered modality of cellular death, has been reported to closely relate to human aging progression and aging-related diseases. However, the involvement of ferroptosis in the development and maintenance of senescent cells still remains elusive. Here, we established a doxorubicin-induced senescent HSkM cell model and found that both iron accumulation and lipid peroxidation increase in senescent cells. Moreover, such iron overload in senescent cells has changed the expression panel of the ferroptosis-response proteins. Interestingly, the iron accumulation and lipid peroxidation does not trigger ferroptosis-induced cell death. Oppositely, senescent cells manifest resistance to the ferroptosis inducers, compared to the proliferating cells. To further investigate the mechanism of ferroptosis-resistance for senescent cells, we traced the iron flux in cell and found iron arrested in lysosome. Moreover, disruption of lysosome functions by chloroquine and LLOMe dramatically triggered the senescent cell death. Besides, the ferroitinophagy-related proteins FTH1/FTL and NCOA4 knockdown also increases the senescent cell death. Thus, we speculated that iron retardation in lysosome of senescent cells is the key mechanism for ferroptosis resistance. And the lysosome is a promising target for senolytic drugs to selectively clear senescent cells and alleviate the aging related diseases.
Collapse
Affiliation(s)
- Yujing Feng
- School of Laboratory Animal and Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Huaiqing Wei
- Biomedical Research College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Lyu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhiyuan Yu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jia Chen
- School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Xinxing Lyu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fengfeng Zhuang
- School of Laboratory Animal and Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
208
|
Sun Y, Xiao Y, Tang Q, Chen W, Lin L. Genetic markers associated with ferroptosis in Alzheimer's disease. Front Aging Neurosci 2024; 16:1364605. [PMID: 38711596 PMCID: PMC11073811 DOI: 10.3389/fnagi.2024.1364605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Objective Ferroptosis is implicated in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and vascular dementia, implying that it may have a regulatory effect on the progression of these diseases. However, the specific role of ferroptosis-related genes (FRGs) in Alzheimer's disease (AD) is not yet fully understood. The aim of the study was to detect ferroptosis related genes with regulatory functions in the disease and explore potential mechanisms in AD. Methods Hub FRGs were obtained through multiple algorithms based on the GSE5281 dataset. The screening process was implemented by R packages including limma, WGCNA, glm and SVM-RFE. Gene Ontology classification and pathway enrichment analysis were performed based on FRGs. Biological processes involved with hub FRGs were investigated through GSVA and GSEA methods. Immune infiltration analysis was performed by the R package CIBERSORT. Receiver operating characteristic curve (ROC) was utilized to validate the accuracy of hub FRGs. The CeRNA network attempted to find non-coding RNA transcripts which may play a role in disease progression. Results DDIT4, MUC1, KLHL24, CD44, and RB1 were identified as hub FRGs. As later revealed by enrichment analysis, the hub FRGs had important effects on AD through involvement in diverse AD pathogenesis-related pathways such as autophagy and glutathione metabolism. The immune microenvironment in AD shows increased numbers of resting NK cells, macrophages, and mast cells, with decreased levels of CD8 T cells when compared to healthy samples. Regulatory T cells were positively correlated with MUC1, KLHL24, and DDIT4 expression, while RB1 showed negative correlations with eosinophils and CD8 T cells, suggesting potential roles in modulating the immune environment in AD. Conclusion Our research has identified five hub FRGs in AD. We concluded that ferroptosis may be involved in the disease.
Collapse
Affiliation(s)
- Yuting Sun
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Xiao
- Psychosomatic Medicine Center, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Psychosomatic Medicine Center, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Tang
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Chen
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Lin
- Department of Clinical Laboratory, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Department of Clinical Laboratory, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
209
|
Hui SC, Murali-Manohar S, Zöllner HJ, Hupfeld KE, Davies-Jenkins CW, Gudmundson AT, Song Y, Yedavalli V, Wisnowski JL, Gagoski B, Oeltzschner G, Edden RA. Integrated Short-TE and Hadamard-edited Multi-Sequence (ISTHMUS) for Advanced MRS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580516. [PMID: 38659947 PMCID: PMC11042202 DOI: 10.1101/2024.02.15.580516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background To examine data quality and reproducibility using ISTHMUS, which has been implemented as the standardized MR spectroscopy sequence for the multi-site Healthy Brain and Child Development (HBCD) study. Methods ISTHMUS is the consecutive acquisition of short-TE PRESS (32 transients) and long-TE HERCULES (224 transients) data with dual-TE water reference scans. Voxels were positioned in the centrum semiovale, dorsal anterior cingulate cortex, posterior cingulate cortex and bilateral thalamus regions. After acquisition, ISTHMUS data were separated into the PRESS and HERCULES portions for analysis and modeled separately using Osprey. In vivo experiments were performed in 10 healthy volunteers (6 female; 29.5±6.6 years). Each volunteer underwent two scans on the same day. Differences in metabolite measurements were examined. T2 correction based on the dual-TE water integrals were compared with: 1) T2 correction based the default white matter and gray matter T2 reference values in Osprey; 2) shorter WM and GM T2 values from recent literature; and 3) reduced CSF fractions. Results No significant difference in linewidth was observed between PRESS and HERCULES. Bilateral thalamus spectra had produced significantly higher (p<0.001) linewidth compared to the other three regions. Linewidth measurements were similar between scans, with scan-to-scan differences under 1 Hz for most subjects. Paired t-tests indicated a significant difference only in PRESS NAAG between the two thalamus scans (p=0.002). T2 correction based on shorter T2 values showed better agreement to the dual-TE water integral ratio. Conclusions ISTHMUS facilitated and standardized acquisition and post-processing and reduced operator workload to eliminate potential human error.
Collapse
Affiliation(s)
- Steve C.N. Hui
- Developing Brain Institute, Children’s National Hospital, Washington, D.C. USA
- Departments of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, D.C. USA
- Departments of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, D.C. USA
| | - Saipavitra Murali-Manohar
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J. Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Kathleen E. Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christopher W. Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Aaron T. Gudmundson
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Yulu Song
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Vivek Yedavalli
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jessica L Wisnowski
- Department of Radiology, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Borjan Gagoski
- Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A.E. Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
210
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
211
|
Shao M, Cheng H, Li X, Qiu Y, Zhang Y, Chang Y, Fu J, Shen M, Xu X, Feng D, Han Y, Yue S, Zhou Y, Luo Z. Abnormal mitochondrial iron metabolism damages alveolar type II epithelial cells involved in bleomycin-induced pulmonary fibrosis. Theranostics 2024; 14:2687-2705. [PMID: 38773980 PMCID: PMC11103499 DOI: 10.7150/thno.94072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/08/2024] [Indexed: 05/24/2024] Open
Abstract
Rationale: Pulmonary fibrosis is a chronic progressive lung disease with limited therapeutic options. We previously revealed that there is iron deposition in alveolar epithelial type II cell (AECII) in pulmonary fibrosis, which can be prevented by the iron chelator deferoxamine. However, iron in the cytoplasm and the mitochondria has two relatively independent roles and regulatory systems. In this study, we aimed to investigate the role of mitochondrial iron deposition in AECII injury and pulmonary fibrosis, and to find potential therapeutic strategies. Methods: BLM-treated mice, MLE-12 cells, and primary AECII were employed to establish the mouse pulmonary fibrosis model and epithelial cells injury model, respectively. Mitochondrial transplantation, siRNA and plasmid transfection, western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), polymerase chain reaction (PCR), immunofluorescence, immunoprecipitation (IP), MitoSOX staining, JC-1 staining, oxygen consumption rate (OCR) measurement, and Cell Counting Kit-8 (CCK8) assay were utilized to elucidate the role of mitochondrial iron deposition in cell and lung fibrosis and determine its mechanism. Results: This study showed that prominent mitochondrial iron deposition occurs within AECII in bleomycin (BLM)-induced pulmonary fibrosis mouse model and in BLM-treated MLE-12 epithelial cells. Further, the study revealed that healthy mitochondria rescue BLM-damaged AECII mitochondrial iron deposition and cell damage loss. Mitoferrin-2 (MFRN2) is the main transporter that regulates mitochondrial iron metabolism by transferring cytosolic iron into mitochondria, which is upregulated in BLM-treated MLE-12 epithelial cells. Direct overexpression of MFRN2 causes mitochondrial iron deposition and cell damage. In this study, decreased ubiquitination of the ubiquitin ligase F-box/LRR-repeat protein 5 (FBXL5) degraded iron-reactive element-binding protein 2 (IREB2) and promoted MFRN2 expression as well as mitochondrial iron deposition in damaged AECII. Activation of the prostaglandin E2 receptor EP4 subtype (EP4) receptor signaling pathway counteracted mitochondrial iron deposition by downregulating IREB2-MFRN2 signaling through upregulation of FBXL5. This intervention not only reduced mitochondrial iron content but also preserved mitochondrial function and protected against AECII damage after BLM treatment. Conclusion: Our findings highlight the unexplored roles, mechanisms, and regulatory approaches of abnormal mitochondrial iron metabolism of AECII in pulmonary fibrosis. Therefore, this study deepens the understanding of the mechanisms underlying pulmonary fibrosis and offers a promising strategy for developing effective therapeutic interventions using the EP4 receptor activator.
Collapse
Affiliation(s)
- Min Shao
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Haipeng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Xiaohong Li
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Yujia Qiu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yunna Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yanfen Chang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Jiafeng Fu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Mengxia Shen
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Xinxin Xu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Dandan Feng
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yang Han
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - ShaoJie Yue
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410078, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, 410013, China
| |
Collapse
|
212
|
Yu J, Zhao Z, Li Y, Chen J, Huang N, Luo Y. Role of NLRP3 in Parkinson's disease: Specific activation especially in dopaminergic neurons. Heliyon 2024; 10:e28838. [PMID: 38596076 PMCID: PMC11002585 DOI: 10.1016/j.heliyon.2024.e28838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with motor symptoms like bradykinesia, tremors, and balance issues. The pathology is recognized by progressively degenerative nigrostriatal dopaminergic neurons (DANs) loss. Its exact pathogenesis is unclear. Numerous studies have shown that nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) contributes to the pathogenesis of PD. Previous studies have demonstrated that the over-activation of NLRP3 inflammasome in microglia indirectly leads to the loss of DANs, which can worsen PD. In recent years, autopsy analyses of PD patients and studies in PD models have revealed upregulation of NLRP3 expression within DANs and demonstrated that activation of NLRP3 inflammasome in neurons is sufficient to drive neuronal loss, whereas microglial activation occurs after neuronal death, and that inhibition of intraneuronal NLRP3 inflammasome prevents degeneration of DANs. In this review, we provide research evidence related to NLRP3 inflammasome in DANs in PD as well as focus on possible mechanisms of NLRP3 inflammasome activation in neurons, aiming to provide a new way of thinking about the pathogenesis and prevention of PD.
