201
|
Tarutani A, Hasegawa M. Prion-like propagation of α-synuclein in neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:323-348. [PMID: 31699325 DOI: 10.1016/bs.pmbts.2019.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prions are defined as proteinaceous infectious particles that do not contain nucleic acids. Neuropathological investigations of post-mortem brains and recent studies of experimental transmission have suggested that amyloid-like abnormal protein aggregates, which are the defining feature of many neurodegenerative diseases, behave like prions and propagate throughout the brain. This prion-like propagation may be the underlying mechanism of onset and progression of neurodegenerative diseases, although the precise molecular mechanisms involved remain unclear. However, in vitro and in vivo experimental models of prion-like propagation using pathogenic protein seeds are well established and are extremely valuable for the exploration and evaluation of novel drugs and therapies for neurodegenerative diseases for which there is no effective treatment. In this chapter, we introduce the experimental models of prion-like propagation of α-synuclein, which is accumulated in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, and we describe their applications for the development of new diagnostic and therapeutic modalities. We also introduce the concept of "α-syn strains," which may underlie the pathological and clinical diversity of α-synucleinopathies.
Collapse
Affiliation(s)
- Airi Tarutani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
202
|
Wang J, Gu BJ, Masters CL, Wang YJ. A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 2019; 13:612-623. [PMID: 28960209 DOI: 10.1038/nrneurol.2017.111] [Citation(s) in RCA: 522] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer disease (AD) is the most common type of dementia, and is currently incurable; existing treatments for AD produce only a modest amelioration of symptoms. Research into this disease has conventionally focused on the CNS. However, several peripheral and systemic abnormalities are now understood to be linked to AD, and our understanding of how these alterations contribute to AD is becoming more clearly defined. This Review focuses on amyloid-β (Aβ), a major hallmark of AD. We review emerging findings of associations between systemic abnormalities and Aβ metabolism, and describe how these associations might interact with or reflect on the central pathways of Aβ production and clearance. On the basis of these findings, we propose that these abnormal systemic changes might not only develop secondary to brain dysfunction but might also affect AD progression, suggesting that the interactions between the brain and the periphery have a crucial role in the development and progression of AD. Such a systemic view of the molecular pathogenesis of AD could provide a novel perspective for understanding this disease and present new opportunities for its early diagnosis and treatment.
Collapse
Affiliation(s)
- Jun Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang branch road, Daping, Chongqing, 400042, China
| | - Ben J Gu
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, 10 Changjiang branch road, Daping, Chongqing, 400042, China
| |
Collapse
|
203
|
Abstract
Prion diseases are progressive, incurable and fatal neurodegenerative conditions. The term 'prion' was first nominated to express the revolutionary concept that a protein could be infectious. We now know that prions consist of PrPSc, the pathological aggregated form of the cellular prion protein PrPC. Over the years, the term has been semantically broadened to describe aggregates irrespective of their infectivity, and the prion concept is now being applied, perhaps overenthusiastically, to all neurodegenerative diseases that involve protein aggregation. Indeed, recent studies suggest that prion diseases (PrDs) and protein misfolding disorders (PMDs) share some common disease mechanisms, which could have implications for potential treatments. Nevertheless, the transmissibility of bona fide prions is unique, and PrDs should be considered as distinct from other PMDs.
Collapse
Affiliation(s)
- Claudia Scheckel
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
204
|
Terry C, Wadsworth JDF. Recent Advances in Understanding Mammalian Prion Structure: A Mini Review. Front Mol Neurosci 2019; 12:169. [PMID: 31338021 PMCID: PMC6629788 DOI: 10.3389/fnmol.2019.00169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
Prions are lethal pathogens, which cause fatal neurodegenerative diseases in mammals. They are unique infectious agents and are composed of self-propagating multi-chain assemblies of misfolded host-encoded prion protein (PrP). Understanding prion structure is fundamental to understanding prion disease pathogenesis however to date, the high-resolution structure of authentic ex vivo infectious prions remains unknown. Advances in determining prion structure have been severely impeded by the difficulty in recovering relatively homogeneous prion particles from infected brain and definitively associating infectivity with the PrP assembly state. Recently, however, images of highly infectious ex vivo PrP rods that produce prion-strain specific disease phenotypes in mice have been obtained using cryo-electron microscopy and atomic force microscopy. These images have provided the most detailed description of ex vivo mammalian prions reported to date and have established that prions isolated from multiple strains have a common hierarchical structure. Misfolded PrP is assembled into 20 nm wide rods containing two fibers, each with double helical repeating substructure, separated by a characteristic central gap 8–10 nm in width. Irregularly structured material with adhesive properties distinct to that of the fibers is present within the central gap of the rod. Prions are clearly distinguishable from non-infectious recombinant PrP fibrils generated in vitro and from all other propagating protein structures so far described in other neurodegenerative diseases. The basic architecture of mammalian prions appears to be exceptional and fundamental to their lethal pathogenicity.
