201
|
Lee J, Kim KY, Joo HJ, Kim H, Jeong PY, Paik YK. Methods for Evaluating the Caenorhabditis elegans Dauer State: Standard Dauer-Formation Assay Using Synthetic Daumones and Proteomic Analysis of O-GlcNAc Modifications. Methods Cell Biol 2011; 106:445-60. [PMID: 22118287 DOI: 10.1016/b978-0-12-544172-8.00016-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
202
|
Garrity PA, Goodman MB, Samuel AD, Sengupta P. Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila. Genes Dev 2010; 24:2365-82. [PMID: 21041406 PMCID: PMC2964747 DOI: 10.1101/gad.1953710] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Like other ectotherms, the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster rely on behavioral strategies to stabilize their body temperature. Both animals use specialized sensory neurons to detect small changes in temperature, and the activity of these thermosensors governs the neural circuits that control migration and accumulation at preferred temperatures. Despite these similarities, the underlying molecular, neuronal, and computational mechanisms responsible for thermotaxis are distinct in these organisms. Here, we discuss the role of thermosensation in the development and survival of C. elegans and Drosophila, and review the behavioral strategies, neuronal circuits, and molecular networks responsible for thermotaxis behavior.
Collapse
Affiliation(s)
- Paul A. Garrity
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
- National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA
| | - Aravinthan D. Samuel
- Department of Physics and Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Piali Sengupta
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
- National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
203
|
Concise synthesis and antiangiogenic activity of artemisinin–glycolipid hybrids on chorioallantoic membranes. Bioorg Med Chem Lett 2010; 20:6858-60. [DOI: 10.1016/j.bmcl.2010.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/01/2010] [Accepted: 08/03/2010] [Indexed: 12/23/2022]
|
204
|
The developmental timing regulator HBL-1 modulates the dauer formation decision in Caenorhabditis elegans. Genetics 2010; 187:345-53. [PMID: 20980238 DOI: 10.1534/genetics.110.123992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Animals developing in the wild encounter a range of environmental conditions, and so developmental mechanisms have evolved that can accommodate different environmental contingencies. Harsh environmental conditions cause Caenorhabditis elegans larvae to arrest as stress-resistant "dauer" larvae after the second larval stage (L2), thereby indefinitely postponing L3 cell fates. HBL-1 is a key transcriptional regulator of L2 vs. L3 cell fate. Through the analysis of genetic interactions between mutations of hbl-1 and of genes encoding regulators of dauer larva formation, we find that hbl-1 can also modulate the dauer formation decision in a complex manner. We propose that dynamic interactions between genes that regulate stage-specific cell fate decisions and those that regulate dauer formation promote the robustness of developmental outcomes to changing environmental conditions.
Collapse
|
205
|
Abstract
Lifespan can be lengthened by genetic and environmental modifications. Study of these might provide valuable insights into the mechanism of aging. Low doses of radiation and short-term exposure to heat and high concentrations of oxygen prolong the lifespan of the nematode Caenorhabditis elegans. These might be caused by adaptive responses to harmful environmental conditions. Single-gene mutations have been found to extend lifespan in C. elegans, Drosophila and mice. So far, the best-characterized system is the C. elegans mutant in the daf-2, insulin/IGF-I receptor gene that is the component of the insulin/IGF-I signaling pathway. The mutant animals live twice as long as the wild type. The insulin/IGF-I signaling pathway regulates the activity of DAF-16, a FOXO transcription factor. However, the unified explanation for the function of DAF-16 transcription targets in the lifespan extension is not yet fully established. As both of the Mn superoxide dismutase (MnSOD) isoforms (sod-2 and sod-3) are found to be targets of DAF-16, we attempted to assess their functions in regulating lifespan and oxidative stress responsivity. We show that the double deletions of sod-2 and sod-3 genes induced oxidative-stress sensitivity but do not shorten lifespan in the daf-2 mutant background, indicating that oxidative stress is not necessarily a limiting factor for longevity. Furthermore, the deletion in the sod-3 gene lengthens lifespan in the daf-2 mutant. We conclude that the MnSOD systems in C. elegans fine-tune the insulin/IGF-I-signaling based regulation of longevity by acting not as anti-oxidants but as physiological-redox-signaling modulators.
Collapse
Affiliation(s)
- Yoko Honda
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | |
Collapse
|
206
|
Yamada K, Hirotsu T, Matsuki M, Butcher RA, Tomioka M, Ishihara T, Clardy J, Kunitomo H, Iino Y. Olfactory plasticity is regulated by pheromonal signaling in Caenorhabditis elegans. Science 2010; 329:1647-50. [PMID: 20929849 PMCID: PMC3021133 DOI: 10.1126/science.1192020] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Population density-dependent dispersal is a well-characterized strategy of animal behavior in which dispersal rate increases when population density is higher. Caenorhabditis elegans shows positive chemotaxis to a set of odorants, but the chemotaxis switches from attraction to dispersal after prolonged exposure to the odorants. We show here that this plasticity of olfactory behavior is dependent on population density and that this regulation is mediated by pheromonal signaling. We show that a peptide, suppressor of NEP-2 (SNET-1), negatively regulates olfactory plasticity and that its expression is down-regulated by the pheromone. NEP-2, a homolog of the extracellular peptidase neprilysin, antagonizes SNET-1, and this function is essential for olfactory plasticity. These results suggest that population density information is transmitted through the external pheromone and endogenous peptide signaling to modulate chemotactic behavior.
Collapse
Affiliation(s)
- Koji Yamada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki Hirotsu
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Masahiro Matsuki
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Rebecca A Butcher
- Department of Biological Chemistry and Molecular Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Masahiro Tomioka
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takeshi Ishihara
- Department of Biology, Graduate School of Science, Kyushu University, Fukuoka, Japan
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hirofumi Kunitomo
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yuichi Iino
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
207
|
Lesch BJ, Bargmann CI. The homeodomain protein hmbx-1 maintains asymmetric gene expression in adult C. elegans olfactory neurons. Genes Dev 2010; 24:1802-15. [PMID: 20713521 DOI: 10.1101/gad.1932610] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Differentiated neurons balance the need to maintain a stable identity with their flexible responses to dynamic environmental inputs. Here we characterize these opposing influences on gene expression in Caenorhabditis elegans olfactory neurons. Using transcriptional reporters that are expressed differentially in two olfactory neurons, AWC(ON) and AWC(OFF), we identify mutations that affect the long-term maintenance of appropriate chemoreceptor expression. A newly identified gene from this screen, the conserved transcription factor hmbx-1, stabilizes AWC gene expression in adult animals through dosage-sensitive interactions with its transcriptional targets. The late action of hmbx-1 complements the early role of the transcriptional repressor gene nsy-7: Both repress expression of multiple AWC(OFF) genes in AWC(ON) neurons, but they act at different developmental stages. Environmental signals are superimposed onto this stable cell identity through at least two different transcriptional pathways that regulate individual chemoreceptor genes: a cGMP pathway regulated by sensory activity, and a daf-7 (TGF-beta)/daf-3 (SMAD repressor) pathway regulated by specific components of the density-dependent C. elegans dauer pheromone.