Collapse
Affiliation(s)
- Juan Yu
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, China
| | - Zhanghong Zhao
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, China
| | - Yuanyuan Li
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Jian Chen
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, China
| | - Nanqu Huang
- National Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yong Luo
- Department of Neurology, Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, China
| |
Collapse
|
213
|
Chen H, Yang A, Huang W, Du L, Liu B, Lv K, Luan J, Hu P, Shmuel A, Shu N, Ma G. Associations of quantitative susceptibility mapping with cortical atrophy and brain connectome in Alzheimer's disease: A multi-parametric study. Neuroimage 2024; 290:120555. [PMID: 38447683 DOI: 10.1016/j.neuroimage.2024.120555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
Aberrant susceptibility due to iron level abnormality and brain network disconnections are observed in Alzheimer's disease (AD), with disrupted iron homeostasis hypothesized to be linked to AD pathology and neuronal loss. However, whether associations exist between abnormal quantitative susceptibility mapping (QSM), brain atrophy, and altered brain connectome in AD remains unclear. Based on multi-parametric brain imaging data from 30 AD patients and 26 healthy controls enrolled at the China-Japan Friendship Hospital, we investigated the abnormality of the QSM signal and volumetric measure across 246 brain regions in AD patients. The structural and functional connectomes were constructed based on diffusion MRI tractography and functional connectivity, respectively. The network topology was quantified using graph theory analyses. We identified seven brain regions with both reduced cortical thickness and abnormal QSM (p < 0.05) in AD, including the right superior frontal gyrus, left superior temporal gyrus, right fusiform gyrus, left superior parietal lobule, right superior parietal lobule, left inferior parietal lobule, and left precuneus. Correlations between cortical thickness and network topology computed across patients in the AD group resulted in statistically significant correlations in five of these regions, with higher correlations in functional compared to structural topology. We computed the correlation between network topological metrics, QSM value and cortical thickness across regions at both individual and group-averaged levels, resulting in a measure we call spatial correlations. We found a decrease in the spatial correlation of QSM and the global efficiency of the structural network in AD patients at the individual level. These findings may provide insights into the complex relationships among QSM, brain atrophy, and brain connectome in AD.
Collapse
Affiliation(s)
- Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Aocai Yang
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| | - Lei Du
- Department of Radiology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Bing Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kuan Lv
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jixin Luan
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Pianpian Hu
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Amir Shmuel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Departments of Neurology and Neurosurgery, Physiology, and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China.
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China; China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
214
|
Mohammadi S, Ghaderi S. Parkinson's disease and Parkinsonism syndromes: Evaluating iron deposition in the putamen using magnetic susceptibility MRI techniques - A systematic review and literature analysis. Heliyon 2024; 10:e27950. [PMID: 38689949 PMCID: PMC11059419 DOI: 10.1016/j.heliyon.2024.e27950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Magnetic resonance imaging (MRI) techniques, such as quantitative susceptibility mapping (QSM) and susceptibility-weighted imaging (SWI), can detect iron deposition in the brain. Iron accumulation in the putamen (PUT) can contribute to the pathogenesis of Parkinson's disease (PD) and atypical Parkinsonian disorders. This systematic review aimed to synthesize evidence on iron deposition in the PUT assessed by MRI susceptibility techniques in PD and Parkinsonism syndromes. The PubMed and Scopus databases were searched for relevant studies. Thirty-four studies from January 2007 to October 2023 that used QSM, SWI, or other MRI susceptibility methods to measure putaminal iron in PD, progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and healthy controls (HCs) were included. Most studies have found increased putaminal iron levels in PD patients versus HCs based on higher quantitative susceptibility. Putaminal iron accumulation correlates with worse motor scores and cognitive decline in patients with PD. Evidence regarding differences in susceptibility between PD and atypical Parkinsonism is emerging, with several studies showing greater putaminal iron deposition in PSP and MSA than in PD patients. Alterations in putaminal iron levels help to distinguish these disorders from PD. Increased putaminal iron levels appear to be associated with increased disease severity and progression. Thus, magnetic susceptibility MRI techniques can detect abnormal iron accumulation in the PUT of patients with Parkinsonism. Moreover, quantifying putaminal susceptibility may serve as an MRI biomarker to monitor motor and cognitive changes in PD and aid in the differential diagnosis of Parkinsonian disorders.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
215
|
Long Q, Li T, Zhu Q, He L, Zhao B. SuanZaoRen decoction alleviates neuronal loss, synaptic damage and ferroptosis of AD via activating DJ-1/Nrf2 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117679. [PMID: 38160863 DOI: 10.1016/j.jep.2023.117679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE SuanZaoRen Decoction (SZRD), a famous herbal prescription, and has been widely proven to have positive therapeutic effects on insomnia, depression and Alzheimer's disease (AD). However, the anti-AD molecular mechanism of SZRD remains to be further investigated. AIM OF THE STUDY To elucidate the molecular mechanism of SZRD's improvement in AD's neuronal loss, synaptic damage and ferroptosis by regulating DJ-1/Nrf2 signaling pathway. MATERIALS AND METHODS LC-MS/MS was used to detect the active ingredients from SZRD. APP/PS1 mice was treated with SZRD and a ferroptosis inhibitor (Liproxstatin-1), respectively. Upon the completion of behavioral tests, Nissl staining, FJB staining, Golgi staining, immunofluorescence, immunohistochemistry, and transmission electron microscopy were preformed to evaluate the effects of SZRD on neuronal loss, synaptic damage, Aβ deposition. Iron staining, transmission electron microscopy, and iron assay kit was performed to estimate the effects of SZRD on ferroptosis. SOD kit, MDA kit, GSH kit, and GSH/GSSG kit were utilized to measure the oxidative stress levels in the hippocampus. The protein expression of TfR1, FTH1, FTL, FPN1, DJ-1, Nrf2, GPX4, SLC7A11, and ACSL4 were detected by Western blot. RESULTS A total of 16 active ingredients were identified from SZRD extract. SZRD SZRD significantly alleviated learning and memory impairment in APP/PS1 mice. SZRD improved the hippocampal neuronal loss and degenerated neurons in APP/PS1 mice via inhibiting the Aβ deposit. SZRD mitigated the hippocampal synaptic damage in APP/PS1 mice. SZRD inhibited iron accumulation, and alleviated the oxidative stress level in the hippocampus of APP/PS1 mice. Meanwhile, SZRD could up-regulate the protein expression level of FPN1, DJ-1, Nrf2, GPX4 and SLC7A11 in the hippocampus, and inhibit TfR1, FTH1, FTL, and ACSL4 protein expression. CONCLUSION SZRD alleviated neuronal loss, synaptic damage and ferroptosis in AD via activating DJ-1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Qinghua Long
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, 445000, China
| | - Tong Li
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China
| | - Qihang Zhu
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Rheumatic Disease, Hubei Minzu University, Enshi, 445000, China
| | - Liling He
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China.
| | - Binbin Zhao
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China; Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
216
|
He YB, Han L, Wang C, Fang J, Shang Y, Cai HL, Zhou Q, Zhang ZZ, Chen SL, Li JY, Liu YL. Bulk RNA-sequencing, single-cell RNA-sequencing analysis, and experimental validation reveal iron metabolism-related genes CISD2 and CYP17A1 are potential diagnostic markers for recurrent pregnancy loss. Gene 2024; 901:148168. [PMID: 38244949 DOI: 10.1016/j.gene.2024.148168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/06/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) is associated with variable causes. Its etiology remains unexplained in about half of the cases, with no effective treatment available. Individuals with RPL have an irregular iron metabolism. In the present study, we identified key genes impacting iron metabolism that could be used for diagnosing and treating RPL. METHODS We obtained gene expression profiles from the Gene Expression Omnibus (GEO) database. The Molecular Signatures Database was used to identify 14 gene sets related to iron metabolism, comprising 520 iron metabolism genes. Differential analysis and a weighted gene co-expression network analysis (WGCNA) of gene expression revealed two iron metabolism-related hub genes. Reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry were used on clinical samples to confirm our results. The receiver operating characteristic (ROC) analysis and immune infiltration analysis were conducted. In addition, we analyzed the distribution of genes and performed CellChat analysis by single-cell RNA sequencing. RESULTS The expression of two hub genes, namely, CDGSH iron sulfur domain 2 (CISD2)and Cytochrome P450 family 17 subfamily A member 1 (CYP17A1), were reduced in RPL, as verified by both qPCR and immunohistochemistry. The Gene Ontology (GO) analysis revealed the genes predominantly engaged in autophagy and iron metabolism. The area under the curve (AUC) demonstrated better diagnostic performance for RPL using CISD2 and CYP17A1. The single-cell transcriptomic analysis of RPL demonstrated that CISD2 is expressed in the majority of cell subpopulations, whereas CYP17A1 is not. The cell cycle analysis revealed highly active natural killer (NK) cells that displayed the highest communications with other cells, including the strongest interaction with macrophages through the migratory inhibitory factor (MIF) pathway. CONCLUSIONS Our study suggested that CISD2 and CYP17A1 genes are involved in abnormal iron metabolism, thereby contributing to RPL. These genes could be used as potential diagnostic and therapeutic markers for RPL.
Collapse
Affiliation(s)
- Yi-Bo He
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Lu Han
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Cong Wang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Ju Fang
- Reproductive Center, Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, Hainan Province, China
| | - Yue Shang
- Reproductive Center, Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, Hainan Province, China
| | - Hua-Lei Cai
- Department of Emergency Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qun Zhou
- Obstetrics and Gynecology, First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Zhe-Zhong Zhang
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China
| | - Shi-Liang Chen
- Department of Clinical Lab, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, China.
| | - Jun-Yu Li
- Pharmacy Department, Hainan Branch, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Sanya, Hainan Province, China.
| | - Yong-Lin Liu
- Reproductive Center, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
217
|
Chen H, Xu J, Li W, Hu Z, Ke Z, Qin R, Xu Y. The characteristic patterns of individual brain susceptibility networks underlie Alzheimer's disease and white matter hyperintensity-related cognitive impairment. Transl Psychiatry 2024; 14:177. [PMID: 38575556 PMCID: PMC10994911 DOI: 10.1038/s41398-024-02861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Excessive iron accumulation in the brain cortex increases the risk of cognitive deterioration. However, interregional relationships (defined as susceptibility connectivity) of local brain iron have not been explored, which could provide new insights into the underlying mechanisms of cognitive decline. Seventy-six healthy controls (HC), 58 participants with mild cognitive impairment due to probable Alzheimer's disease (MCI-AD) and 66 participants with white matter hyperintensity (WMH) were included. We proposed a novel approach to construct a brain susceptibility network by using Kullback‒Leibler divergence similarity estimation from quantitative susceptibility mapping and further evaluated its topological organization. Moreover, sparse logistic regression (SLR) was applied to classify MCI-AD from HC and WMH with normal cognition (WMH-NC) from WMH with MCI (WMH-MCI).The altered susceptibility connectivity in the MCI-AD patients indicated that relatively more connectivity was involved in the default mode network (DMN)-related and visual network (VN)-related connectivity, while more altered DMN-related and subcortical network (SN)-related connectivity was found in the WMH-MCI patients. For the HC vs. MCI-AD classification, the features selected by the SLR were primarily distributed throughout the DMN-related and VN-related connectivity (accuracy = 76.12%). For the WMH-NC vs. WMH-MCI classification, the features with high appearance frequency were involved in SN-related and DMN-related connectivity (accuracy = 84.85%). The shared and specific patterns of the susceptibility network identified in both MCI-AD and WMH-MCI may provide a potential diagnostic biomarker for cognitive impairment, which could enhance the understanding of the relationships between brain iron burden and cognitive decline from a network perspective.
