201
|
Lim D, Byun WG, Park SB. Restoring Let-7 microRNA Biogenesis Using a Small-Molecule Inhibitor of the Protein-RNA Interaction. ACS Med Chem Lett 2018; 9:1181-1185. [PMID: 30613323 DOI: 10.1021/acsmedchemlett.8b00323] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022] Open
Abstract
Abnormal function of RNA-binding proteins can lead to dysregulation of RNA function, causing a variety of disease states. Thus, developing small-molecule modulators of protein-RNA interactions is one of the key challenges in chemical biology. Herein, we performed a high-throughput screening of chemical libraries using a Förster resonance energy transfer-based Lin28-let-7 interaction assay to identify a potent small-molecule inhibitor of the protein-microRNA interaction, as it is an important target implicated in stem cell-like phenotypes in cancer cells. The new inhibitor KCB3602 selectively restored cellular let-7 microRNA levels, decreased the expression of a panel of oncogenes responsible for cancer stem cell maintenance, and showed potential anticancer activities. We expect that our Lin28-let-7 interaction inhibitor will provide a good starting point for pharmacological eradication of cancer stem cells.
Collapse
Affiliation(s)
- Donghyun Lim
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
| | - Wan Gi Byun
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| | - Seung Bum Park
- Department of Biophysics and Chemical Biology, Seoul National University, Seoul 08826, Korea
- CRI Center for Chemical Proteomics, Department of Chemistry, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
202
|
De Stefano F, Chacon E, Turcios L, Marti F, Gedaly R. Novel biomarkers in hepatocellular carcinoma. Dig Liver Dis 2018; 50:1115-1123. [PMID: 30217732 DOI: 10.1016/j.dld.2018.08.019] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related deaths and the fifth most common cancer worldwide. Most of these patients are seen with advanced disease at the time of presentation. In spite of its high prevalence, there are not many therapeutic options available for patients with advanced-stage HCC. There is an urgent need for improving early detection and prognostication of patients with HCC. In addition, the development of new therapies targeting specific pathways involved in the pathogenesis of HCC should be a major goal for future research, with the objective of improving outcomes of patients with HCC. Biomarkers represent a relatively easy and noninvasive way to detect and estimate disease prognosis. In spite of the numerous efforts to find molecules as possible biomarkers, there is not a single ideal marker in HCC. Many new findings have shown promising results both in diagnosing and treating HCC. In this review, we summarized the most recent and relevant biomarkers in HCC.
Collapse
Affiliation(s)
- Felice De Stefano
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Eduardo Chacon
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Lilia Turcios
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Francesc Marti
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Roberto Gedaly
- Transplant and Hepatobiliary Center, Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, United States.
| |
Collapse
|
203
|
Saeg F, Anbalagan M. Breast cancer stem cells and the challenges of eradication: a review of novel therapies. Stem Cell Investig 2018; 5:39. [PMID: 30498750 DOI: 10.21037/sci.2018.10.05] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
Breast cancer is a heterogeneous disease that accounts for 30% of all cancers diagnosed in women and over half a million deaths per year. Cancer stem cells (CSCs) make up a small subpopulation of cells within a tumor, are capable of self-renewal and, are responsible for tumor initiation, formation, and recurrence. Breast CSCs (BCSCs) have been the subject of concentrated research as potential targets for breast cancer therapies. Cell surface markers CD44+/CD24- have been established as minimum biomarkers for BCSCs and the upregulation of CD44 expression has been linked to tumor formation in numerous cancers. Additionally, the deregulation of Notch, Wnt/Frizzled/β-catenin, Hippo, and Hedgehog signaling pathways is believed to be responsible for the formation of CSCs and lead to tumor formation. Tumor heterogeneity is a key feature of therapy resistance and a major challenge. CSCs are predominantly senescent and inherently immune to chemotherapy drugs which rely on an overactive cell cycle. Current therapeutic strategies include targeting CSC signaling pathways that play critical roles in self-renewal and defense. Anti-CD44 antibodies have been shown to induce terminal differentiation in CSCs resulting in a significant decrease in tumor metastasis. Additionally, targeting the tumor microenvironment has been shown to increase the effectiveness of chemotherapy drugs. In this review, we attempt to provide an overview of breast cancer, the stem of its cause, and novel therapies currently being explored.
Collapse
Affiliation(s)
- Fouad Saeg
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA.,DeBakey Scholars Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
204
|
Gross ETE, Peinado CD, Jung Y, Han S, Liu B, Santosa EK, Bui JD. Identification and editing of stem-like cells in methylcholanthrene-induced sarcomas. Oncoimmunology 2018; 8:e1404212. [PMID: 30546937 DOI: 10.1080/2162402x.2017.1404212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/24/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022] Open
Abstract
The cancer stem cell (CSC) paradigm posits that specific cells within a tumor, so-called CSC-like cells, have differing levels of tumorigenicity and chemoresistance. Original studies of CSCs identified them in human cancers and utilized mouse xenograft models to define the cancer initiating properties of these cells, thereby hampering the understanding of how immunity could affect CSCs. Indeed, few studies have characterized CSCs in the context of cancer immunoediting, and it is currently not clear how immunity could impact on the levels or stem-like behavior of CSCs. Using the well-studied 3'methylcholanthrene (MCA) model of primary sarcoma formation, we have defined a CSC-like population within MCA-induced sarcomas as expressing high levels of stem cell antigen-1 (Sca-1) and low levels of CD90. These Sca-1+CD90- CSC-like cells had higher tumor initiating ability, could spontaneously give rise to Sca-1-negative cells, and formed more sarcospheres than corresponding non-CSC-like cells. Moreover, when examining MCA-induced sarcomas that were in the equilibrium phase of cancer growth, higher levels of CSC-like cells were found compared to MCA-induced sarcomas in the escape phase of cancer progression. Notably, CSC-like cells also emerged during escape from anti-PD-1 or anti-CTLA4 therapy, thus suggesting that CSC-like cells could evade immune therapy. Finally, we demonstrate that paradoxically, interferon (IFN)-γ produced in vivo by immune cells could promote the emergence of CSC-like cells. Our findings define the existence of a Sca1+CD90- CSC-like population in the MCA-sarcoma model capable of differentiation, tumorsphere formation, and increased tumor initiation in vivo. These cells may also act as mediators of immune resistance during cancer immunoediting and immune therapy.
Collapse
Affiliation(s)
- Emilie T E Gross
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Carlos D Peinado
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Yujin Jung
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Semi Han
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Beichen Liu
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Endi K Santosa
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Jack D Bui
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
205
|
Otoukesh B, Boddouhi B, Moghtadaei M, Kaghazian P, Kaghazian M. Novel molecular insights and new therapeutic strategies in osteosarcoma. Cancer Cell Int 2018; 18:158. [PMID: 30349420 PMCID: PMC6192346 DOI: 10.1186/s12935-018-0654-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
Osteosarcoma (OS) is one of the most prevalent malignant cancers with lower survival and poor overall prognosis mainly in children and adolescents. Identifying the molecular mechanisms and OS stem cells (OSCs) as new concepts involved in disease pathogenesis and progression may potentially lead to new therapeutic targets. Therefore, therapeutic targeting of OSCs can be one of the most important and effective strategies for the treatment of OS. This review describes the new molecular targets of OS as well as novel therapeutic approaches in the design of future investigations and treatment.
Collapse
Affiliation(s)
- Babak Otoukesh
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, 1445613131 Iran
| | - Bahram Boddouhi
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, 1445613131 Iran
| | - Mehdi Moghtadaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, 1445613131 Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Maria Kaghazian
- Department of Biology, Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
206
|
Staurosporine Induces the Generation of Polyploid Giant Cancer Cells in Non-Small-Cell Lung Carcinoma A549 Cells. Anal Cell Pathol (Amst) 2018; 2018:1754085. [PMID: 30406001 PMCID: PMC6199859 DOI: 10.1155/2018/1754085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022] Open
Abstract
Cultivation of A549 non-small-cell lung carcinoma (NSCLC) cells in the presence of staurosporine (SSP) leads to a reduction or a lack of proliferation in a concentration-dependent manner. This inhibition of proliferation is accompanied by the generation of polyploid giant cancer cells (PGCCs) that are characterized by cell flattening, increased cell size, polyploidy, and polynucleation as determined by crystal violet staining, BrdU and DiI labelling, and flow cytometry as well as video time-lapse analysis. Continuous SSP treatment of A549 cells can preserve PGCCs for at least two months in a resting state. Upon removal of SSP, A549 PGCCs restart to divide and exhibit a proliferation pattern and cellular morphology indistinguishable from cells where PGCCs originally derived from. Thus, SSP-treated A549 cells represent a simple and reliable experimental model for the reversible generation of PGCCs and their subsequent experimental analysis.
Collapse
|
207
|
Tabassum N, Verma V, Kumar M, Kumar A, Singh B. Nanomedicine in cancer stem cell therapy: from fringe to forefront. Cell Tissue Res 2018; 374:427-438. [PMID: 30302547 DOI: 10.1007/s00441-018-2928-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/16/2018] [Indexed: 12/20/2022]
Abstract
Nanomedicine is the spin-off of modern medicine and nanotechnology and aims to prevent and treat diseases using nanoscale materials such as biocompatible nanoparticles and nanorobots. Targeted cellular and tissue-specific clinical applications with maximal therapeutic effects and insignificant side effects could be achieved by the pursuit of nanotechnology in medicine and healthcare regimen. The majority of conventional cancer therapies eliminate the cells of the tumor but not the cancer stem cells (CSCs). Conversely, the use of nanotechnology in CSC-based therapies is an emerging field of biomedical sciences. This article summarizes the recent trends and application of nanomedicine especially in CSC therapy along with its limitations.
Collapse
Affiliation(s)
- Nazish Tabassum
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, 211002, India
| | - Vinod Verma
- Centre of Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad, 211002, India.
| | - Manoj Kumar
- National Institute for Research in Environmental Health (NIREH), ICMR, Kamla Nehru Hospital Building, Bhopal, India
| | - Ashok Kumar
- Department of Zoology, MLK Post Graduate College, Balrampur, India
| | - Birbal Singh
- Indian Veterinary Research Institute, Regional Station, Palampur, India
| |
Collapse
|
208
|
Soltanian S, Dehghani H. BORIS: a key regulator of cancer stemness. Cancer Cell Int 2018; 18:154. [PMID: 30323717 PMCID: PMC6173857 DOI: 10.1186/s12935-018-0650-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 02/07/2023] Open
Abstract
BORIS (CTCFL) is a DNA binding protein which is involved in tumorigenesis. Although, there are different opinions on the level of gene expression and function of BORIS in normal and cancer tissues, the results of many studies have classified BORIS as a protein belonging to cancer/testis (CT) genes, which are identified as a group of genes that are expressed normally in testis, and abnormally in various types of cancers. In testis, BORIS induces the expression of some male germ cell/testis specific genes, and plays crucial roles during spermatogenesis and production of sperm. In tumorigenesis, the role of BORIS in the expression induction of some CT genes and oncogenes, as well as increasing proliferation/viability of cancer cells has been demonstrated in many researches. In addition to cancer cells, some believe that BORIS is also expressed in normal conditions and plays a universal function in cell division and regulation of genes. The following is a comprehensive review on contradictory views on the expression pattern and biological function of BORIS in normal, as well as cancer cells/tissues, and presents some evidence that support the expression of BORIS in cancer stem cells (CSCs) and advanced stage/poorer differentiation grade of cancers. Boris is involved in the regulation of CSC cellular and molecular features such as self-renewal, chemo-resistance, tumorigenicity, sphere-forming ability, and migration capacity. Finally, the role of BORIS in regulating two important signaling pathways including Wnt/β-catenin and Notch in CSCs, and its ability in recruiting transcription factors or chromatin-remodeling proteins to induce tumorigenesis is discussed.
