201
|
Gillette AA, Babiarz CP, VanDommelen AR, Pasch CA, Clipson L, Matkowskyj KA, Deming DA, Skala MC. Autofluorescence Imaging of Treatment Response in Neuroendocrine Tumor Organoids. Cancers (Basel) 2021; 13:cancers13081873. [PMID: 33919802 PMCID: PMC8070804 DOI: 10.3390/cancers13081873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
Gastroenteropancreatic neuroendocrine tumors (GEP-NET) account for roughly 60% of all neuroendocrine tumors. Low/intermediate grade human GEP-NETs have relatively low proliferation rates that animal models and cell lines fail to recapitulate. Short-term patient-derived cancer organoids (PDCOs) are a 3D model system that holds great promise for recapitulating well-differentiated human GEP-NETs. However, traditional measurements of drug response (i.e., growth, proliferation) are not effective in GEP-NET PDCOs due to the small volume of tissue and low proliferation rates that are characteristic of the disease. Here, we test a label-free, non-destructive optical metabolic imaging (OMI) method to measure drug response in live GEP-NET PDCOs. OMI captures the fluorescence lifetime and intensity of endogenous metabolic cofactors NAD(P)H and FAD. OMI has previously provided accurate predictions of drug response on a single cell level in other cancer types, but this is the first study to apply OMI to GEP-NETs. OMI tested the response to novel drug combination on GEP-NET PDCOs, specifically ABT263 (navitoclax), a Bcl-2 family inhibitor, and everolimus, a standard GEP-NET treatment that inhibits mTOR. Treatment response to ABT263, everolimus, and the combination were tested in GEP-NET PDCO lines derived from seven patients, using two-photon OMI. OMI measured a response to the combination treatment in 5 PDCO lines, at 72 h post-treatment. In one of the non-responsive PDCO lines, heterogeneous response was identified with two distinct subpopulations of cell metabolism. Overall, this work shows that OMI provides single-cell metabolic measurements of drug response in PDCOs to guide drug development for GEP-NET patients.
Collapse
Affiliation(s)
- Amani A. Gillette
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA;
| | - Christopher P. Babiarz
- Department of Medicine, Division of Hematology, Oncology and Palliative Care, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
| | | | - Cheri A. Pasch
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA; (C.A.P.); (K.A.M.)
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI 53705, USA;
| | - Kristina A. Matkowskyj
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA; (C.A.P.); (K.A.M.)
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53705, USA
| | - Dustin A. Deming
- Department of Medicine, Division of Hematology, Oncology and Palliative Care, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA; (C.A.P.); (K.A.M.)
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin, Madison, WI 53705, USA;
- Correspondence: (D.A.D.); (M.C.S.)
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI 53706, USA;
- Morgridge Institute for Research, Madison, WI 53715, USA;
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA; (C.A.P.); (K.A.M.)
- Correspondence: (D.A.D.); (M.C.S.)
| |
Collapse
|
202
|
Manna D, Sarkar D. Multifunctional Role of Astrocyte Elevated Gene-1 (AEG-1) in Cancer: Focus on Drug Resistance. Cancers (Basel) 2021; 13:cancers13081792. [PMID: 33918653 PMCID: PMC8069505 DOI: 10.3390/cancers13081792] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Chemotherapy is a major mode of treatment for cancers. However, cancer cells adapt to survive in stressful conditions and in many cases, they are inherently resistant to chemotherapy. Additionally, after initial response to chemotherapy, the surviving cancer cells acquire new alterations making them chemoresistant. Genes that help adapt the cancer cells to cope with stress often contribute to chemoresistance and one such gene is Astrocyte elevated gene-1 (AEG-1). AEG-1 levels are increased in all cancers studied to date and AEG-1 contributes to the development of highly aggressive, metastatic cancers. In this review, we provide a comprehensive description of the mechanism by which AEG-1 augments tumor development with special focus on its ability to regulate chemoresistance. We also discuss potential ways to inhibit AEG-1 to overcome chemoresistance. Abstract Cancer development results from the acquisition of numerous genetic and epigenetic alterations in cancer cells themselves, as well as continuous changes in their microenvironment. The plasticity of cancer cells allows them to continuously adapt to selective pressures brought forth by exogenous environmental stresses, the internal milieu of the tumor and cancer treatment itself. Resistance to treatment, either inherent or acquired after the commencement of treatment, is a major obstacle an oncologist confronts in an endeavor to efficiently manage the disease. Resistance to chemotherapy, chemoresistance, is an important hallmark of aggressive cancers, and driver oncogene-induced signaling pathways and molecular abnormalities create the platform for chemoresistance. The oncogene Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) is overexpressed in a diverse array of cancers, and its overexpression promotes all the hallmarks of cancer, such as proliferation, invasion, metastasis, angiogenesis and chemoresistance. The present review provides a comprehensive description of the molecular mechanism by which AEG-1 promotes tumorigenesis, with a special emphasis on its ability to regulate chemoresistance.
Collapse
|
203
|
Regulation of Glycolysis in Head and Neck Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1280:219-230. [PMID: 33791985 DOI: 10.1007/978-3-030-51652-9_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) glycolysis is an important factor for the advancement of the disease and metastasis. Upregulation of glycolysis leads to decreased sensitivity to chemotherapy and radiation. HNSCC cells maintain constitutive glycolytic flux generating metabolic intermediates for the synthesis of amino acids, nucleotides, and fats for cell survival and disease progression. There are several pathways such as PI3K/Akt, EGFR, and JAK-STAT that contribute a major role in metabolic alteration in HNSCC. Recent studies have demonstrated that cancer-associated fibroblasts abundant in the HNSCC tumor microenvironment play a major role in HNSCC metabolic alteration via hepatocyte growth factor (HGF)/c-Met cross signaling. Despite therapeutic advancement, HNSCC lacks broad range of therapeutic interventions for the treatment of the disease. Thus, understanding the different key players involved in glucose metabolism and targeting them would lead to the development of novel drugs for the treatment of HNSCC.
Collapse
|
204
|
Fazli HR, Moradzadeh M, Mehrbakhsh Z, Sharafkhah M, Masoudi S, Pourshams A, Mohamadkhani A. Diagnostic Significance of Serum Fatty Acid Synthase in Patients with Pancreatic Cancer. Middle East J Dig Dis 2021; 13:115-120. [PMID: 34712449 PMCID: PMC8531924 DOI: 10.34172/mejdd.2021.214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pancreatic cancer is considered as the most deadly tumor among gastrointestinal cancers because of its poor prognosis. The frequently deregulated pathway in the cancer cell is associated with an increased expression of various genes, including the synthesis of fatty acids. We aimed to evaluate the level of serum fatty acid synthase (FASN) as a diagnostic marker for early diagnosis of pancreatic cancer. METHODS Serum FASN levels were measured by ELISA in 92 patients with pancreatic adenocarcinomas and in 92 healthy controls. Logistic regression analysis was used to identify independent predictors of certain diagnostic categories. RESULTS Serum FASN levels were significantly higher in patients with pancreatic cancer than in healthy controls (1.35 [0.98-2.3] ng/mL vs 1.04 [0.19-1.34] ng/mL, p < 0.001) and in smokers compared to non-smokers (1.41 [0.79-2.52] ng/mL vs 1.07 [0.21-1.74] ng/mL, p < 0.001). FASN levels and smoking were associated with increased risk of PC (1.54 [1.1- 2.14] ng/mL, p = 0.011 and 5.69 [2.68-12.09] ng/mL, p < 0.001, respectively). CONCLUSION Elevated serum FASN levels in patients with pancreatic cancer indicate the need for the production of large numbers of lipids for the survival and proliferation of human cancer cells and the diagnostic value of FASN as a new diagnostic biomarker.
Collapse
Affiliation(s)
- Hamid Reza Fazli
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Maliheh Moradzadeh
- Rheumatology Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Mehrbakhsh
- Department of Biostaticstics, School of Health, Hamadan University of Medical sciences, Hamadan, Iran
- Department of Biostaticstics, School of Health, Golestan University of Medical sciences, Gorgan, Iran
| | - Maryam Sharafkhah
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Masoudi
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Pourshams
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
205
|
Chun KS, Kim DH, Surh YJ. Role of Reductive versus Oxidative Stress in Tumor Progression and Anticancer Drug Resistance. Cells 2021; 10:cells10040758. [PMID: 33808242 PMCID: PMC8065762 DOI: 10.3390/cells10040758] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Redox homeostasis is not only essential for the maintenance of normal physiological functions, but also plays an important role in the growth, survival, and therapy resistance of cancer cells. Altered redox balance and consequent disruption of redox signaling are implicated in the proliferation and progression of cancer cells and their resistance to chemo- and radiotherapy. The nuclear factor erythroid 2 p45-related factor (Nrf2) is the principal stress-responsive transcription factor that plays a pivotal role in maintaining cellular redox homeostasis. Aberrant Nrf2 overactivation has been observed in many cancerous and transformed cells. Uncontrolled amplification of Nrf2-mediated antioxidant signaling results in reductive stress. Some metabolic pathways altered due to reductive stress have been identified as major contributors to tumorigenesis. This review highlights the multifaceted role of reductive stress in cancer development and progression.
Collapse
Affiliation(s)
- Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu 42691, Korea;
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon, Gyeonggi-do 16227, Korea
- Correspondence: (D.-H.K.); (Y.-J.S.)
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
- Correspondence: (D.-H.K.); (Y.-J.S.)
| |
Collapse
|
206
|
Abstract
Boron nitride quantum dots (BNQDs) have gained increasing attention for their versatile fluorescent, optoelectronic, chemical, and biochemical properties. During the past few years, significant progress has been demonstrated, started from theoretical modeling to actual application. Many interesting properties and applications have been reported, such as excitation-dependent emission (and, in some cases, non-excitation dependent), chemical functionalization, bioimaging, phototherapy, photocatalysis, chemical, and biological sensing. An overview of this early-stage research development of BNQDs is presented in this article. We have prepared un-bias assessments on various synthesis methods, property analysis, and applications of BNQDs here, and provided our perspective on the development of these emerging nanomaterials for years to come.
Collapse
|
207
|
Wang G, Liu X, Wang D, Sun M, Yang Q. Identification and Development of Subtypes With Poor Prognosis in Pan-Gynecological Cancer Based on Gene Expression in the Glycolysis-Cholesterol Synthesis Axis. Front Oncol 2021; 11:636565. [PMID: 33842342 PMCID: PMC8025671 DOI: 10.3389/fonc.2021.636565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Metabolic reprogramming is an important biomarker of cancer. Metabolic adaptation driven by oncogenes allows tumor cells to survive and grow in a complex tumor microenvironment. The heterogeneity of tumor metabolism is related to survival time, somatic cell-driven gene mutations, and tumor subtypes. Using the heterogeneity of different metabolic pathways for the classification of gynecological pan-cancer is of great significance for clinical decision-making and prognosis prediction. Methods: RNA sequencing data for patients with ovarian, cervical, and endometrial cancer were downloaded from The Cancer Genome Atlas database. Genes related to glycolysis and cholesterol were extracted and clustered coherently by using ConsensusClusterPlus. The mutations and copy number variations in different subtypes were compared, and the immune scores of the samples were evaluated. The limma R package was used to identify differentially expressed genes between subtypes, and the WebGestaltR package (V0.4.2) was used to conduct Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology functional enrichment analyses. A risk score model was constructed based on multivariate Cox analysis. Prognostic classification efficiency was analyzed by using timeROC, and internal and external cohorts were used to verify the robustness of the model. Results: Based on the expression of 11 glycolysis-related genes and seven cholesterol-related genes, 1,204 samples were divided into four metabolic subtypes (quiescent, glycolysis, cholesterol, and mixed). Immune infiltration scores showed significant differences among the four subtypes. Survival analysis showed that the prognosis of the cholesterol subtype was better than that of the quiescent subtype. A nine-gene signature was constructed based on differentially expressed genes between the cholesterol and quiescent subtypes, and it was validated by using an independent cohort of the International Cancer Genome Consortium. Compared with existing models, our nine-gene signature had good prediction performance. Conclusion: The metabolic classification of gynecological pan-cancer based on metabolic reprogramming may provide an important basis for clinicians to choose treatment options, predict treatment resistance, and predict patients' clinical outcomes.