Collapse
Affiliation(s)
- Bluma J Lesch
- Howard Hughes Medical Institute, Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | | |
Collapse
|
208
|
Branicky R, Desjardins D, Liu JL, Hekimi S. Lipid transport and signaling in Caenorhabditis elegans. Dev Dyn 2010; 239:1365-77. [PMID: 20151418 DOI: 10.1002/dvdy.22234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The strengths of the Caenorhabditis elegans model have been recently applied to the study of the pathways of lipid storage, transport, and signaling. As the lipid storage field has recently been reviewed, in this minireview we (1) discuss some recent studies revealing important physiological roles for lipases in mobilizing lipid reserves, (2) describe various pathways of lipid transport, with a particular focus on the roles of lipoproteins, (3) debate the utility of using C. elegans as a model for human dyslipidemias that impinge on atherosclerosis, and (4) describe several systems where lipids affect signaling, highlighting the particular properties of lipids as information-carrying molecules. We conclude that the study of lipid biology in C. elegans exemplifies the advantages afforded by a whole-animal model system where interactions between tissues and organs, and functions such as nutrient absorption, distribution, and storage, as well as reproduction can all be studied simultaneously.
Collapse
Affiliation(s)
- Robyn Branicky
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
209
|
Abstract
Caenorhabditis elegans, a free-living soil nematode, is an ideal model system for studying various physiological problems relevant to human diseases. Despite its short history, C. elegans proteomics is receiving great attention in multiple research areas, including the genome annotation, major signaling pathways (e.g. TGF-beta and insulin/IGF-1 signaling), verification of RNA interference-mediated gene targeting, aging, disease models, as well as peptidomic analysis of neuropeptides involved in behavior and locomotion. For example, a proteome-wide profiling of developmental and aging processes not only provides basic information necessary for constructing a molecular network, but also identifies important target proteins for chemical modulation. Although C. elegans has a simple body system and neural circuitry, it exhibits very complicated functions ranging from feeding to locomotion. Investigation of these functions through proteomic analysis of various C. elegans neuropeptides, some of which are not found in the predicted genome sequence, would open a new field of peptidomics. Given the importance of nematode infection in plants and mammalian pathogenesis pathways, proteomics could be applied to investigate the molecular mechanisms underlying plant- or animal-nematode pathogenesis and to identify novel antinematodal drugs. Thus, C. elegans proteomics, in combination of other molecular, biological and genetic techniques, would provide a versatile new tool box for the systematic analysis of gene functions throughout the entire life cycle of this nematode.
Collapse
Affiliation(s)
- Yhong-Hee Shim
- Department of Bioscience and Biotechnology, BMIC, Konkuk University, Gwangjin-Ku, Seoul, Korea
| | | |
Collapse
|
210
|
Wu QL, Rui Q, He KW, Shen LL, Wang DY. UNC-64 and RIC-4, the plasma membrane-associated SNAREs syntaxin and SNAP-25, regulate fat storage in nematode Caenorhabditis elegans. Neurosci Bull 2010; 26:104-16. [PMID: 20332815 DOI: 10.1007/s12264-010-9182-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To investigate whether genes required for synaptogenesis and synaptic function are also involved in fat storage control in Caenorhabditis elegans. METHODS Fat storage was examined in mutants of genes affecting the synaptogenesis and synaptic function. In addition, the genetic interactions of SNAREs syntaxin/unc-64 and SNAP-25/ric-4 with daf-2, daf-7, nhr-49, sbp-1 and mdt-15 in regulating fat storage were further investigated. The tissue-specific activities of unc-64 and ric-4 were investigated to study the roles of unc-64 and ric-4 in regulating fat storage in the nervous system and/or the intestine. RESULTS Mutations of genes required for the formation of presynaptic neurotransmission site did not obviously influence fat storage. However, among the genes required for synaptic function, the plasma membrane-associated SNAREs syntaxin/unc-64 and SNAP-25/ric-4 genes were involved in the fat storage control. Fat storage in the intestinal cells was dramatically increased in unc-64 and ric-4 mutants as revealed by Sudan Black and Nile Red strainings, although the fat droplet size was not significantly changed. Moreover, in both the nervous system and the intestine, expression of unc-64 significantly inhibited the increase in fat storage observed in unc-64 mutant. And expression of ric-4 in the nervous system completely restored fat storage in ric-4 mutant. Genetic interaction assay further indicated that both unc-64 and ric-4 regulated fat storage independently of daf-2 [encoding an insulin-like growth factor-I (IGF-I) receptor], daf-7 [encoding a transforming growth factor-beta (TGF-beta) ligand], and nhr-49 (encoding a nuclear hormone receptor). Besides, mutation of daf-16 did not obviously affect the phenotype of increased fat storage in unc-64 or ric-4 mutant. Furthermore, unc-64 and ric-4 regulated fat storage probably through the ARC105/mdt-15- and SREBP/sbp-1-mediated signaling pathways. In addition, fat storage in unc-64; ric-4 was higher than that in either unc-64 or ric-4 single mutant nematodes, suggesting that unc-64 functions in parallel with ric-4 in regulating fat storage. CONCLUSION The plasma membrane-associated SNAREs syntaxin/unc-64 and SNAP-25/ric-4 function in parallel in regulating fat storage in C. elegans, probably through the ARC105/mdt-15- and SREBP/sbp-1-mediated signaling pathways.
Collapse
Affiliation(s)
- Qiu-Li Wu
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Genetics and Developmental Biology, Southeast University Medical School, Nanjing 210009, China
| | | | | | | | | |
Collapse
|
211
|
Joo HJ, Kim KY, Yim YH, Jin YX, Kim H, Kim MY, Paik YK. Contribution of the peroxisomal acox gene to the dynamic balance of daumone production in Caenorhabditis elegans. J Biol Chem 2010; 285:29319-25. [PMID: 20610393 DOI: 10.1074/jbc.m110.122663] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dauer pheromones or daumones, which are signaling molecules that interrupt development and reproduction (dauer larvae) during unfavorable growth conditions, are essential for cellular homeostasis in Caenorhabditis elegans. According to earlier studies, dauer larva formation in strain N2 is enhanced by a temperature increase, suggesting the involvement of a temperature-dependent component in dauer pheromone biosynthesis or sensing. Several naturally occurring daumone analogs (e.g. daumones 1-3) have been identified, and these molecules are predicted to be synthesized in different physiological settings in this nematode. To elucidate the molecular regulatory system that may influence the dynamic balance of specific daumone production in response to sudden temperature changes, we characterized the peroxisomal acox gene encoding acyl-CoA oxidase, which is predicted to catalyze the first reaction during biosynthesis of the fatty acid component of daumones. Using acox-1(ok2257) mutants and a new, robust analytical method, we quantified the three most abundant daumones in worm bodies and showed that acox likely contributes to the dynamic production of various quantities of three different daumones in response to temperature increase, changes that are critical in C. elegans for coping with the natural environmental changes it faces.
Collapse
Affiliation(s)
- Hyoe-Jin Joo
- Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei Proteome Research Center, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
212
|
Bento G, Ogawa A, Sommer RJ. Co-option of the hormone-signalling module dafachronic acid-DAF-12 in nematode evolution. Nature 2010; 466:494-7. [PMID: 20592728 DOI: 10.1038/nature09164] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/06/2010] [Indexed: 11/09/2022]
Abstract
Morphological novelties are lineage-specific traits that serve new functions. Developmental polyphenisms have been proposed to be facilitators of phenotypic evolution, but little is known about the interplay between the associated genetic and environmental factors. Here, we study two alternative morphologies in the mouth of the nematode Pristionchus pacificus and the formation of teeth-like structures that are associated with bacteriovorous feeding and predatory behaviour on fungi and other worms. These teeth-like denticles represent an evolutionary novelty, which is restricted to some members of the nematode family Diplogastridae but is absent from Caenorhabditis elegans and related nematodes. We show that the mouth dimorphism is a polyphenism that is controlled by starvation and the co-option of an endocrine switch mechanism. Mutations in the nuclear hormone receptor DAF-12 and application of its ligand, the sterol hormone dafachronic acid, strongly influence this switch mechanism. The dafachronic acid-DAF-12 module has been shown to control the formation of arrested dauer larvae in both C. elegans and P. pacificus, as well as related life-history decisions in distantly related nematodes. The comparison of dauer formation and mouth morphology switch reveals that different thresholds of dafachronic acid signalling provide specificity. This study shows how hormonal signalling acts by coupling environmental change and genetic regulation and identifies dafachronic acid as a key hormone in nematode evolution.