Collapse
Affiliation(s)
- Haifeng Chen
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Jingxian Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weikai Li
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing, China
- MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing, China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Yun Xu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, China.
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China.
| |
Collapse
|
218
|
Everett J, Brooks J, Tjendana Tjhin V, Lermyte F, Hands-Portman I, Plascencia-Villa G, Perry G, Sadler PJ, O’Connor PB, Collingwood JF, Telling ND. Label-Free In Situ Chemical Characterization of Amyloid Plaques in Human Brain Tissues. ACS Chem Neurosci 2024; 15:1469-1483. [PMID: 38501754 PMCID: PMC10995949 DOI: 10.1021/acschemneuro.3c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
The accumulation of amyloid plaques and increased brain redox burdens are neuropathological hallmarks of Alzheimer's disease. Altered metabolism of essential biometals is another feature of Alzheimer's, with amyloid plaques representing sites of disturbed metal homeostasis. Despite these observations, metal-targeting disease treatments have not been therapeutically effective to date. A better understanding of amyloid plaque composition and the role of the metals associated with them is critical. To establish this knowledge, the ability to resolve chemical variations at nanometer length scales relevant to biology is essential. Here, we present a methodology for the label-free, nanoscale chemical characterization of amyloid plaques within human Alzheimer's disease tissue using synchrotron X-ray spectromicroscopy. Our approach exploits a C-H carbon absorption feature, consistent with the presence of lipids, to visualize amyloid plaques selectively against the tissue background, allowing chemical analysis to be performed without the addition of amyloid dyes that alter the native sample chemistry. Using this approach, we show that amyloid plaques contain elevated levels of calcium, carbonates, and iron compared to the surrounding brain tissue. Chemical analysis of iron within plaques revealed the presence of chemically reduced, low-oxidation-state phases, including ferromagnetic metallic iron. The zero-oxidation state of ferromagnetic iron determines its high chemical reactivity and so may contribute to the redox burden in the Alzheimer's brain and thus drive neurodegeneration. Ferromagnetic metallic iron has no established physiological function in the brain and may represent a target for therapies designed to lower redox burdens in Alzheimer's disease. Additionally, ferromagnetic metallic iron has magnetic properties that are distinct from the iron oxide forms predominant in tissue, which might be exploitable for the in vivo detection of amyloid pathologies using magnetically sensitive imaging. We anticipate that this label-free X-ray imaging approach will provide further insights into the chemical composition of amyloid plaques, facilitating better understanding of how plaques influence the course of Alzheimer's disease.
Collapse
Affiliation(s)
- James Everett
- School
of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive,Stoke-on-Trent,Staffordshire ST4 7QB, U.K.
- School
of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | - Jake Brooks
- School
of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | - Vindy Tjendana Tjhin
- School
of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | - Frederik Lermyte
- School
of Engineering, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
- Department
of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, 64287 Darmstadt, Germany
| | - Ian Hands-Portman
- School
of Life Sciences, University of Warwick, Gibbet Hill Campus,Coventry CV4 7AL, U.K.
| | - Germán Plascencia-Villa
- Department
of Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - George Perry
- Department
of Developmental and Regenerative Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | - Peter B. O’Connor
- Department
of Chemistry, University of Warwick, Library Road,Coventry CV4 7AL, U.K.
| | | | - Neil D. Telling
- School
of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Thornburrow Drive,Stoke-on-Trent,Staffordshire ST4 7QB, U.K.
| |
Collapse
|
219
|
Chen Y, Wu Z, Li S, Chen Q, Wang L, Qi X, Tian C, Yang M. Mapping the Research of Ferroptosis in Parkinson's Disease from 2013 to 2023: A Scientometric Review. Drug Des Devel Ther 2024; 18:1053-1081. [PMID: 38585257 PMCID: PMC10999190 DOI: 10.2147/dddt.s458026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Methods Related studies on PD and ferroptosis were searched in Web of Science Core Collection (WOSCC) from inception to 2023. VOSviewer, CiteSpace, RStudio, and Scimago Graphica were employed as bibliometric analysis tools to generate network maps about the collaborations between authors, countries, and institutions and to visualize the co-occurrence and trends of co-cited references and keywords. Results A total of 160 original articles and reviews related to PD and ferroptosis were retrieved, produced by from 958 authors from 162 institutions. Devos David was the most prolific author, with 9 articles. China and the University of Melbourne had leading positions in publication volume with 84 and 12 publications, respectively. Current hot topics focus on excavating potential new targets for treating PD based on ferroptosis by gaining insight into specific molecular mechanisms, including iron metabolism disorders, lipid peroxidation, and imbalanced antioxidant regulation. Clinical studies aimed at treating PD by targeting ferroptosis remain in their preliminary stages. Conclusion A continued increase was shown in the literature within the related field over the past decade. The current study suggested active collaborations among authors, countries, and institutions. Research into the pathogenesis and treatment of PD based on ferroptosis has remained a prominent topic in the field in recent years, indicating that ferroptosis-targeted therapy is a potential approach to halting the progression of PD.
Collapse
Affiliation(s)
- Yingfan Chen
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Zhenhui Wu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, People’s Republic of China
| | - Shaodan Li
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Qi Chen
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Liang Wang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| | - Xiaorong Qi
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Chujiao Tian
- Medical School of Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Minghui Yang
- Department of Traditional Chinese Medicine, the Six Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
220
|
Luppi AI, Rosas FE, Noonan MP, Mediano PAM, Kringelbach ML, Carhart-Harris RL, Stamatakis EA, Vernon AC, Turkheimer FE. Oxygen and the Spark of Human Brain Evolution: Complex Interactions of Metabolism and Cortical Expansion across Development and Evolution. Neuroscientist 2024; 30:173-198. [PMID: 36476177 DOI: 10.1177/10738584221138032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Scientific theories on the functioning and dysfunction of the human brain require an understanding of its development-before and after birth and through maturation to adulthood-and its evolution. Here we bring together several accounts of human brain evolution by focusing on the central role of oxygen and brain metabolism. We argue that evolutionary expansion of human transmodal association cortices exceeded the capacity of oxygen delivery by the vascular system, which led these brain tissues to rely on nonoxidative glycolysis for additional energy supply. We draw a link between the resulting lower oxygen tension and its effect on cytoarchitecture, which we posit as a key driver of genetic developmental programs for the human brain-favoring lower intracortical myelination and the presence of biosynthetic materials for synapse turnover. Across biological and temporal scales, this protracted capacity for neural plasticity sets the conditions for cognitive flexibility and ongoing learning, supporting complex group dynamics and intergenerational learning that in turn enabled improved nutrition to fuel the metabolic costs of further cortical expansion. Our proposed model delineates explicit mechanistic links among metabolism, molecular and cellular brain heterogeneity, and behavior, which may lead toward a clearer understanding of brain development and its disorders.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - MaryAnn P Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
221
|
Levi S, Ripamonti M, Moro AS, Cozzi A. Iron imbalance in neurodegeneration. Mol Psychiatry 2024; 29:1139-1152. [PMID: 38212377 PMCID: PMC11176077 DOI: 10.1038/s41380-023-02399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Iron is an essential element for the development and functionality of the brain, and anomalies in its distribution and concentration in brain tissue have been found to be associated with the most frequent neurodegenerative diseases. When magnetic resonance techniques allowed iron quantification in vivo, it was confirmed that the alteration of brain iron homeostasis is a common feature of many neurodegenerative diseases. However, whether iron is the main actor in the neurodegenerative process, or its alteration is a consequence of the degenerative process is still an open question. Because the different iron-related pathogenic mechanisms are specific for distinctive diseases, identifying the molecular mechanisms common to the various pathologies could represent a way to clarify this complex topic. Indeed, both iron overload and iron deficiency have profound consequences on cellular functioning, and both contribute to neuronal death processes in different manners, such as promoting oxidative damage, a loss of membrane integrity, a loss of proteostasis, and mitochondrial dysfunction. In this review, with the attempt to elucidate the consequences of iron dyshomeostasis for brain health, we summarize the main pathological molecular mechanisms that couple iron and neuronal death.
Collapse
Affiliation(s)
- Sonia Levi
- Vita-Salute San Raffaele University, Milano, Italy.
- IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | | | - Andrea Stefano Moro
- Vita-Salute San Raffaele University, Milano, Italy
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Anna Cozzi
- IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
222
|
Wang R, Rao S, Zhong Z, Xiao K, Chen X, Sun X. Emerging role of ferroptosis in diabetic retinopathy: a review. J Drug Target 2024; 32:393-403. [PMID: 38385350 DOI: 10.1080/1061186x.2024.2316775] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/20/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a significant complication of diabetes and the primary cause of blindness among working age adults globally. The development of DR is accompanied by oxidative stress, characterised by an overproduction of reactive oxygen species (ROS) and a compromised antioxidant system. Clinical interventions aimed at mitigating oxidative stress through ROS scavenging or elimination are currently available. Nevertheless, these treatments merely provide limited management over the advanced stage of the illness. Ferroptosis is a distinctive form of cell death induced by oxidative stress, which is characterised by irondependent phospholipid peroxidation. PURPOSE This review aims to synthesise recent experimental evidence to examine the involvement of ferroptosis in the pathological processes of DR, as well as to explicate the regulatory pathways governing oxidative stress and ferroptosis in retina. METHODS We systematically reviewed literature available up to 2023. RESULTS This review included 12 studies investigating the involvement of ferroptosis in DR.