Collapse
Affiliation(s)
- Guangwei Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofei Liu
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Meige Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
208
|
Peng J, Cui Y, Xu S, Wu X, Huang Y, Zhou W, Wang S, Fu Z, Xie H. Altered glycolysis results in drug-resistant in clinical tumor therapy. Oncol Lett 2021; 21:369. [PMID: 33747225 DOI: 10.3892/ol.2021.12630] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer cells undergo metabolic reprogramming, including increased glucose metabolism, fatty acid synthesis and glutamine metabolic rates. These enhancements to three major metabolic pathways are closely associated with glycolysis, which is considered the central component of cancer cell metabolism. Increasing evidence suggests that dysfunctional glycolysis is commonly associated with drug resistance in cancer treatment, and aberrant glycolysis plays a significant role in drug-resistant cancer cells. Studies on the development of drugs targeting these abnormalities have led to improvements in the efficacy of tumor treatment. The present review discusses the changes in glycolysis targets that cause drug resistance in cancer cells, including hexokinase, pyruvate kinase, pyruvate dehydrogenase complex, glucose transporters, and lactate, as well the underlying molecular mechanisms and corresponding novel therapeutic strategies. In addition, the association between increased oxidative phosphorylation and drug resistance is introduced, which is caused by metabolic plasticity. Given that aberrant glycolysis has been identified as a common metabolic feature of drug-resistant tumor cells, targeting glycolysis may be a novel strategy to develop new drugs to benefit patients with drug-resistance.
Collapse
Affiliation(s)
- Jinghui Peng
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yangyang Cui
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shipeng Xu
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaowei Wu
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yue Huang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenbin Zhou
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ziyi Fu
- Nanjing Maternal and Child Health Medical Institute, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, P.R. China.,Department of Oncology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
209
|
Sharma P, Singh S. Combinatorial Effect of DCA and Let-7a on Triple-Negative MDA-MB-231 Cells: A Metabolic Approach of Treatment. Integr Cancer Ther 2021; 19:1534735420911437. [PMID: 32248711 PMCID: PMC7136934 DOI: 10.1177/1534735420911437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dichloroacetate (DCA) is a metabolic modulator that inhibits pyruvate dehydrogenase activity and promotes the influx of pyruvate into the tricarboxylic acid cycle for complete oxidation of glucose. DCA stimulates oxidative phosphorylation (OXPHOS) more than glycolysis by altering the morphology of the mitochondria and supports mitochondrial apoptosis. As a consequence, DCA induces apoptosis in cancer cells and inhibits the proliferation of cancer cells. Recently, the role of miRNAs has been reported in regulating gene expression at the transcriptional level and also in reprogramming energy metabolism. In this article, we indicate that DCA treatment leads to the upregulation of let-7a expression, but DCA-induced cancer cell death is independent of let-7a. We observed that the combined effect of DCA and let-7a induces apoptosis, reduces reactive oxygen species generation and autophagy, and stimulates mitochondrial biogenesis. This was later accompanied by stimulation of OXPHOS in combined treatment and was thus involved in metabolic reprogramming of MDA-MB-231 cells.
Collapse
Affiliation(s)
| | - Sandeep Singh
- Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
210
|
Schcolnik-Cabrera A, Chavez-Blanco A, Dominguez-Gomez G, Juarez M, Vargas-Castillo A, Ponce-Toledo RI, Lai D, Hua S, Tovar AR, Torres N, Perez-Montiel D, Diaz-Chavez J, Duenas-Gonzalez A. Pharmacological inhibition of tumor anabolism and host catabolism as a cancer therapy. Sci Rep 2021; 11:5222. [PMID: 33664364 PMCID: PMC7933231 DOI: 10.1038/s41598-021-84538-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The malignant energetic demands are satisfied through glycolysis, glutaminolysis and de novo synthesis of fatty acids, while the host curses with a state of catabolism and systemic inflammation. The concurrent inhibition of both, tumor anabolism and host catabolism, and their effect upon tumor growth and whole animal metabolism, have not been evaluated. We aimed to evaluate in colon cancer cells a combination of six agents directed to block the tumor anabolism (orlistat + lonidamine + DON) and the host catabolism (growth hormone + insulin + indomethacin). Treatment reduced cellular viability, clonogenic capacity and cell cycle progression. These effects were associated with decreased glycolysis and oxidative phosphorylation, leading to a quiescent energetic phenotype, and with an aberrant transcriptomic landscape showing dysregulation in multiple metabolic pathways. The in vivo evaluation revealed a significant tumor volume inhibition, without damage to normal tissues. The six-drug combination preserved lean tissue and decreased fat loss, while the energy expenditure got decreased. Finally, a reduction in gene expression associated with thermogenesis was observed. Our findings demonstrate that the simultaneous use of this six-drug combination has anticancer effects by inducing a quiescent energetic phenotype of cultured cancer cells. Besides, the treatment is well-tolerated in mice and reduces whole animal energetic expenditure and fat loss.
Collapse
Affiliation(s)
- Alejandro Schcolnik-Cabrera
- Division of Basic Research, National Cancer Institute, Ave. San Fernando 22, Tlalpan, 14080, Mexico City, Mexico
- PECEM, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alma Chavez-Blanco
- Division of Basic Research, National Cancer Institute, Ave. San Fernando 22, Tlalpan, 14080, Mexico City, Mexico
| | - Guadalupe Dominguez-Gomez
- Division of Basic Research, National Cancer Institute, Ave. San Fernando 22, Tlalpan, 14080, Mexico City, Mexico
| | - Mandy Juarez
- Division of Basic Research, National Cancer Institute, Ave. San Fernando 22, Tlalpan, 14080, Mexico City, Mexico
| | - Ariana Vargas-Castillo
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition, Salvador Zubiran, Mexico City, Mexico
| | - Rafael Isaac Ponce-Toledo
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Donna Lai
- Molecular Biology Facility, University of Sydney, Sydney, Australia
| | - Sheng Hua
- Molecular Biology Facility, University of Sydney, Sydney, Australia
| | - Armando R Tovar
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition, Salvador Zubiran, Mexico City, Mexico
| | - Nimbe Torres
- Nutrition Physiology Department, National Institute of Medical Sciences and Nutrition, Salvador Zubiran, Mexico City, Mexico
| | | | - Jose Diaz-Chavez
- Division of Basic Research, National Cancer Institute, Ave. San Fernando 22, Tlalpan, 14080, Mexico City, Mexico
| | - Alfonso Duenas-Gonzalez
- Division of Basic Research, National Cancer Institute, Ave. San Fernando 22, Tlalpan, 14080, Mexico City, Mexico.
- Unit of Biomedical Research in Cancer, Institute of Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
211
|
Goel Y, Yadav S, Pandey SK, Temre MK, Singh VK, Kumar A, Singh SM. Methyl Jasmonate Cytotoxicity and Chemosensitization of T Cell Lymphoma In Vitro Is Facilitated by HK 2, HIF-1α, and Hsp70: Implication of Altered Regulation of Cell Survival, pH Homeostasis, Mitochondrial Functions. Front Pharmacol 2021; 12:628329. [PMID: 33716751 PMCID: PMC7954117 DOI: 10.3389/fphar.2021.628329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
Methyl jasmonate (MJ) displays antineoplastic potential against numerous neoplastic cells. However, several mechanistic aspects of its antineoplastic action against malignancies of T cell origin remain elusive. The present investigation reports the novel targets of MJ and mechanistic pathways of MJ-mediated antineoplastic and chemosensitizing action against tumor cells derived from murine T-cell lymphoma, designated as Dalton's lymphoma (DL). The present study demonstrates that MJ directly docks to HIF-1α, hexokinase 2, and Hsp70 at prominent binding sites. MJ exhibits tumoricidal action against tumor cells via induction of apoptosis and necrosis through multiple pathways, including declined mitochondrial membrane potential, enhanced expression of ROS, altered pH homeostasis, an elevated level of cytosolic cytochrome c, and modulated expression of crucial cell survival and metabolism regulatory molecules. Additionally, this study also reports the chemosensitizing ability of MJ against T cell lymphoma accompanied by a declined expression of MDR1. This study sheds new light by demonstrating the implication of novel molecular mechanisms underlying the antitumor action of MJ against T-cell lymphoma and hence has immense translational significance.
Collapse
Affiliation(s)
- Yugal Goel
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Saveg Yadav
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shrish Kumar Pandey
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mithlesh Kumar Temre
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sukh Mahendra Singh
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
212
|
Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021; 11:624607. [PMID: 33718271 PMCID: PMC7952876 DOI: 10.3389/fcimb.2021.624607] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) leading to tuberculosis (TB) disease continues to be a major global health challenge. Critical barriers, including but not limited to the development of multi-drug resistance, lack of diagnostic assays that detect patients with latent TB, an effective vaccine that prevents Mtb infection, and infectious and non-infectious comorbidities that complicate active TB, continue to hinder progress toward a TB cure. To complement the ongoing development of new antimicrobial drugs, investigators in the field are exploring the value of host-directed therapies (HDTs). This therapeutic strategy targets the host, rather than Mtb, and is intended to augment host responses to infection such that the host is better equipped to prevent or clear infection and resolve chronic inflammation. Metabolic pathways of immune cells have been identified as promising HDT targets as more metabolites and metabolic pathways have shown to play a role in TB pathogenesis and disease progression. Specifically, this review highlights the potential role of lactate as both an immunomodulatory metabolite and a potentially important signaling molecule during the host response to Mtb infection. While long thought to be an inert end product of primarily glucose metabolism, the cancer research field has discovered the importance of lactate in carcinogenesis and resistance to chemotherapeutic drug treatment. Herein, we discuss similarities between the TB granuloma and tumor microenvironments in the context of lactate metabolism and identify key metabolic and signaling pathways that have been shown to play a role in tumor progression but have yet to be explored within the context of TB. Ultimately, lactate metabolism and signaling could be viable HDT targets for TB; however, critical additional research is needed to better understand the role of lactate at the host-pathogen interface during Mtb infection before adopting this HDT strategy.
Collapse
Affiliation(s)
| | - Randall J. Basaraba
- Metabolism of Infectious Diseases Laboratory, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
213
|
Glenister A, Chen CKJ, Paterson DJ, Renfrew AK, Simone MI, Hambley TW. Warburg Effect Targeting Co(III) Cytotoxin Chaperone Complexes. J Med Chem 2021; 64:2678-2690. [PMID: 33621096 DOI: 10.1021/acs.jmedchem.0c01875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A glucose-based vector for targeting cancer cells conjugated to a tris(methylpyridyl)amine (tpa) ligand to generate targeted chaperone and caging complexes for active anticancer agents is described. The ligand, tpa(CONHPEGglucose)1, inhibits hexokinase, suggesting that it will be phosphorylated in the cell. A Co(III) complex incorporating this ligand and coumarin-343 hydroximate (C343ha), [Co(C343ha){tpa(CONHPEGglucose)1}]Cl, is shown to exhibit glucose-dependent cellular accumulation in DLD-1 colon cancer cells. Cellular accumulation of [Co(C343ha){tpa(CONHPEGglucose)1}]+ is slower than for the glucose null and glucosamine analogues, and the glucose complex also exhibits a lower ability to inhibit antiproliferative activity. Distributions of cobalt (X-ray fluorescence) and C343ha (visible light fluorescence) in DLD-1 cancer cell spheroids are consistent with uptake of [Co(C343ha){tpa(CONHPEGglucose)1}]+ by rapidly dividing cells, followed by release and efflux of C343ha and trapping of the Co{tpa(CONHPEGglucose)1} moiety. The Co{tpa(CONHPEGglucose)1} moiety is shown to have potential for the caged and targeted delivery of highly toxic anticancer agents.