Collapse
Affiliation(s)
- Cassandra Terry
- Molecular Systems for Health Research Group, School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, London, United Kingdom
| |
Collapse
|
205
|
Liberski PP. Axonal changes in experimental prion diseases recapitulate those following constriction of postganglionic branches of the superior cervical ganglion: a comparison 40 years later. Prion 2019; 13:83-93. [PMID: 30966865 PMCID: PMC7000151 DOI: 10.1080/19336896.2019.1595315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The major neurological feature of prion diseases is a neuronal loss accomplished through either apoptosis or autophagy. In this review, I compared axonal alterations in prion diseases to those described 40 years earlier as a result of nerve ligation. I also demonstrated that autophagic vacuoles and autophagosomes are a major part of dystrophic neurites. Furthermore, I summarized the current status of the autophagy in prion diseases and hypothesize, that spongiform change may originate from the autophagic vacuoles. This conclusion should be supported by other methods, in particular laser confocal microscopy. We observed neuronal autophagic vacuoles in different stages of formation, and our interpretation of the ‘maturity’ of their formation may or may not equate to actual developmental stages. Initially, a part of the neuronal cytoplasm was sequestrated within double or multiple membranes (phagophores) and often exhibited increased electron-density. The intracytoplasmic membranes formed labyrinth-like structures that suggest a multiplication of those membranes. The autophagic vacuoles then expand and eventually, a vast area of the cytoplasm was transformed into a merging mass of autophagic vacuoles. Margaret R. Matthews published a long treatise in the Philosophical Transactions of the Royal Society of London in which she had described in great detail the ultrastructure of postganglionic branches of the superior cervical ganglion in the rat following ligation of them. The earliest changes observed by Matthews between 6 h to 2 days in the proximal stump were distensions of proximal axons. Analogously, in our models, an increased number of ‘regular’ (round) and ‘irregular’ MVB and some autophagic vacuoles were observed collectively, both processes were similar.
Collapse
Affiliation(s)
- Paweł P Liberski
- a Laboratory of Electron Microscopy and Neuropathology, Department of Molecular Pathology and Neuropathology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
206
|
Coelho DS, Moreno E. Emerging links between cell competition and Alzheimer's disease. J Cell Sci 2019; 132:132/13/jcs231258. [PMID: 31263078 DOI: 10.1242/jcs.231258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) causes a progressive loss of memory and other cognitive functions, which inexorably debilitates patients. There is still no cure for AD and effective treatments to delay or revert AD are urgently needed. On a molecular level, the excessive accumulation of amyloid-β (Aβ) peptides triggers a complex cascade of pathological events underlying neuronal death, whose details are not yet completely understood. Our laboratory recently discovered that cell competition may play a protective role against AD by eliminating less fit neurons from the brain of Aβ-transgenic flies. Loss of Aβ-damaged neurons through fitness comparison with healthy counterparts is beneficial for the organism, delaying cognitive decline and motor disability. In this Review, we introduce the molecular mechanisms of cell competition, including seminal works on the field and latest advances regarding genetic triggers and effectors of cell elimination. We then describe the biological relevance of competition in the nervous system and discuss how competitive interactions between neurons may arise and be exacerbated in the context of AD. Selection of neurons through fitness comparison is a promising, but still emerging, research field that may open new avenues for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Dina S Coelho
- Cell Fitness Laboratory, Champalimaud Centre for the Unknown, Av. Brasília., 1400-038 Lisbon, Portugal
| | - Eduardo Moreno
- Cell Fitness Laboratory, Champalimaud Centre for the Unknown, Av. Brasília., 1400-038 Lisbon, Portugal
| |
Collapse
|
207
|
Molavipordanjani S, Emami S, Hosseinimehr SJ. 99mTc-labeled Small Molecules for Diagnosis of Alzheimer’s Disease: Past, Recent and Future Perspectives. Curr Med Chem 2019; 26:2166-2189. [DOI: 10.2174/0929867325666180410104023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/21/2018] [Accepted: 04/05/2018] [Indexed: 01/22/2023]
Abstract
Background:
Alzheimer’s disease (AD) is an age-related progressive neurodegenerative disease.
Its prominent hallmarks are extracellular deposition of β-amyloids (amyloid plaques), intracellular
neurofibrillary tangles (NTFs), neurodegeneration and finally loss of cognitive function. Hence, AD diagnosis
in the early stage and monitoring of the disease are of great importance.
Methods:
In this review article, we have reviewed recent efforts for design, synthesis and evaluation of
99mTc labeled small molecule for AD imaging purposes.