Collapse
Affiliation(s)
- Gilberto Bento
- Department for Evolutionary Biology, Max-Planck-Institute for Developmental Biology, Spemannstrasse 37; D-72076 Tübingen, Germany
| | | | | |
Collapse
|
213
|
Lee J, Kim KY, Lee J, Paik YK. Regulation of Dauer formation by O-GlcNAcylation in Caenorhabditis elegans. J Biol Chem 2010; 285:2930-9. [PMID: 19940149 PMCID: PMC2823417 DOI: 10.1074/jbc.m109.022665] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 11/15/2009] [Indexed: 11/06/2022] Open
Abstract
Modification of proteins at serine or threonine residues with N-acetylglucosamine, termed O-GlcNAcylation, plays an important role in most eukaryotic cells. To understand the molecular mechanism by which O-GlcNAcylation regulates the entry of Caenorhabditis elegans into the non-aging dauer state, we performed proteomic studies using two mutant strains: the O-GlcNAc transferase-deficient ogt-1(ok430) strain and the O-GlcNAcase-defective oga-1(ok1207) strain. In the presence of the dauer pheromone daumone, ogt-1 showed suppression of dauer formation, whereas oga-1 exhibited enhancement of dauer formation. Consistent with these findings, treatment of wild-type N2 worms with low concentrations of daumone and the O-GlcNAcase inhibitor O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc) enhanced dauer formation, which was dependent on intact O-GlcNAcylation metabolism. We also found that the treatment of daumone enhanced O-GlcNAcylation in vivo. Seven proteins, identified by coupled two-dimensional electrophoresis/liquid chromatography-mass spectroscopy (LC-MS) analysis, were differentially expressed in oga-1(ok1207) worms compared with wild-type N2 worms. The identities of these proteins suggest that O- GlcNAcylation influences stress resistance, protein folding, and mitochondrial function. Using O-GlcNAc labeling with fluorescent dye combined with two-dimensional electrophoresis/LC-MS analysis, we also identified five proteins that were differentially O-GlcNAcylated during dauer formation. Analysis of these candidate O-GlcNAcylated proteins suggests that O-GlcNAcylation may regulate cytoskeleton modifications and protein turnover during dauer formation.
Collapse
Affiliation(s)
- Jeeyong Lee
- From the Yonsei Proteome Research Center and
| | | | - Jihyun Lee
- From the Yonsei Proteome Research Center and
| | - Young-Ki Paik
- From the Yonsei Proteome Research Center and
- the Department of Biochemistry and Biomedical Science, World Class University Program, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
214
|
Chasnov JR. The evolution from females to hermaphrodites results in a sexual conflict over mating in androdioecious nematode worms and clam shrimp. J Evol Biol 2010; 23:539-56. [PMID: 20074309 DOI: 10.1111/j.1420-9101.2009.01919.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nematode worm Caenorhabditis elegans and the clam shrimp Eulimnadia texana are two well-studied androdioecious species consisting mostly of self-fertilizing hermaphrodites and few males. To understand how androdioecy can evolve, a simple two-step mathematical model of the evolutionary pathway from a male-female species to a selfing-hermaphrodite species is constructed. First, the frequency of mutant females capable of facultative self-fertilization increases if the benefits of reproductive assurance exceed the cost. Second, hermaphrodites become obligate self-fertilizers if the fitness of selfed offspring exceeds one-half the fitness of outcrossed offspring. Genetic considerations specific to C. elegans and E. texana show that males may endure as descendants of the ancestral male-female species. These models combined with an extensive literature review suggest a sexual conflict over mating in these androdioecious species: selection favours hermaphrodites that self and males that outcross. The strength of selection on hermaphrodites and males differs, however. Males that fail to outcross suffer a genetic death. Hermaphrodites may never encounter a rare male, and those that do and outcross only bear less fecund offspring. This asymmetric sexual conflict results in an evolutionary stand-off: rare, but persistent males occasionally fertilize common, but reluctant hermaphrodites. A consequence of this stand-off may be an increase in the longevity of the androdioecious mating system.
Collapse
Affiliation(s)
- J R Chasnov
- Department of Mathematics, Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
215
|
Affiliation(s)
- Akira Ogawa
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | | |
Collapse
|
216
|
Martin R, Entchev EV, Kurzchalia TV, Knölker HJ. Steroid hormones controlling the life cycle of the nematode Caenorhabditis elegans: stereoselective synthesis and biology. Org Biomol Chem 2010; 8:739-50. [DOI: 10.1039/b918488k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
217
|
La Clair JJ. Natural product mode of action (MOA) studies: a link between natural and synthetic worlds. Nat Prod Rep 2010; 27:969-95. [DOI: 10.1039/b909989c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
218
|
Kim K, Sato K, Shibuya M, Zeiger DM, Butcher RA, Ragains JR, Clardy J, Touhara K, Sengupta P. Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans. Science 2009; 326:994-8. [PMID: 19797623 PMCID: PMC4448937 DOI: 10.1126/science.1176331] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intraspecific chemical communication is mediated by signals called pheromones. Caenorhabditis elegans secretes a mixture of small molecules (collectively termed dauer pheromone) that regulates entry into the alternate dauer larval stage and also modulates adult behavior via as yet unknown receptors. Here, we identify two heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) that mediate dauer formation in response to a subset of dauer pheromone components. The SRBC-64 and SRBC-66 GPCRs are members of the large Caenorhabditis-specific SRBC subfamily and are expressed in the ASK chemosensory neurons, which are required for pheromone-induced dauer formation. Expression of both, but not each receptor alone, confers pheromone-mediated effects on heterologous cells. Identification of dauer pheromone receptors will allow a better understanding of the signaling cascades that transduce the context-dependent effects of ecologically important chemical signals.
Collapse
Affiliation(s)
- Kyuhyung Kim
- Department of Biology and National Center for Behavioral Genomics Brandeis University, Waltham, MA 02454
| | - Koji Sato
- Department of Integrated Biosciences, University of Tokyo Chiba, Japan
| | - Mayumi Shibuya
- Department of Biology and National Center for Behavioral Genomics Brandeis University, Waltham, MA 02454
| | - Danna M. Zeiger
- Department of Biology and National Center for Behavioral Genomics Brandeis University, Waltham, MA 02454
| | - Rebecca A. Butcher
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115
| | - Justin R. Ragains
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115
| | - Kazushige Touhara
- Department of Integrated Biosciences, University of Tokyo Chiba, Japan
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics Brandeis University, Waltham, MA 02454
| |
Collapse
|
219
|
Brey CW, Nelder MP, Hailemariam T, Gaugler R, Hashmi S. Krüppel-like family of transcription factors: an emerging new frontier in fat biology. Int J Biol Sci 2009; 5:622-36. [PMID: 19841733 PMCID: PMC2757581 DOI: 10.7150/ijbs.5.622] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 09/28/2009] [Indexed: 12/26/2022] Open
Abstract
In mammals, adipose tissue stores energy in the form of fat. The ability to regulate fat storage is essential for the growth, development and reproduction of most animals, thus any abnormalities caused by excess fat accumulation can result in pathological conditions which are linked to several interrelated diseases, such as cardiovascular diseases, diabetes, and obesity. In recent years significant effort has been applied to understand basic mechanism of fat accumulation in mammalian system. Work in mouse has shown that the family of Krüppel-like factors (KLFs), a conserved and important class of transcription factors, regulates adipocyte differentiation in mammals. However, how fat storage is coordinated in response to positive and negative feedback signals is still poorly understood. To address mechanisms underlying fat storage we have studied two Caenorhabditis elegans KLFs and demonstrate that both worm klfs are key regulators of fat metabolism in C. elegans. These results provide the first in vivo evidence supporting essential regulatory roles for KLFs in fat metabolism in C. elegans and shed light on the human counterpart in disease-gene association. This finding allows us to pursue a more comprehensive approach to understand fat biology and provides an opportunity to learn about the cascade of events that regulate KLF activation, repression and interaction with other factors in exerting its biological function at an organismal level. In this review, we provide an overview of the most current information on the key regulatory components in fat biology, synthesize the diverse literature, pose new questions, and propose a new model organism for understanding fat biology using KLFs as the central theme.