Collapse
Affiliation(s)
| | - Catherine K J Chen
- School of Chemistry, University of Sydney, Camperdown, NSW 2006, Australia
| | - David J Paterson
- Australian Synchrotron, ANSTO, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Anna K Renfrew
- School of Chemistry, University of Sydney, Camperdown, NSW 2006, Australia
| | - Michela I Simone
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Trevor W Hambley
- School of Chemistry, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
214
|
Abstract
Metabolic reprogramming with heterogeneity is a hallmark of cancer and is at the basis of malignant behaviors. It supports the proliferation and metastasis of tumor cells according to the low nutrition and hypoxic microenvironment. Tumor cells frantically grab energy sources (such as glucose, fatty acids, and glutamine) from different pathways to produce a variety of biomass to meet their material needs via enhanced synthetic pathways, including aerobic glycolysis, glutaminolysis, fatty acid synthesis (FAS), and pentose phosphate pathway (PPP). To survive from stress conditions (e.g., metastasis, irradiation, or chemotherapy), tumor cells have to reprogram their metabolism from biomass production towards the generation of abundant adenosine triphosphate (ATP) and antioxidants. In addition, cancer cells remodel the microenvironment through metabolites, promoting an immunosuppressive microenvironment. Herein, we discuss how the metabolism is reprogrammed in cancer cells and how the tumor microenvironment is educated via the metabolic products. We also highlight potential metabolic targets for cancer therapies.
Collapse
Affiliation(s)
- Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
215
|
Rodríguez-Mier P, Poupin N, de Blasio C, Le Cam L, Jourdan F. DEXOM: Diversity-based enumeration of optimal context-specific metabolic networks. PLoS Comput Biol 2021; 17:e1008730. [PMID: 33571201 PMCID: PMC7904180 DOI: 10.1371/journal.pcbi.1008730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/24/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022] Open
Abstract
The correct identification of metabolic activity in tissues or cells under different conditions can be extremely elusive due to mechanisms such as post-transcriptional modification of enzymes or different rates in protein degradation, making difficult to perform predictions on the basis of gene expression alone. Context-specific metabolic network reconstruction can overcome some of these limitations by leveraging the integration of multi-omics data into genome-scale metabolic networks (GSMN). Using the experimental information, context-specific models are reconstructed by extracting from the generic GSMN the sub-network most consistent with the data, subject to biochemical constraints. One advantage is that these context-specific models have more predictive power since they are tailored to the specific tissue, cell or condition, containing only the reactions predicted to be active in such context. However, an important limitation is that there are usually many different sub-networks that optimally fit the experimental data. This set of optimal networks represent alternative explanations of the possible metabolic state. Ignoring the set of possible solutions reduces the ability to obtain relevant information about the metabolism and may bias the interpretation of the true metabolic states. In this work we formalize the problem of enumerating optimal metabolic networks and we introduce DEXOM, an unified approach for diversity-based enumeration of context-specific metabolic networks. We developed different strategies for this purpose and we performed an exhaustive analysis using simulated and real data. In order to analyze the extent to which these results are biologically meaningful, we used the alternative solutions obtained with the different methods to measure: 1) the improvement of in silico predictions of essential genes in Saccharomyces cerevisiae using ensembles of metabolic network; and 2) the detection of alternative enriched pathways in different human cancer cell lines. We also provide DEXOM as an open-source library compatible with COBRA Toolbox 3.0, available at https://github.com/MetExplore/dexom.
Collapse
Affiliation(s)
- Pablo Rodríguez-Mier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nathalie Poupin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Carlo de Blasio
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
- Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Laurent Le Cam
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
- Equipe Labellisée par la Ligue contre le Cancer, Paris, France
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
- * E-mail:
| |
Collapse
|
216
|
Guo T, Bai YH, Cheng XJ, Han HB, Du H, Hu Y, Jia SQ, Xing XF, Ji JF. Insulin gene enhancer protein 1 mediates glycolysis and tumorigenesis of gastric cancer through regulating glucose transporter 4. Cancer Commun (Lond) 2021; 41:258-272. [PMID: 33570246 PMCID: PMC7968886 DOI: 10.1002/cac2.12141] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/14/2020] [Accepted: 01/31/2021] [Indexed: 12/19/2022] Open
Abstract
Background Insulin gene enhancer protein 1, (ISL1), a LIM‐homeodomain transcription factor, is involved in multiple tumors and is associated with insulin secretion and metabolic phenotypes. However, the role of ISL1 in stimulating glycolysis to promote tumorigenesis in gastric cancer (GC) is unclear. In this study, we aimed to characterize the expression pattern of ISL1 in GC patients and explore its molecular biological mechanism in glycolysis and tumorigenesis. Methods We analyzed the expression and clinical significance of ISL1 in GC using immunohistochemistry and real‐time polymerase chain reaction (PCR). Flow cytometry and IncuCyte assays were used to measure cell proliferation after ISL1 knockdown. RNA‐sequencing was performed to identify differentially expressed genes, followed by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Set Enrichment Analysis (GSEA) to reveal key signaling pathways likely regulated by ISL1 in GC. Alteration of the glycolytic ability of GC cells with ISL1 knockdown was validated by measuring the extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) and by detecting glucose consumption and lactate production. The expression of glucose transporter 4 (GLUT4) and ISL1 was assessed by Western blotting, immunohistochemistry, and immunofluorescent microscopy. The luciferase reporter activity and chromatin immunoprecipitation assays were performed to determine the transcriptional regulation of ISL1 on GLUT4. Results High levels of ISL1 and GLUT4 expression was associated with short survival of GC patients. ISL1 knockdown inhibited cell proliferation both in vitro and in vivo. KEGG analysis and GSEA for RNA‐sequencing data indicated impairment of the glycolysis pathway in GC cells with ISL1 knockdown, which was validated by reduced glucose uptake and lactate production, decreased ECAR, and increased OCR. Mechanistic investigation indicated that ISL1 transcriptionally regulated GLUT4 through binding to its promoter. Conclusion ISL1 facilitates glycolysis and tumorigenesis in GC via the transcriptional regulation of GLUT4.
Collapse
Affiliation(s)
- Ting Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Yan-Hua Bai
- Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Xiao-Jing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Hai-Bo Han
- The Tissue Bank, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Ying Hu
- The Tissue Bank, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Shu-Qin Jia
- Department of Molecular Diagnosis, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Xiao-Fang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| | - Jia-Fu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, 100142, P. R. China
| |
Collapse
|
217
|
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021; 50:2839-2891. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among the many challenges in medicine, the treatment and cure of cancer remains an outstanding goal given the complexity and diversity of the disease. Nanotheranostics, the integration of therapy and diagnosis in nanoformulations, is the next generation of personalized medicine to meet the challenges in precise cancer diagnosis, rational management and effective therapy, aiming to significantly increase the survival rate and improve the life quality of cancer patients. Different from most conventional platforms with unsatisfactory theranostic capabilities, supramolecular cancer nanotheranostics have unparalleled advantages in early-stage diagnosis and personal therapy, showing promising potential in clinical translations and applications. In this review, we summarize the progress of supramolecular cancer nanotheranostics and provide guidance for designing new targeted supramolecular theranostic agents. Based on extensive state-of-the-art research, our review will provide the existing and new researchers a foundation from which to advance supramolecular cancer nanotheranostics and promote translationally clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
218
|
Sharma P, Singh M, Sharma S. Molecular docking analysis of pyruvate kinase M2 with a potential inhibitor from the ZINC database. Bioinformation 2021; 17:139-146. [PMID: 34393429 PMCID: PMC8340708 DOI: 10.6026/97320630017139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/31/2020] [Accepted: 01/26/2021] [Indexed: 12/02/2022] Open
Abstract
The pyruvate kinase M2 isoform (PKM2) is linked with cancer. Therefore, it is of interest to document the molecular docking analysis of Pyruvate Kinase M2 (PDB ID: 4G1N) with potential activators from the ZINC database. Thus, we document the optimal molecular docking features of a compound having ID ZINC000034285235 with PKM2 for further consideration.
Collapse
Affiliation(s)
- Pankaj Sharma
- Department of Biotechnology, UIET, Maharshi Dayanand University Rohtak Haryana, India
| | - Manvender Singh
- Department of Biotechnology, UIET, Maharshi Dayanand University Rohtak Haryana, India
| | | |
Collapse
|
219
|
Wang Y, Pan S, He X, Wang Y, Huang H, Chen J, Zhang Y, Zhang Z, Qin X. CPNE1 Enhances Colorectal Cancer Cell Growth, Glycolysis, and Drug Resistance Through Regulating the AKT-GLUT1/HK2 Pathway. Onco Targets Ther 2021; 14:699-710. [PMID: 33536762 PMCID: PMC7850573 DOI: 10.2147/ott.s284211] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is a major cause of cancer-related mortality worldwide. Copines-1 (CPNE1) has been shown to be overexpressed in various cancers; however, the role of CPNE1 in CRC remains unknown. Therefore, it is of great importance to elucidate the role of CPNE1 in CRC and its underlying mechanism of action. Methods CPNE1 expression in CRC tissues was measured by quantitative real-time PCR and immunohistochemical (IHC) staining. CPNE1 was knocked down (KD) or overexpressed using small inferring RNAs or lentiviral transduction in CRC cells. The proliferation, apoptosis, glycolysis, and mitochondrial respiration of CRC cells were assessed by cell counting kit-8, flow cytometry, and Xfe24 extracellular flux analyzer assays, respectively. The role of CPNE1 in tumor growth and chemoresistance was further confirmed in xenograft and patient-derived tumor xenograft models, respectively. Results CPNE1 mRNA and protein were upregulated in CRC tissues. CPNE1 promoted proliferation, inhibited apoptosis, increased mitochondrial respiration, enhanced aerobic glycolysis by activating AKT signaling, upregulated glucose transporter 1 (GLUT1) and hexokinase 2 (HK2), and downregulated the production of cleaved Caspase-3 (c-Caspase 3). CPNE1 also contributed to chemoresistance in CRC cells. CPNE1 KD inhibited tumor growth and increased the sensitivity of tumors to oxaliplatin in vivo. Conclusion CPNE1 promotes CRC progression by activating the AKT-GLUT1/HK2 cascade and enhances chemoresistance.
Collapse
Affiliation(s)
- Yuexia Wang
- Department of General Surgery, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, People's Republic of China
| | - Shengli Pan
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai, People's Republic of China
| | - Xinhong He
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Ying Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Haozhe Huang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Junxiang Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Yuhao Zhang
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai, People's Republic of China
| | - Zhijin Zhang
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai, People's Republic of China
| | - Xianju Qin
- Department of General Surgery, Shanghai Eighth People's Hospital, Shanghai, People's Republic of China
| |
Collapse
|
220
|
Cheng WC, Chang CY, Lo CC, Hsieh CY, Kuo TT, Tseng GC, Wong SC, Chiang SF, Huang KCY, Lai LC, Lu TP, Chao KC, Sher YP. Identification of theranostic factors for patients developing metastasis after surgery for early-stage lung adenocarcinoma. Am J Cancer Res 2021; 11:3661-3675. [PMID: 33664854 PMCID: PMC7914355 DOI: 10.7150/thno.53176] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: Lung adenocarcinoma (LUAD) is an aggressive disease with high propensity of metastasis. Among patients with early-stage disease, more than 30% of them may relapse or develop metastasis. There is an unmet medical need to stratify patients with early-stage LUAD according to their risk of relapse/metastasis to guide preventive or therapeutic approaches. In this study, we identified 4 genes that can serve both therapeutic and diagnostic (theranostic) purposes. Methods: Three independent datasets (GEO, TCGA, and KMPlotter) were used to evaluate gene expression profile of patients with LUAD by unbiased screening approach. Upon significant genes uncovered, functional enrichment analysis was carried out. The predictive power of their expression on patient prognosis were evaluated. Once confirmed their theranostic roles by integrated bioinformatics, we further conducted in vitro and in vivo validation. Results: We found that four genes (ADAM9, MTHFD2, RRM2, and SLC2A1) were associated with poor patient outcomes with an increased hazard ratio in LUAD. Knockdown of them, both separately and simultaneously, suppressed lung cancer cell proliferation and migration ability in vitro and prolonged survival time in metastatic tumor mouse models. Moreover, these four biomarkers were found to be overexpressed in tumor tissues from LUAD patients, and the total immunohistochemical staining scores correlated with poor prognosis. Conclusions: These results suggest that these four identified genes could be theranostic biomarkers for stratifying high-risk patients who develop relapse/metastasis in early-stage LUAD. Developing therapeutic approaches for the four biomarkers may benefit early-stage LUAD patients after surgery.