Collapse
Affiliation(s)
- Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Azadi Square, Mashhad, 91775-1793 Iran
- Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
209
|
Aoshima K, Fukui Y, Gulay KCM, Erdemsurakh O, Morita A, Kobayashi A, Kimura T. Notch2 signal is required for the maintenance of canine hemangiosarcoma cancer stem cell-like cells. BMC Vet Res 2018; 14:301. [PMID: 30285832 PMCID: PMC6171240 DOI: 10.1186/s12917-018-1624-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background Hemangiosarcoma (HSA) is a malignant tumor derived from endothelial cells which usually shows poor prognosis due to its high invasiveness, metastatic rate and severe hemorrhage from tumor ruptures. Since the pathogenesis of HSA is not yet complete, further understanding of its molecular basis is required. Results Here, we identified Notch2 signal as a key factor in maintaining canine HSA cancer stem cell (CSC)-like cells. We first cultured HSA cell lines in adherent serum-free condition and confirmed their CSC-like characteristics. Notch signal was upregulated in the CSC-like cells and Notch signal inhibition by a γ-secretase inhibitor significantly repressed their growth. Notch2, a Notch receptor, was highly expressed in the CSC-like cells. Constitutive activation of Notch2 increased clonogenicity and number of cells which were able to survive in serum-free condition. In contrast, inhibition of Notch2 activity showed opposite effects. These results suggest that Notch2 is an important factor for maintaining HSA CSC-like cells. Neoplastic cells in clinical cases also express Notch2 higher than endothelial cells in the normal blood vessels in the same slides. Conclusion This study provides foundation for further stem cell research in HSA and can provide a way to develop effective treatments to CSCs of endothelial tumors. Electronic supplementary material The online version of this article (10.1186/s12917-018-1624-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keisuke Aoshima
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.
| | - Yuki Fukui
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Kevin Christian Montecillo Gulay
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Ochbayar Erdemsurakh
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Atsuya Morita
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
210
|
Qiu S, Deng L, Bao Y, Jin K, Tu X, Li J, Liao X, Liu Z, Yang L, Wei Q. Reversal of docetaxel resistance in prostate cancer by Notch signaling inhibition. Anticancer Drugs 2018; 29:871-879. [PMID: 29944470 DOI: 10.1097/cad.0000000000000659] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acquired docetaxel (Doc) resistance in hormone-refractory prostate cancer (HRPC) remains an ongoing clinical challenge, resulting in failed chemotherapy and tumor recurrence. However, the mechanism of Doc-resistance development in prostate cancer cells is still unclear. Here, we observed a subpopulation of prostate cancer cells, in both Doc-resistant cell lines and the tumors of patients with HRPC, which show stem cell markers and greater tumorigenic potential. Those stem-like prostate cancer cells show high expression of ABCB1, which encodes multidrug resistance-related protein P-glycoprotein, leading to the Doc-resistance in prostate cancer. Moreover, we found that Notch signaling pathway activation in Doc-resistant cell lines and tumor tissues of patients with HRPC correlated with tumorigenicity and the development of Doc resistance. Here, we revealed that a combination of Doc and a Notch signaling inhibitor overcomes Doc resistance and increases the survival of mice with Doc-resistant xenografts. Therefore, targeting the Notch signaling pathway may be a promising strategy to overcome the Doc-resistant cancer in the clinic.
Collapse
Affiliation(s)
- Shi Qiu
- Departments of Urology, Institute of Urology
| | - Linghui Deng
- Neurology, Stroke Clinical Research Unit, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yige Bao
- Departments of Urology, Institute of Urology
| | - Kun Jin
- Departments of Urology, Institute of Urology
| | - Xiang Tu
- Departments of Urology, Institute of Urology
| | - Jiakun Li
- Departments of Urology, Institute of Urology
| | | | - Zhenhua Liu
- Departments of Urology, Institute of Urology
| | - Lu Yang
- Departments of Urology, Institute of Urology
| | - Qiang Wei
- Departments of Urology, Institute of Urology
| |
Collapse
|
211
|
Moazen B, Zarrinhaghighi A, Nejatollahi F. Selection and Evaluation of Specific Single Chain Antibodies against CD90, a Marker for Mesenchymal and Cancer Stem Cells. Rep Biochem Mol Biol 2018; 7:45-51. [PMID: 30324117 PMCID: PMC6175597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/29/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND CD90, a membrane-associated glycoprotein is a marker used to identify mesenchymal stem cells (MSCs). Recent studies have introduced CD90, which induces tumorigenic activity, as a cancer stem cell (CSC) marker in various malignancies. Blocking CD90 activity with anti-CD90 monoclonal antibodies enhanced anti-tumor effects. To date, highly specific antibody single-chain variable fragments (scFvs) have been isolated against various targets and showed promising results in cancer immunotherapy. METHODS A phage antibody was produced from a scFv library using M13KO7 helper phage. The phage library was panned against a CD90 epitope. To select specific clones, PCR and DNA fingerprinting were performed and common patterns were identified. The panning results were confirmed by phage ELISA. RESULTS Of 20 clones selected after panning, 16 shared identical fingerprints. One clone from this group reacted specifically with the epitope in phage ELISA. The average absorbance of wells coated with the CD90 peptide was significantly greater than that of wells containing no peptide (p=0.03). CONCLUSION Currently, recombinant antibodies are used not only as highly specific detection tools, but due to their specific characteristics, are applied in targeted cancer therapies. The anti-CD90 scFv selected in this study has the potential to be used to detect MSCs and target CSCs and offers promising strategies for treatment of various cancers.
Collapse
Affiliation(s)
- Bahareh Moazen
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Zarrinhaghighi
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Foroogh Nejatollahi
- Shiraz HIV/AIDS Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Recombinant antibody laboratory, Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
212
|
Kiselev VI, Ashrafyan LA, Muyzhnek EL, Gerfanova EV, Antonova IB, Aleshikova OI, Sarkar FH. A new promising way of maintenance therapy in advanced ovarian cancer: a comparative clinical study. BMC Cancer 2018; 18:904. [PMID: 30236079 PMCID: PMC6148762 DOI: 10.1186/s12885-018-4792-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 09/03/2018] [Indexed: 12/02/2022] Open
Abstract
Background There is an urgent need for more novel and efficacious therapeutic agents and strategies for the treatment of ovarian cancer - one of the most formidable female malignancies. These approaches should be based on comprehensive understanding of the pathobiology of this cancer and focused on decreasing its recurrence and metastasis. The aim of this study was to evaluate the efficacy of five-year maintenance therapy with indole-3-carbinol (I3C) as well as I3C and epigallocatechin-3-gallate (EGCG) conducted before, during, and after combined treatment compared with combined treatment alone in advanced ovarian cancer. Methods Patients with stage III-IV serous ovarian cancer were assigned to receive combined treatment plus I3C (arm 1), combined treatment plus I3C and EGCG (arm 2), combined treatment plus I3C and EGCG plus long-term platinum-taxane chemotherapy (arm 3), combined treatment alone without neoadjuvant platinum-taxane chemotherapy (control arm 4), and combined treatment alone (control arm 5). Combined treatment included neoadjuvant platinum-taxane chemotherapy, surgery, and adjuvant platinum-taxane chemotherapy. The primary endpoint was overall survival (OS). Secondary endpoints were progression-free survival (PFS) and rate of patients with recurrent ovarian cancer with ascites after combined treatment. Results After five years of follow-up, maintenance therapy dramatically prolonged PFS and OS compared to control. Median OS was 60.0 months (95% CI: 58.0–60.0 months) in arm 1, 60.0 months (95% CI: 60.0–60.0 months) in arms 2 and 3 while 46.0 months (95% СI: 28.0–60.0 months) in arm 4, and 44.0 months (95% СI: 33.0–58.0 months) in arm 5. Median PFS was 39.5 months (95% СI: 28.0–49.0 months) in arm 1, 42.5 months (95% СI: 38.0–49.0 months) in arm 2, 48.5 months (95% СI: 39.0–53.0 months) in arm 3, 24.5 months (95% СI: 14.0–34.0 months) in arm 4, 22.0 months (95% СI: 15.0–26.0 months) in arm 5. The rate of patients with recurrent ovarian cancer with ascites after combined treatment was significantly less in maintenance therapy arms compared to control. Conclusions Long-term usage of I3C and EGCG may represent a new promising way of maintenance therapy in advanced ovarian cancer patients, which achieved better treatment outcomes. Trial registration Retrospectively registered with ANZCTR number: ACTRN12616000394448. Date of registration: 24/03/2016.
Collapse
Affiliation(s)
| | - Levon A Ashrafyan
- Russian Scientific Center of Roentgenoradiology, Moscow, Russian Federation
| | - Ekaterina L Muyzhnek
- MiraxBioPharma, Joint-Stock Company, Valovaya Ul., 21, build. 125, Moscow, Russian Federation, 115054.
| | | | - Irina B Antonova
- Russian Scientific Center of Roentgenoradiology, Moscow, Russian Federation
| | - Olga I Aleshikova
- Russian Scientific Center of Roentgenoradiology, Moscow, Russian Federation
| | - Fazlul H Sarkar
- Department of Pathology, Wayne State University (Retired as Distinguished Professor), Detroit, MI, USA
| |
Collapse
|
213
|
Highly Charged, Cytotoxic, Cyclometalated Iridium(III) Complexes as Cancer Stem Cell Mitochondriotropics. Chemistry 2018; 24:15205-15210. [PMID: 30052298 DOI: 10.1002/chem.201803521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 07/26/2018] [Indexed: 11/07/2022]
|
214
|
Lin C, Gao B, Yan X, Lei Z, Chen K, Li Y, Zeng Q, Chen Z, Li H. MicroRNA 628 suppresses migration and invasion of breast cancer stem cells through targeting SOS1. Onco Targets Ther 2018; 11:5419-5428. [PMID: 30233203 PMCID: PMC6129021 DOI: 10.2147/ott.s164575] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose The purpose of this study is to evaluate the effects of miR-628 on migration and invasion of breast cancer stem cells (CSCs), which are essential for tumor recurrence and metastasis. Materials and methods Quantitative reverse transcription-polymerase chain reaction was used to determine the expression of microRNAs and mRNAs. A subpopulation of CD44+/CD24− breast CSCs were sorted by flow cytometry. Transwell assays were used to evaluate cell migration and invasion. Luciferase reporter assays were performed to verify whether miR-628 targeted SOS Ras/Rac guanine nucleotide exchange factor 1 (SOS1). pcDNA3.1(+)-SOS1 was constructed for overexpressing SOS1 after transfection. Results Compared with primary breast cancer cells, bone metastatic breast cancer cells showed significant downregulation of miR-628. The CD44+/CD24− breast CSC subpopulations in MDA-MB-231 and MCF-7 cell lines were analyzed and sorted. Transfection with an miR-628 mimic significantly suppressed the migration and invasion of these breast CSCs by targeting SOS1, which plays an essential role in epithelial-to-mesenchymal transition. Overexpression of SOS1 rescued miR-628-mediated migration and invasion by upregulating Snail and vimentin, and downregulating E-cadherin. Conclusion miR-628 suppressed migration and invasion of breast CSCs of MDA-MB-231 and MCF-7 cells by directly targeting SOS1. Enhancement of miR-628 expression might be an effective strategy for managing breast cancer metastasis.