Collapse
Affiliation(s)
- Ruohong Wang
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Suyun Rao
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Zheng Zhong
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Ke Xiao
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xuhui Chen
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| | - Xufang Sun
- Department of Ophthalmology Tongji Hospital Tongji Medical College, Huazhong University of Science and Technology Wuhan, China
| |
Collapse
|
223
|
Romanò F, Valsasina P, Pagani E, De Simone A, Parolin E, Filippi M, Rocca MA. Structural and functional correlates of disability, motor and cognitive performances in multiple sclerosis: Focus on the globus pallidus. Mult Scler Relat Disord 2024; 86:105576. [PMID: 38579567 DOI: 10.1016/j.msard.2024.105576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVES To explore structural and functional alterations of external (GPe) and internal (GPi) globus pallidus in people with multiple sclerosis (pwMS) compared to healthy controls (HC) and analyze their relationship with measures of clinical disability, motor and cognitive impairment. METHODS Sixty pwMS and 30 HC comparable for age and sex underwent 3.0T MRI, including conventional, diffusion tensor MRI and resting state (RS) functional MRI. Expanded Disability Status Scale (EDSS) scores were rated and timed 25-foot walk (T25FW) test, nine-hole peg test (9HPT), and paced auditory serial addition test (PASAT) were administered. Two operators segmented the GP into GPe and GPi. Volumes, T1/T2 ratio, diffusivity indices and seed-based RS functional connectivity (FC) of the GP and its components were assessed. RESULTS PwMS had no atrophy or altered diffusivity measures of the GP. Compared to HC, pwMS had higher T1/T2 ratio in both GP regions, which correlated with EDSS score (r = 0.26-0.39, p = 0.01-0.05). RS FC analysis highlighted component-specific functional alterations in pwMS: the GPe had decreased RS FC with fronto-parietal cortices, whereas the GPi had decreased intra-GP RS FC and increased RS FC with the thalamus. Worse EDSS, 9HPT, T25FW and PASAT scores were associated with GP RS FC modifications (r=-0.51‒0.51, p < 0.001). CONCLUSIONS Structural GP involvement in MS was homogeneous across its portions. Increased T1/T2 ratio values, possibly representing iron accumulation, were related to more severe disability. RS FC alterations of the GPe and GPi were consistent with their roles within the basal ganglia network and correlated with worse functional status, suggesting less efficient communication between structures.
Collapse
Affiliation(s)
- Francesco Romanò
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alice De Simone
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emma Parolin
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
224
|
Shibukawa S, Kan H, Honda S, Wada M, Tarumi R, Tsugawa S, Tobari Y, Maikusa N, Mimura M, Uchida H, Nakamura Y, Nakajima S, Noda Y, Koike S. Alterations in subcortical magnetic susceptibility and disease-specific relationship with brain volume in major depressive disorder and schizophrenia. Transl Psychiatry 2024; 14:164. [PMID: 38531856 DOI: 10.1038/s41398-024-02862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Quantitative susceptibility mapping is a magnetic resonance imaging technique that measures brain tissues' magnetic susceptibility, including iron deposition and myelination. This study examines the relationship between subcortical volume and magnetic susceptibility and determines specific differences in these measures among patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls (HCs). This was a cross-sectional study. Sex- and age- matched patients with MDD (n = 49), patients with schizophrenia (n = 24), and HCs (n = 50) were included. Magnetic resonance imaging was conducted using quantitative susceptibility mapping and T1-weighted imaging to measure subcortical susceptibility and volume. The acquired brain measurements were compared among groups using analyses of variance and post hoc comparisons. Finally, a general linear model examined the susceptibility-volume relationship. Significant group-level differences were found in the magnetic susceptibility of the nucleus accumbens and amygdala (p = 0.045). Post-hoc analyses indicated that the magnetic susceptibility of the nucleus accumbens and amygdala for the MDD group was significantly higher than that for the HC group (p = 0.0054, p = 0.0065, respectively). However, no significant differences in subcortical volume were found between the groups. The general linear model indicated a significant interaction between group and volume for the nucleus accumbens in MDD group but not schizophrenia or HC groups. This study showed susceptibility alterations in the nucleus accumbens and amygdala in MDD patients. A significant relationship was observed between subcortical susceptibility and volume in the MDD group's nucleus accumbens, which indicated abnormalities in myelination and the dopaminergic system related to iron deposition.
Collapse
Affiliation(s)
- Shuhei Shibukawa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- Faculty of Health Science, Department of Radiological Technology, Juntendo University, Tokyo, Japan
- Department of Radiology, Tokyo Medical University, Tokyo, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Ryosuke Tarumi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Sakiko Tsugawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yui Tobari
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Norihide Maikusa
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Nakamura
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan
- University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Koike
- Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan.
- University of Tokyo Institute for Diversity and Adaptation of Human Mind, The University of Tokyo, Tokyo, Japan.
- The International Research Center for Neurointelligence, University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan.
| |
Collapse
|
225
|
Zhang X, Hu Y, Wang B, Yang S. Ferroptosis: Iron-mediated cell death linked to disease pathogenesis. J Biomed Res 2024; 38:1-23. [PMID: 38808552 PMCID: PMC11461536 DOI: 10.7555/jbr.37.20230224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 05/30/2024] Open
Abstract
Ferroptosis is an iron-mediated regulatory cell death pattern characterized by oxidative damage. The molecular regulating mechanisms are related to iron metabolism, lipid peroxidation, and glutathione metabolism. Additionally, some immunological signaling pathways, such as the cyclic GMP-AMP synthase-stimulator ofinterferon genes axis, Janus kinase-signal transducer and activator of transcription 1 axis, and transforming growth factor beta 1-Smad3 axis may also participate in the regulation of ferroptosis. Studies have shown that ferroptosis is closely related to many diseases such as cancer, neurodegenerative diseases, inflammatory diseases, and autoimmune diseases. Considering the pivotal role of ferroptosis-regulating signaling in the pathogenesis of diverse diseases, the development of ferroptosis inducers or inhibitors may have significant clinical potential for the treatment of the aforementioned conditions.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yingchao Hu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bingwei Wang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Gusu School, the Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
226
|
Wang L, Fang X, Ling B, Wang F, Xia Y, Zhang W, Zhong T, Wang X. Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases. Front Cell Neurosci 2024; 18:1359453. [PMID: 38515787 PMCID: PMC10955106 DOI: 10.3389/fncel.2024.1359453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Globally, millions of individuals are impacted by neurodegenerative disorders including Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Although a great deal of energy and financial resources have been invested in disease-related research, breakthroughs in therapeutic approaches remain elusive. The breakdown of cells usually happens together with the onset of neurodegenerative diseases. However, the mechanism that triggers neuronal loss is unknown. Lipid peroxidation, which is iron-dependent, causes a specific type of cell death called ferroptosis, and there is evidence its involvement in the pathogenic cascade of neurodegenerative diseases. However, the specific mechanisms are still not well known. The present article highlights the basic processes that underlie ferroptosis and the corresponding signaling networks. Furthermore, it provides an overview and discussion of current research on the role of ferroptosis across a variety of neurodegenerative conditions.
Collapse
Affiliation(s)
- Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangsheng Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Xia
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
227
|
Mohammadi S, Ghaderi S, Sayehmiri F, Fathi M. Quantitative susceptibility mapping for iron monitoring of multiple subcortical nuclei in type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1331831. [PMID: 38510699 PMCID: PMC10950952 DOI: 10.3389/fendo.2024.1331831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Iron accumulation in the brain has been linked to diabetes, but its role in subcortical structures involved in motor and cognitive functions remains unclear. Quantitative susceptibility mapping (QSM) allows the non-invasive quantification of iron deposition in the brain. This systematic review and meta-analysis examined magnetic susceptibility measured by QSM in the subcortical nuclei of patients with type 2 diabetes mellitus (T2DM) compared with controls. Methods PubMed, Scopus, and Web of Science databases were systematically searched [following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines] for studies reporting QSM values in the deep gray matter (DGM) regions of patients with T2DM and controls. Pooled standardized mean differences (SMDs) for susceptibility were calculated using fixed-effects meta-analysis models, and heterogeneity was assessed using I2. Sensitivity analyses were conducted, and publication bias was evaluated using Begg's and Egger's tests. Results Six studies including 192 patients with T2DM and 245 controls were included. This study found a significant increase in iron deposition in the subcortical nuclei of patients with T2DM compared to the control group. The study found moderate increases in the putamen (SMD = 0.53, 95% CI 0.33 to 0.72, p = 0.00) and dentate nucleus (SMD = 0.56, 95% CI 0.27 to 0.85, p = 0.00) but weak associations between increased iron levels in the caudate nucleus (SMD = 0.32, 95% CI 0.13 to 0.52, p = 0.00) and red nucleus (SMD = 0.22, 95% CI 0.00 0.44, p = 0.05). No statistical significance was found for iron deposition alterations in the globus pallidus (SMD = 0.19; 95% CI -0.01 to 0.38; p = 0.06) and substantia nigra (SMD = 0.12, 95% CI -0.10, 0.34, p = 0.29). Sensitivity analysis showed that the findings remained unaffected by individual studies, and consistent increases were observed in multiple subcortical areas. Discussion QSM revealed an increase in iron in the DGM/subcortical nuclei in T2DM patients versus controls, particularly in the motor and cognitive nuclei, including the putamen, dentate nucleus, caudate nucleus, and red nucleus. Thus, QSM may serve as a potential biomarker for iron accumulation in T2DM patients. However, further research is needed to validate these findings.
Collapse
Affiliation(s)
- Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mobina Fathi
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
228
|
Zeng Z, Cen Y, Xiong L, Hong G, Luo Y, Luo X. Dietary Copper Intake and Risk of Parkinson's Disease: a Cross-sectional Study. Biol Trace Elem Res 2024; 202:955-964. [PMID: 37462848 PMCID: PMC10803382 DOI: 10.1007/s12011-023-03750-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/24/2023] [Indexed: 01/23/2024]
Abstract
Copper is an essential trace element for the human body. The epidemiological evidence for the association of dietary intake of copper with the risk of Parkinson's disease (PD) is limited. We conducted an evaluation of the cross-sectional data gathered from the National Health and Nutrition Examination Surveys spanning from 2007 to 2018, which comprised a total of 17,948 participants. To discern the distinct characteristics of the participants, we performed a univariate analysis and utilized a 1:2 ratio propensity score matching method to minimize the effects of selection bias. We employed weighted univariate as well as three multivariate logistic regression models both prior to and following matching, with the aim of examining the association between dietary copper intake and PD risk. Finally, we used the restricted cubic spline (RCS) methodology in order to investigate possible non-linear relationships. Furthermore, subgroup analysis was undertaken to elicit further understanding concerning the association between copper intake and PD. A negative correlation resulted between dietary copper intake and PD risk in both univariate and multivariate logistic regression models, prior to and following matching. Our findings demonstrate that there is a nonlinear, dose-dependent relationship between copper intake and PD, according to our RCS analysis. In subgroup analysis, copper intake was identified as an important protective factor for individuals who were non-Hispanic White, unmarried, and had completed higher education. Dietary copper intake was associated with the risk of PD. Supplementation of dietary copper may have potentially beneficial effects.