Collapse
|
221
|
Intestinal delivery in a long-chain fatty acid formulation enables lymphatic transport and systemic exposure of orlistat. Int J Pharm 2021; 596:120247. [PMID: 33486039 DOI: 10.1016/j.ijpharm.2021.120247] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 01/16/2023]
Abstract
Orlistat is a pancreatic lipase (PL) inhibitor that inhibits dietary lipid absorption and is used to treat obesity. The oral bioavailability of orlistat is considered zero after administration in standard formulations. This is advantageous in the treatment of obesity. However, if orlistat absorption could be improved it has the potential to treat diseases such as acute and critical illnesses where PL transport to the systemic circulation via gut lymph promotes organ failure. Orlistat is highly lipophilic and may associate with intestinal lipid absorption pathways into lymph. Here we investigate the potential to improve orlistat lymph and systemic uptake through intestinal administration in lipid formulations (LFs). The effect of lipid type, lipid dose, orlistat dose, and infusion time on lymph and systemic availability of orlistat was investigated. After administration in all LFs, orlistat concentrations in lymph were greater than in plasma, suggesting direct transport via lymph. Lymph and plasma orlistat derivative concentrations were ~8-fold greater after administration in a long-chain fatty acid (LC-FA) compared to a lipid-free, LC triglyceride (LC-TG) or medium-chain FA (MC-FA) formulation. Overall, administration of orlistat in a LC-FA formulation promotes lymph and systemic uptake which may enable treatment of diseases associated with elevated systemic PL activity.
Collapse
|
222
|
Abbaszade Z, Bagca BG, Avci CB. Molecular biological investigation of temozolomide and KC7F2 combination in U87MG glioma cell line. Gene 2021; 776:145445. [PMID: 33484758 DOI: 10.1016/j.gene.2021.145445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 12/25/2020] [Accepted: 01/13/2021] [Indexed: 11/25/2022]
Abstract
Glioblastom Multiforme (GBM) is the most invasive and malignant member of the IV grade of the subclass Astrocytoma according to the last assessment of the 2016 WHO report. Due to the resistance to treatment and weak response, as well as the topographical structure of the blood brain barrier, the treatment is also difficult due to the severe clinical manifestation, and new treatment methods and new therapeutic agents are needed. Temozolomide (TMZ) is widely used in the treatment of glioblastoma and is considered as the primary treatment modality. TMZ, a member of the class of cognitive agents, is currently considered the most effective drug because it can easily pass through the blood brain barrier. Glucose metabolism is a complex energy producing machine that, a glucose molecule produces 38 molecules of ATP after full glycolytic catabolism. According to Otto Warburg's numerous studies cancer cells perform the first glycolytic step without entering the mitochondrial step. These cells produce lactic acid and make the micro-media more acidic even in aerobic conditions. This phenomenon is attributed to the Warburg hypothesis and either as aerobic glycolysis. Although glycolysis enzymes are the primary actors of this phenotypic expression, some genetic and epigenetic factors are no exception. We experimentally used KC7F2 active ingredient to target cancer metabolism. In our study, we evaluated cancer metabolism in combination with the effect of TMZ chemotherapeutic agent, examining the effect of two different agents separately and in combination to observe the effects of cancer cell proliferation, survival, apoptosis and expression of metabolism genes on expression. We observed that the combined effect of reduced the effective dose of the TMZ alkylating agent and that the effect was increased and the effect of the combined teraphy is assessed from a metabolic point of view and that it suppresses aerobic glycolysis.
Collapse
Affiliation(s)
- Zaka Abbaszade
- Kazımdirik, Ege Ünv. Hst. No:9, 35100 Bornova/Izmir, Turkey.
| | | | | |
Collapse
|
223
|
Zhao T, Wan Z, Sambath K, Yu S, Uddin MN, Zhang Y, Belfield KD. Regulating Mitochondrial pH with Light and Implications for Chemoresistance. Chemistry 2021; 27:247-251. [PMID: 33048412 DOI: 10.1002/chem.202004278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Chemoresistance is one of the major challenges for cancer treatment, more recently ascribed to defective mitochondrial outer membrane permeabilization (MOMP), significantly diminishing chemotherapeutic agent-induced apoptosis. A boron-dipyrromethene (BODIPY) chromophore-based triarylsulfonium photoacid generator (BD-PAG) was used to target mitochondria with the aim to regulate mitochondrial pH and further depolarize the mitochondrial membrane. Cell viability assays demonstrated the relative biocompatibility of BD-PAG in the dark while live cell imaging suggested high accumulation in mitochondria. Specific assays indicated that BD-PAG is capable of regulating mitochondrial pH with significant effects on mitochondrial membrane depolarization. Therapeutic tests using chlorambucil in combination with BD-PAG revealed a new strategy in chemoresistance suppression.
Collapse
Affiliation(s)
- Tinghan Zhao
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Zhaoxiong Wan
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Karthik Sambath
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Mehrun Nahar Uddin
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| | - Kevin D Belfield
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, 323 Martin Luther King Jr. Blvd., Newark, New Jersey, 07102, USA
| |
Collapse
|
224
|
Xiao Y, Jin L, Deng C, Guan Y, Kalogera E, Ray U, Thirusangu P, Staub J, Sarkar Bhattacharya S, Xu H, Fang X, Shridhar V. Inhibition of PFKFB3 induces cell death and synergistically enhances chemosensitivity in endometrial cancer. Oncogene 2021; 40:1409-1424. [PMID: 33420377 PMCID: PMC7906909 DOI: 10.1038/s41388-020-01621-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/05/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
The advanced or recurrent endometrial cancer (EC) has a poor prognosis because of chemoresistance. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a glycolytic enzyme, is overexpressed in a variety of human cancers and plays important roles in promoting tumor cell growth. Here, we showed that high expression of PFKFB3 in EC cell lines is associated with chemoresistance. Pharmacological inhibition of PFKFB3 with PFK158 and or genetic downregulation of PFKFB3 dramatically suppressed cell proliferation and enhanced the sensitivity of EC cells to carboplatin (CBPt) and cisplatin (Cis). Moreover, PFKFB3 inhibition resulted in reduced glucose uptake, ATP production, and lactate release. Notably, we found that PFK158 with CBPt or Cis exerted strong synergistic antitumor activity in chemoresistant EC cell lines, HEC-1B and ARK-2 cells. We also found that the combination of PFK158 and CBPt/Cis induced apoptosis- and autophagy-mediated cell death through inhibition of the Akt/mTOR signaling pathway. Mechanistically, we found that PFK158 downregulated the CBPt/Cis-induced upregulation of RAD51 expression and enhanced CBPt/Cis-induced DNA damage as demonstrated by an increase in γ-H2AX levels in HEC-1B and ARK-2 cells, potentially revealing a means to enhance PFK158-induced chemosensitivity. More importantly, PFK158 treatment, either as monotherapy or in combination with CBPt, led to a marked reduction in tumor growth in two chemoresistant EC mouse xenograft models. These data suggest that PFKFB3 inhibition alone or in combination with standard chemotherapy may be used as a novel therapeutic strategy for improved therapeutic efficacy and outcomes of advanced and recurrent EC patients.
Collapse
Affiliation(s)
- Yinan Xiao
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA ,grid.452708.c0000 0004 1803 0208Department of Obstetrics and Gynecology, the Second Xiangya Hospital, Central South University, Changsha, Hunan P.R. China
| | - Ling Jin
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | - Chaolin Deng
- grid.66875.3a0000 0004 0459 167XDepartment of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN USA
| | - Ye Guan
- grid.214458.e0000000086837370Department of Chemistry, University of Michigan, Ann Arbor, MI USA
| | - Eleftheria Kalogera
- grid.66875.3a0000 0004 0459 167XDivision of Gynecologic Oncology, Mayo Clinic, Rochester, MN USA
| | - Upasana Ray
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | - Prabhu Thirusangu
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | - Julie Staub
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| | | | - Haotian Xu
- grid.254444.70000 0001 1456 7807Department of Computer Science, Wayne State University, Detroit, MI USA
| | - Xiaoling Fang
- grid.452708.c0000 0004 1803 0208Department of Obstetrics and Gynecology, the Second Xiangya Hospital, Central South University, Changsha, Hunan P.R. China
| | - Viji Shridhar
- grid.66875.3a0000 0004 0459 167XDepartment of Experimental Pathology, Mayo Clinic, Rochester, MN USA
| |
Collapse
|
225
|
Dowling CM, Zhang H, Chonghaile TN, Wong KK. Shining a light on metabolic vulnerabilities in non-small cell lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188462. [PMID: 33130228 PMCID: PMC7836022 DOI: 10.1016/j.bbcan.2020.188462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer which contributes to essential processes required for cell survival, growth, and proliferation. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and its genomic classification has given rise to the design of therapies targeting tumors harboring specific gene alterations that cause aberrant signaling. Lung tumors are characterized with having high glucose and lactate use, and high heterogeneity in their metabolic pathways. Here we review how NSCLC cells with distinct mutations reprogram their metabolic pathways and highlight the potential metabolic vulnerabilities that might lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Catríona M Dowling
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA; School of Medicine, University of Limerick, Limerick, Ireland
| | - Hua Zhang
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
| | - Tríona Ní Chonghaile
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Kwok-Kin Wong
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
226
|
Salsabila IA, Nugraheni N, Ahlina FN, Haryanti S, Meiyanto E. Synergistic Cotreatment Potential of Soursop ( Annona muricata L.) Leaves Extract with Doxorubicin on 4T1 Cells with Antisenescence and Anti-reactive-oxygen-species Properties. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:57-67. [PMID: 34567146 PMCID: PMC8457719 DOI: 10.22037/ijpr.2020.112485.13788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Annona muricata L. extract (AME) exhibits cytotoxic activities on various types of cancer cells. This study aims to unveil the anticancer activity of AME as a cotreatment agent with doxorubicin (dox) on 4T1 cells and AME's relation to senescence. AME was obtained by maceration using 96% ethanol. AME was then subjected to qualitative analysis using TLC compared to quercetin (hRf = 75). Spectrophotometry analysis of AME resulted in a total flavonoid content of 2.3% ± 0.05%. Cytotoxic evaluation using the MTT assay revealed that AME showed an IC50 value of 63 µg/mL, while its combination (25 µg/mL) with dox (10 nM) decreased the viability of 4T1 cells to 58 % (CI = 0.15). Flowcytometry using propidium iodide staining confirmed that AME (13 and 25 µg/mL) caused cell cycle arrest in the G1 phase as a single treatment and G2/M arrest in combination with dox. However, by using the dichloro dihydrofluorescein diacetate staining assay, it turned out that AME at concentrations of 13 and 25 µg/mL decreased intracellular reactive oxygen species (ROS) levels both as a single treatment and in combination with dox. Senescence-associated β - galactosidase assay showed that AME decreased dox-induced senescence. AME alone and in combination with dox (cotreatment) showed cytotoxic effect synergistically on 4T1 cells, but this was not caused by an increase in intracellular ROS levels as well as senescence induction. Therefore, AME showed its potential to be a cotreatment agent with antioxidant property on triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Irfani Aura Salsabila
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Nadzifa Nugraheni
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Faradiba Nur Ahlina
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
| | - Sari Haryanti
- Medicinal Plant and Traditional Medicinal Research and Development Centre, Ministry of Health, Republic of Indonesia, Tawangmangu, Central Java, Indonesia.