Collapse
Affiliation(s)
- Chenghui Lin
- Department of Medical oncology, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Bin Gao
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Xuemao Yan
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Zixiong Lei
- Department of Musculoskeletal Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P.R. China,
| | - Kebing Chen
- Department of Musculoskeletal Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P.R. China,
| | - Yuquan Li
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Qing Zeng
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Zeqin Chen
- Department of Orthopedics, TangXia Hospital of DongGuan, DongGuan, P.R. China
| | - Haomiao Li
- Department of Musculoskeletal Oncology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, P.R. China,
| |
Collapse
|
215
|
Hernández-Camarero P, Jiménez G, López-Ruiz E, Barungi S, Marchal JA, Perán M. Revisiting the dynamic cancer stem cell model: Importance of tumour edges. Crit Rev Oncol Hematol 2018; 131:35-45. [PMID: 30293704 DOI: 10.1016/j.critrevonc.2018.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/22/2018] [Indexed: 02/07/2023] Open
Abstract
The lack of an effective treatment against cancer is not only due to its huge heterogeneity, but also to the fact that we don't have an answer to the question on how cancer originates. Among the proposed models to explain the development of cancer, the hierarchical model has been widely accepted. Nevertheless, this model fails to explain several experimental observations such as the cancer stem cells (CSCs) location inside a tumour or the differences between primary and metastatic tumours. Moreover, increasing evidence shows that the CSC phenotype is not a rigid state. Here, we present a critical review on the assumed tumour development models emphasizing the relevance of the dynamic and changing nature of cancer and the CSCs population in which the tumour microenvironment plays a crucial role and we propose a new model of tumour origin that could have an impact on new therapeutic strategies.
Collapse
Affiliation(s)
| | - Gema Jiménez
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E- 18016, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E- 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| | - Elena López-Ruiz
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E- 18016, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E- 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain
| | - Shivan Barungi
- Department of Health Sciences, University of Jaén, Jaén E-23071, Spain
| | - Juan Antonio Marchal
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E- 18016, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E- 18016, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), University Hospitals of Granada-University of Granada, Granada, E-18071, Spain.
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén E-23071, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E- 18016, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada E-18100, Spain.
| |
Collapse
|
216
|
Durinikova E, Kozovska Z, Poturnajova M, Plava J, Cierna Z, Babelova A, Bohovic R, Schmidtova S, Tomas M, Kucerova L, Matuskova M. ALDH1A3 upregulation and spontaneous metastasis formation is associated with acquired chemoresistance in colorectal cancer cells. BMC Cancer 2018; 18:848. [PMID: 30143021 PMCID: PMC6109326 DOI: 10.1186/s12885-018-4758-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Background Efficiency of colorectal carcinoma treatment by chemotherapy is diminished as the resistance develops over time in patients. The same holds true for 5-fluorouracil, the drug used in first line chemotherapy of colorectal carcinoma. Methods Chemoresistant derivative of HT-29 cells was prepared by long-term culturing in increasing concentration of 5-fluorouracil. Cells were characterized by viability assays, flow cytometry, gene expression arrays and kinetic imaging. Immunomagnetic separation was used for isolation of subpopulations positive for cancer stem cells-related surface markers. Aldehyde dehydrogenase expression was attenuated by siRNA. In vivo studies were performed on SCID/bg mice. Results The prepared chemoresistant cell line labeled as HT-29/EGFP/FUR is assigned with different morphology, decreased proliferation rate and 135-fold increased IC50 value for 5-fluorouracil in comparison to parental counterparts HT-29/EGFP. The capability of chemoresistant cells to form tumor xenografts, when injected subcutaneously into SCID/bg mice, was strongly compromised, however, they formed distant metastases in mouse lungs spontaneously. Derived cells preserved their resistance in vitro and in vivo even without the 5-fluorouracil selection pressure. More importantly, they were resistant to cisplatin, oxaliplatin and cyclophosphamide exhibiting high cross-resistance along with alterations in expression of cancer-stem cell markers such as CD133, CD166, CD24, CD26, CXCR4, CD271 and CD274. We also detected increased aldehyde dehydrogenase (ALDH) activity associated with overexpression of specific ALDH isoform 1A3. Its inhibition by siRNA approach partially sensitized cells to various agents, thus linking for the first time the ALDH1A3 and chemoresistance in colorectal cancer. Conclusion Our study demonstrated that acquired chemoresistance goes along with metastatic and migratory phenotype and can be accompanied with increased activity of aldehyde dehydrogenase. We describe here the valuable model to study molecular link between resistance to chemotherapy and metastatic dissemination.
Collapse
Affiliation(s)
- Erika Durinikova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Zuzana Kozovska
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Martina Poturnajova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Jana Plava
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Zuzana Cierna
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University, Sasinkova 4, 813 72, Bratislava, Slovakia
| | - Andrea Babelova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Roman Bohovic
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Silvia Schmidtova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia
| | - Miroslav Tomas
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.,Department of Surgical Oncology of Slovak Medical University, National Cancer Institute, Klenova 1, 831 01, Bratislava, Slovakia
| | - Lucia Kucerova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| | - Miroslava Matuskova
- Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovakia.
| |
Collapse
|
217
|
Hasanovic A, Mus-Veteau I. Targeting the Multidrug Transporter Ptch1 Potentiates Chemotherapy Efficiency. Cells 2018; 7:cells7080107. [PMID: 30110910 PMCID: PMC6115939 DOI: 10.3390/cells7080107] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/08/2018] [Accepted: 08/11/2018] [Indexed: 12/22/2022] Open
Abstract
One of the crucial challenges in the clinical management of cancer is resistance to chemotherapeutics. Multidrug resistance (MDR) has been intensively studied, and one of the most prominent mechanisms underlying MDR is overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) transporters. Despite research efforts to develop compounds that inhibit the efflux activity of ABC transporters and thereby increase classical chemotherapy efficacy, to date, the Food and Drug Administration (FDA) has not approved the use of any ABC transporter inhibitors due to toxicity issues. Hedgehog signaling is aberrantly activated in many cancers, and has been shown to be involved in chemotherapy resistance. Recent studies showed that the Hedgehog receptor Ptch1, which is over-expressed in many recurrent and metastatic cancers, is a multidrug transporter and it contributes to the efflux of chemotherapeutic agents such as doxorubicin, and to chemotherapy resistance. Remarkably, Ptch1 uses the proton motive force to efflux drugs, in contrast to ABC transporters, which use ATP hydrolysis. Indeed, the “reversed pH gradient” that characterizes cancer cells, allows Ptch1 to function as an efflux pump specifically in cancer cells. This makes Ptch1 a particularly attractive therapeutic target for cancers expressing Ptch1, such as lung, breast, prostate, ovary, colon, brain, adrenocortical carcinoma, and melanoma. Screening of chemical libraries have identified several molecules that are able to enhance the cytotoxic effect of different chemotherapeutic agents by inhibiting Ptch1 drug efflux activity in different cancer cell lines that endogenously over-express Ptch1. In vivo proof of concept has been performed in mice where combining one of these compounds with doxorubicin prevented the development of xenografted adrenocortical carcinoma tumors more efficiently than doxorubicin alone, and without obvious undesirable side effects. Therefore, the use of a Ptch1 drug efflux inhibitor in combination with classical or targeted therapy could be a promising therapeutic option for Ptch1-expressing cancers.
Collapse
Affiliation(s)
- Anida Hasanovic
- Université Côte d'Azur, Campus Valrose, 06100 Nice, France.
- CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Valbonne, France.
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, 06560 Valbonne, France.
| | - Isabelle Mus-Veteau
- Université Côte d'Azur, Campus Valrose, 06100 Nice, France.
- CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Valbonne, France.
- NEOGENEX CNRS International Associated Laboratory, Sophia Antipolis, 06560 Valbonne, France.
| |
Collapse
|
218
|
Wang Y, Sun B, Han B, Hu M. New ferrocene modified retinoic acid with enhanced efficacy against melanoma cells via GSH depletion. RSC Adv 2018; 8:27740-27745. [PMID: 35542710 PMCID: PMC9083447 DOI: 10.1039/c8ra04078h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/16/2018] [Indexed: 11/21/2022] Open
Abstract
Malignant melanoma is a highly lethal disease, and advanced stages of melanoma have proven to be resistant to many chemotherapeutic drugs. Cancer stem cells (CSCs) and high levels of intracellular glutathione (GSH) have been proven to play important roles in drug resistance. Retinoic acid (RA) is a promising anticancer agent, which can inhibit proliferation and induce differentiation of CSCs, but its clinical use has been limited by its water insolubility and weak cancer cell killing effect when used alone. Herein, by combining RA and ferrocene, a new type of derivative of retinoic acid (FCRA) was synthesized and then oxidized by FeCl3. The oxidized FCRA (FCRA+) was exploited as a novel anticancer agent. Compared with RA, FCRA+ not only has improved water solubility and stronger anti-cancer effect to melanoma cells through depleting intracellular GSH of the cancer cells, but also can inhibit proliferation and induce differentiation of melanoma CSCs, such as free RA. Therefore, FCRA+ has better application prospects than RA and may replace RA for clinical applications.