Collapse
Affiliation(s)
- Christopher W Brey
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | | | | | | | |
Collapse
|
220
|
Wang Y, Ezemaduka AN, Tang Y, Chang Z. Understanding the mechanism of the dormant dauer formation of C. elegans: from genetics to biochemistry. IUBMB Life 2009; 61:607-12. [PMID: 19472183 DOI: 10.1002/iub.211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dauer is a dormancy state that may occur at the end of developmental stage L1 or L2 of Caenorhabditis elegans when the environmental conditions are unfavorable (e.g., lack of food, high temperature, or overcrowding) for further growth. Dauer is a nonaging duration that does not affect the postdauer adult lifespan. Major molecular events would include the sensing of the environmental cues, the transduction of the signals into the cells, and the subsequent integration of the signals that result in the corresponding alteration of the metabolism and morphology of the organism. Genetics approach has been effectively used in identifying many of the so-called daf genes involved in dauer formation using C. elegans as the model. Nevertheless, biochemical studies at the protein and metabolic level has been lacking behind in understanding this important life phenomenon. This review focuses on the biochemical understanding so far achieved on dauer formation and dormancy in general, as well as important issues that need to be addressed in the future.
Collapse
Affiliation(s)
- Yunbiao Wang
- National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Center for Protein Science, Peking University, Beijing, China
| | | | | | | |
Collapse
|
221
|
Bacterial attraction and quorum sensing inhibition in Caenorhabditis elegans exudates. J Chem Ecol 2009; 35:878-92. [PMID: 19649780 DOI: 10.1007/s10886-009-9670-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 07/06/2009] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
Abstract
Caenorhabditis elegans, a bacterivorous nematode, lives in complex rotting fruit, soil, and compost environments, and chemical interactions are required for mating, monitoring population density, recognition of food, avoidance of pathogenic microbes, and other essential ecological functions. Despite being one of the best-studied model organisms in biology, relatively little is known about the signals that C. elegans uses to interact chemically with its environment or as defense. C. elegans exudates were analyzed by using several analytical methods and found to contain 36 common metabolites that include organic acids, amino acids, and sugars, all in relatively high abundance. Furthermore, the concentrations of amino acids in the exudates were dependent on developmental stage. The C. elegans exudates were tested for bacterial chemotaxis using Pseudomonas putida (KT2440), a plant growth promoting rhizobacterium, Pseudomonas aeruginosa (PAO1), a soil bacterium pathogenic to C. elegans, and Escherichia coli (OP50), a non-motile bacterium tested as a control. The C. elegans exudates attracted the two Pseudomonas species, but had no detectable antibacterial activity against P. aeruginosa. To our surprise, the exudates of young adult and adult life stages of C. elegans exudates inhibited quorum sensing in the reporter system based on the LuxR bacterial quorum sensing (QS) system, which regulates bacterial virulence and other factors in Vibrio fischeri. We were able to fractionate the QS inhibition and bacterial chemotaxis activities, thus demonstrating that these activities are chemically distinct. Our results demonstrate that C. elegans can attract its bacterial food and has the potential of partially regulating the virulence of bacterial pathogens by inhibiting specific QS systems.
Collapse
|
222
|
Hahm JH, Kim S, Paik YK. Endogenous cGMP regulates adult longevity via the insulin signaling pathway in Caenorhabditis elegans. Aging Cell 2009; 8:473-83. [PMID: 19489741 DOI: 10.1111/j.1474-9726.2009.00495.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
G-proteins, including GPA-3, play an important role in regulating physiological responses in Caenorhabditis elegans. When confronted with an environmental stimulus such as dauer pheromone, or poor nutrients, C. elegans receives and integrates external signals through its nervous system (i.e. amphid neurons), which interprets and translates them into biological action. Here it is shown that a suppressed neuronal cGMP level caused by GPA-3 activation leads to a significant increase (47.3%) in the mean lifespan of adult C. elegans through forkhead transcription factor family O (FOXO)-mediated signal. A reduced neuronal cGMP level was found to be caused by an increased cGMP-specific phosphodiesterase activity at the transcriptional level. Our results using C. elegans mutants with specific deficits in TGF-beta and FOXO RNAi system suggest a mechanism in that cGMP, TGF-beta, and FOXO signaling interact to differentially produce the insulin-like molecules, ins-7 and daf-28, causing suppression of the insulin/IGF-1 pathway and promoting lifespan extension. Our findings provide not only a new mechanism of cGMP-mediated induction of longevity in adult C. elegans but also a possible therapeutic strategy for neuronal disease, which has been likened to brain diabetes.
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Department of Biochemistry, Yonsei Proteome Research Center, Yonsei University, Seoul, Korea
| | | | | |
Collapse
|
223
|
Jung M, Lee Y, Moon HI, Jung Y, Jung H, Oh M. Total synthesis and anticancer activity of highly potent novel glycolipid derivatives. Eur J Med Chem 2009; 44:3120-9. [DOI: 10.1016/j.ejmech.2009.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 03/06/2009] [Accepted: 03/07/2009] [Indexed: 11/25/2022]
|
224
|
Edison AS. Caenorhabditis elegans pheromones regulate multiple complex behaviors. Curr Opin Neurobiol 2009; 19:378-88. [PMID: 19665885 PMCID: PMC2779695 DOI: 10.1016/j.conb.2009.07.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/10/2009] [Accepted: 07/12/2009] [Indexed: 10/20/2022]
Abstract
A family of small molecules called ascarosides act as pheromones to control multiple behaviors in the nematode Caenorhabditis elegans. At picomolar concentrations, a synergistic mixture of at least three ascarosides produced by hermaphrodites causes male-specific attraction. At higher concentrations, the same ascarosides, perhaps in a different mixture, induce the developmentally arrested stage known as dauer. The production of ascarosides is strongly dependent on environmental conditions, although relatively little is known about the major variables and mechanisms of their regulation. Thus, male mating and dauer formation are linked through a common set of small molecules whose expression is sensitive to a given microenvironment, suggesting a model by which ascarosides regulate the overall life cycle of C. elegans.
Collapse
Affiliation(s)
- Arthur S Edison
- Box 100245, Department of Biochemistry & Molecular Biology, McKnight Brain Institute, and National High Magnetic Field Laboratory, University of Florida, Gainesville, FL 32610-0245, USA.
| |
Collapse
|
225
|
Caenorhabditis elegans utilizes dauer pheromone biosynthesis to dispose of toxic peroxisomal fatty acids for cellular homoeostasis. Biochem J 2009; 422:61-71. [DOI: 10.1042/bj20090513] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Caenorhabditis elegans excretes a dauer pheromone or daumone composed of ascarylose and a fatty acid side chain, the perception of which enables worms to enter the dauer state for long-term survival in an adverse environment. During the course of elucidation of the daumone biosynthetic pathway in which DHS-28 and DAF-22 are involved in peroxisomal β-oxidation of VLCFAs (very long-chain fatty acids), we sought to investigate the physiological consequences of a deficiency in daumone biosynthesis in C. elegans. Our results revealed that two mutants, dhs-28(tm2581) and daf-22(ok693), lacked daumones and thus were dauer defective; this coincided with massive accumulation of fatty acyl-CoAs (up to 100-fold) inside worm bodies compared with levels in wild-type N2 worms. Furthermore, the deficiency in daumone biosynthesis and the massive accumulation of fatty acids and their acyl-CoAs caused severe developmental defects with reduced life spans (up to 30%), suggesting that daumone biosynthesis is be an essential part of C. elegans homoeostasis, affecting survival and maintenance of optimal physiological conditions by metabolizing some of the toxic non-permissible peroxisomal VLCFAs from the worm body in the form of readily excretable daumones.