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
- Laboratory of Macromolecular Engineering Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Yogyakarta, Indonesia.
| |
Collapse
|
227
|
Cigarette smoke-induced LKB1/AMPK pathway deficiency reduces EGFR TKI sensitivity in NSCLC. Oncogene 2020; 40:1162-1175. [PMID: 33335306 PMCID: PMC7878190 DOI: 10.1038/s41388-020-01597-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
Smoker patients with non-small cell lung cancer (NSCLC) have poorer prognosis and survival than those without smoking history. However, the mechanisms underlying the low response rate of those patients to EGFR tyrosine kinase inhibitors (TKIs) are not well understood. Here we report that exposure to cigarette smoke extract enhances glycolysis and attenuates AMP-activated protein kinase (AMPK)-dependent inhibition of mTOR; this in turn reduces the sensitivity of NSCLC cells with wild-type EGFR (EGFRWT) to EGFR TKI by repressing expression of liver kinase B1 (LKB1), a master kinase of the AMPK subfamily, via CpG island methylation. In addition, LKB1 expression is correlated positively with sensitivity to TKI in patients with NSCLC. Moreover, combined treatment of EGFR TKI with AMPK activators synergistically increases EGFR TKI sensitivity. Collectively, the current study suggests that LKB1 may serve as a marker to predict EGFR TKI sensitivity in smokers with NSCLC carrying EGFRWT and that the combination of EGFR TKI and AMPK activator may be a potentially effective therapeutic strategy against NSCLC with EGFRWT.
Collapse
|
228
|
Du Y, Wei N, Ma R, Jiang SH, Song D. Long Noncoding RNA MIR210HG Promotes the Warburg Effect and Tumor Growth by Enhancing HIF-1α Translation in Triple-Negative Breast Cancer. Front Oncol 2020; 10:580176. [PMID: 33392077 PMCID: PMC7774020 DOI: 10.3389/fonc.2020.580176] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background Hypoxia is an important environmental factor and has been correlated with tumor progression, treatment resistance and poor prognosis in many solid tumors, including triple-negative breast cancer (TNBC). Emerging evidence suggests that long noncoding RNA (lncRNA) functions as a critical regulator in tumor biology. However, little is known about the link between hypoxia and lncRNAs in TNBC. Methods TNBC molecular profiles from The Cancer Genome Atlas (TCGA) were leveraged to identify hypoxia-related molecular alterations. Loss-of-function studies were performed to determine the regulatory role of MIR210HG in tumor glycolysis. The potential functions and mechanisms of hypoxia-MIR210HG axis were explored using qPCR, Western blotting, luciferase reporter assay, and polysome profiling. Results We found that MIR210HG is a hypoxia-induced lncRNA in TNBC. Loss-of-function studies revealed that MIR210HG promoted the Warburg effect as demonstrated by glucose uptake, lactate production and expression of glycolytic components. Mechanistically, MIR210HG potentiated the metabolic transcription factor hypoxia-inducible factor 1α (HIF-1α) translation via directly binding to the 5'-UTR of HIF-1α mRNA, leading to increased HIF-1a protein level, thereby upregulating expression of glycolytic enzymes. MIR210HG knockdown in TNBC cells reduced their glycolytic metabolism and abolished their tumorigenic potential, indicating the glycolysis-dependent oncogenic activity of MIR210HG in TNBC. Moreover, MIR210HG was highly expressed in breast cancer and predicted poor clinical outcome. Conclusion Our results decipher a positive feedback loop between hypoxia and MIR210HG that drive the Warburg effect and suggest that MIR210HG may be a good prognostic marker and therapeutic target for TNBC patients.
Collapse
Affiliation(s)
- Ye Du
- Departments of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Na Wei
- Departments of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ruolin Ma
- Departments of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dong Song
- Departments of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
229
|
Ogrodzinski MP, Teoh ST, Lunt SY. Metabolomic profiling of mouse mammary tumor-derived cell lines reveals targeted therapy options for cancer subtypes. Cell Oncol (Dordr) 2020; 43:1117-1127. [PMID: 32691367 DOI: 10.1007/s13402-020-00545-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Breast cancer is a heterogeneous disease with several subtypes that currently do not have targeted therapeutic options. Metabolomics has the potential to uncover novel targeted treatment strategies by identifying metabolic pathways required for cancer cells to survive and proliferate. METHODS The metabolic profiles of two histologically distinct breast cancer subtypes from a MMTV-Myc mouse model, epithelial-mesenchymal-transition (EMT) and papillary, were investigated using mass spectrometry-based metabolomics methods. Based on metabolic profiles, drugs most likely to be effective against each subtype were selected and tested. RESULTS We found that the EMT and papillary subtypes display different metabolic preferences. Compared to the papillary subtype, the EMT subtype exhibited increased glutathione and TCA cycle metabolism, while the papillary subtype exhibited increased nucleotide biosynthesis compared to the EMT subtype. Targeting these distinct metabolic pathways effectively inhibited cancer cell proliferation in a subtype-specific manner. CONCLUSIONS Our results demonstrate the feasibility of metabolic profiling to develop novel personalized therapy strategies for different subtypes of breast cancer. Schematic overview of the experimental design for drug selection based on breast cancer subtype-specific metabolism. The epithelial mesenchymal transition (EMT) and papillary tumors are histologically distinct mouse mammary tumor subtypes from the MMTV-Myc mouse model. Cell lines derived from tumors can be used to determine metabolic pathways that can be used to select drug candidates for each subtype.
Collapse
Affiliation(s)
- Martin P Ogrodzinski
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.,Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Shao Thing Teoh
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Sophia Y Lunt
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA. .,Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
230
|
Tilekar K, Upadhyay N, Iancu CV, Pokrovsky V, Choe JY, Ramaa CS. Power of two: combination of therapeutic approaches involving glucose transporter (GLUT) inhibitors to combat cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188457. [PMID: 33096154 PMCID: PMC7704680 DOI: 10.1016/j.bbcan.2020.188457] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Cancer research of the Warburg effect, a hallmark metabolic alteration in tumors, focused attention on glucose metabolism whose targeting uncovered several agents with promising anticancer effects at the preclinical level. These agents' monotherapy points to their potential as adjuvant combination therapy to existing standard chemotherapy in human trials. Accordingly, several studies on combining glucose transporter (GLUT) inhibitors with chemotherapeutic agents, such as doxorubicin, paclitaxel, and cytarabine, showed synergistic or additive anticancer effects, reduced chemo-, radio-, and immuno-resistance, and reduced toxicity due to lowering the therapeutic doses required for desired chemotherapeutic effects, as compared with monotherapy. The combinations have been specifically effective in treating cancer glycolytic phenotypes, such as pancreatic and breast cancers. Even combining GLUT inhibitors with other glycolytic inhibitors and energy restriction mimetics seems worthwhile. Though combination clinical trials are in the early phase, initial results are intriguing. The various types of GLUTs, their role in cancer progression, GLUT inhibitors, and their anticancer mechanism of action have been reviewed several times. However, utilizing GLUT inhibitors as combination therapeutics has received little attention. We consider GLUT inhibitors agents that directly affect glucose transporters by binding to them or indirectly alter glucose transport by changing the transporters' expression level. This review mainly focuses on summarizing the effects of various combinations of GLUT inhibitors with other anticancer agents and providing a perspective on the current status.
Collapse
Affiliation(s)
- Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| | - Cristina V. Iancu
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - Vadim Pokrovsky
- Laboratory of Combined Therapy, N.N. Blokhin Cancer Research Center, Moscow, Russia
- Department of Biochemistry, People’s Friendship University, Moscow, Russia
| | - Jun-yong Choe
- East Carolina Diabetes and Obesity Institute, Department of Chemistry, East Carolina University, Greenville, North Carolina, USA
| | - C. S. Ramaa
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth’s College of Pharmacy, Navi Mumbai, Maharashtra, India
| |
Collapse
|
231
|
Torres-Pérez SA, Torres-Pérez CE, Pedraza-Escalona M, Pérez-Tapia SM, Ramón-Gallegos E. Glycosylated Nanoparticles for Cancer-Targeted Drug Delivery. Front Oncol 2020; 10:605037. [PMID: 33330106 PMCID: PMC7735155 DOI: 10.3389/fonc.2020.605037] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles (NPs) are novel platforms that can carry both cancer-targeting molecules and drugs to avoid severe side effects due to nonspecific drug delivery in standard chemotherapy treatments. Cancer cells are characterized by abnormal membranes, metabolic changes, the presence of lectin receptors, glucose transporters (GLUT) overexpression, and glycosylation of immune receptors of programmed death on cell surfaces. These characteristics have led to the development of several strategies for cancer therapy, including a large number of carbohydrate-modified NPs, which have become desirable for use in cell-selective drug delivery systems because they increase nanoparticle-cell interactions and uptake of carried drugs. Currently, the potential of NP glycosylation to enhance the safety and efficacy of carried therapeutic antitumor agents has been widely acknowledged, and much information is accumulating in this field. This review seeks to highlight recent advances in NP stabilization, toxicity reduction, and pharmacokinetic improvement and the promising potential of NP glycosylation from the perspective of molecular mechanisms described for drug delivery systems for cancer therapy. From preclinical proof-of-concept to demonstration of therapeutic value in the clinic, the challenges and opportunities presented by glycosylated NPs, with a focus on their applicability in the development of nanodrugs, are discussed in this review.
Collapse
Affiliation(s)
- Sergio Andrés Torres-Pérez
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Mexico City, Mexico
| | - Cindy Estefani Torres-Pérez
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Mexico City, Mexico
| | - Martha Pedraza-Escalona
- CONACYT-UDIBI-ENCB-Instituto Politécnico Nacional, Unidad Profesional Lázaro Cárdenas, Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eva Ramón-Gallegos
- Laboratorio de Citopatología Ambiental, Departamento de Morfología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Zacatenco, Mexico City, Mexico
| |
Collapse
|
232
|
Ye S, Zhou HB, Chen Y, Li KQ, Jiang SS, Hao K. Crizotinib changes the metabolic pattern and inhibits ATP production in A549 non-small cell lung cancer cells. Oncol Lett 2020; 21:61. [PMID: 33281972 PMCID: PMC7709560 DOI: 10.3892/ol.2020.12323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/20/2020] [Indexed: 01/25/2023] Open
Abstract
Crizotinib, an inhibitor of the hepatocyte growth factor receptor oncogene, has been studied extensively regarding its antitumor and clinically beneficial effects in non-small cell lung cancer (NSCLC). However, crizotinib's effects on cancer cell energy metabolism, which is linked with tumor proliferation and migration, in NSCLC are unclear. Therefore, the present study focused on crizotinib's effect on NSCLC glucose metabolism. Crizotinib's effects on glucose metabolism, proliferation, migration and apoptosis in A549 cells were explored. Several other inhibitors, including 2-DG, rotenone and MG132, were used to define the mechanism of action in further detail. Data showed that crizotinib treatment reduced A549 cell viability, increased glucose consumption and lactate production, while decreased mitochondrial transmembrane potential (Δψm) and ATP production. Crizotinib treatment, combined with rotenone and MG132 treatment, further inhibited ATP production and Δψm and increased reactive oxygen species content. However, crizotinib did not suppress cell proliferation, migration, ATP production, Δψm or mitochondrial-related apoptosis signals further following 2-DG-mediated inhibition of glycolysis. These results indicated that crizotinib induced low mitochondrial function and compensatory high anaerobic metabolism, but failed to maintain sufficient ATP levels. The alternation of metabolic pattern and insufficient ATP supply may serve important roles in the metabolic antitumor mechanism of crizotinib in A549 cells.