Collapse
Affiliation(s)
- Yibo Wang
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University Changchun 130041 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 P. R. China
| | - Bin Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 P. R. China
- Department of Oral and Maxilloficial Surgery, School and Hospital of Stomatology, Jilin University Changchun 130041 P. R. China
| | - Bin Han
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 P. R. China
- Department of Oral and Maxilloficial Surgery, School and Hospital of Stomatology, Jilin University Changchun 130041 P. R. China
| | - Min Hu
- Department of Orthodontics, School and Hospital of Stomatology, Jilin University Changchun 130041 P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University Changchun 130041 P. R. China
| |
Collapse
|
219
|
Ren B, Cui M, Yang G, Wang H, Feng M, You L, Zhao Y. Tumor microenvironment participates in metastasis of pancreatic cancer. Mol Cancer 2018; 17:108. [PMID: 30060755 PMCID: PMC6065152 DOI: 10.1186/s12943-018-0858-1] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a deadly disease with high mortality due to difficulties in its early diagnosis and metastasis. The tumor microenvironment induced by interactions between pancreatic epithelial/cancer cells and stromal cells is critical for pancreatic cancer progression and has been implicated in the failure of chemotherapy, radiation therapy and immunotherapy. Microenvironment formation requires interactions between pancreatic cancer cells and stromal cells. Components of the pancreatic cancer microenvironment that contribute to desmoplasia and immunosuppression are associated with poor patient prognosis. These components can facilitate desmoplasia and immunosuppression in primary and metastatic sites or can promote metastasis by stimulating angiogenesis/lymphangiogenesis, epithelial-mesenchymal transition, invasion/migration, and pre-metastatic niche formation. Some molecules participate in both microenvironment formation and metastasis. In this review, we focus on the mechanisms of pancreatic cancer microenvironment formation and discuss how the pancreatic cancer microenvironment participates in metastasis, representing a potential target for combination therapy to enhance overall survival.
Collapse
Affiliation(s)
- Bo Ren
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Ming Cui
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Gang Yang
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Huanyu Wang
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Mengyu Feng
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China
| | - Lei You
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| | - Yupei Zhao
- Department of General Surgery, Chinese Academy of Medical Sciences, Peking Union Medical College, Peking Union Medical College Hospital, Beijing, 100023, People's Republic of China.
| |
Collapse
|
220
|
Fakiruddin KS, Ghazalli N, Lim MN, Zakaria Z, Abdullah S. Mesenchymal Stem Cell Expressing TRAIL as Targeted Therapy against Sensitised Tumour. Int J Mol Sci 2018; 19:ijms19082188. [PMID: 30060445 PMCID: PMC6121609 DOI: 10.3390/ijms19082188] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 02/06/2023] Open
Abstract
Tapping into the ability of engineered mesenchymal stem cells (MSCs) to mobilise into the tumour has expanded the scope of cancer treatment. Engineered MSCs expressing tumour necrosis factor (TNF)-related apoptosis inducing ligand (MSC-TRAIL) could serve as a platform for an efficient and targeted form of therapy. However, the presence of cancer stem cells (CSCs) that are resistant to TRAIL and apoptosis may represent a challenge for effective treatment. Nonetheless, with the discovery of small molecular inhibitors that could target CSCs and tumour signalling pathways, a higher efficacy of MSC-TRAIL mediated tumour inhibition can be achieved. This might pave the way for a more effective form of combined therapy, which leads to a better treatment outcome. In this review, we first discuss the tumour-homing capacity of MSCs, its effect in tumour tropism, the different approach behind genetically-engineered MSCs, and the efficacy and safety of each agent delivered by these MSCs. Then, we focus on how sensitisation of CSCs and tumours using small molecular inhibitors can increase the effect of these cells to either TRAIL or MSC-TRAIL mediated inhibition. In the conclusion, we address a few questions and safety concerns regarding the utilization of engineered MSCs for future treatment in patients.
Collapse
Affiliation(s)
- Kamal Shaik Fakiruddin
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia.
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nadiah Ghazalli
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Moon Nian Lim
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia.
| | - Zubaidah Zakaria
- Stem Cell Laboratory, Haematology Unit, Cancer Research Centre, Institute for Medical Research, Kuala Lumpur 50588, Malaysia.
| | - Syahril Abdullah
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
221
|
Therapeutic Opportunities of Targeting Histone Deacetylase Isoforms to Eradicate Cancer Stem Cells. Int J Mol Sci 2018; 19:ijms19071939. [PMID: 30004423 PMCID: PMC6073995 DOI: 10.3390/ijms19071939] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/22/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells, are a small subset of cancer cells with the capacity for self-renewal and differentiation, which have been shown to drive tumor initiation, progression, and metastasis in many types of cancer. Moreover, therapeutic regimens, such as cisplatin and radiation were reported to induce the enrichment of CSCs, thereby conferring chemoresistance on cancer cells. Therefore, therapeutic targeting of CSCs represents a clinical challenge that needs to be addressed to improve patient outcome. In this context, the effectiveness of pan or class-I histone deacetylase (HDAC) inhibitors in suppressing the CSC population is especially noteworthy in light of the new paradigm of combination therapy. Evidence suggests that this anti-CSC activity is associated with the ability of HDAC inhibitors to target multiple signaling pathways at different molecular levels. Beyond chromatin remodeling via histone acetylation, HDAC inhibitors can also block key signaling pathways pertinent to CSC maintenance. Especially noteworthy is the ability of different HDAC isoforms to regulate the protein stability and/or activity of a series of epithelial-mesenchymal transition (EMT)-inducing transcription factors, including HIF-1α, Stat3, Notch1, β-catenin, NF-κB, and c-Jun, each of which plays a critical role in regulating CSCs. From the translational perspective, these mechanistic links constitute a rationale to develop isoform-selective HDAC inhibitors as anti-CSC agents. Thus, this review aims to provide an overview on the roles of HDAC isoforms in maintaining CSC homeostasis via distinct signaling pathways independent of histone acetylation.
Collapse
|
222
|
Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis. Semin Cancer Biol 2018; 53:90-109. [PMID: 29966677 DOI: 10.1016/j.semcancer.2018.06.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSC's aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.
Collapse
|
223
|
Shah D, Wyatt D, Baker AT, Simms P, Peiffer DS, Fernandez M, Rakha E, Green A, Filipovic A, Miele L, Osipo C. Inhibition of HER2 Increases JAGGED1-dependent Breast Cancer Stem Cells: Role for Membrane JAGGED1. Clin Cancer Res 2018; 24:4566-4578. [PMID: 29895705 DOI: 10.1158/1078-0432.ccr-17-1952] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/19/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
Abstract
Purpose: HER2-positive breast cancer is driven by cells possessing stem-like properties of self-renewal and differentiation, referred to as cancer stem cells (CSC). CSCs are implicated in radiotherapy, chemotherapy resistance, and tumor recurrence. NOTCH promotes breast CSC survival and self-renewal, and overexpression of NOTCH1 and the NOTCH ligand JAGGED1 predict poor outcome. Resistance to anti-HER2 therapy in HER2+ breast cancer requires NOTCH1, and that combination of trastuzumab and a gamma secretase inhibitor (GSI) prevents tumor relapse in xenograft models.Experimental Design: The current study investigates mechanisms by which HER2 tyrosine kinase activity regulates NOTCH-dependent CSC survival and tumor initiation.Results: Lapatinib-mediated HER2 inhibition shifts the population of HER2+ breast cancer cells from low membrane JAGGED1 expression to higher levels, independent of sensitivity to anti-HER2 treatment within the bulk cell population. This increase in membrane JAGGED1 is associated with higher NOTCH receptor expression, activation, and enrichment of CSCs in vitro and in vivo Importantly, lapatinib treatment results in growth arrest and cell death of JAGGED1 low-expressing cells while the JAGGED1 high-expressing cells continue to cycle. High membrane JAGGED1 protein expression predicts poor overall cumulative survival in women with HER2+ breast cancer.Conclusions: These results indicate that higher membrane JAGGED1 expression may be used to either predict response to anti-HER2 therapy or for detection of NOTCH-sensitive CSCs posttherapy. Sequential blockade of HER2 followed by JAGGED1 or NOTCH could be more effective than simultaneous blockade to prevent drug resistance and tumor progression. Clin Cancer Res; 24(18); 4566-78. ©2018 AACR.
Collapse
Affiliation(s)
- Deep Shah
- Molecular Pharmacology and Therapeutics Program, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Debra Wyatt
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Andrew T Baker
- Integrated Cell Biology Program, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Patricia Simms
- FACS Core Facility, Office of Research Services, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Daniel S Peiffer
- Integrated Cell Biology Program, Loyola University Chicago: Health Sciences Division, Maywood, Illinois.,MD/PhD Program, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Michelle Fernandez
- Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| | - Emad Rakha
- Departments of Histopathology and Medicine, University of Nottingham and University Hospital NHS Trust, Nottingham, United Kingdom
| | - Andrew Green
- Departments of Histopathology and Medicine, University of Nottingham and University Hospital NHS Trust, Nottingham, United Kingdom
| | | | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Los Angeles
| | - Clodia Osipo
- Oncology Research Institute, Loyola University Chicago: Health Sciences Division, Maywood, Illinois. .,Department of Microbiology and Immunology, Loyola University Chicago: Health Sciences Division, Maywood, Illinois
| |
Collapse
|
224
|
Phan TTV, Bui NQ, Cho SW, Bharathiraja S, Manivasagan P, Moorthy MS, Mondal S, Kim CS, Oh J. Photoacoustic Imaging-Guided Photothermal Therapy with Tumor-Targeting HA-FeOOH@PPy Nanorods. Sci Rep 2018; 8:8809. [PMID: 29891947 PMCID: PMC5995888 DOI: 10.1038/s41598-018-27204-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022] Open
Abstract
Cancer theragnosis agents with both cancer diagnosis and therapy abilities would be the next generation of cancer treatment. Recently, nanomaterials with strong absorption in near-infrared (NIR) region have been explored as promising cancer theragnosis agents for bio-imaging and photothermal therapy (PTT). Herein, we reported the synthesis and application of a novel multifunctional theranostic nanoagent based on hyaluronan (HA)-coated FeOOH@polypyrrole (FeOOH@PPy) nanorods (HA-FeOOH@PPy NRs) for photoacoustic imaging (PAI)-guided PTT. The nanoparticles were intentionally designed with rod-like shape and conjugated with tumor-targeting ligands to enhance the accumulation and achieve the entire tumor distribution of nanoparticles. The prepared HA-FeOOH@PPy NRs showed excellent biocompatible and physiological stabilities in different media. Importantly, HA-FeOOH@PPy NRs exhibited strong NIR absorbance, remarkable photothermal conversion capability, and conversion stability. Furthermore, HA-FeOOH@PPy NRs could act as strong contrast agents to enhance PAI, conducting accurate locating of cancerous tissue, as well as precise guidance for PTT. The in vitro and in vivo photothermal anticancer activity results of the designed nanoparticles evidenced their promising potential in cancer treatment. The tumor-bearing mice completely recovered after 17 days of PTT treatment without obvious side effects. Thus, our work highlights the great potential of using HA-FeOOH@PPy NRs as a theranostic nanoplatform for cancer imaging-guided therapy.