Collapse
|
226
|
Harvey SC, Barker GLA, Shorto A, Viney ME. Natural variation in gene expression in the early development of dauer larvae of Caenorhabditis elegans. BMC Genomics 2009; 10:325. [PMID: 19615088 PMCID: PMC2907687 DOI: 10.1186/1471-2164-10-325] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 07/18/2009] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The free-living nematode Caenorhabditis elegans makes a developmental decision based on environmental conditions: larvae either arrest as dauer larva, or continue development into reproductive adults. There is natural variation among C. elegans lines in the sensitivity of this decision to environmental conditions; that is, there is variation in the phenotypic plasticity of dauer larva development. We hypothesised that these differences may be transcriptionally controlled in early stage larvae. We investigated this by microarray analysis of different C. elegans lines under different environmental conditions, specifically the presence and absence of dauer larva-inducing pheromone. RESULTS There were substantial transcriptional differences between four C. elegans lines under the same environmental conditions. The expression of approximately 2,000 genes differed between genetically different lines, with each line showing a largely line-specific transcriptional profile. The expression of genes that are markers of larval moulting suggested that the lines may be developing at different rates. The expression of a total of 89 genes was putatively affected by dauer larva or non-dauer larva-inducing conditions. Among the upstream regions of these genes there was an over-representation of DAF-16-binding motifs. CONCLUSION Under the same environmental conditions genetically different lines of C. elegans had substantial transcriptional differences. This variation may be due to differences in the developmental rates of the lines. Different environmental conditions had a rather smaller effect on transcription. The preponderance of DAF-16-binding motifs upstream of these genes was consistent with these genes playing a key role in the decision between development into dauer or into non-dauer larvae. There was little overlap between the genes whose expression was affected by environmental conditions and previously identified loci involved in the plasticity of dauer larva development.
Collapse
Affiliation(s)
- Simon C Harvey
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
- Department of Geographical and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Gary LA Barker
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | - Alison Shorto
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| | - Mark E Viney
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol, BS8 1UG, UK
| |
Collapse
|
227
|
Butcher RA, Ragains JR, Clardy J. An indole-containing dauer pheromone component with unusual dauer inhibitory activity at higher concentrations. Org Lett 2009; 11:3100-3. [PMID: 19545143 PMCID: PMC2726967 DOI: 10.1021/ol901011c] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In Caenorhabditis elegans, the dauer pheromone, which consists of a number of derivatives of the 3,6-dideoxysugar ascarylose, is the primary cue for entry into the stress-resistant, "nonaging" dauer larval stage. Here, using activity-guided fractionation and NMR-based structure elucidation, a structurally novel, indole-3-carboxyl-modified ascaroside is identified that promotes dauer formation at low nanomolar concentrations but inhibits dauer formation at higher concentrations.
Collapse
Affiliation(s)
- Rebecca A. Butcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Justin R. Ragains
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
228
|
Harvey SC. Non-dauer larval dispersal in Caenorhabditis elegans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:224-30. [PMID: 19288538 DOI: 10.1002/jez.b.21287] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Species that exploit transient food patches must both effectively utilize such food sources and colonize new patches. The timing and rate of dispersal from existing patches and adaptations that aid dispersal are therefore crucial. Currently, no system exists in which dispersal has been investigated at both the ecological and genetic levels. The extensively studied model nematode Caenorhabditis elegans is potentially such a system. Dispersal between food patches in C. elegans has been found to be related to polymorphism in the npr-1 gene, which regulates the tendency of worms to aggregate on food. Here I show that this non-dauer larval dispersal is affected by various environmental variables and that variation is not fully explained by differences in aggregation behavior. Quantitative trait loci mapping identifies candidate genomic regions, separate to npr-1, which affect variation in dispersal between two isolates. These data suggest that the ecology of C. elegans is more complex than previously thought, but indicate that it is experimentally tractable.
Collapse
Affiliation(s)
- Simon C Harvey
- Department of Geographical and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom.
| |
Collapse
|
229
|
Hannich JT, Entchev EV, Mende F, Boytchev H, Martin R, Zagoriy V, Theumer G, Riezman I, Riezman H, Knölker HJ, Kurzchalia TV. Methylation of the sterol nucleus by STRM-1 regulates dauer larva formation in Caenorhabditis elegans. Dev Cell 2009; 16:833-43. [PMID: 19531354 DOI: 10.1016/j.devcel.2009.04.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 02/24/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
In response to pheromone(s), Caenorhabditis elegans interrupts its reproductive life cycle and enters diapause as a stress-resistant dauer larva. This decision is governed by a complex system of neuronal and hormonal regulation. All the signals converge onto the nuclear hormone receptor DAF-12. A sterol-derived hormone, dafachronic acid (DA), supports reproductive development by binding to DAF-12 and inhibiting its dauer-promoting activity. Here, we identify a methyltransferase, STRM-1, that modulates DA levels and thus dauer formation. By modifying the substrates that are used for the synthesis of DA, STRM-1 can reduce the amount of hormone produced. Loss of STRM-1 function leads to elevated levels of DA and inefficient dauer formation. Sterol methylation was not previously recognized as a mechanism for regulating hormone activity. Moreover, the C-4 sterol nucleus methylation catalyzed by STRM-1 is unique to nematodes and thus could be a target for therapeutic strategies against parasitic nematode infections.
Collapse
Affiliation(s)
- J Thomas Hannich
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Yang J, Wang S, Lorrain MJ, Rho D, Abokitse K, Lau PCK. Bioproduction of lauryl lactone and 4-vinyl guaiacol as value-added chemicals in two-phase biotransformation systems. Appl Microbiol Biotechnol 2009; 84:867-76. [DOI: 10.1007/s00253-009-2026-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 11/29/2022]
|
231
|
Pungaliya C, Srinivasan J, Fox BW, Malik RU, Ludewig AH, Sternberg PW, Schroeder FC. A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2009; 106:7708-13. [PMID: 19346493 PMCID: PMC2683085 DOI: 10.1073/pnas.0811918106] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2008] [Indexed: 11/18/2022] Open
Abstract
Small molecule metabolites play important roles in Caenorhabditis elegans biology, but effective approaches for identifying their chemical structures are lacking. Recent studies revealed that a family of glycosides, the ascarosides, differentially regulate C. elegans development and behavior. Low concentrations of ascarosides attract males and thus appear to be part of the C. elegans sex pheromone, whereas higher concentrations induce developmental arrest at the dauer stage, an alternative, nonaging larval stage. The ascarosides act synergistically, which presented challenges for their identification via traditional activity-guided fractionation. As a result the chemical characterization of the dauer and male attracting pheromones remained incomplete. Here, we describe the identification of several additional pheromone components by using a recently developed NMR-spectroscopic approach, differential analysis by 2D NMR spectroscopy (DANS), which simplifies linking small molecule metabolites with their biological function. DANS-based comparison of wild-type C. elegans and a signaling-deficient mutant, daf-22, enabled identification of 3 known and 4 previously undescribed ascarosides, including a compound that features a p-aminobenzoic acid subunit. Biological testing of synthetic samples of these compounds revealed additional evidence for synergy and provided insights into structure-activity relationships. Using a combination of the three most active ascarosides allowed full reconstitution of the male-attracting activity of wild-type pheromone extract. Our results highlight the efficacy of DANS as a method for identifying small-molecule metabolites and placing them within a specific genetic context. This study further supports the hypothesis that ascarosides represent a structurally diverse set of nematode signaling molecules regulating major life history traits.