Collapse
Affiliation(s)
- Sa Ye
- Department of Nutrition, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Hong-Bin Zhou
- Department of Respiratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ying Chen
- Department of Nutrition, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Kai-Qiang Li
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shan-Shan Jiang
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Ke Hao
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory of Laboratory Medicine, Department of Blood Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
233
|
Zhang M, Liu Q, Zhang M, Cao C, Liu X, Zhang M, Li G, Xu C, Zhang X. Enhanced antitumor effects of follicle-stimulating hormone receptor-mediated hexokinase-2 depletion on ovarian cancer mediated by a shift in glucose metabolism. J Nanobiotechnology 2020; 18:161. [PMID: 33160373 PMCID: PMC7648390 DOI: 10.1186/s12951-020-00720-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/24/2020] [Indexed: 01/10/2023] Open
Abstract
Background Most cancers favor glycolytic-based glucose metabolism. Hexokinase-2 (HK2), the first glycolytic rate-limiting enzyme, shows limited expression in normal adult tissues but is overexpressed in many tumor tissues, including ovarian cancer. HK2 has been shown to be correlated with the progression and chemoresistance of ovarian cancer and could be a therapeutic target. However, the systemic toxicity of HK2 inhibitors has limited their clinical use. Since follicle-stimulating hormone (FSH) receptor (FSHR) is overexpressed in ovarian cancer but not in nonovarian healthy tissues, we designed FSHR-mediated nanocarriers for HK2 shRNA delivery to increase tumor specificity and decrease toxicity. Results HK2 shRNA was encapsulated in a polyethylene glycol-polyethylenimine copolymer modified with the FSH β 33–53 or retro-inverso FSH β 33–53 peptide. The nanoparticle complex with FSH peptides modification effectively depleted HK2 expression and facilitated a shift towards oxidative glucose metabolism, with evidence of increased oxygen consumption rates, decreased extracellular acidification rates, and decreased extracellular lactate and glucose consumption in A2780 ovarian cancer cells and cisplatin-resistant A2780CP counterpart cells. Consequently, cell proliferation, invasion and migration were significantly inhibited, and tumor growth was suppressed even in cisplatin-resistant ovarian cancer. No obvious systemic toxicity was observed in mice. Moreover, the nanoparticle complex modified with retro-inverso FSH peptides exhibited the strongest antitumor effects and effectively improved cisplatin sensitivity by regulating cisplatin transport proteins and increasing apoptosis through the mitochondrial pathway. Conclusions These results established HK2 as an effective therapeutic target even for cisplatin-resistant ovarian cancer and suggested a promising targeted therapeutic approach. ![]()
Collapse
Affiliation(s)
- Meng Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Qiyu Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Mingxing Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Cong Cao
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoxia Liu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Mengyu Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Guiling Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Congjian Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
234
|
Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis 2020; 11:941. [PMID: 33139702 PMCID: PMC7608616 DOI: 10.1038/s41419-020-03144-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
Defects in apoptosis can promote tumorigenesis and impair responses of malignant B cells to chemotherapeutics. Members of the B-cell leukemia/lymphoma-2 (BCL-2) family of proteins are key regulators of the intrinsic, mitochondrial apoptotic pathway. Overexpression of antiapoptotic BCL-2 family proteins is associated with treatment resistance and poor prognosis. Thus, inhibition of BCL-2 family proteins is a rational therapeutic option for malignancies that are dependent on antiapoptotic BCL-2 family proteins. Venetoclax (ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor that represents the first approved agent of this class and is currently widely used in the treatment of chronic lymphocytic leukemia (CLL) as well as acute myeloid leukemia (AML). Despite impressive clinical activity, venetoclax monotherapy for a prolonged duration can lead to drug resistance or loss of dependence on the targeted protein. In this review, we provide an overview of the mechanism of action of BCL-2 inhibition and the role of this approach in the current treatment paradigm of B-cell malignancies. We summarize the drivers of de novo and acquired resistance to venetoclax that are closely associated with complex clonal shifts, interplay of expression and interactions of BCL-2 family members, transcriptional regulators, and metabolic modulators. We also examine how tumors initially resistant to venetoclax become responsive to it following prior therapies. Here, we summarize preclinical data providing a rationale for efficacious combination strategies of venetoclax to overcome therapeutic resistance by a targeted approach directed against alternative antiapoptotic BCL-2 family proteins (MCL-1, BCL-xL), compensatory prosurvival pathways, epigenetic modifiers, and dysregulated cellular metabolism/energetics for durable clinical remissions.
Collapse
|
235
|
Dong Q, Zhou C, Ren H, Zhang Z, Cheng F, Xiong Z, Chen C, Yang J, Gao J, Zhang Y, Xu L, Fang J, Cao Y, Wei H, Wu Z. Lactate-induced MRP1 expression contributes to metabolism-based etoposide resistance in non-small cell lung cancer cells. Cell Commun Signal 2020; 18:167. [PMID: 33097055 PMCID: PMC7583203 DOI: 10.1186/s12964-020-00653-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Metabolic reprogramming contributes significantly to tumor development and is tightly linked to drug resistance. The chemotherapeutic agent etoposide (VP-16) has been used clinically in the treatment of lung cancer but possess different sensitivity and efficacy towards SCLC and NSCLC. Here, we assessed the impact of etoposide on glycolytic metabolism in SCLC and NSCLC cell lines and investigated the role of metabolic rewiring in mediating etoposide resistance. METHODS glycolytic differences of drug-treated cancer cells were determined by extracellular acidification rate (ECAR), glucose consumption, lactate production and western blot. DNA damage was evaluated by the comet assay and western blot. Chemoresistant cancer cells were analyzed by viability, apoptosis and western blot. Chromatin immunoprecipitation (ChIP) was used for analysis of DNA-protein interaction. RESULTS Here we showed that exposure to chemotherapeutic drug etoposide induces an exacerbation of ROS production which activates HIF-1α-mediated the metabolic reprogramming toward increased glycolysis and lactate production in non-small cell lung cancer (NSCLC). We identified lactic acidosis as the key that confers multidrug resistance through upregulation of multidrug resistance-associated protein 1 (MRP1, encoded by ABCC1), a member of ATP-binding cassette (ABC) transporter family. Mechanistically, lactic acid coordinates TGF-β1/Snail and TAZ/AP-1 pathway to induce formation of Snail/TAZ/AP-1 complex at the MRP1/ABCC1 promoter. Induction of MRP1 expression inhibits genotoxic and apoptotic effects of chemotherapeutic drugs by increasing drug efflux. Furthermore, titration of lactic acid with NaHCO3 was sufficient to overcome resistance. CONCLUSIONS The chemotherapeutic drug etoposide induces the shift toward aerobic glycolysis in the NSCLC rather than SCLC cell lines. The increased lactic acid in extracellular environment plays important role in etoposide resistance through upregulation of MRP expression. These data provide first evidence for the increased lactate production, upon drug treatment, contributes to adaptive resistance in NSCLC and reveal potential vulnerabilities of lactate metabolism and/or pathway suitable for therapeutic targeting. Video Abstract The chemotherapeutic drug etoposide induces metabolic reprogramming towards glycolysis in the NSCLC cells. The secreted lactic acid coordinates TGF-β1/Snail and TAZ/AP-1 pathway to activate the expression of MRP1/ABCC1 protein, thus contributing to chemoresistance in NSCLC.
Collapse
Affiliation(s)
- Qi Dong
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, China.,Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China
| | - Chenkang Zhou
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241001, China.,School of laboratory Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Haodong Ren
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241001, China.,School of pharmacy, Wannan Medical College, Wuhu, 241001, China
| | - Zhijian Zhang
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Feng Cheng
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China
| | - Zhenkai Xiong
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of Medical Imageology, Wannan Medical College, Wuhu, 241001, China
| | - Chuantao Chen
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of Medical Imageology, Wannan Medical College, Wuhu, 241001, China
| | - Jianke Yang
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Jiguang Gao
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Yao Zhang
- Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China
| | - Lei Xu
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, China.,Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China
| | - Jian Fang
- School of Clinical Medicine, Wannan Medical College, Wuhu, 241001, China.,Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China
| | - Yuxiang Cao
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,School of laboratory Medicine, Wannan Medical College, Wuhu, 241001, China
| | - Huijun Wei
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China.,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China.,Anhui provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, 241001, China
| | - Zhihao Wu
- Research laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, 241001, China. .,Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001, China. .,School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
236
|
Puffing of Turmeric ( Curcuma longa L.) Enhances its Anti-Inflammatory Effects by Upregulating Macrophage Oxidative Phosphorylation. Antioxidants (Basel) 2020; 9:antiox9100931. [PMID: 33003300 PMCID: PMC7600901 DOI: 10.3390/antiox9100931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
Turmeric (Curcuma longa L.), a widely used spice, has anti-inflammatory properties and other health benefits, but the detailed mechanisms of these effects are still poorly understood. Recent advances in assessment of cellular energy metabolism have revealed that macrophage mitochondrial respiration is critical in inflammatory responses. In an effort to enhance the anti-inflammatory function of turmeric with a simple processing method, extract of puffed turmeric was investigated for effect on macrophage energy metabolism. The high-performance liquid chromatography analysis revealed that puffing of turmeric significantly induced the degradation of curcumin to smaller active compounds including vanillic acid, vanillin and 4-vinylguaiacol. The in vitro consumption of oxygen as expressed by the oxygen consumption rate (OCR) was significantly downregulated following lipopolysaccharides stimulation in RAW 264.7 macrophages. Puffed turmeric extract, but not the non-puffed control, reversed the LPS-induced decrease in OCR, resulting in downregulated transcription of the pro-inflammatory genes cyclooxygenase-2 and inducible nitric oxide synthase. Dietary intervention in high-fat diet-induced obese mice revealed that both control and puffed turmeric have anti-obesity effects in vivo, but only puffed turmeric exhibited reciprocal downregulation of the inflammatory marker cluster of differentiation (CD)11c and upregulation of the anti-inflammatory marker CD206 in bone marrow-derived macrophages. Puffed turmeric extract further modulated the low-density lipoprotein/high-density lipoprotein cholesterol ratio toward that of the normal diet group, indicating that puffing is a simple, advantageous processing method for turmeric as an anti-inflammatory food ingredient.