Collapse
Affiliation(s)
- Thi Tuong Vy Phan
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nhat Quang Bui
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Soon-Woo Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Subramaniyan Bharathiraja
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Panchanathan Manivasagan
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Madhappan Santha Moorthy
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sudip Mondal
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Junghwan Oh
- Interdisciplinary Program of Biomedical Mechanical & Electrical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
- Center for Marine-Integrated Biomedical Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Department of Biomedical Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
225
|
Estrogen receptor positive breast tumors resist chemotherapy by the overexpression of P53 in Cancer Stem Cells. J Egypt Natl Canc Inst 2018; 30:45-48. [DOI: 10.1016/j.jnci.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
|
226
|
Cancer stem cells (CSCs): metabolic strategies for their identification and eradication. Biochem J 2018; 475:1611-1634. [PMID: 29743249 PMCID: PMC5941316 DOI: 10.1042/bcj20170164] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 02/08/2023]
Abstract
Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to 'force' CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.
Collapse
|
227
|
Kadri H, Lambourne OA, Mehellou Y. Niclosamide, a Drug with Many (Re)purposes. ChemMedChem 2018; 13:1088-1091. [PMID: 29603892 PMCID: PMC7162286 DOI: 10.1002/cmdc.201800100] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/29/2018] [Indexed: 12/13/2022]
Abstract
Niclosamide is an anthelmintic drug that has been used for over 50 years mainly to treat tapeworm infections. However, with the increase in drug repurposing initiatives, niclosamide has emerged as a true hit in many screens against various diseases. Indeed, from being an anthelmintic drug, it has now shown potential in treating Parkinson's disease, diabetes, viral and microbial infections, as well as various cancers. Such diverse pharmacological activities are a result of niclosamide's ability to uncouple mitochondrial phosphorylation and modulate a selection of signaling pathways, such as Wnt/β-catenin, mTOR and JAK/STAT3, which are implicated in many diseases. In this highlight, we discuss the plethora of diseases that niclosamide has shown promise in treating.
Collapse
Affiliation(s)
- Hachemi Kadri
- Cardiff School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Olivia A Lambourne
- Cardiff School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Youcef Mehellou
- Cardiff School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| |
Collapse
|
228
|
Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, Yeger H. Combination therapy in combating cancer. Oncotarget 2018; 8:38022-38043. [PMID: 28410237 PMCID: PMC5514969 DOI: 10.18632/oncotarget.16723] [Citation(s) in RCA: 1504] [Impact Index Per Article: 214.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Combination therapy, a treatment modality that combines two or more therapeutic agents, is a cornerstone of cancer therapy. The amalgamation of anti-cancer drugs enhances efficacy compared to the mono-therapy approach because it targets key pathways in a characteristically synergistic or an additive manner. This approach potentially reduces drug resistance, while simultaneously providing therapeutic anti-cancer benefits, such as reducing tumour growth and metastatic potential, arresting mitotically active cells, reducing cancer stem cell populations, and inducing apoptosis. The 5-year survival rates for most metastatic cancers are still quite low, and the process of developing a new anti-cancer drug is costly and extremely time-consuming. Therefore, new strategies that target the survival pathways that provide efficient and effective results at an affordable cost are being considered. One such approach incorporates repurposing therapeutic agents initially used for the treatment of different diseases other than cancer. This approach is effective primarily when the FDA-approved agent targets similar pathways found in cancer. Because one of the drugs used in combination therapy is already FDA-approved, overall costs of combination therapy research are reduced. This increases cost efficiency of therapy, thereby benefiting the “medically underserved”. In addition, an approach that combines repurposed pharmaceutical agents with other therapeutics has shown promising results in mitigating tumour burden. In this systematic review, we discuss important pathways commonly targeted in cancer therapy. Furthermore, we also review important repurposed or primary anti-cancer agents that have gained popularity in clinical trials and research since 2012.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Tina S Homayouni
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Narges Baluch
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Evgeniya Morgatskaya
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sushil Kumar
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bikul Das
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, Massachusetts, USA
| | - Herman Yeger
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
229
|
Moreira H, Szyjka A, Gąsiorowski K. Chemopreventive activity of celastrol in drug-resistant human colon carcinoma cell cultures. Oncotarget 2018; 9:21211-21223. [PMID: 29765532 PMCID: PMC5940375 DOI: 10.18632/oncotarget.25014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 03/09/2018] [Indexed: 01/06/2023] Open
Abstract
Celastrol (tripterine) a pentacyclic triterpenoid extracted from the roots of Tripterygium wilfordii Hook f., exhibits potent antioxidant and anti-inflammatory activity and also exerts important anti-cancer effects, as induction of apoptosis and lowering the level of drug resistance of several cancers. Increased level of cellular resistance to cytostatic drugs is typical for colorectal cancers, and largely determines the failure of chemotherapy for this tumor. The purpose of our research was to evaluate the chemopreventive effect of celastrol on cultures of colon cancer cells resistant to doxorubicin (LOVO/DX). With the use of flow cytometry we have shown that celastrol reduces the cell size of the SP (side population; subpopulation of cancer cells enriched with cancer stem cells), increases frequency of apoptosis and binds to Pgp protein in cell membranes inhibiting its transport function. The inhibition of the Pgp transport function has been shown to increase the accumulation of rhodamine-123 and standard cytostatic- doxorubicin in LOVO/DX cells. Our results prove that celastrol exhibits significant chemopreventive and chemosensitizing activities on drug resistant colon cancer cells. Celastrol appears to be a good candidate for adjuvant medicine that can improve the effectiveness of standard cytostatic therapy in humans.
Collapse
Affiliation(s)
- Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Anna Szyjka
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Kazimierz Gąsiorowski
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| |
Collapse
|
230
|
Richard JLC, Eichhorn PJA. Deciphering the roles of lncRNAs in breast development and disease. Oncotarget 2018; 9:20179-20212. [PMID: 29732012 PMCID: PMC5929455 DOI: 10.18632/oncotarget.24591] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the second leading cause of cancer related deaths in women. It is therefore important to understand the mechanisms underlying breast cancer development as well as raises the need for enhanced, non-invasive strategies for novel prognostic and diagnostic methods. The emergence of long non-coding RNAs (lncRNAs) as potential key players in neoplastic disease has received considerable attention over the past few years. This relatively new class of molecular regulators has been shown from ongoing research to act as critical players for key biological processes. Deregulated expression levels of lncRNAs have been observed in a number of cancers including breast cancer. Furthermore, lncRNAs have been linked to breast cancer initiation, progression, metastases and to limit sensitivity to certain targeted therapeutics. In this review we provide an update on the lncRNAs associated with breast cancer and mammary gland development and illustrate the versatility of such lncRNAs in gene control, differentiation and development both in normal physiological conditions and in diseased states. We also highlight the therapeutic and diagnostic potential of lncRNAs in cancer.
Collapse
Affiliation(s)
- John Lalith Charles Richard
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- Current Address: Genome Institute of Singapore, Agency for Science Technology and Research, 138672, Singapore
| | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- School of Pharmacy, Curtin University, Perth, 6845, Australia
| |
Collapse
|
231
|
Ren D, Zhu X, Kong R, Zhao Z, Sheng J, Wang J, Xu X, Liu J, Cui K, Zhang XHF, Zhao H, Wong STC. Targeting Brain-Adaptive Cancer Stem Cells Prohibits Brain Metastatic Colonization of Triple-Negative Breast Cancer. Cancer Res 2018; 78:2052-2064. [PMID: 29567857 DOI: 10.1158/0008-5472.can-17-2994] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/29/2017] [Accepted: 02/15/2018] [Indexed: 12/26/2022]
Abstract
Triple-negative breast cancer (TNBC) exhibits more traits possessed by cancer stem cells (CSC) than other breast cancer subtypes and is more likely to develop brain metastases. TNBC patients usually have shorter survival time after diagnosis of brain metastasis, suggesting an innate ability of TNBC tumor cells in adapting to the brain. In this study, we establish novel animal models to investigate early tumor adaptation in brain metastases by introducing both patient-derived and cell line-derived CSC-enriched brain metastasis tumorsphere cells into mice. We discovered astrocyte-involved tumor activation of protocadherin 7 (PCDH7)-PLCβ-Ca2+-CaMKII/S100A4 signaling as a mediator of brain metastatic tumor outgrowth. We further identified and evaluated the efficacy of a known drug, the selective PLC inhibitor edelfosine, in suppressing the PCDH7 signaling pathway to prohibit brain metastases in the animal models. The results of this study reveal a novel signaling pathway for brain metastases in TNBC and indicate a promising strategy of metastatic breast cancer prevention and treatment by targeting organ-adaptive cancer stem cells.Significance: These findings identify a compound to block adaptive signaling between cancer stem cells and brain astrocytes. Cancer Res; 78(8); 2052-64. ©2018 AACR.
Collapse
Affiliation(s)
- Ding Ren
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas.,Outpatient Center, PLA NO.85 Hospital, Shanghai, P.R. China
| | - Xiaoping Zhu
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Ren Kong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas.,Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, P.R. China
| | - Zhen Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas.,Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, P.R. China
| | - Jianting Sheng
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Jiang Wang
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas.,Department of Orthopedics, Tongji Hospital, Wuhan, P.R. China
| | - Xiaoyun Xu
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Jiyong Liu
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas.,Department of Pharmacy, Changhai Hospital, Shanghai, P.R. China
| | - Kemi Cui
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Hong Zhao
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas.
| | - Stephen T C Wong
- Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, Texas. .,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas.,Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
232
|
Israel BB, Tilghman SL, Parker-Lemieux K, Payton-Stewart F. Phytochemicals: Current strategies for treating breast cancer. Oncol Lett 2018; 15:7471-7478. [PMID: 29755596 DOI: 10.3892/ol.2018.8304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Females with early-stage metastatic, estrogen-dependent breast cancer are generally treated with surgery, radiation and chemotherapy, or with more targeted approaches such as aromatase inhibitors (anastrozole or letrozole) or anti-estrogens (tamoxifen). Despite widespread successful usage of these agents for the treatment of breast cancer, resistance, tumor relapse and metastasis remain the principal causes of mortality for patients with breast cancer. While numerous groups have made major contributions toward an improved understanding of resistance mechanisms, the currently insufficient grasp of the most critical pathways involved in resistance is evident in the inability to adequately treat and drastically improve patient outcomes in females with hormone-refractory breast cancer, including triple negative breast cancer. Therefore, further investigation of novel therapeutic approaches is paramount to reveal previously unconsidered agents that could be utilized to treat metastatic disease. Numerous naturally occurring phytochemicals have recently gained interest as potential therapeutic breast cancer agents appear to directly affect estrogen-dependent and estrogen-independent breast cancer cell proliferation, potentially via affecting breast cancer stem cell populations. While numerous natural compounds have exhibited promise, they are limited by their bioavailability. Therefore, to effectively treat future hormone-refractory breast tumors, it is critical to adequately refine and formulate these agents for effective therapeutic use and delivery. Herein, the literature on the current state of phytochemicals is reviewed, including their limitations and potential as targeted therapies for breast cancer.