Collapse
Affiliation(s)
- Chirag Pungaliya
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; and
| | - Jagan Srinivasan
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Bennett W. Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; and
| | - Rabia U. Malik
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; and
| | - Andreas H. Ludewig
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; and
| | - Paul W. Sternberg
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, CA 91125
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853; and
| |
Collapse
|
232
|
|
233
|
|
234
|
Abstract
Although Caenorhabditis elegans lacks several components of the de novo sterol biosynthetic pathway, it requires sterols as essential nutrients. Supplemental cholesterol undergoes extensive enzymatic modification in C. elegans to form certain sterols of unknown function. Since sterol metabolism in C. elegans differs from that in other species, such as mammals and yeast, it is important to examine how sterols regulate worm physiology. To examine the functions of sterols in C. elegans, a sterol-feeding experiment was carried out and several critical parameters, such as brood size, growth rate, and life span, were measured. In addition, the change in lipid distribution in C. elegans can be both qualitatively and quantitatively determined by various methods, including staining and chromatographic techniques. Taken together, the effects of sterols on C. elegans are very prominent and can be easily assessed using the techniques described here.
Collapse
|
235
|
Butcher RA, Ragains JR, Li W, Ruvkun G, Clardy J, Mak HY. Biosynthesis of the Caenorhabditis elegans dauer pheromone. Proc Natl Acad Sci U S A 2009; 106:1875-9. [PMID: 19174521 PMCID: PMC2631283 DOI: 10.1073/pnas.0810338106] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Indexed: 11/18/2022] Open
Abstract
To sense its population density and to trigger entry into the stress-resistant dauer larval stage, Caenorhabditis elegans uses the dauer pheromone, which consists of ascaroside derivatives with short, fatty acid-like side chains. Although the dauer pheromone has been studied for 25 years, its biosynthesis is completely uncharacterized. The daf-22 mutant is the only known mutant defective in dauer pheromone production. Here, we show that daf-22 encodes a homolog of human sterol carrier protein SCPx, which catalyzes the final step in peroxisomal fatty acid beta-oxidation. We also show that dhs-28, which encodes a homolog of the human d-bifunctional protein that acts just upstream of SCPx, is also required for pheromone production. Long-term daf-22 and dhs-28 cultures develop dauer-inducing activity by accumulating less active, long-chain fatty acid ascaroside derivatives. Thus, daf-22 and dhs-28 are required for the biosynthesis of the short-chain fatty acid-derived side chains of the dauer pheromone and link dauer pheromone production to metabolic state.
Collapse
Affiliation(s)
- Rebecca A. Butcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Justin R. Ragains
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Weiqing Li
- Department of Biological Structure, University of Washington, Seattle, WA 98195
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Ho Yi Mak
- Stowers Institute for Medical Research, Kansas City, MO 64110; and
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| |
Collapse
|
236
|
Kleemann GA, Murphy CT. The endocrine regulation of aging in Caenorhabditis elegans. Mol Cell Endocrinol 2009; 299:51-7. [PMID: 19059305 DOI: 10.1016/j.mce.2008.10.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 10/13/2008] [Accepted: 10/30/2008] [Indexed: 01/29/2023]
Abstract
In recent years, there has been significant growth in our understanding of the regulation of longevity. The most notable change is the identification and detailed description of a number of molecular pathways modulating the rate of aging. A good portion of this new data has come from studies using the genetic model organism Caenorhabditis elegans. In this review, we provide an overview of physiological systems that are involved in the modulation of aging in C. elegans, then discuss the known endocrine signaling systems that are likely to couple these systems together. Finally, we present a working model describing how aging may be regulated as a coordinated system, communicating through endocrine signals.
Collapse
Affiliation(s)
- G A Kleemann
- Lewis-Sigler Institute for Integrative Genomics and Dept. of Molecular Biology, Princeton University, 148 Carl Icahn Lab, Washington Road, Princeton, NJ 08544, United States
| | | |
Collapse
|
237
|
Effects of a Caenorhabditis elegans Dauer Pheromone Ascaroside on Physiology and Signal Transduction Pathways. J Chem Ecol 2009; 35:272-9. [DOI: 10.1007/s10886-009-9599-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/17/2008] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
|
238
|
Ogawa A, Streit A, Antebi A, Sommer RJ. A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Curr Biol 2009; 19:67-71. [PMID: 19110431 PMCID: PMC2712670 DOI: 10.1016/j.cub.2008.11.063] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 11/21/2008] [Accepted: 11/24/2008] [Indexed: 11/27/2022]
Abstract
Under harsh environmental conditions, Caenorhabditis elegans larvae undergo arrest and form dauer larvae that can attach to other animals to facilitate dispersal. It has been argued that this phenomenon, called phoresy, represents an intermediate step toward parasitism. Indeed, parasitic nematodes invade their hosts as infective larvae, a stage that shows striking morphological similarities to dauer larvae. Although the molecular regulation of dauer entry in C. elegans involves insulin and TGF-beta signaling, studies of TGF-beta orthologs in parasitic nematodes didn't provide evidence for a common origin of dauer and infective larvae. To identify conserved regulators between Caenorhabditis and parasitic nematodes, we used an evolutionary approach involving Pristionchus pacificus as an intermediate. We show by mutational and pharmacological analysis that Pristionchus and Caenorhabditis share the dafachronic acid-DAF-12 system as the core endocrine module for dauer formation. One dafachronic acid, Delta7-DA, has a conserved role in the mammalian parasite Strongyloides papillosus by controlling entry into the infective stage. Application of Delta7-DA blocks formation of infective larvae and results in free-living animals. Conservation of this small molecule ligand represents a fundamental link between dauer and infective larvae and might provide a general strategy for nematode parasitism.
Collapse
Affiliation(s)
- Akira Ogawa
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37; D-72076 Tübingen, Germany
| | - Adrian Streit
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37; D-72076 Tübingen, Germany
| | - Adam Antebi
- Baylor College of Medicine, Huffington Center on Aging, Department of Molecular and Cellular Biology, One Baylor Plaza, Houston, TX 77030, USA
| | - Ralf J. Sommer
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstrasse 37; D-72076 Tübingen, Germany
| |
Collapse
|
239
|
Molecular time-course and the metabolic basis of entry into dauer in Caenorhabditis elegans. PLoS One 2009; 4:e4162. [PMID: 19129915 PMCID: PMC2612749 DOI: 10.1371/journal.pone.0004162] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 11/05/2008] [Indexed: 12/02/2022] Open
Abstract
When Caenorhabditis elegans senses dauer pheromone (daumone), signaling inadequate growth conditions, it enters the dauer state, which is capable of long-term survival. However, the molecular pathway of dauer entry in C. elegans has remained elusive. To systematically monitor changes in gene expression in dauer paths, we used a DNA microarray containing 22,625 gene probes corresponding to 22,150 unique genes from C. elegans. We employed two different paths: direct exposure to daumone (Path 1) and normal growth media plus liquid culture (Path 2). Our data reveal that entry into dauer is accomplished through the multi-step process, which appears to be compartmentalized in time and according to metabolic flux. That is, a time-course of dauer entry in Path 1 shows that dauer larvae formation begins at post-embryonic stage S4 (48 h) and is complete at S6 (72 h). Our results also suggest the presence of a unique adaptive metabolic control mechanism that requires both stage-specific expression of specific genes and tight regulation of different modes of fuel metabolite utilization to sustain the energy balance in the context of prolonged survival under adverse growth conditions. It is apparent that worms entering dauer stage may rely heavily on carbohydrate-based energy reserves, whereas dauer larvae utilize fat or glyoxylate cycle-based energy sources. We created a comprehensive web-based dauer metabolic database for C. elegans (www.DauerDB.org) that makes it possible to search any gene and compare its relative expression at a specific stage, or evaluate overall patterns of gene expression in both paths. This database can be accessed by the research community and could be widely applicable to other related nematodes as a molecular atlas.