Collapse
|
237
|
Zhang Y, Ma S, Wang M, Shi W, Hu Y. Comprehensive Analysis of Prognostic Markers for Acute Myeloid Leukemia Based on Four Metabolic Genes. Front Oncol 2020; 10:578933. [PMID: 33117716 PMCID: PMC7552924 DOI: 10.3389/fonc.2020.578933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Metabolic reprogramming is the core characteristic of tumors during the development of tumors, and cancer cells can rely on metabolic changes to support their rapid growth. Nevertheless, an overall analysis of metabolic markers in acute myeloid leukemia (AML) is absent and urgently needed. Methods: Within this work, genetic expression, mutation data and clinical data of AML were queried from Genotype-Tissue Expression (GTEx) database, The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database. The tumor samples of TCGA were randomly divided into a training group (64 samples) and an internal validation group (64 samples) at one time, and the tumor samples of GEO served as two external validation groups (99 samples, 374 samples). According to the expression levels of survival-associated metabolic genes, we divided all TCGA tumor samples into high, medium and low metabolism groups, and evaluated the immune cell activity in the tumor microenvironment of the three metabolism groups by single-sample gene set enrichment analysis (ssGSEA) algorithm. Finally, we examined the mutations and prognostic effects of each model gene. Results: Four metabolism-related genes were screened and applied to construct a prognostic model for AML, giving excellent results. As for the area under the curve (AUC) value of receiver operating characteristic (ROC) curve, the training group was up to 0.902 (1-year), 0.81 (3-year), and 0.877 (5-year); and the internal and external validation groups also met the expected standards, showing high potency in predicting patient outcome. Univariate and multivariate prognostic analyses indicated that the riskScore obtained from our prognostic model was an independent prognostic factor. ssGSEA analysis revealed the high metabolism group had higher immune activity. Single and multiple gene survival analysis validated that each model gene had significant effects on the overall survival of AML patients. Conclusions: In our study, a high-efficiency prognostic prediction model was built and validated for AML patients. The results showed that metabolism-related genes could become potential prognostic biomarkers for AML.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shengling Ma
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
238
|
Huang YT, Yeh PC, Lan SC, Liu PF. Metabolites modulate the functional state of human uridine phosphorylase I. Protein Sci 2020; 29:2189-2200. [PMID: 32864839 DOI: 10.1002/pro.3939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/23/2022]
Abstract
Metabolic pathways in cancer cells typically become reprogrammed to support unconstrained proliferation. These abnormal metabolic states are often accompanied by accumulation of high concentrations of ATP in the cytosol, a phenomenon known as the Warburg Effect. However, how high concentrations of ATP relate to the functional state of proteins is poorly understood. Here, we comprehensively studied the influence of ATP levels on the functional state of the human enzyme, uridine phosphorylase I (hUP1), which is responsible for activating the chemotherapeutic pro-drug, 5-fluorouracil. We found that elevated levels of ATP decrease the stability of hUP1, leading to the loss of its proper folding and function. We further showed that the concentration of hUP1 exerts a critical influence on this ATP-induced destabilizing effect. In addition, we found that ATP interacts with hUP1 through a partially unfolded state and accelerates the rate of hUP1 unfolding. Interestingly, some structurally similar metabolites showed similar destabilization effects on hUP1. Our findings suggest that metabolites can alter the folding and function of a human protein, hUP1, through protein destabilization. This phenomenon may be relevant in studying the functions of proteins that exist in the specific metabolic environment of a cancer cell.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Pei-Chin Yeh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Shih-Chun Lan
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| | - Pei-Fen Liu
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung City, Taiwan, Republic of China
| |
Collapse
|
239
|
Braun LA, Varpetyan EE, Zav’yalov GA, Kulikov FV, Marievskii VE, Tyul’ganova DA, Shishnenko AO, Stepanova DS, Shimanovskii NL. Metabolic Enzymes: New Targets for the Design of Antitumor Drugs. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02238-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
240
|
Intracellular Mycobacterium tuberculosis Exploits Multiple Host Nitrogen Sources during Growth in Human Macrophages. Cell Rep 2020; 29:3580-3591.e4. [PMID: 31825837 PMCID: PMC6915324 DOI: 10.1016/j.celrep.2019.11.037] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/05/2019] [Accepted: 11/07/2019] [Indexed: 02/05/2023] Open
Abstract
Nitrogen metabolism of Mycobacterium tuberculosis (Mtb) is crucial for the survival of this important pathogen in its primary human host cell, the macrophage, but little is known about the source(s) and their assimilation within this intracellular niche. Here, we have developed 15N-flux spectral ratio analysis (15N-FSRA) to explore Mtb’s nitrogen metabolism; we demonstrate that intracellular Mtb has access to multiple amino acids in the macrophage, including glutamate, glutamine, aspartate, alanine, glycine, and valine; and we identify glutamine as the predominant nitrogen donor. Each nitrogen source is uniquely assimilated into specific amino acid pools, indicating compartmentalized metabolism during intracellular growth. We have discovered that serine is not available to intracellular Mtb, and we show that a serine auxotroph is attenuated in macrophages. This work provides a systems-based tool for exploring the nitrogen metabolism of intracellular pathogens and highlights the enzyme phosphoserine transaminase as an attractive target for the development of novel anti-tuberculosis therapies. Mycobacterium tuberculosis utilizes multiple amino acids as nitrogen sources in human macrophages 15N-FSRA tool identified the intracellular nitrogen sources Glutamine is the predominant nitrogen donor for M. tuberculosis Serine biosynthesis is essential for the survival of intracellular M. tuberculosis
Collapse
|
241
|
Nobile MS, Votta G, Palorini R, Spolaor S, De Vitto H, Cazzaniga P, Ricciardiello F, Mauri G, Alberghina L, Chiaradonna F, Besozzi D. Fuzzy modeling and global optimization to predict novel therapeutic targets in cancer cells. Bioinformatics 2020; 36:2181-2188. [PMID: 31750879 PMCID: PMC7141866 DOI: 10.1093/bioinformatics/btz868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 09/13/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022] Open
Abstract
Motivation The elucidation of dysfunctional cellular processes that can induce the onset of a disease is a challenging issue from both the experimental and computational perspectives. Here we introduce a novel computational method based on the coupling between fuzzy logic modeling and a global optimization algorithm, whose aims are to (1) predict the emergent dynamical behaviors of highly heterogeneous systems in unperturbed and perturbed conditions, regardless of the availability of quantitative parameters, and (2) determine a minimal set of system components whose perturbation can lead to a desired system response, therefore facilitating the design of a more appropriate experimental strategy. Results We applied this method to investigate what drives K-ras-induced cancer cells, displaying the typical Warburg effect, to death or survival upon progressive glucose depletion. The optimization analysis allowed to identify new combinations of stimuli that maximize pro-apoptotic processes. Namely, our results provide different evidences of an important protective role for protein kinase A in cancer cells under several cellular stress conditions mimicking tumor behavior. The predictive power of this method could facilitate the assessment of the response of other complex heterogeneous systems to drugs or mutations in fields as medicine and pharmacology, therefore paving the way for the development of novel therapeutic treatments. Availability and implementation The source code of FUMOSO is available under the GPL 2.0 license on GitHub at the following URL: https://github.com/aresio/FUMOSO Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marco S Nobile
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy.,SYSBIO.IT Centre for Systems Biology, Milano 20126, Italy.,Department of Industrial Engineering and Innovation Sciences, Eindhoven University of Technology, Eindhoven 5612 AZ, The Netherlands
| | - Giuseppina Votta
- SYSBIO.IT Centre for Systems Biology, Milano 20126, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano 20126, Italy
| | - Roberta Palorini
- SYSBIO.IT Centre for Systems Biology, Milano 20126, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano 20126, Italy
| | - Simone Spolaor
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy.,SYSBIO.IT Centre for Systems Biology, Milano 20126, Italy
| | - Humberto De Vitto
- SYSBIO.IT Centre for Systems Biology, Milano 20126, Italy.,Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Paolo Cazzaniga
- SYSBIO.IT Centre for Systems Biology, Milano 20126, Italy.,Department of Human and Social Sciences, University of Bergamo, Bergamo 24129, Italy
| | - Francesca Ricciardiello
- SYSBIO.IT Centre for Systems Biology, Milano 20126, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano 20126, Italy
| | - Giancarlo Mauri
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy.,SYSBIO.IT Centre for Systems Biology, Milano 20126, Italy
| | - Lilia Alberghina
- SYSBIO.IT Centre for Systems Biology, Milano 20126, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano 20126, Italy
| | - Ferdinando Chiaradonna
- SYSBIO.IT Centre for Systems Biology, Milano 20126, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano 20126, Italy
| | - Daniela Besozzi
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milano 20126, Italy.,SYSBIO.IT Centre for Systems Biology, Milano 20126, Italy
| |
Collapse
|
242
|
Inhibition of DNA Repair Pathways and Induction of ROS Are Potential Mechanisms of Action of the Small Molecule Inhibitor BOLD-100 in Breast Cancer. Cancers (Basel) 2020; 12:cancers12092647. [PMID: 32947941 PMCID: PMC7563761 DOI: 10.3390/cancers12092647] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 12/16/2022] Open
Abstract
BOLD-100, a ruthenium-based complex, sodium trans-[tetrachloridobis (1H-indazole) ruthenate (III)] (also known as IT-139, NKP1339 or KP1339), is a novel small molecule drug that demonstrated a manageable safety profile at the maximum tolerated dose and modest antitumor activity in a phase I clinical trial. BOLD-100 has been reported to inhibit the upregulation of the endoplasmic reticulum stress sensing protein GRP78. However, response to BOLD-100 varies in different cancer models and the precise mechanism of action in high-response versus low-response cancer cells remains unclear. In vitro studies have indicated that BOLD-100 induces cytostatic rather than cytotoxic effects as a monotherapy. To understand BOLD-100-mediated signaling mechanism in breast cancer cells, we used estrogen receptor positive (ER+) MCF7 breast cancer cells to obtain gene-metabolite integrated models. At 100 μM, BOLD-100 significantly reduced cell proliferation and expression of genes involved in the DNA repair pathway. BOLD-100 also induced reactive oxygen species (ROS) and phosphorylation of histone H2AX, gamma-H2AX (Ser139), suggesting disruption of proper DNA surveillance. In estrogen receptor negative (ER-) breast cancer cells, combination of BOLD-100 with a PARP inhibitor, olaparib, induced significant inhibition of cell growth and xenografts and increased gamma-H2AX. Thus, BOLD-100 is a novel DNA repair pathway targeting agent and can be used with other chemotherapies in ER- breast cancer.
Collapse
|
243
|
Metabolic Constrains Rule Metastasis Progression. Cells 2020; 9:cells9092081. [PMID: 32932943 PMCID: PMC7563739 DOI: 10.3390/cells9092081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis formation accounts for the majority of tumor-associated deaths and consists of different steps, each of them being characterized by a distinctive adaptive phenotype of the cancer cells. Metabolic reprogramming represents one of the main adaptive phenotypes exploited by cancer cells during all the main steps of tumor and metastatic progression. In particular, the metabolism of cancer cells evolves profoundly through all the main phases of metastasis formation, namely the metastatic dissemination, the metastatic colonization of distant organs, the metastatic dormancy, and ultimately the outgrowth into macroscopic lesions. However, the metabolic reprogramming of metastasizing cancer cells has only recently become the subject of intense study. From a clinical point of view, the latter steps of the metastatic process are very important, because patients often undergo surgical removal of the primary tumor when cancer cells have already left the primary tumor site, even though distant metastases are not clinically detectable yet. In this scenario, to precisely elucidate if and how metabolic reprogramming drives acquisition of cancer-specific adaptive phenotypes might pave the way to new therapeutic strategies by combining chemotherapy with metabolic drugs for better cancer eradication. In this review we discuss the latest evidence that claim the importance of metabolic adaptation for cancer progression.
Collapse
|
244
|
Du Y, Wei N, Ma R, Jiang S, Song D. A miR-210-3p regulon that controls the Warburg effect by modulating HIF-1α and p53 activity in triple-negative breast cancer. Cell Death Dis 2020; 11:731. [PMID: 32908121 PMCID: PMC7481213 DOI: 10.1038/s41419-020-02952-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Reprogrammed energy metabolism, especially the Warburg effect (aerobic glycolysis), is an emerging hallmark of cancer. Different from other breast cancer subtypes, triple-negative breast cancer (TNBC) exhibits high metabolic remodeling, increased aggressiveness and lack of targeted therapies. MicroRNAs (miRNA) are essential to TNBC malignant phenotypes. However, little is known about the contribution of miRNA to aerobic glycolysis in TNBC. Through an integrated analysis and functional verification, we reported that several miRNAs significantly correlates to the Warburg effect in TNBC, including miR-210-3p, miR-105-5p, and miR-767-5p. Ectopic expression of miR-210-3p enhanced glucose uptake, lactate production, extracellular acidification rate, colony formation ability, and reduced serum starvation-induced cell apoptosis. Moreover, GPD1L and CYGB were identified as two functional mediators of miR-210-3p in TNBC. Mechanistically, miR-210-3p targeted GPD1L to maintain HIF-1α stabilization and suppressed p53 activity via CYGB. Ultimately, miR-210-3p facilitated aerobic glycolysis through modulating the downstream glycolytic genes of HIF-1α and p53. Taken together, our results decipher miRNAs that regulate aerobic glycolysis and uncover that miR-210-3p specifically contributes to the Warburg effect in TNBC.