Collapse
Affiliation(s)
- Bridg'ette B Israel
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Syreeta L Tilghman
- Division of Basic Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Kitani Parker-Lemieux
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Florastina Payton-Stewart
- Division of Mathematical and Physical Sciences, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
233
|
Prabavathy D, Swarnalatha Y, Ramadoss N. Lung cancer stem cells-origin, characteristics and therapy. Stem Cell Investig 2018; 5:6. [PMID: 29682513 DOI: 10.21037/sci.2018.02.01] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022]
Abstract
Cancer stem cells (CSCs) have gained an increasing attention recently in cancer research. CSCs have ability to generate new tumor through their stem cell properties, essentially self-renewal potential and differentiation into multiple cell lineages. Extensive evidences report that CSCs are resistant to many conventional therapies and mediate tumor recurrence. CSCs of lung cancer are well recognized by their specific markers such as CD133, CD44, ABCG2 and ALDH1A1 together with the CSC characteristics including spheroid and colony formation. Targeting these surface proteins with blocking antibodies and inhibition of ABC transporters and aldehyde dehydrogenase (ALDH) enzymes with small molecules may prove useful in inhibiting tumor progression. The Hh, Notch and Wnt pathways are key signaling cascades that govern cell fate during development and have been shown to be involved in CSCs in various solid tumors. Therapeutic approaches also target these signaling pathways in repressing the tumor progression. This review will focus on stem cell origins, role of signaling pathways, stem cell markers and therapeutic approaches specific to lung cancer.
Collapse
Affiliation(s)
- D Prabavathy
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science & Technology (Deemed to be University), Rajiv Gandhi Salai, Chennai-119, Tamilnadu, India
| | - Y Swarnalatha
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science & Technology (Deemed to be University), Rajiv Gandhi Salai, Chennai-119, Tamilnadu, India
| | - Niveditha Ramadoss
- Department of Biology, California State University Northridge, Northridge, CA, USA
| |
Collapse
|
234
|
Pizon M, Schott D, Pachmann U, Pachmann K. The number of tumorspheres cultured from peripheral blood is a predictor for presence of metastasis in patients with breast cancer. Oncotarget 2018; 7:48143-48154. [PMID: 27340862 PMCID: PMC5217007 DOI: 10.18632/oncotarget.10174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/02/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tumor metastases are the major cause of cancer morbidity and mortality. A subpopulation of tumor cells with stem-like properties is assumed to be responsible for tumor invasion, metastasis, heterogeneity and therapeutic resistance. This population is termed cancer stem cells (CSCs). We have developed a simple method for identification and characterization of circulating cancer stem cells among circulating epithelial tumor cells (CETCs). METHODS CETCs were cultured under conditions favoring growth of tumorspheres from 72 patients with breast cancer, including a subpopulation of 23 patients with metastatic disease. CETCs were determined using the maintrac® method. Gene expression profiles of single CETCs and tumorspheres of the same patients were analyzed using qRT-PCR. RESULTS Sphere formation was observed in 79 % of patients. We found that the number of tumorspheres depended on stage of disease. Furthermore, the most important factor for growing of tumorspheres is obtaining chemotherapy. Patients with chemotherapy treatment had lower numbers of tumorspheres compared to patients without chemotherapy. Patients with HER2 positive primary tumor had higher number of tumorspheres. Analysis of surface marker expression profile of tumorspheres showed that cells in the spheres had typical phenotype of cancer stem cells. There was no sphere formation in a control group with 50 healthy donors. CONCLUSIONS This study demonstrates that a small fraction of CETCs has proliferative activity. Identifying the CETC subset with cancer stem cell properties may provide more clinically useful prognostic information. Chemotherapy is the most important component in cancer therapy because it frequently reduces the number of tumorspheres.
Collapse
Affiliation(s)
- Monika Pizon
- Transfusion Center Bayreuth, 95448, Bayreuth, Germany
| | | | | | | |
Collapse
|
235
|
Huang R, Rofstad EK. Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 2018; 8:35351-35367. [PMID: 27343550 PMCID: PMC5471060 DOI: 10.18632/oncotarget.10169] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/12/2016] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has shown that cancer stem cells (CSCs) have a tumour-initiating capacity and play crucial roles in tumour metastasis, relapse and chemo/radio-resistance. As tumour propagation initiators, CSCs are considered to be promising targets for obtaining a better therapeutic outcome. Cervical carcinoma is the most common gynaecological malignancy and has a high cancer mortality rate among females. As a result, the investigation of cervical cancer stem cells (CCSCs) is of great value. However, the numbers of cancer cells and corresponding CSCs in malignancy are dynamically balanced, and CSCs may reside in the CSC niche, about which little is known to date. Therefore, due to their complicated molecular phenotypes and biological behaviours, it remains challenging to obtain “purified” CSCs and continuously culture CSCs for further in vitro studies without the cells losing their stem properties. At present, CSC-related markers and functional assays are used to purify, identify and therapeutically target CSCs both in vitro and in vivo. Nevertheless, CSC-related markers are not universal to all tumour types, although some markers may be valid in multiple tumour types. Additionally, functional identifications based on CSC-specific properties are usually limited in in vivo studies. Furthermore, an optimal method for identifying potential CCSCs in CCSC studies has not been previously published, and these techniques are currently of great importance. This article updates our knowledge on CSCs and CCSCs, reviews potential stem cell markers and functional assays for identifying CCSCs, and describes the potential of targeting CCSCs in the treatment of cervical carcinoma.
Collapse
Affiliation(s)
- Ruixia Huang
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
236
|
Yilmazer A. Cancer cell lines involving cancer stem cell populations respond to oxidative stress. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 17:24-30. [PMID: 29276697 PMCID: PMC5730381 DOI: 10.1016/j.btre.2017.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
Abstract
Cancer cells may be more prone to the accumulation of reactive oxygen species (ROS) than normal cells; therefore increased oxidative stress can specifically kill cancer cells including cancer stem cells (CSCs). In order to generate oxidative stress in various cancer cell lines including A549, G361 and MCF-7, cultured cells were exposed to H2O2. Incubation of cancer cells with H2O2 results in concentration-dependent cell death in A549 and G361-7 cells, whereas MCF-7 cells showed higher sensitivity even at a lower H2O2 concentration. H2O2 treatment decreased the number of cells in G2/M phase and increased the number of apoptotic cells. Both CD24 negative/CD44 positive cells and CD146 positive cells were found to be present in all tested cancer cell lines, indicating that CSC populations may play role in the cellular response to oxidative stress. This study showed that inducing oxidative stress through ROS can offer a promising approach for anti-cancer therapy.
Collapse
Affiliation(s)
- Açelya Yilmazer
- Biomedical Engineering Department, Engineering Faculty, Ankara University, Tandogan, Ankara, Turkey
- Stem Cell Institute, Ankara University, Balgat, Ankara, Turkey
| |
Collapse
|
237
|
Belfiore L, Saunders DN, Ranson M, Thurecht KJ, Storm G, Vine KL. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: Challenges and opportunities. J Control Release 2018; 277:1-13. [PMID: 29501721 DOI: 10.1016/j.jconrel.2018.02.040] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 01/03/2023]
Abstract
The development of therapeutic resistance to targeted anticancer therapies remains a significant clinical problem, with intratumoral heterogeneity playing a key role. In this context, improving the therapeutic outcome through simultaneous targeting of multiple tumor cell subtypes within a heterogeneous tumor is a promising approach. Liposomes have emerged as useful drug carriers that can reduce systemic toxicity and increase drug delivery to the tumor site. While clinically used liposomal drug formulations show marked therapeutic advantages over free drug formulations, ligand-functionalized liposomes that can target multiple tumor cell subtypes may further improve the therapeutic efficacy by facilitating drug delivery to a broader population of tumor cells making up the heterogeneous tumor tissue. Ligand-directed liposomes enable the so-called active targeting of cell receptors via surface-attached ligands that direct drug uptake into tumor cells or tumor-associated stromal cells, and so can increase the selectivity of drug delivery. Despite promising preclinical results demonstrating improved targeting and anti-tumor effects of ligand-directed liposomes, there has been limited translation of this approach to the clinic. Key challenges for translation include the lack of established methods to scale up production and comprehensively characterize ligand-functionalized liposome formulations, as well as the inadequate recapitulation of in vivo tumors in the preclinical models currently used to evaluate their performance. Herein, we discuss the utility of recent ligand-directed liposome approaches, with a focus on dual-ligand liposomes, for the treatment of solid tumors and examine the drawbacks limiting their progression to clinical adoption.
Collapse
Affiliation(s)
- Lisa Belfiore
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Darren N Saunders
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia
| | - Kristofer J Thurecht
- Australian Institute for Bioengineering and Nanotechnology (AIBN), Centre for Advanced Imaging (CAI), Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Australia
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, CG, The Netherlands
| | - Kara L Vine
- Illawarra Health and Medical Research Institute, Centre for Medical and Molecular Bioscience, School of Biological Sciences, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
238
|
Phi LTH, Sari IN, Yang YG, Lee SH, Jun N, Kim KS, Lee YK, Kwon HY. Cancer Stem Cells (CSCs) in Drug Resistance and their Therapeutic Implications in Cancer Treatment. Stem Cells Int 2018; 2018:5416923. [PMID: 29681949 PMCID: PMC5850899 DOI: 10.1155/2018/5416923] [Citation(s) in RCA: 599] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/11/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are suggested to be responsible for drug resistance and cancer relapse due in part to their ability to self-renew themselves and differentiate into heterogeneous lineages of cancer cells. Thus, it is important to understand the characteristics and mechanisms by which CSCs display resistance to therapeutic agents. In this review, we highlight the key features and mechanisms that regulate CSC function in drug resistance as well as recent breakthroughs of therapeutic approaches for targeting CSCs. This promises new insights of CSCs in drug resistance and provides better therapeutic rationales to accompany novel anticancer therapeutics.
Collapse
Affiliation(s)
- Lan Thi Hanh Phi
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Ying-Gui Yang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Sang-Hyun Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Nayoung Jun
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| | - Hyog Young Kwon
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Asan, Republic of Korea
| |
Collapse
|
239
|
Pindiprolu SKSS, Krishnamurthy PT, Chintamaneni PK. Pharmacological targets of breast cancer stem cells: a review. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:463-479. [PMID: 29476201 DOI: 10.1007/s00210-018-1479-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.