Collapse
Affiliation(s)
- Zhaohao Zeng
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
- The First Clinical Medical College of Jinan University, Guangzhou, 510632, Guangdong, China
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yanmei Cen
- The First Clinical Medical College of Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lijiao Xiong
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Guo Hong
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
- The First Clinical Medical College of Jinan University, Guangzhou, 510632, Guangdong, China
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yu Luo
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xiaoguang Luo
- Department of Neurology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China.
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China.
| |
Collapse
|
229
|
Jangid N, Sharma A, Srivastava N. Potential involvement of ferroptosis in BPA-induced neurotoxicity: An in vitro study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104355. [PMID: 38154758 DOI: 10.1016/j.etap.2023.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Ferroptosis is a newly recognized cell death pathway having distinct characteristics compared to traditional cell death pathways such as apoptosis, necroptosis, or autophagy. However, the potential involvement of ferroptosis in bisphenol A (BPA)-induced neurotoxicity has not been well explored so far. In present study, we analyzed the relationship between ferroptosis and BPA-induced neurotoxicity. METHODS In this study, a human neuroblastoma cell line, SH-SY5Y, was treated with BPA, ferrostatin-1 (FS-1, ferroptosis inhibitor) and RSL-3 (ferroptosis inducer). The cell viability was measured using MTT assay. Additionally, the levels of lipid peroxidation, total iron content, reactive oxygen species (ROS) generation, and nitrite content were measured to evaluate the key markers of ferroptosis. To further confirm the involvement of ferroptosis in BPA-induced neurotoxicity, other ferroptosis markers such as glutathione peroxidase (GPx) activity, total glutathione contents and antioxidant parameters were also evaluated. RESULTS The cell viability of SH-SY5Y cells was down-regulated by BPA treatment in a concentration-dependent manner, the cell viability at 0.1 µM concentration was 97.63% whereas at highest BPA concentration i.e. 10 µM, the cell viability was 86.05% (p < 0.0001). Also the antioxidant parameters including catalase and superoxide dismutase activity of neuronal cells were down-regulated upon BPA exposure. However, the levels of lipid peroxidation, total iron, reactive oxygen species, and nitrite contents were increased in a concentration-dependent manner which could be rescued by FS-1 and exacerbated by RSL-3. The total iron in SH-SY5Y cells at 0.1 µM concentration was found to be 1.2 fold (p < 0.05) of control and at highest BPA concentration total iron was about 1.41 fold (p < 0.001) of control. CONCLUSIONS The present study indicated that, ferroptosis plays an important role in the progression of BPA-induced neurotoxicity, and ferroptosis may become a novel target in the treatment of various neurological disorders.
Collapse
Affiliation(s)
- Nita Jangid
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India
| | - Ankita Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India.
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Bijnor-Sisendi Road, Post Office Mati, Lucknow 226002, India.
| |
Collapse
|
230
|
Li B, Yu W, Verkhratsky A. Trace metals and astrocytes physiology and pathophysiology. Cell Calcium 2024; 118:102843. [PMID: 38199057 DOI: 10.1016/j.ceca.2024.102843] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Several trace metals, including iron, copper, manganese and zinc are essential for normal function of the nervous system. Both deficiency and excessive accumulation of these metals trigger neuropathological developments. The central nervous system (CNS) is in possession of dedicated homeostatic system that removes, accumulates, stores and releases these metals to fulfil nervous tissue demand. This system is mainly associated with astrocytes that act as dynamic reservoirs for trace metals, these being a part of a global system of CNS ionostasis. Here we overview physiological and pathophysiological aspects of astrocyte-cantered trace metals regulation.
Collapse
Affiliation(s)
- Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China; China Medical University Centre of Forensic Investigation, China
| | - Weiyang Yu
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, China; China Medical University Centre of Forensic Investigation, China
| | - Alexei Verkhratsky
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Achucarro Center for Neuroscience, Ikerbasque, Bilbao 48011, Spain; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius LT-01102, Lithuania.
| |
Collapse
|
231
|
Guarnieri L, Bosco F, Leo A, Citraro R, Palma E, De Sarro G, Mollace V. Impact of micronutrients and nutraceuticals on cognitive function and performance in Alzheimer's disease. Ageing Res Rev 2024; 95:102210. [PMID: 38296163 DOI: 10.1016/j.arr.2024.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/13/2024]
Abstract
Alzheimer's disease (AD) is a major global health problem today and is the most common form of dementia. AD is characterized by the formation of β-amyloid (Aβ) plaques and neurofibrillary clusters, leading to decreased brain acetylcholine levels in the brain. Another mechanism underlying the pathogenesis of AD is the abnormal phosphorylation of tau protein that accumulates at the level of neurofibrillary aggregates, and the areas most affected by this pathological process are usually the cholinergic neurons in cortical, subcortical, and hippocampal areas. These effects result in decreased cognitive function, brain atrophy, and neuronal death. Malnutrition and weight loss are the most frequent manifestations of AD, and these are also associated with greater cognitive decline. Several studies have confirmed that a balanced low-calorie diet and proper nutritional intake may be considered important factors in counteracting or slowing the progression of AD, whereas a high-fat or hypercholesterolemic diet predisposes to an increased risk of developing AD. Especially, fruits, vegetables, antioxidants, vitamins, polyunsaturated fatty acids, and micronutrients supplementation exert positive effects on aging-related changes in the brain due to their antioxidant, anti-inflammatory, and radical scavenging properties. The purpose of this review is to summarize some possible nutritional factors that may contribute to the progression or prevention of AD, understand the role that nutrition plays in the formation of Aβ plaques typical of this neurodegenerative disease, to identify some potential therapeutic strategies that may involve some natural compounds, in delaying the progression of the disease.
Collapse
Affiliation(s)
- Lorenza Guarnieri
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Antonio Leo
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rita Citraro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Giovambattista De Sarro
- Section of Pharmacology, Science of Health Department, School of Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy; Research Center FAS@UMG, Department of Health Science, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
232
|
Li S, Huang P, Lai F, Zhang T, Guan J, Wan H, He Y. Mechanisms of Ferritinophagy and Ferroptosis in Diseases. Mol Neurobiol 2024; 61:1605-1626. [PMID: 37736794 DOI: 10.1007/s12035-023-03640-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
The discovery of the role of autophagy, particularly the selective form like ferritinophagy, in promoting cells to undergo ferroptosis has inspired us to investigate functional connections between diseases and cell death. Ferroptosis is a novel model of procedural cell death characterized by the accumulation of iron-dependent reactive oxygen species (ROS), mitochondrial dysfunction, and neuroinflammatory response. Based on ferroptosis, the study of ferritinophagy is particularly important. In recent years, extensive research has elucidated the role of ferroptosis and ferritinophagy in neurological diseases and anemia, suggesting their potential as therapeutic targets. Besides, the global emergence and rapid transmission of COVID-19, which is caused by SARS-CoV-2, represents a considerable risk to public health worldwide. The potential involvement of ferroptosis in the pathophysiology of brain injury associated with COVID-19 is still unclear. This review summarizes the pathophysiological changes of ferroptosis and ferritinophagy in neurological diseases, anemia, and COVID-19, and hypothesizes that ferritinophagy may be a potential mechanism of ferroptosis. Advancements in these fields will enhance our comprehension of methods to prevent and address neurological disorders, anemia, and COVID-19.
Collapse
Affiliation(s)
- Siqi Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feifan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ting Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiaqi Guan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
233
|
Xiang Y, Song X, Long D. Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases. Arch Toxicol 2024; 98:579-615. [PMID: 38265475 PMCID: PMC10861688 DOI: 10.1007/s00204-023-03660-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024]
Abstract
This article provides an overview of the background knowledge of ferroptosis in the nervous system, as well as the key role of nuclear factor E2-related factor 2 (Nrf2) in regulating ferroptosis. The article takes Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) as the starting point to explore the close association between Nrf2 and ferroptosis, which is of clear and significant importance for understanding the mechanism of neurodegenerative diseases (NDs) based on oxidative stress (OS). Accumulating evidence links ferroptosis to the pathogenesis of NDs. As the disease progresses, damage to the antioxidant system, excessive OS, and altered Nrf2 expression levels, especially the inhibition of ferroptosis by lipid peroxidation inhibitors and adaptive enhancement of Nrf2 signaling, demonstrate the potential clinical significance of Nrf2 in detecting and identifying ferroptosis, as well as targeted therapy for neuronal loss and mitochondrial dysfunction. These findings provide new insights and possibilities for the treatment and prevention of NDs.
Collapse
Affiliation(s)
- Yao Xiang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiaohua Song
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Dingxin Long
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
234
|
Alrouji M, Alhumaydhi FA, Venkatesan K, Sharaf SE, Shahwan M, Shamsi A. Evaluation of binding mechanism of dietary phytochemical, capsaicin, with human transferrin: targeting neurodegenerative diseases therapeutics. Front Pharmacol 2024; 15:1348128. [PMID: 38495092 PMCID: PMC10943693 DOI: 10.3389/fphar.2024.1348128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/16/2024] [Indexed: 03/19/2024] Open
Abstract
Human transferrin (htf) plays a crucial role in regulating the balance of iron within brain cells; any disruption directly contributes to the development of Neurodegenerative Diseases (NDs) and other related pathologies, especially Alzheimer's Disease (AD). In recent times, a transition towards natural compounds is evident to treat diseases and this shift is mainly attributed to their broad therapeutic potential along with minimal side effects. Capsaicin, a natural compound abundantly found in red and chili peppers, possess neuroprotective potential. The current work targets to decipher the interaction mechanism of capsaicin with htf using experimental and computational approaches. Molecular docking analysis revealed that capsaicin occupies the iron binding pocket of htf, with good binding affinity. Further, the binding mechanism was investigated atomistically using Molecular dynamic (MD) simulation approach. The results revealed no significant alterations in the structure of htf implying the stability of the complex. In silico observations were validated by fluorescence binding assay. Capsaicin binds to htf with a binding constant (K) of 3.99 × 106 M-1, implying the stability of the htf-capsaicin complex. This study lays a platform for potential applications of capsaicin in treatment of NDs in terms of iron homeostasis.