Collapse
Affiliation(s)
- Ye Du
- Departments of Breast Surgery, The First Hospital of Jilin University, 130021, Changchun, Jilin, P.R. China
| | - Na Wei
- Departments of Breast Surgery, The First Hospital of Jilin University, 130021, Changchun, Jilin, P.R. China
| | - Ruolin Ma
- Departments of Breast Surgery, The First Hospital of Jilin University, 130021, Changchun, Jilin, P.R. China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 200240, Shanghai, P.R. China
| | - Dong Song
- Departments of Breast Surgery, The First Hospital of Jilin University, 130021, Changchun, Jilin, P.R. China.
| |
Collapse
|
245
|
He Z, Wang C, Xue H, Zhao R, Li G. Identification of a Metabolism-Related Risk Signature Associated With Clinical Prognosis in Glioblastoma Using Integrated Bioinformatic Analysis. Front Oncol 2020; 10:1631. [PMID: 33042807 PMCID: PMC7523182 DOI: 10.3389/fonc.2020.01631] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Altered metabolism of glucose, lipid and glutamine is a prominent hallmark of cancer cells. Currently, cell heterogeneity is believed to be the main cause of poor prognosis of glioblastoma (GBM) and is closely related to relapse caused by therapy resistance. However, the comprehensive model of genes related to glucose-, lipid- and glutamine-metabolism associated with the prognosis of GBM remains unclear, and the metabolic heterogeneity of GBM still needs to be further explored. Based on the expression profiles of 1,395 metabolism-related genes in three datasets of TCGA/CGGA/GSE, consistent cluster analysis revealed that GBM had three different metabolic status and prognostic clusters. Combining univariate Cox regression analysis and LASSO-penalized Cox regression machine learning methods, we identified a 17-metabolism-related genes risk signature associated with GBM prognosis. Kaplan-Meier analysis found that obtained signature could differentiate the prognosis of high- and low-risk patients in three datasets. Moreover, the multivariate Cox regression analysis and receiver operating characteristic curves indicated that the signature was an independent prognostic factor for GBM and had a strong predictive power. The above results were further validated in the CGGA and GSE13041 datasets, and consistent results were obtained. Gene set enrichment analysis (GSEA) suggested glycolysis gluconeogenesis and oxidative phosphorylation were significantly enriched in high- and low-risk GBM. Lastly Connectivity Map screened 54 potential compounds specific to different subgroups of GBM patients. Our study identified a novel metabolism-related gene signature, in addition the existence of three different metabolic status and two opposite biological processes in GBM were recognized, which revealed the metabolic heterogeneity of GBM. Robust metabolic subtypes and powerful risk prognostic models contributed a new perspective to the metabolic exploration of GBM.
Collapse
Affiliation(s)
- Zheng He
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Chengcheng Wang
- Department of Pharmacy, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.,Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| |
Collapse
|
246
|
Lenkavska L, Tomkova S, Horvath D, Huntosova V. Searching for combination therapy by clustering methods: Stimulation of PKC in Golgi apparatus combined with hypericin induced PDT. Photodiagnosis Photodyn Ther 2020; 31:101813. [PMID: 32442674 DOI: 10.1016/j.pdpdt.2020.101813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
Cancer cell metabolism is a very attractive target for anticancer treatments. This work focuses on protein kinase C (PKC) signaling in the U87 MG glioma. By means of western blot, fluorescence and time-resolved fluorescence microscopy the correlation between the Golgi apparatus (GA), lysosomes and mitochondria were evaluated. The known regulators of PKC were applied to cancer cells. Phorbol myristate acetate (PMA) was chosen as the activator of PKC. Gö6976, hypericin and rottlerin, the inhibitors of PKCα and PKCδ were selected as well. Stabilization, destabilization processes occurring in cells allow classification of observations into several groups. Multiple versions of hierarchical cluster analysis have been applied and similarities have been found between organelles and PKC regulators. The method identified GA as an extraordinary organelle whose functionality is significantly influenced by PKC regulators as well as oxidative stress. Therefore, combination therapy has been designed according to the results of the cluster analysis. Furthermore, the efficacy of photodynamic therapy mediated by hypericin, and the consequent apoptosis, was significantly increased during the treatment. To our knowledge, this is the first demonstration of the effectiveness of the clustering in the given area.
Collapse
Affiliation(s)
- Lenka Lenkavska
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, 041 54, Kosice, Slovakia.
| | - Silvia Tomkova
- Department of Biophysics, Faculty of Science, P. J. Safarik University in Kosice, 041 54, Kosice, Slovakia.
| | - Denis Horvath
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, 041 54, Kosice, Slovakia.
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Safarik University in Kosice, 041 54, Kosice, Slovakia.
| |
Collapse
|
247
|
Makwana V, Dukie ASA, Rudrawar S. Investigating the Impact of OGT Inhibition on Doxorubicin- and Docetaxel-Induced Cytotoxicity in PC-3 and WPMY-1 Cells. Int J Toxicol 2020; 39:586-593. [DOI: 10.1177/1091581820948433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Reduction in sensitivity in terms of cytotoxicity is responsible for therapy failure in patients undergoing chemotherapy with first-line anticancer drug molecules. A plethora of literature evidence points out that increased O-linked β- N-acetylglucosamine transferase (OGT) enzyme level/hyper- O-GlcNAcylation has direct implications in development of cancer and interferes with clinical outcomes of chemotherapy via interaction with oncogenic factors. The aim of this research was to evaluate the combination approach of anticancer drugs with an OGT inhibitor (OSMI-1) as an alternative way to resolve issues in the treatment of prostate cancer and assess the benefits offered by this approach. Effect of combination of doxorubicin and docetaxel with OSMI-1 on drug-induced cell death and synergism/antagonism was investigated using resazurin assay. Reduction in OGT enzyme level was evaluated using ELISA kit. Caspase-3/7 fluorescence assay was performed to detect apoptosis induction in PC-3 cells after treatment with the combinations of doxorubicin and OGT inhibitor to further understand the mechanism of cell death by concomitant treatment. Studies reveal that combination approach is indeed effective in terms of reducing the half-maximum growth inhibition value of doxorubicin when concomitantly treated with OSMI-1 and has synergistic effect in prostate cancer cells. PC-3 cells exhibited elevated levels of OGT enzyme in comparison to WPMY-1, and OSMI-1 has potential to inhibit OGT enzyme significantly. Data show that OSMI-1 alone and in combination with doxorubicin reduces OGT enzyme level significantly accompanied by increased apoptosis in prostate cancer cells. Combination of doxorubicin with OSMI-1 reduced the elevated OGT level which led to a drastic increase in sensitivity of PC-3 cells toward doxorubicin in comparison to doxorubicin alone. This finding provides important insight regarding alternative treatment strategies for effective management of cancer.
Collapse
Affiliation(s)
- Vivek Makwana
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia
| | - A/Prof Shailendra-Anoopkumar Dukie
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Santosh Rudrawar
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, Queensland 4222, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
248
|
Shao C, Lu W, Du Y, Yan W, Bao Q, Tian Y, Wang G, Ye H, Hao H. Cytosolic ME1 integrated with mitochondrial IDH2 supports tumor growth and metastasis. Redox Biol 2020; 36:101685. [PMID: 32853879 PMCID: PMC7452056 DOI: 10.1016/j.redox.2020.101685] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
NADPH is a pivotal cofactor that maintains redox homeostasis and lipogenesis in cancer cells and interference with NADPH production is a promising approach for treating cancer. However, how normal and cancer cells differentially exploit NADPH-producing pathways is unclear, and selective approaches to targeting NADPH are lacking. Here, we show that the assayed cancer cell lines preferentially depend on ME1-mediated NADPH production. ME1 knockdown increases intracellular ROS levels and impairs lipogenesis in cancer cells, leading to retarded proliferation and increased anoikis, while sparing normal cells. Notably, ME1 interference ultimately resulted in adaptive upregulation of mitochondrial IDH2 dependent of AMPK-FoxO1 activation to replenish the NADPH pool and mitigate cytosolic ROS. Combining ME1 ablation and IDH2 inhibition drastically reduces intracellular NADPH and prevents resistance to ME1 interference, resulting in increased apoptosis and impeded tumor growth and metastasis. This study demonstrates that cytosolic ME1 integrated with mitochondrial IDH2 is essential for tumor growth and metastasis, thereby highlighting the blockade of metabolic compensation by disrupting mitochondrial-cytosol NADPH transport as a promising approach to selectively targeting NADPH in cancer cells that rely on NADPH-driven antioxidant systems. NADPH is vital in mitigating ROS stress and supporting lipogenesis in cancer cells. Certain cancer cells preferentially depend on ME1-mediated NADPH production route. ME1 knockdown adaptively upregulates IDH2 dependent of AMPK-FoxO1 axis. Compensatory IDH2 contributes to replenish the NADPH pool and mitigates ROS. Combined targeting ME1 and IDH2 depletes NADPH and inhibits tumor growth and metastasis.
Collapse
Affiliation(s)
- Chang Shao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China; School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China; Pharmacy Department, Shenzhen Luohu People's Hospital, Youyi Road No. 47, Shenzhen, 518000, China
| | - Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Ye Du
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, 130021, Jilin, China
| | - Wenchao Yan
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Qiuyu Bao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Yang Tian
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China; Pharmacy Department, Shenzhen Luohu People's Hospital, Youyi Road No. 47, Shenzhen, 518000, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China; School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China; Pharmacy Department, Shenzhen Luohu People's Hospital, Youyi Road No. 47, Shenzhen, 518000, China.
| |
Collapse
|
249
|
Abstract
Antiretroviral therapies efficiently block HIV-1 replication but need to be maintained for life. Moreover, chronic inflammation is a hallmark of HIV-1 infection that persists despite treatment. There is, therefore, an urgent need to better understand the mechanisms driving HIV-1 pathogenesis and to identify new targets for therapeutic intervention. In the past few years, the decisive role of cellular metabolism in the fate and activity of immune cells has been uncovered, as well as its impact on the outcome of infectious diseases. Emerging evidence suggests that immunometabolism has a key role in HIV-1 pathogenesis. The metabolic pathways of CD4+ T cells and macrophages determine their susceptibility to infection, the persistence of infected cells and the establishment of latency. Immunometabolism also shapes immune responses against HIV-1, and cell metabolic products are key drivers of inflammation during infection. In this Review, we summarize current knowledge of the links between HIV-1 infection and immunometabolism, and we discuss the potential opportunities and challenges for therapeutic interventions.
Collapse
|
250
|
Rodríguez C, Puente-Moncada N, Reiter RJ, Sánchez-Sánchez AM, Herrera F, Rodríguez-Blanco J, Duarte-Olivenza C, Turos-Cabal M, Antolín I, Martín V. Regulation of cancer cell glucose metabolism is determinant for cancer cell fate after melatonin administration. J Cell Physiol 2020; 236:27-40. [PMID: 32725819 DOI: 10.1002/jcp.29886] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/30/2022]
Abstract
Several oncogenic pathways plus local microenvironmental conditions, such as hypoxia, converge on the regulation of cancer cells metabolism. The major metabolic alteration consists of a shift from oxidative phosphorylation as the major glucose consumer to aerobic glycolysis, although most of cancer cells utilize both pathways to a greater or lesser extent. Aerobic glycolysis, together with the directly related metabolic pathways such as the tricarboxylic acid cycle, the pentose phosphate pathway, or gluconeogenesis are currently considered as therapeutic targets in cancer research. Melatonin has been reported to present numerous antitumor effects, which result in a reduced cell growth. This is achieved with both low and high concentrations with no relevant side effects. Indeed, high concentrations of this indolamine reduce proliferation of cancer types resistant to low concentrations and induce cell death in some types of tumors. Previous work suggest that regulation of glucose metabolism and other related pathways play an important role in the antitumoral effects of high concentration of melatonin. In the present review, we analyze recent work on the regulation by such concentrations of this indolamine on aerobic glycolysis, gluconeogenesis, the tricarboxylic acid cycle and the pentose phosphate pathways of cancer cells.
Collapse
Affiliation(s)
- Carmen Rodríguez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Noelia Puente-Moncada
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas
| | - Ana M Sánchez-Sánchez
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Federico Herrera
- Cell Structure and Dynamics Laboratory, Institute of Chemical and Biological Technology (ITQB-NOVA), Estação Agronómica Nacional, Oeiras, Portugal
| | - Jezabel Rodríguez-Blanco
- Molecular Oncology Program, Department of Surgery, The DeWitt Daughtry Family, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Pediatrics, Darby Children's Research Institute, Medical University of South Carolina, Charleston, South Carolina.,Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina
| | - Cristina Duarte-Olivenza
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - María Turos-Cabal
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Isaac Antolín
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| | - Vanesa Martín
- Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain.,University Institute of Oncology of the Principality of Asturias (IUOPA), University of Oviedo, Oviedo, Spain.,Health Research Institute of the Principality of Asturias (ISPA), University of Oviedo, Oviedo, Spain
| |
Collapse
|