Collapse
Affiliation(s)
- Sai Kiran S S Pindiprolu
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India.
| | - Pavan Kumar Chintamaneni
- Department of Pharmacology, JSS College of Pharmacy (Jagadguru Sri Shivarathreeshwara University), Rocklands, Udhagamandalam, Tamil Nadu, 643001, India
| |
Collapse
|
240
|
Mukherjee N, Almeida A, Partyka KA, Lu Y, Schwan JV, Lambert K, Rogers M, Robinson WA, Robinson SE, Applegate AJ, Amato CM, Luo Y, Fujita M, Norris DA, Shellman YG. Combining a GSI and BCL-2 inhibitor to overcome melanoma's resistance to current treatments. Oncotarget 2018; 7:84594-84607. [PMID: 27829238 PMCID: PMC5356684 DOI: 10.18632/oncotarget.13141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022] Open
Abstract
Major limitations of current melanoma treatments are for instances of relapse and the lack of therapeutic options for BRAF wild-type patients who do not respond to immunotherapy. Many studies therefore focus on killing resistant subpopulations, such as Melanoma Initiating Cells (MICs) to prevent relapse. Here we examined whether combining a GSI (γ-Secretase Inhibitor) with ABT-737 (a small molecule BCL-2/BCL-XL/BCL-W inhibitor) can kill both the non-MICs (bulk of melanoma) and MICs. To address the limitations of melanoma therapies, we included multiple tumor samples of patients relapsed from current treatments, with a diverse genetic background (with or without the common BRAF, NRAS or NF1 mutations) in these studies. Excitingly, the combination treatment reduced cell viability and induced apoptosis of the non-MICs; disrupted primary spheres, decreased the ALDH+ cells, and inhibited the self-renewability of the MICs in multiple melanoma cell lines and relapsed patient samples. Using a low-cell-number mouse xenograft model, we demonstrated that the combination significantly reduced the tumor initiating ability of MIC-enriched cultures from relapsed patient samples. Mechanistic studies also indicate that cell death is NOXA-dependent. In summary, this combination may be a promising strategy to address treatment relapse and for triple wild-type patients who do not respond to immunotherapy.
Collapse
Affiliation(s)
- Nabanita Mukherjee
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Adam Almeida
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Katie A Partyka
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Yan Lu
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Josianna V Schwan
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Karoline Lambert
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Madison Rogers
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - William A Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Steven E Robinson
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Allison J Applegate
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Carol M Amato
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, School of Medicine, Aurora, CO 80045, USA
| | - Yuchun Luo
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - Mayumi Fujita
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| | - David A Norris
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA.,Department of Veterans Affairs Medical Center, Dermatology Section, Denver, CO 80220, USA
| | - Yiqun G Shellman
- University of Colorado Anschutz Medical Campus, School of Medicine, Department of Dermatology, Aurora, CO 80045, USA
| |
Collapse
|
241
|
He M, Wang D, Zou D, Wang C, Lopes-Bastos B, Jiang WG, Chester J, Zhou Q, Cai J. Re-purposing of curcumin as an anti-metastatic agent for the treatment of epithelial ovarian cancer: in vitro model using cancer stem cell enriched ovarian cancer spheroids. Oncotarget 2018; 7:86374-86387. [PMID: 27863439 PMCID: PMC5349920 DOI: 10.18632/oncotarget.13413] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
Malignant epithelial ovarian cancer (EOC) spheroids high frequently are detected in the malignant ascites of the patients with the extensive peritoneal metastasis of ovarian cancer, which represent a significant obstacle to efficacious treatment. Clinical data also suggested that EOC spheroids play a putative role in the development of chemoresistance. Since standard surgery and conventional chemotherapy is the only available treatment, there is an urgent need to identify a more effective therapeutic strategy. Recent studies demonstrated that curcumin exerts an anticancer effect in a variety of human cancers including ovarian cancer. This study evaluates anti-peritoneal metastasis and chemoresistance of curcumin related to the EOC spheroids. In this study, we confirm that the high invasive EOC cells forming the spheroids express a high level of a cancer stem cell (CSC) marker, aldehyde dehydrogenase 1 family member A1 (ALDH1A1), which was significantly down-regulated by curcumin treatment. Curcumin treatment markedly enhances the sensitivity of EOC spheroids to cisplatin in a dose-dependent manner. Our experiments provided evidence that curcumin could abolish the sphere-forming capacity of EOC cells in a dose-dependent manner. Moreover, curcumin substantially suppressed the growth of the pre-existed EOC spheroids, inhibited the adhesion of EOC spheroids to ECM as well as the invasion of EOC spheroids to the mesothelial monolayers. We propose to re-purpose curcumin as anti-metastatic and chemoresistant agent for EOC management in combination with conventional regimen. Further preclinical studies are necessary to validate the anti-cancer effect of curcumin in patients with EOC.
Collapse
Affiliation(s)
- Misi He
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK.,Department of Gynaecologic Oncology, Chongqing Cancer Institute, Chongqing, 400030, China
| | - Dong Wang
- Department of Gynaecologic Oncology, Chongqing Cancer Institute, Chongqing, 400030, China
| | - Dongling Zou
- Department of Gynaecologic Oncology, Chongqing Cancer Institute, Chongqing, 400030, China
| | - Chen Wang
- Department of Orthopaedic surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China
| | - Bruno Lopes-Bastos
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - John Chester
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, Cardiff CF14 4XN, UK
| | - Qi Zhou
- Department of Gynaecologic Oncology, Chongqing Cancer Institute, Chongqing, 400030, China
| | - Jun Cai
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| |
Collapse
|
242
|
Calcaterra A, Iovine V, Botta B, Quaglio D, D'Acquarica I, Ciogli A, Iazzetti A, Alfonsi R, Lospinoso Severini L, Infante P, Di Marcotullio L, Mori M, Ghirga F. Chemical, computational and functional insights into the chemical stability of the Hedgehog pathway inhibitor GANT61. J Enzyme Inhib Med Chem 2018; 33:349-358. [PMID: 29338454 PMCID: PMC6009951 DOI: 10.1080/14756366.2017.1419221] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This work aims at elucidating the mechanism and kinetics of hydrolysis of GANT61, the first and most-widely used inhibitor of the Hedgehog (Hh) signalling pathway that targets Glioma-associated oncogene homologue (Gli) proteins, and at confirming the chemical nature of its bioactive form. GANT61 is poorly stable under physiological conditions and rapidly hydrolyses into an aldehyde species (GANT61-A), which is devoid of the biological activity against Hh signalling, and a diamine derivative (GANT61-D), which has shown inhibition of Gli-mediated transcription. Here, we combined chemical synthesis, NMR spectroscopy, analytical studies, molecular modelling and functional cell assays to characterise the GANT61 hydrolysis pathway. Our results show that GANT61-D is the bioactive form of GANT61 in NIH3T3 Shh-Light II cells and SuFu−/− mouse embryonic fibroblasts, and clarify the structural requirements for GANT61-D binding to Gli1. This study paves the way to the design of GANT61 derivatives with improved potency and chemical stability.
Collapse
Affiliation(s)
- Andrea Calcaterra
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Valentina Iovine
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Bruno Botta
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Deborah Quaglio
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Ilaria D'Acquarica
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Alessia Ciogli
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Antonia Iazzetti
- a Department of Chemistry and Technology of Drugs , Sapienza University of Rome , Rome , Italy
| | - Romina Alfonsi
- b Department of Molecular Medicine , Sapienza University of Rome , Rome , Italy
| | | | - Paola Infante
- c Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Rome , Italy
| | - Lucia Di Marcotullio
- b Department of Molecular Medicine , Sapienza University of Rome , Rome , Italy.,d Pasteur Institute/Cenci Bolognetti Foundation , Sapienza University of Rome , Rome , Italy
| | - Mattia Mori
- c Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Rome , Italy
| | - Francesca Ghirga
- c Center for Life Nano Science@Sapienza , Istituto Italiano di Tecnologia , Rome , Italy
| |
Collapse
|
243
|
Miao JF, Peng YF, Chen S, Gao WJ, Yang QX, Zhu P, Guo J, Tao J, Luo L, Zhang Y, Ling Y. A novel harmine derivative, N-(4-(hydroxycarbamoyl)benzyl)-1-(4- methoxyphenyl)-9H-pyrido[3,4-b]indole-3-carboxamide (HBC), as histone deacetylase inhibitor: in vitro antiproliferation, apoptosis induction, cell cycle arrest, and antimetastatic effects. Eur J Pharmacol 2018; 824:78-88. [PMID: 29428472 DOI: 10.1016/j.ejphar.2018.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 11/18/2022]
Abstract
This study aims to design and synthesize a novel harmine derivative N-(4-(hydroxycarbamoyl) benzyl)-1-(4-methoxyphenyl)-9H-pyrido [3,4-b]indole-3-carboxamide (HBC) as histone deacetylase (HDAC) inhibitor, and evaluate its antitumor activities and anti-metastasis mechanism. HBC not only exerted significant ant-proliferation activity against five human cancer cell lines, especially for HepG2 cell with an IC50 value of 2.21 μM, which is nearly three-fold lower than SAHA (IC50 = 6.26 µM), but also showed selective HDAC1/6 inhibitory effects in vitro. However, HBC had little effect on normal hepatic cells LO2. Furthermore, HBC simultaneously increased the acetylation of histone H3, H4, and α-tubulin, induced hypochromism by electrostatical interaction with CT-DNA, triggered more significant cancer cell apoptosis and cell cycle arrest at G2/M than SAHA by inhibition of both CDK1 and cyclin B in a concentration dependent manner. In addition, scratch and invasion assay showed that HBC also dose-dependently suppressed migration and invasion capacities of highly metastatic HCC HepG2 cells through down-regulated the expression of tumor metastasis related proteins MMP-2 and MMP-9, significantly better than SAHA. Finally, HBC showed low acute toxicity to mice and significant growth inhibition of the hepatoma tumor in vivo. These results demonstrate that novel harmine-based HDAC inhibitor HBC not only exhibited selective HDAC1/6 inhibitory activity and significant in vitro and in vivo antitumor activity, but also possessed DNA binding effect, apoptosis induction, cell cycle arrest effects, and potent anti-metastasis mechanisms, which may hold great promise as therapeutic agent targeting HDAC1/6 for the intervention of human cancers.
Collapse
Affiliation(s)
- Jie-Fei Miao
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Yan-Fu Peng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Shi Chen
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Wei-Jie Gao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Qiu-Xing Yang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Peng Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Jing Guo
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Jinhua Tao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Lin Luo
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Yanan Zhang
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Yong Ling
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
244
|
Zhang F, Li T, Han L, Qin P, Wu Z, Xu B, Gao Q, Song Y. TGFβ1-induced down-regulation of microRNA-138 contributes to epithelial-mesenchymal transition in primary lung cancer cells. Biochem Biophys Res Commun 2018; 496:1169-1175. [DOI: 10.1016/j.bbrc.2018.01.164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 01/26/2018] [Indexed: 02/07/2023]
|
245
|
Wang Z, Potoyan DA, Wolynes PG. Modeling the therapeutic efficacy of NFκB synthetic decoy oligodeoxynucleotides (ODNs). BMC SYSTEMS BIOLOGY 2018; 12:4. [PMID: 29382384 PMCID: PMC5791368 DOI: 10.1186/s12918-018-0525-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/04/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Transfection of NF κB synthetic decoy Oligodeoxynucleotides (ODNs) has been proposed as a promising therapeutic strategy for a variety of diseases arising from constitutive activation of the eukaryotic transcription factor NF κB. The decoy approach faces some limitations under physiological conditions notably nuclease-induced degradation. RESULTS In this work, we show how a systems pharmacology model of NF κB regulatory networks displaying oscillatory temporal dynamics, can be used to predict quantitatively the dependence of therapeutic efficacy of NF κB synthetic decoy ODNs on dose, unbinding kinetic rates and nuclease-induced degradation rates. Both deterministic mass action simulations and stochastic simulations of the systems biology model show that the therapeutic efficacy of synthetic decoy ODNs is inversely correlated with unbinding kinetic rates, nuclease-induced degradation rates and molecular stripping rates, but is positively correlated with dose. We show that the temporal coherence of the stochastic dynamics of NF κB regulatory networks is most sensitive to adding NF κB synthetic decoy ODNs having unbinding time-scales that are in-resonance with the time-scale of the limit cycle of the network. CONCLUSIONS The pharmacokinetics/pharmacodynamics (PK/PD) predicted by the systems-level model should provide quantitative guidance for in-depth translational research of optimizing the thermodynamics/kinetic properties of synthetic decoy ODNs.