Collapse
Affiliation(s)
- Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Kumar Venkatesan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Sharaf E. Sharaf
- Pharmaceutical Sciences Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Anas Shamsi
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
235
|
Halcrow PW, Quansah DNK, Kumar N, Solloway RL, Teigen KM, Lee KA, Liang B, Geiger JD. Weak base drug-induced endolysosome iron dyshomeostasis controls the generation of reactive oxygen species, mitochondrial depolarization, and cytotoxicity. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:33-46. [PMID: 38532786 PMCID: PMC10961484 DOI: 10.1515/nipt-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/28/2023] [Indexed: 03/28/2024]
Abstract
Objectives Approximately 75 % of marketed drugs have the physicochemical property of being weak bases. Weak-base drugs with relatively high pKa values enter acidic organelles including endosomes and lysosomes (endolysosomes), reside in and de-acidify endolysosomes, and induce cytotoxicity. Divalent cations within endolysosomes, including iron, are released upon endolysosome de-acidification. Endolysosomes are "master regulators of iron homeostasis", and neurodegeneration is linked to ferrous iron (Fe2+)-induced reactive oxygen species (ROS) generation via Fenton chemistry. Because endolysosome de-acidification-induced lysosome-stress responses release endolysosome Fe2+, it was crucial to determine the mechanisms by which a functionally and structurally diverse group of weak base drugs including atropine, azithromycin, fluoxetine, metoprolol, and tamoxifen influence endolysosomes and cause cell death. Methods Using U87MG astrocytoma and SH-SY5Y neuroblastoma cells, we conducted concentration-response relationships for 5 weak-base drugs to determine EC50 values. From these curves, we chose pharmacologically and therapeutically relevant concentrations to determine if weak-base drugs induced lysosome-stress responses by de-acidifying endolysosomes, releasing endolysosome Fe2+ in sufficient levels to increase cytosolic and mitochondria Fe2+ and ROS levels and cell death. Results Atropine (anticholinergic), azithromycin (antibiotic), fluoxetine (antidepressant), metoprolol (beta-adrenergic), and tamoxifen (anti-estrogen) at pharmacologically and therapeutically relevant concentrations (1) de-acidified endolysosomes, (2) decreased Fe2+ levels in endolysosomes, (3) increased Fe2+ and ROS levels in cytosol and mitochondria, (4) induced mitochondrial membrane potential depolarization, and (5) increased cell death; effects prevented by the endocytosed iron-chelator deferoxamine. Conclusions Weak-base pharmaceuticals induce lysosome-stress responses that may affect their safety profiles; a better understanding of weak-base drugs on Fe2+ interorganellar signaling may improve pharmacotherapeutics.
Collapse
Affiliation(s)
- Peter W. Halcrow
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Darius N. K. Quansah
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Nirmal Kumar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Rebecca L. Solloway
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Kayla M. Teigen
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Kasumi A. Lee
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Braelyn Liang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| |
Collapse
|
236
|
Huang Y, Wang A, Wang F, Xu Y, Zhang W, Shi F, Wang S. Screening of key immune -related gene in Parkinson 's disease based on WGCNA and machine learning. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:207-219. [PMID: 38755717 PMCID: PMC11103055 DOI: 10.11817/j.issn.1672-7347.2024.230307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 05/18/2024]
Abstract
OBJECTIVES Abnormal immune system activation and inflammation are crucial in causing Parkinson's disease. However, we still don't fully understand how certain immune-related genes contribute to the disease's development and progression. This study aims to screen key immune-related gene in Parkinson's disease based on weighted gene co-expression network analysis (WGCNA) and machine learning. METHODS This study downloaded the gene chip data from the Gene Expression Omnibus (GEO) database, and used WGCNA to screen out important gene modules related to Parkinson's disease. Genes from important modules were exported and a Venn diagram of important Parkinson's disease-related genes and immune-related genes was drawn to screen out immune related genes of Parkinson's disease. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to analyze the the functions of immune-related genes and signaling pathways involved. Immune cell infiltration analysis was performed using the CIBERSORT package of R language. Using bioinformatics method and 3 machine learning methods [least absolute shrinkage and selection operator (LASSO) regression, random forest (RF), and support vector machine (SVM)], the immune-related genes of Parkinson's disease were further screened. A Venn diagram of differentially expressed genes screened using the 4 methods was drawn with the intersection gene being hub nodes (hub) gene. The downstream proteins of the Parkinson's disease hub gene was identified through the STRING database and a protein-protein interaction network diagram was drawn. RESULTS A total of 218 immune genes related to Parkinson's disease were identified, including 45 upregulated genes and 50 downregulated genes. Enrichment analysis showed that the 218 genes were mainly enriched in immune system response to foreign substances and viral infection pathways. The results of immune infiltration analysis showed that the infiltration percentages of CD4+ T cells, NK cells, CD8+ T cells, and B cells were higher in the samples of Parkinson's disease patients, while resting NK cells and resting CD4+ T cells were significantly infiltrated in the samples of Parkinson's disease patients. ANK1 was screened out as the hub gene. The analysis of the protein-protein interaction network showed that the ANK1 translated and expressed 11 proteins which mainly participated in functions such as signal transduction, iron homeostasis regulation, and immune system activation. CONCLUSIONS This study identifies the Parkinson's disease immune-related key gene ANK1 via WGCNA and machine learning methods, suggesting its potential as a candidate therapeutic target for Parkinson's disease.
Collapse
Affiliation(s)
- Yiming Huang
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China.
| | - Aimin Wang
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China
| | - Fenglin Wang
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China
| | - Yaqi Xu
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China
| | - Wenjing Zhang
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China
| | - Fuyan Shi
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China.
| | - Suzhen Wang
- Health Statistics Teaching and Research Office, School of Public Health, Shandong Second Medical University, Weifang Shandong 261053, China
| |
Collapse
|
237
|
Ghaderi S, Mohammadi S, Nezhad NJ, Karami S, Sayehmiri F. Iron quantification in basal ganglia: quantitative susceptibility mapping as a potential biomarker for Alzheimer's disease - a systematic review and meta-analysis. Front Neurosci 2024; 18:1338891. [PMID: 38469572 PMCID: PMC10925682 DOI: 10.3389/fnins.2024.1338891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Alzheimer's disease (AD), characterized by distinctive pathologies such as amyloid-β plaques and tau tangles, also involves deregulation of iron homeostasis, which may accelerate neurodegeneration. This meta-analysis evaluated the use of quantitative susceptibility mapping (QSM) to detect iron accumulation in the deep gray matter (DGM) of the basal ganglia in AD, contributing to a better understanding of AD progression, and potentially leading to new diagnostic and therapeutic approaches. Methods Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched the PubMed, Scopus, Web of Sciences, and Google Scholar databases up to October 2023 for studies employing QSM in AD research. Eligibility criteria were based on the PECO framework, and we included studies assessing alterations in magnetic susceptibility indicative of iron accumulation in the DGM of patients with AD. After initial screening and quality assessment using the Newcastle-Ottawa Scale, a meta-analysis was conducted to compare iron levels between patients with AD and healthy controls (HCs) using a random-effects model. Results The meta-analysis included nine studies comprising 267 patients with AD and 272 HCs. There were significantly higher QSM values, indicating greater iron deposition, in the putamen (standardized mean difference (SMD) = 1.23; 95% CI: 0.62 to 1.84; p = 0.00), globus pallidus (SMD = 0.79; 95% CI: 0.07 to 1.52; p = 0.03), and caudate nucleus (SMD = 0.72; 95% CI: 0.39 to 1.06; p = 0.00) of AD patients compared to HCs. However, no significant differences were found in the thalamus (SMD = 1.00; 95% CI: -0.42 to 2.43; p = 0.17). The sensitivity analysis indicated that no single study impacted the overall results. Age was identified as a major contributor to heterogeneity across all basal ganglia nuclei in subgroup analysis. Older age (>69 years) and lower male percentage (≤30%) were associated with greater putamen iron increase in patients with AD. Conclusion The study suggests that excessive iron deposition is linked to the basal ganglia in AD, especially the putamen. The study underscores the complex nature of AD pathology and the accumulation of iron, influenced by age, sex, and regional differences, necessitating further research for a comprehensive understanding.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Mohammadi
- Department of Medical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Jashire Nezhad
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran
| |
Collapse
|
238
|
Zeng W, Cai J, Zhang L, Peng Q. Iron Deposition in Parkinson's Disease: A Mini-Review. Cell Mol Neurobiol 2024; 44:26. [PMID: 38393383 PMCID: PMC10891198 DOI: 10.1007/s10571-024-01459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Iron deposition is crucial pathological changes observed in patients with Parkinson's disease (PD). Recently, scientists have actively explored therapeutic approaches targeting iron deposition in PD. However, several clinical studies have failed to yield consistent results. In this review, we provide an overview of iron deposition in PD, from both basic research and clinical perspectives. PD patients exhibit abnormalities in various iron metabolism-related proteins, leading to disruptions in iron distribution, transport, storage, and circulation, ultimately resulting in iron deposition. Excess iron can induce oxidative stress and iron-related cell death, and exacerbate mitochondrial dysfunction, contributing to the progression of PD pathology. Magnetic resonance imaging studies have indicated that the characteristics of iron deposition in the brains of PD patients vary. Iron deposition correlates with the clinical symptoms of PD, and patients with different disease courses and clinical presentations display distinct patterns of iron deposition. These iron deposition patterns may contribute to PD diagnosis. Iron deposition is a promising target for PD treatment. However, further research is required to elucidate the underlying mechanisms and their impacts on PD.
Collapse
Affiliation(s)
- Weiqi Zeng
- Department of Neurology, The First People's Hospital of Foshan, Foshan, China
| | - Jin Cai
- Department of Cardiology, The Second Hospital of Zhangzhou, Zhangzhou, China
| | - Lei Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qiwei Peng
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
239
|
Sun W, Wei C. Causal Relationship Between Ferritin and Neuropsychiatric Disorders: A Two-Sample Mendelian Randomization Study. J Alzheimers Dis Rep 2024; 8:257-266. [PMID: 38405340 PMCID: PMC10894605 DOI: 10.3233/adr-230136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Background Previous observational research has indicated a correlation between ferritin levels and neuropsychiatric disorders, although the causal relationship remains uncertain. Objective The objective of this study was to investigate the potential causal link between plasma ferritin levels and neuropsychiatric disorders. Methods A two-sample Mendelian randomization (MR) study was conducted, wherein genetic instruments associated with ferritin were obtained from a previously published genome-wide association study (GWAS). Summary statistics pertaining to neuropsychiatric disorders were derived from five distinct GWAS datasets. The primary MR analysis employed the inverse variance weighted (IVW) method and was corroborated by additional methods including MR-Egger, weighted median, simple mode, and weighted mode. Sensitivity analyses were employed to identify potential pleiotropy and heterogeneity in the results. Results The fixed effects IVW method revealed a statistically significant causal relationship between plasma ferritin level and the occurrence of Alzheimer's disease (odds ratio [OR] = 1.06, 95% confidence interval [CI]: 1.00-1.12, p = 0.037), as well as Parkinson's disease (OR = 1.06, 95% CI: 1.00-1.13, p = 0.041). Various sensitivity analyses were conducted, which demonstrated no substantial heterogeneity or pleiotropy. Conversely, no compelling evidence was found to support a causal association between ferritin and amyotrophic lateral sclerosis, schizophrenia, or major depressive disorder. Conclusions This MR study provides evidence at the genetic level for a causal relationship between plasma ferritin and an increased risk of Alzheimer's disease and Parkinson's disease. The exact genetic mechanisms underlying this connection necessitate further investigation.