Collapse
|
240
|
|
241
|
High nucleotide divergence in developmental regulatory genes contrasts with the structural elements of olfactory pathways in caenorhabditis. Genetics 2008; 181:1387-97. [PMID: 19001295 DOI: 10.1534/genetics.107.082651] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Almost all organismal function is controlled by pathways composed of interacting genetic components. The relationship between pathway structure and the evolution of individual pathway components is not completely understood. For the nematode Caenorhabditis elegans, chemosensory pathways regulate critical aspects of an individual's life history and development. To help understand how olfaction evolves in Caenorhabditis and to examine patterns of gene evolution within transduction pathways in general, we analyzed nucleotide variation within and between species across two well-characterized olfactory pathways, including regulatory genes controlling the fate of the cells in which the pathways are expressed. In agreement with previous studies, we found much higher levels of polymorphism within C. remanei than within the related species C. elegans and C. briggsae. There are significant differences in the rates of nucleotide evolution for genes across the two pathways but no particular association between evolutionary rate and gene position, suggesting that the evolution of functional pathways must be considered within the context of broader gene network structure. However, developmental regulatory genes show both higher levels of divergence and polymorphism than the structural genes of the pathway. These results show that, contrary to the emerging paradigm in the evolution of development, important structural changes can accumulate in transcription factors.
Collapse
|
242
|
van der Linden AM, Wiener S, You YJ, Kim K, Avery L, Sengupta P. The EGL-4 PKG acts with KIN-29 salt-inducible kinase and protein kinase A to regulate chemoreceptor gene expression and sensory behaviors in Caenorhabditis elegans. Genetics 2008; 180:1475-91. [PMID: 18832350 PMCID: PMC2581950 DOI: 10.1534/genetics.108.094771] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 09/15/2008] [Indexed: 11/18/2022] Open
Abstract
The regulation of chemoreceptor (CR) gene expression by environmental signals and internal cues may contribute to the modulation of multiple physiological processes and behavior in Caenorhabditis elegans. We previously showed that KIN-29, a homolog of salt-inducible kinase, acts in sensory neurons to regulate the expression of a subset of CR genes, as well as sensory behaviors. Here we show that the cGMP-dependent protein kinase EGL-4 acts partly in parallel with KIN-29 to regulate CR gene expression. Sensory inputs inhibit both EGL-4 and KIN-29 functions, and KIN-29 function is inhibited in turn by cAMP-dependent protein kinase (PKA) activation. EGL-4 and KIN-29 regulate CR gene expression by antagonizing the gene repression functions of the class II HDAC HDA-4 and the MEF-2 transcription factor, and KIN-29, EGL-4, and PKA target distinct residues in HDA-4 to regulate its function and subcellular localization. While KIN-29 acts primarily via MEF-2/HDA-4 to regulate additional sensory signal-regulated physiological processes and behaviors, EGL-4 acts via both MEF-2-dependent and -independent pathways. Our results suggest that integration of complex sensory inputs via multiple signaling pathways allows animals to precisely regulate sensory gene expression, thereby appropriately modulating physiology and behavior.
Collapse
|
243
|
Butcher RA, Ragains JR, Kim E, Clardy J. A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components. Proc Natl Acad Sci U S A 2008; 105:14288-92. [PMID: 18791072 PMCID: PMC2567175 DOI: 10.1073/pnas.0806676105] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Indexed: 11/18/2022] Open
Abstract
In the model organism Caenorhabditis elegans, the dauer pheromone is the primary cue for entry into the developmentally arrested, dauer larval stage. The dauer is specialized for survival under harsh environmental conditions and is considered "nonaging" because larvae that exit dauer have a normal life span. C. elegans constitutively secretes the dauer pheromone into its environment, enabling it to sense its population density. Several components of the dauer pheromone have been identified as derivatives of the dideoxy sugar ascarylose, but additional unidentified components of the dauer pheromone contribute to its activity. Here, we show that an ascaroside with a 3-hydroxypropionate side chain is a highly potent component of the dauer pheromone that acts synergistically with previously identified components. Furthermore, we show that the active dauer pheromone components that are produced by C. elegans vary depending on cultivation conditions. Identifying the active components of the dauer pheromone, the conditions under which they are produced, and their mechanisms of action will greatly extend our understanding of how chemosensory cues from the environment can influence such fundamental processes as development, metabolism, and aging in nematodes and in higher organisms.
Collapse
Affiliation(s)
- Rebecca A. Butcher
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Justin R. Ragains
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Edward Kim
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
244
|
Srinivasan J, Kaplan F, Ajredini R, Zachariah C, Alborn HT, Teal PEA, Malik RU, Edison AS, Sternberg PW, Schroeder FC. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 2008; 454:1115-8. [PMID: 18650807 PMCID: PMC2774729 DOI: 10.1038/nature07168] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 06/13/2008] [Indexed: 11/09/2022]
Abstract
In many organisms, population-density sensing and sexual attraction rely on small-molecule-based signalling systems. In the nematode Caenorhabditis elegans, population density is monitored through specific glycosides of the dideoxysugar ascarylose (the 'ascarosides') that promote entry into an alternative larval stage, the non-feeding and highly persistent dauer stage. In addition, adult C. elegans males are attracted to hermaphrodites by a previously unidentified small-molecule signal. Here we show, by means of combinatorial activity-guided fractionation of the C. elegans metabolome, that the mating signal consists of a synergistic blend of three dauer-inducing ascarosides, which we call ascr#2, ascr#3 and ascr#4. This blend of ascarosides acts as a potent male attractant at very low concentrations, whereas at the higher concentrations required for dauer formation the compounds no longer attract males and instead deter hermaphrodites. The ascarosides ascr#2 and ascr#3 carry different, but overlapping, information, as ascr#3 is more potent as a male attractant than ascr#2, whereas ascr#2 is slightly more potent than ascr#3 in promoting dauer formation. We demonstrate that ascr#2, ascr#3 and ascr#4 are strongly synergistic, and that two types of neuron, the amphid single-ciliated sensory neuron type K (ASK) and the male-specific cephalic companion neuron (CEM), are required for male attraction by ascr#3. On the basis of these results, male attraction and dauer formation in C. elegans appear as alternative behavioural responses to a common set of signalling molecules. The ascaroside signalling system thus connects reproductive and developmental pathways and represents a unique example of structure- and concentration-dependent differential activity of signalling molecules.