Collapse
Affiliation(s)
- Zhipeng Wang
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA.,Department of Chemistry, Rice University, Houston, 77005, TX, USA.,Present Address: Genentech Inc. 350 DNA Way, South San Francisco, 94080, CA, USA
| | - Davit A Potoyan
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA.,Department of Chemistry, Rice University, Houston, 77005, TX, USA.,Present Address: Department of Chemistry, Iowa State University, Ames, 50011, IA, USA
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, 77005, TX, USA. .,Department of Chemistry, Rice University, Houston, 77005, TX, USA. .,Department of Physics and Astronomy, Rice University, Houston, 77005, TX, USA.
| |
Collapse
|
246
|
Byrd TT, Fousek K, Pignata A, Szot C, Samaha H, Seaman S, Dobrolecki L, Salsman VS, Oo HZ, Bielamowicz K, Landi D, Rainusso N, Hicks J, Powell S, Baker ML, Wels WS, Koch J, Sorensen PH, Deneen B, Ellis MJ, Lewis MT, Hegde M, Fletcher BS, St Croix B, Ahmed N. TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Res 2018; 78:489-500. [PMID: 29183891 PMCID: PMC5771806 DOI: 10.1158/0008-5472.can-16-1911] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/22/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive disease lacking targeted therapy. In this study, we developed a CAR T cell-based immunotherapeutic strategy to target TEM8, a marker initially defined on endothelial cells in colon tumors that was discovered recently to be upregulated in TNBC. CAR T cells were developed that upon specific recognition of TEM8 secreted immunostimulatory cytokines and killed tumor endothelial cells as well as TEM8-positive TNBC cells. Notably, the TEM8 CAR T cells targeted breast cancer stem-like cells, offsetting the formation of mammospheres relative to nontransduced T cells. Adoptive transfer of TEM8 CAR T cells induced regression of established, localized patient-derived xenograft tumors, as well as lung metastatic TNBC cell line-derived xenograft tumors, by both killing TEM8+ TNBC tumor cells and targeting the tumor endothelium to block tumor neovascularization. Our findings offer a preclinical proof of concept for immunotherapeutic targeting of TEM8 as a strategy to treat TNBC.Significance: These findings offer a preclinical proof of concept for immunotherapeutic targeting of an endothelial antigen that is overexpressed in triple-negative breast cancer and the associated tumor vasculature. Cancer Res; 78(2); 489-500. ©2017 AACR.
Collapse
Affiliation(s)
- Tiara T Byrd
- Department of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Kristen Fousek
- Department of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Antonella Pignata
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Christopher Szot
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Heba Samaha
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
- Children's Cancer Hospital Egypt (CCHE 57357), El-Saida Zenab, Cairo Governorate, Egypt
| | - Steven Seaman
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Lacey Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Vita S Salsman
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia; Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Kevin Bielamowicz
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Daniel Landi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - Nino Rainusso
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | - John Hicks
- Department of Pediatric Pathology, Texas Children's Hospital, Houston, Texas
| | - Suzanne Powell
- Department of Pathology - Anatomic, Houston Methodist Hospital, Houston, Texas
| | - Matthew L Baker
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Winfried S Wels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße, Frankfurt am Main, Germany
| | - Joachim Koch
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Straße, Frankfurt am Main, Germany
- Institute of Medical Microbiology and Hygiene, University of Mainz Medical Center Mainz, Germany
| | - Poul H Sorensen
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Deneen
- Department of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Matthew J Ellis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Meenakshi Hegde
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| | | | - Brad St Croix
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Nabil Ahmed
- Department of Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, Texas
- Texas Children's Cancer Center, Texas Children's Hospital, Houston, Texas
| |
Collapse
|
247
|
Silva I, Estrada MF, V Pereira C, da Silva AB, Bronze MR, Alves PM, Duarte CMM, Brito C, Serra AT. Polymethoxylated Flavones from Orange Peels Inhibit Cell Proliferation in a 3D Cell Model of Human Colorectal Cancer. Nutr Cancer 2018; 70:257-266. [PMID: 29313727 DOI: 10.1080/01635581.2018.1412473] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polymethoxylated flavones (PMFs) have been recognized to inhibit colorectal cancer proliferation through various mechanisms, however most of these studies have been performed on cells grown as monolayers that present limitations in mimicking the 3D tumor architecture and microenvironment. The main aim of this study was to investigate the anticancer potential of an orange peel extract (OPE) enriched in PMFs in a 3D cell model of colorectal cancer. The OPE was developed by supercritical fluid extraction and the anticancer effect was evaluated in HT29 spheroids cultures in a stirred-tank based system. Results showed that OPE inhibited cell proliferation, induced cell cycle arrest (G2/M phase), promoted apoptosis, and reduced ALDH+ population on HT29 spheroids. The antiproliferative activity was significantly lower than that obtained for 2D model (EC50 value of 0.43 ± 0.02 mg/mL) and this effect was dependent on diameter and cell composition/phenotype of spheroids derived from different culture days (day 3 - 0.53 ± 0.05 mg/mL; day 5 - 0.55 ± 0.03 mg/mL; day 7 - 1.24 ± 0.15 mg/mL). HT29 spheroids collected at day 7 presented typical characteristics of in vivo solid tumors including a necrotic/apoptotic core, hypoxia regions, presence of cancer stem cells, and a less differentiated invasive front. Nobiletin, sinesentin, and tangeretin were identified as the main compounds responsible for the anticancer activity.
Collapse
Affiliation(s)
- Inês Silva
- a IBET-Instituto de Biologia Experimental e Tecnológica , Oeiras , Portugal
| | - Marta F Estrada
- a IBET-Instituto de Biologia Experimental e Tecnológica , Oeiras , Portugal.,b ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Oeiras , Portugal
| | - Carolina V Pereira
- a IBET-Instituto de Biologia Experimental e Tecnológica , Oeiras , Portugal
| | - Andreia Bento da Silva
- b ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Oeiras , Portugal
| | - Maria R Bronze
- a IBET-Instituto de Biologia Experimental e Tecnológica , Oeiras , Portugal.,b ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Oeiras , Portugal.,c iMED, Faculdade de Farmácia da Universidade de Lisboa , Lisboa , Portugal
| | - Paula M Alves
- a IBET-Instituto de Biologia Experimental e Tecnológica , Oeiras , Portugal.,b ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Oeiras , Portugal
| | - Catarina M M Duarte
- a IBET-Instituto de Biologia Experimental e Tecnológica , Oeiras , Portugal.,b ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Oeiras , Portugal
| | - Catarina Brito
- a IBET-Instituto de Biologia Experimental e Tecnológica , Oeiras , Portugal.,b ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Oeiras , Portugal
| | - Ana Teresa Serra
- a IBET-Instituto de Biologia Experimental e Tecnológica , Oeiras , Portugal.,b ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa , Oeiras , Portugal
| |
Collapse
|
248
|
Saffar H, Noohi M, Tavangar SM, Saffar H, Azimi S. Expression of Prostate-Specific Membrane Antigen (PSMA) in Brain Glioma and its Correlation with Tumor Grade. IRANIAN JOURNAL OF PATHOLOGY 2018; 13:45-53. [PMID: 29731795 PMCID: PMC5929388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/13/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND & OBJECTIVE Angiogenesis is an essential component of tumor growth. Expression of PSMA on the neo-vasculature of many solid tumors, including glioblastoma multi-form, has been determined. The pattern of expression suggests that PSMA may play a functional role in angiogenesis. METHODS expression of PSMA in different grades of brain glioma was evaluated by the immunohistochemistry method to determine the probable usefulness of anti-PSMA antibody as complementary target therapy in different grades of glioma. RESULTS Overall, 72 cases of low (grade I and II) and high (grade III and IV) grade gliomas were evaluated for expression of PSMA. Positive PSMA staining was observed in 12 (33.3%) of high grade and 3 (8.3%) of low grade gliomas. Although, high grade tumors more commonly had positive result for PSMA (P value=0.009), the intensity of staining was significantly stronger in low-grade tumors (P value=0.009). CONCLUSION Expression of PSMA in different grades of glioma might provide a basis for further investigations focusing on selective target therapy in combination with the current standard care in all glioma grades, to improve treatment efficacy.
Collapse
Affiliation(s)
- Hiva Saffar
- Dept. of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Iran,Corresponding Information: Hiva Saffar: Associate Professor of Clinical and Anatomical Pathology, Department of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Iran. Tel: +98-21-84902187, Fax: +98-21-88633078, Cell phone: +98-912-3879514,
| | - Maryam Noohi
- Dept. of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Iran
| | | | - Hana Saffar
- Dept. of Pathology, Imam Hospital Complex, Tehran University of Medical Sciences, Iran
| | - Sima Azimi
- Dept. of Pathology, Shariati Hospital, Tehran University of Medical Sciences, Iran
| |
Collapse
|
249
|
Development of novel β-carboline-based hydroxamate derivatives as HDAC inhibitors with antiproliferative and antimetastatic activities in human cancer cells. Eur J Med Chem 2017; 144:398-409. [PMID: 29288941 DOI: 10.1016/j.ejmech.2017.12.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/15/2017] [Accepted: 12/16/2017] [Indexed: 11/24/2022]
Abstract
A series of novel β-carboline-based hydroxamate derivatives 12a-k were designed and synthesized, and their biological activities in a series of in vitro assays were evaluated. Several of these β-carboline derivatives not only showed excellent HDAC1/3/6 inhibitory effects, but also displayed significant antitumor activities against five human cancer cells. The most potent compound 12f demonstrated the highest anticancer potency against cancer cell lines with IC50 values of 0.53-1.56 μM, which was considerably more potent than harmine (IC50 = 46.7-55.3 μM) and also three-to ten-fold lower than that of SAHA (IC50 = 4.48-6.26 μM). Immunoblot analysis revealed that 12f dose-dependently inhibited histone H3 and α-tubulin acetylation, confirming its HDAC inhibitory effects. Moreover, 12f significantly arrested HepG2 cells at G2/M phase through inhibiting cell cycle related protein CDK1 and cyclin B in a concentration dependent manner. Interestingly, 12f also exerted strong anti-metastasis activity by simultaneously reducing the protein level of MMP2 and MMP9 and inhibiting MAPK signaling pathway.
Collapse
|
250
|
A Copper(II) Phenanthroline Metallopeptide That Targets and Disrupts Mitochondrial Function in Breast Cancer Stem Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201710910] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|