Collapse
Affiliation(s)
- Wenxian Sun
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
240
|
Mann J, Reznik E, Santer M, Fongheiser MA, Smith N, Hirschhorn T, Zandkarimi F, Soni RK, Dafré AL, Miranda-Vizuete A, Farina M, Stockwell BR. Ferroptosis inhibition by oleic acid mitigates iron-overload-induced injury. Cell Chem Biol 2024; 31:249-264.e7. [PMID: 37944523 PMCID: PMC10922137 DOI: 10.1016/j.chembiol.2023.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/24/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023]
Abstract
Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.
Collapse
Affiliation(s)
- Josiane Mann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Eduard Reznik
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Melania Santer
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Mark A Fongheiser
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Nailah Smith
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Tal Hirschhorn
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Rajesh Kumar Soni
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Alcir Luiz Dafré
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013, Seville, Spain
| | - Marcelo Farina
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040-900, Brazil; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA; Irving Institute for Cancer Dynamics, Columbia University, New York, NY 10027, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York. NY 10032, USA.
| |
Collapse
|
241
|
Mohan S, Alhazmi HA, Hassani R, Khuwaja G, Maheshkumar VP, Aldahish A, Chidambaram K. Role of ferroptosis pathways in neuroinflammation and neurological disorders: From pathogenesis to treatment. Heliyon 2024; 10:e24786. [PMID: 38314277 PMCID: PMC10837572 DOI: 10.1016/j.heliyon.2024.e24786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Ferroptosis is a newly discovered non-apoptotic and iron-dependent type of cell death. Ferroptosis mainly takes place owing to the imbalance of anti-oxidation and oxidation in the body. It is regulated via a number of factors and pathways both inside and outside the cell. Ferroptosis is closely linked with brain and various neurological disorders (NDs). In the human body, the brain contains the highest levels of polyunsaturated fatty acids, which are known as lipid peroxide precursors. In addition, there is also a connection of glutathione depletion and lipid peroxidation with NDs. There is growing evidence regarding the possible link between neuroinflammation and multiple NDs, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and stroke. Recent studies have demonstrated that disruptions of lipid reactive oxygen species (ROS), glutamate excitatory toxicity, iron homeostasis, and various other manifestations linked with ferroptosis can be identified in various neuroinflammation-mediated NDs. It has also been reported that damage-associated molecular pattern molecules including ROS are generated during the events of ferroptosis and can cause glial activation via activating neuroimmune pathways, which subsequently leads to the generation of various inflammatory factors that play a role in various NDs. This review summarizes the regulation pathways of ferroptosis, the link between ferroptosis as well as inflammation in NDs, and the potential of a range of therapeutic agents that can be used to target ferroptosis and inflammation in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - V P Maheshkumar
- Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India
| | - Afaf Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
242
|
Kang J, Tian S, Zhang L, Yang G. Ferroptosis in early brain injury after subarachnoid hemorrhage: review of literature. Chin Neurosurg J 2024; 10:6. [PMID: 38347652 PMCID: PMC10863120 DOI: 10.1186/s41016-024-00357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/28/2024] [Indexed: 02/15/2024] Open
Abstract
Spontaneous subarachnoid hemorrhage (SAH), mainly caused by ruptured intracranial aneurysms, is a serious acute cerebrovascular disease. Early brain injury (EBI) is all brain injury occurring within 72 h after SAH, mainly including increased intracranial pressure, decreased cerebral blood flow, disruption of the blood-brain barrier, brain edema, oxidative stress, and neuroinflammation. It activates cell death pathways, leading to neuronal and glial cell death, and is significantly associated with poor prognosis. Ferroptosis is characterized by iron-dependent accumulation of lipid peroxides and is involved in the process of neuron and glial cell death in early brain injury. This paper reviews the research progress of ferroptosis in early brain injury after subarachnoid hemorrhage and provides new ideas for future research.
Collapse
Affiliation(s)
- Junlin Kang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Shilai Tian
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| | - Lei Zhang
- Gansu Provincial Hospital, Lanzhou City, Gansu Province, China
| | - Gang Yang
- The First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China.
| |
Collapse
|
243
|
Gao Q, Li D, Wang Y, Zhao C, Li M, Xiao J, Kang Y, Lin H, Wang N. Analysis of intestinal flora and cognitive function in maintenance hemodialysis patients using combined 16S ribosome DNA and shotgun metagenome sequencing. Aging Clin Exp Res 2024; 36:28. [PMID: 38334873 PMCID: PMC10857965 DOI: 10.1007/s40520-023-02645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/08/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cognitive impairment is widely prevalent in maintenance hemodialysis (MHD) patients, and seriously affects their quality of life. The intestinal flora likely regulates cognitive function, but studies on cognitive impairment and intestinal flora in MHD patients are lacking. METHODS MHD patients (36) and healthy volunteers (18) were evaluated using the Montreal Cognitive Function Scale, basic clinical data, and 16S ribosome DNA (rDNA) sequencing. Twenty MHD patients and ten healthy volunteers were randomly selected for shotgun metagenomic analysis to explore potential metabolic pathways of intestinal flora. Both16S rDNA sequencing and shotgun metagenomic sequencing were conducted on fecal samples. RESULTS Roseburia were significantly reduced in the MHD group based on both 16S rDNA and shotgun metagenomic sequencing analyses. Faecalibacterium, Megamonas, Bifidobacterium, Parabacteroides, Collinsella, Tyzzerella, and Phascolarctobacterium were positively correlated with cognitive function or cognitive domains. Enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included oxidative phosphorylation, photosynthesis, retrograde endocannabinoid signaling, flagellar assembly, and riboflavin metabolism. CONCLUSION Among the microbiota, Roseburia may be important in MHD patients. We demonstrated a correlation between bacterial genera and cognitive function, and propose possible mechanisms.
Collapse
Affiliation(s)
- Qiuyi Gao
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dianshi Li
- Centre for Empirical Legal Studies, Faculty of Law, University of Macau, Macau, China
| | - Yue Wang
- Department of Nephrology, Binzhou Medical University Affiliated Shengli Oilfield Central Hospital, Binzhou, China
| | - Chunhui Zhao
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Mingshuai Li
- School of Graduate, Dalian Medical University, Dalian, China
| | - Jingwen Xiao
- School of Graduate, Dalian Medical University, Dalian, China
| | - Yan Kang
- School of Graduate, Dalian Medical University, Dalian, China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Nan Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
244
|
Sharifabad ME, Soucaille R, Wang X, Rotherham M, Loughran T, Everett J, Cabrera D, Yang Y, Hicken R, Telling N. Optical Microscopy Using the Faraday Effect Reveals in Situ Magnetization Dynamics of Magnetic Nanoparticles in Biological Samples. ACS NANO 2024. [PMID: 38315113 PMCID: PMC10883041 DOI: 10.1021/acsnano.3c08955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The study of exogenous and endogenous nanoscale magnetic material in biology is important for developing biomedical nanotechnology as well as for understanding fundamental biological processes such as iron metabolism and biomineralization. Here, we exploit the magneto-optical Faraday effect to probe intracellular magnetic properties and perform magnetic imaging, revealing the location-specific magnetization dynamics of exogenous magnetic nanoparticles within cells. The opportunities enabled by this method are shown in the context of magnetic hyperthermia; an effect where local heating is generated in magnetic nanoparticles exposed to high-frequency AC magnetic fields. Magnetic hyperthermia has the potential to be used as a cellular-level thermotherapy for cancer, as well as for other biomedical applications that target heat-sensitive cellular function. However, previous experiments have suggested that the cellular environment modifies the magnetization dynamics of nanoparticles, thus dramatically altering their heating efficiency. By combining magneto-optical and fluorescence measurements, we demonstrate a form of biological microscopy that we used here to study the magnetization dynamics of nanoparticles in situ, in both histological samples and living cancer cells. Correlative magnetic and fluorescence imaging identified aggregated magnetic nanoparticles colocalized with cellular lysosomes. Nanoparticles aggregated within these lysosomes displayed reduced AC magnetic coercivity compared to the same particles measured in an aqueous suspension or aggregated in other areas of the cells. Such measurements reveal the power of this approach, enabling investigations of how cellular location, nanoparticle aggregation, and interparticle magnetic interactions affect the magnetization dynamics and consequently the heating response of nanoparticles in the biological milieu.
Collapse
Affiliation(s)
- Maneea Eizadi Sharifabad
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Rémy Soucaille
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - Xuyiling Wang
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Michael Rotherham
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
- Healthcare Technologies Institute, School of Chemical Engineering, University of Birmingham, Heritage Building, Mindelsohn Way, Edgbaston, Birmingham B15 2TH, United Kingdom
| | - Tom Loughran
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - James Everett
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - David Cabrera
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| | - Robert Hicken
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - Neil Telling
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Stoke-on-Trent ST4 7QB, United Kingdom
| |
Collapse
|
245
|
Jin S, Liu PS, Zheng D, Xie X. The interplay of miRNAs and ferroptosis in diseases related to iron overload. Apoptosis 2024; 29:45-65. [PMID: 37758940 DOI: 10.1007/s10495-023-01890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Ferroptosis has been conceptualized as a novel cell death modality distinct from apoptosis, necroptosis, pyroptosis and autophagic cell death. The sensitivity of cellular ferroptosis is regulated at multiple layers, including polyunsaturated fatty acid metabolism, glutathione-GPX4 axis, iron homeostasis, mitochondria and other parallel pathways. In addition, microRNAs (miRNAs) have been implicated in modulating ferroptosis susceptibility through targeting different players involved in the execution or avoidance of ferroptosis. A growing body of evidence pinpoints the deregulation of miRNA-regulated ferroptosis as a critical factor in the development and progression of various pathophysiological conditions related to iron overload. The revelation of mechanisms of miRNA-dependent ferroptosis provides novel insights into the etiology of diseases and offers opportunities for therapeutic intervention. In this review, we discuss the interplay of emerging miRNA regulators and ferroptosis players under different pathological conditions, such as cancers, ischemia/reperfusion, neurodegenerative diseases, acute kidney injury and cardiomyopathy. We emphasize on the relevance of miRNA-regulated ferroptosis to disease progression and the targetability for therapeutic interventions.