Collapse
Affiliation(s)
- Jagan Srinivasan
- Howard Hughes Medical Institute and Biology Division, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
246
|
Reiner DJ, Ailion M, Thomas JH, Meyer BJ. C. elegans anaplastic lymphoma kinase ortholog SCD-2 controls dauer formation by modulating TGF-beta signaling. Curr Biol 2008; 18:1101-9. [PMID: 18674914 PMCID: PMC3489285 DOI: 10.1016/j.cub.2008.06.060] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 06/23/2008] [Accepted: 06/24/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Different environmental stimuli, including exposure to dauer pheromone, food deprivation, and high temperature, can induce C. elegans larvae to enter the dauer stage, a developmentally arrested diapause state. Although molecular and cellular pathways responsible for detecting dauer pheromone and temperature have been defined in part, other sensory inputs are poorly understood, as are the mechanisms by which these diverse sensory inputs are integrated to achieve a consistent developmental outcome. RESULTS In this paper, we analyze a wild C. elegans strain isolated from a desert oasis. Unlike wild-type laboratory strains, the desert strain fails to respond to dauer pheromone at 25 degrees C, but it does respond at higher temperatures, suggesting a unique adaptation to the hot desert environment. We map this defect in dauer response to a mutation in the scd-2 gene, which, we show, encodes the nematode anaplastic lymphoma kinase (ALK) homolog, a proto-oncogene receptor tyrosine kinase. scd-2 acts in a genetic pathway shown here to include the HEN-1 ligand, the RTK adaptor SOC-1, and the MAP kinase SMA-5. The SCD-2 pathway modulates TGF-beta signaling, which mediates the response to dauer pheromone, but SCD-2 might mediate a nonpheromone sensory input, such as food. CONCLUSIONS Our studies identify a new sensory pathway controlling dauer formation and shed light on ALK signaling, integration of signaling pathways, and adaptation to extreme environmental conditions.
Collapse
Affiliation(s)
- David J. Reiner
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology University of California Berkeley, CA 94720
| | - Michael Ailion
- Molecular and Cellular Biology Program of the University of Washington and Fred Hutchinson Cancer Research Center Seattle, WA 98195
| | - James H. Thomas
- Molecular and Cellular Biology Program of the University of Washington and Fred Hutchinson Cancer Research Center Seattle, WA 98195
- Department of Genome Sciences University of Washington Seattle, WA 98195
| | - Barbara J. Meyer
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology University of California Berkeley, CA 94720
| |
Collapse
|
247
|
Greer ER, Perez CL, Van Gilst MR, Lee BH, Ashrafi K. Neural and molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Cell Metab 2008; 8:118-31. [PMID: 18680713 PMCID: PMC2556218 DOI: 10.1016/j.cmet.2008.06.005] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 01/17/2008] [Accepted: 06/06/2008] [Indexed: 12/28/2022]
Abstract
A major challenge in understanding energy balance is deciphering the neural and molecular circuits that govern behavioral, physiological, and metabolic responses of animals to fluctuating environmental conditions. The neurally expressed TGF-beta ligand DAF-7 functions as a gauge of environmental conditions to modulate energy balance in C. elegans. We show that daf-7 signaling regulates fat metabolism and feeding behavior through a compact neural circuit that allows for integration of multiple inputs and the flexibility for differential regulation of outputs. In daf-7 mutants, perception of depleting food resources causes fat accumulation despite reduced feeding rate. This fat accumulation is mediated, in part, through neural metabotropic glutamate signaling and upregulation of peripheral endogenous biosynthetic pathways that direct energetic resources into fat reservoirs. Thus, neural perception of adverse environmental conditions can promote fat accumulation without a concomitant increase in feeding rate.
Collapse
Affiliation(s)
- Elisabeth R. Greer
- Department of Physiology, 600 16 Street, Mission Bay Campus Box 2240, University of California, San Francisco, California, 94158-2517
| | - Carissa L. Perez
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195
| | - Marc R. Van Gilst
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Brian H. Lee
- Department of Physiology, 600 16 Street, Mission Bay Campus Box 2240, University of California, San Francisco, California, 94158-2517
| | - Kaveh Ashrafi
- Department of Physiology, 600 16 Street, Mission Bay Campus Box 2240, University of California, San Francisco, California, 94158-2517
| |
Collapse
|
248
|
Baiga TJ, Guo H, Xing Y, O'Doherty GA, Dillin A, Austin MB, Noel JP, Clair JJL. Metabolite induction of Caenorhabditis elegans dauer larvae arises via transport in the pharynx. ACS Chem Biol 2008; 3:294-304. [PMID: 18376812 PMCID: PMC2692194 DOI: 10.1021/cb700269e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Caenorhabditis elegans sense natural chemicals in their environment and use them as cues to regulate their development. This investigation probes the mechanism of sensory trafficking by evaluating the processing of fluorescent derivatives of natural products in C. elegans. Fluorescent analogs of daumone, an ascaroside, and apigenin were prepared by total synthesis and evaluated for their ability to induce entry into a nonaging dauer state. Fluorescent imaging detailed the uptake and localization of every labeled compound at each stage of the C. elegans life cycle. Comparative analyses against natural products that did not induce dauer indicated that dauer-triggering natural products accumulated in the cuticle of the pharnyx. Subsequent transport of these molecules to amphid neurons signaled entry into the dauer state. These studies provide cogent evidence supporting the roles of the glycosylated fatty acid daumone and related ascarosides and the ubiquitous plant flavone apigenin as chemical cues regulating C. elegans development.
Collapse
Affiliation(s)
- Thomas J. Baiga
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037
| | - Haibing Guo
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Yalan Xing
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506
| | - George A. O'Doherty
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506
| | - Andrew Dillin
- The Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, California 92037
| | - Michael B. Austin
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037
| | - Joseph P. Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037
| | - James J. La Clair
- Xenobe Research Institute, 3371 Adams Avenue, San Diego, California 92116
| |
Collapse
|
249
|
Kim S, Paik YK. Developmental and reproductive consequences of prolonged non-aging dauer in Caenorhabditis elegans. Biochem Biophys Res Commun 2008; 368:588-92. [DOI: 10.1016/j.bbrc.2008.01.131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 01/18/2008] [Indexed: 10/22/2022]
|
250
|
Honda Y, Tanaka M, Honda S. Modulation of longevity and diapause by redox regulation mechanisms under the insulin-like signaling control in Caenorhabditis elegans. Exp Gerontol 2008; 43:520-9. [PMID: 18406553 DOI: 10.1016/j.exger.2008.02.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 02/24/2008] [Accepted: 02/28/2008] [Indexed: 12/30/2022]
Abstract
In Caenorhabditis elegans, the downregulation of insulin-like signaling induces lifespan extension (Age) and the constitutive formation of dauer larvae (Daf-c). This also causes resistance to oxidative stress (Oxr) and other stress stimuli and enhances the expression of many stress-defense-related enzymes such as Mn superoxide dismutase (SOD) that functions to remove reactive oxygen species in mitochondria. To elucidate the roles of the two isoforms of MnSOD, SOD-2 and SOD-3, in the Age, Daf-c and Oxr phenotypes, we investigated the effects of a gene knockout of MnSODs on them in the daf-2 (insulin-like receptor) mutants that lower insulin-like signaling. In our current report, we demonstrate that double deletions of two MnSOD genes induce oxidative-stress sensitivity and thus ablate Oxr, but do not abolish Age in the daf-2 mutant background. This indicates that Oxr is not the underlying cause of Age and that oxidative stress is not necessarily a limiting factor for longevity. Interestingly, deletions in the sod-2 and sod-3 genes suppressed and stimulated, respectively, both Age and Daf-c. In addition, the sod-2/sod-3 double deletions stimulated these phenotypes in a similar manner to the sod-3 deletion, suggesting that the regulatory pathway consists of two MnSOD isoforms. Furthermore, hyperoxic and hypoxic conditions affected Daf-c in the MnSOD-deleted daf-2 mutants. We thus conclude that the MnSOD systems in C. elegans fine-tune the insulin-like-signaling based regulation of both longevity and dauer formation by acting not as antioxidants but as physiological-redox-signaling modulators.
Collapse
Affiliation(s)
- Yoko Honda
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashiku, Tokyo 173-0015, Japan
| | | | | |
Collapse
|