Collapse
Affiliation(s)
- Shikai Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, ROC
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
246
|
Carmona A, Carboni E, Gomes LC, Roudeau S, Maass F, Lenz C, Ortega R, Lingor P. Metal dyshomeostasis in the substantia nigra of patients with Parkinson's disease or multiple sclerosis. J Neurochem 2024; 168:128-141. [PMID: 38178798 DOI: 10.1111/jnc.16040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Abnormal metal distribution in vulnerable brain regions is involved in the pathogenesis of most neurodegenerative diseases, suggesting common molecular mechanisms of metal dyshomeostasis. This study aimed to compare the intra- and extra-neuronal metal content and the expression of proteins related to metal homeostasis in the substantia nigra (SN) from patients with Parkinson's disease (PD), multiple sclerosis (MS), and control subjects. Metal quantification was performed via ion-beam micro-analysis in neuromelanin-positive neurons and the surrounding tissue. For proteomic analysis, SN tissue lysates were analyzed on a nanoflow chromatography system hyphenated to a hybrid triple-quadrupole time-of-flight mass spectrometer. We found increased amounts of iron in neuromelanin-positive neurons and surrounding tissue in patients with PD and MS compared to controls (4- to 5-fold higher) that, however, also showed large inter-individual variations. Copper content was systematically lower (-2.4-fold) in neuromelanin-positive neurons of PD patients compared with controls, whereas it remained unchanged in MS. Protein-protein interaction (PPI) network analyses revealed clusters related to Fe and Cu homeostasis among PD-deregulated proteins. An enrichment for the term "metal homeostasis" was observed for MS-deregulated proteins. Important deregulated hub proteins included hemopexin and transferrin in PD, and calreticulin and ferredoxin reductase in MS. Our findings show that PD and MS share commonalities in terms of iron accumulation in the SN. Concomitant proteomics experiments revealed PPI networks related to metal homeostasis, substantiating the results of metal quantification.
Collapse
Affiliation(s)
| | - Eleonora Carboni
- Department of Neurology, University Medical Center Göttingen, Göttingen, Lower-Saxony, Germany
| | - Lucas Caldi Gomes
- School of Medicine, Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, München, Bavaria, Germany
| | | | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, Göttingen, Lower-Saxony, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | | | - Paul Lingor
- School of Medicine, Klinikum rechts der Isar, Department of Neurology, Technical University of Munich, München, Bavaria, Germany
- DZNE, German Center for Neurodegenerative Diseases, Research Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
247
|
Liu N, Liang X, Chen Y, Xie L. Recent trends in treatment strategies for Alzheimer 's disease and the challenges: A topical advancement. Ageing Res Rev 2024; 94:102199. [PMID: 38232903 DOI: 10.1016/j.arr.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024]
Abstract
Alzheimer's Disease (AD) is an irreversible and progressive neurological disease that has affected at least 50 million people around the globe. Considering the severity of the disease and the continuous increase in the number of patients, the development of new effective drugs or intervention strategies for AD has become urgent. AD is caused by a combination of genetic, environmental, and lifestyle factors, but its exact cause has not yet been clarified. Given the current challenges being faced in the clinical treatment of AD, such as complex AD pathological network and insufficient early diagnosis, herein, we have focused on the three core pathological features of AD, including amyloid-β (Aβ) aggregation, tau phosphorylation and tangles, and activation of inflammatory factors. In this review, we have briefly underscored the primary evidence supporting each pathology and discuss AD pathological network among Aβ, tau, and inflammation. We have also comprehensively summarized the most instructive drugs and their treatment strategies against Aβ, tau, or neuroinflammation used in basic research and clinical trials. Finally, we have discussed and outlined the pros and cons of each pathological approach and looked forward to potential personalized diagnosis and treatment strategies that are beneficial to AD patients.
Collapse
Affiliation(s)
- Ni Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China.
| | - Xiaohan Liang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yu Chen
- College of Public Health, Zhengzhou University, Zhengzhou 450000, China.
| | - Lihang Xie
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
248
|
Negida A, Hassan NM, Aboeldahab H, Zain YE, Negida Y, Cadri S, Cadri N, Cloud LJ, Barrett MJ, Berman B. Efficacy of the iron-chelating agent, deferiprone, in patients with Parkinson's disease: A systematic review and meta-analysis. CNS Neurosci Ther 2024; 30:e14607. [PMID: 38334258 PMCID: PMC10853946 DOI: 10.1111/cns.14607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Several studies have reported iron accumulation in the basal ganglia to be associated with the development of Parkinson's Disease (PD). Recently, a few trials have examined the efficacy of using the iron-chelating agent Deferiprone (DFP) for patients with PD. We conducted this meta-analysis to summarize and synthesize evidence from published randomized controlled trials about the efficacy of DFP for PD patients. METHODS A comprehensive literature search of four electronic databases was performed, spanning until February 2023. Relevant RCTs were selected, and their data were extracted and analyzed using the RevMan software. The primary outcome was the change in the Unified Parkinson's Disease Rating Scale (UPDRS-III). RESULTS Three RCTs with 431 patients were included in this analysis. DFP did not significantly improve UPDRS-III score compared to placebo (Standardized mean difference -0.06, 95% CI [-0.69, 0.58], low certainty evidence). However, it significantly reduced iron accumulation in the substantia nigra, putamen, and caudate as measured by T2*-weighted MRI (with high certainty evidence). CONCLUSION Current evidence does not support the use of DFP in PD patients. Future disease-modification trials with better population selection, adjustment for concomitant medications, and long-term follow up are recommended.
Collapse
Affiliation(s)
- Ahmed Negida
- Parkinson's and Movement Disorder CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Medical Research Group of EgyptNegida AcademyArlingtonMassachusettsUSA
| | - Nafisa M. Hassan
- Medical Research Group of EgyptNegida AcademyArlingtonMassachusettsUSA
| | - Heba Aboeldahab
- Medical Research Group of EgyptNegida AcademyArlingtonMassachusettsUSA
- Biomedical Informatics and Medical Statistics Department, Medical Research InstituteAlexandria UniversityAlexandriaEgypt
- Clinical Research Department, El‐Gomhoria General HospitalMinistry of health and populationAlexandriaEgypt
| | - Youmna E. Zain
- Medical Research Group of EgyptNegida AcademyArlingtonMassachusettsUSA
- Faculty of MedicineTanta UniversityTantaEgypt
| | - Yasmin Negida
- Medical Research Group of EgyptNegida AcademyArlingtonMassachusettsUSA
- Faculty of MedicineZagazig UniversityZagazigEgypt
| | - Shirin Cadri
- Medical Research Group of RomaniaNegida AcademyArlingtonMassachusettsUSA
- Grigore T. Popa University of Medicine and PharmacyIasiRomania
| | - Nivin Cadri
- Medical Research Group of RomaniaNegida AcademyArlingtonMassachusettsUSA
- Grigore T. Popa University of Medicine and PharmacyIasiRomania
| | - Leslie J. Cloud
- Parkinson's and Movement Disorder CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Matthew J. Barrett
- Parkinson's and Movement Disorder CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Brian Berman
- Parkinson's and Movement Disorder CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
249
|
Krishnan S, George SS, Radhakrishnan V, Raghavan S, Thomas B, Thulaseedharan JV, Puthenveedu DK. Quantitative susceptibility mapping from basal ganglia and related structures: correlation with disease severity in progressive supranuclear palsy. Acta Neurol Belg 2024; 124:151-160. [PMID: 37580639 DOI: 10.1007/s13760-023-02352-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVE We examined whether mean magnetic susceptibility values from deep gray matter structures in patients with progressive supranuclear palsy (PSP) differed from those in patients with Parkinson's disease (PD) and healthy volunteers, and correlated with the PSP rating scale. METHODS Head of caudate nucleus, putamen, globus pallidus, substantia nigra and red nucleus were the regions of interest. Mean susceptibility values from these regions in PSP patients were estimated using quantitative susceptibility mapping. Correlations with clinical severity of disease as measured by the PSP rating scale were examined. The mean susceptibility values were also compared with those from healthy volunteers and age- and disease duration-matched patients with PD. RESULTS Data from 26 healthy volunteers, 26 patients with PD and 27 patients with PSP, were analysed. Patients with PSP had higher mean susceptibility values from all regions of interest when compared to both the other groups. The PSP rating scale scores correlated strongly with mean susceptibility values from the red nucleus and moderately with those from the putamen and substantia nigra. The scores did not correlate with mean susceptibility values from the caudate nucleus or globus pallidus. In patients with PD, the motor deficits correlated moderately with mean susceptibility values from substantia nigra. CONCLUSIONS In patients with PSP, mean susceptibility values indicating the severity of mineralization of basal ganglia and related structures correlate with disease severity, the correlation of red nucleus being the strongest. Further studies are warranted to explore whether mean susceptibility values could serve as biomarkers for PSP.
Collapse
Affiliation(s)
- Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India.
| | - Sneha Susan George
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Vineeth Radhakrishnan
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Sheelakumari Raghavan
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Jissa Vinoda Thulaseedharan
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Divya Kalikavil Puthenveedu
- Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
250
|
Janubová M, Žitňanová I. The effects of vitamin D on different types of cells. Steroids 2024; 202:109350. [PMID: 38096964 DOI: 10.1016/j.steroids.2023.109350] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023]
Abstract
Vitamin D is neccessary for regulation of calcium and phosphorus metabolism in bones, affects imunity, the cardiovascular system, muscles, skin, epithelium, extracellular matrix, the central nervous system, and plays arole in prevention of aging-associated diseases. Vitamin D receptor is expressed in almost all types of cells and its activation leads to modulation of different signaling pathways. In this review, we have analysed the current knowledge of 1,25-dihydroxyvitamin D3 or 25-hydroxyvitamin D3 effects on metabolism of cells important for the function of the cardiovascular system (endothelial cells, vascular smooth muscle cells, cardiac cells and pericytes), tissue healing (fibroblasts), epithelium (various types of epithelial cells) and the central nervous system (neurons, astrocytes and microglia). The goal of this review was to compare the effects of vitamin D on the above mentioned cells in in vitro conditions and to summarize what is known in this field of research.
Collapse
Affiliation(s)
- Mária Janubová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, 813 72 Bratislava, Slovakia.
| | - Ingrid Žitňanová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, 813 72 Bratislava, Slovakia
| |
Collapse
|