Results:
These small molecules include derivatives of Congo red, benzothiazole, benzofuran, benzoxazole,
naphthalene, biphenyl, chalcone, flavone, aurone, stilbene, curcumin, dibenzylideneacetone,
quinoxaline, etc. The different aspects of 99mTc-labeled small molecules including chemical structure,
their affinity toward amyloid plaques, BBB permeation and in vivo/vitro stability will be discussed.
Conclusion:
The findings of this review confirm the importance of 99mTc-labeled small molecules for AD
imaging. Future studies based on the pharmacophore of these designed compounds are needed for improvement
of these molecules for clinical application.
Collapse
Affiliation(s)
- Sajjad Molavipordanjani
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
208
|
Chen XQ, Mobley WC. Alzheimer Disease Pathogenesis: Insights From Molecular and Cellular Biology Studies of Oligomeric Aβ and Tau Species. Front Neurosci 2019; 13:659. [PMID: 31293377 PMCID: PMC6598402 DOI: 10.3389/fnins.2019.00659] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary human and financial burdens. Studies of pathogenesis are essential for defining targets for discovering disease-modifying treatments. Past studies of AD neuropathology provided valuable, albeit limited, insights. Nevertheless, building on these findings, recent studies have provided an increasingly rich harvest of genetic, molecular and cellular data that are creating unprecedented opportunities to both understand and treat AD. Among the most significant are those documenting the presence within the AD brain of toxic oligomeric species of Aβ and tau. Existing data support the view that such species can propagate and spread within neural circuits. To place these findings in context we first review the genetics and neuropathology of AD, including AD in Down syndrome (AD-DS). We detail studies that support the existence of toxic oligomeric species while noting the significant unanswered questions concerning their precise structures, the means by which they spread and undergo amplification and how they induce neuronal dysfunction and degeneration. We conclude by offering a speculative synthesis for how oligomers of Aβ and tau initiate and drive pathogenesis. While 100 years after Alzheimer's first report there is much still to learn about pathogenesis and the discovery of disease-modifying treatments, the application of new concepts and sophisticated new tools are poised to deliver important advances for combatting AD.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
209
|
Yamada M, Hamaguchi T, Sakai K. Acquired cerebral amyloid angiopathy: An emerging concept. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:85-95. [PMID: 31699330 DOI: 10.1016/bs.pmbts.2019.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is commonly found in older people and in patients with Alzheimer's disease (AD) accompanying cerebrovascular disorders and dementia. Early-onset CAA cases generally have been found only in rare genetic forms of CAA. Interestingly, however, CAA-related hemorrhages have been recently reported in younger people who had histories of neurosurgery with or without evidence of cadaveric dura mater grafts in childhood. It has been established in experimental settings that amyloid β-protein (Aβ) pathology can be transmitted inter-individually with Aβ seeds. Incidental Aβ pathology, predominantly Aβ-CAA, has been recognized in recipients of cadaveric dura mater grafts or cadaveric human growth hormone. These findings suggest that transmission of Aβ seeds through dura mater grafts and other contaminated materials could lead to development of CAA. In addition, neurosurgery or brain injury may contribute to cerebrovascular Aβ deposition through the disturbance of vascular Aβ drainage pathways. Thus, a novel concept, "acquired CAA," has emerged.
Collapse
Affiliation(s)
- Masahito Yamada
- Department of Neurology & Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
| | - Tsuyoshi Hamaguchi
- Department of Neurology & Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kenji Sakai
- Department of Neurology & Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
210
|
|
211
|
Three Structural Features of Functional Food Components and Herbal Medicine with Amyloid β42 Anti-Aggregation Properties. Molecules 2019; 24:molecules24112125. [PMID: 31195683 PMCID: PMC6600243 DOI: 10.3390/molecules24112125] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/29/2023] Open
Abstract
Aggregation of amyloid β42 (Aβ42) is one of the hallmarks of Alzheimer's disease (AD). There are numerous naturally occurring products that suppress the aggregation of Aβ42, but the underlying mechanisms remain to be elucidated. Based on NMR and MS spectroscopic analysis, we propose three structural characteristics found in natural products required for the suppressive activity against Aβ42 aggregation (i.e., oligomerization by targeting specific amino acid residues on this protein). These characteristics include (1) catechol-type flavonoids that can form Michael adducts with the side chains of Lys16 and 28 in monomeric Aβ42 through flavonoid autoxidation; (2) non-catechol-type flavonoids with planarity due to α,β-unsaturated carbonyl groups that can interact with the intermolecular β-sheet region in Aβ42 aggregates, especially aromatic rings such as those of Phe19 and 20; and (3) carboxy acid derivatives with triterpenoid or anthraquinoid that can generate a salt bridge with basic amino acid residues such as Lys16 and 28 in the Aβ42 dimer or trimer. Here, we summarize the recent body of knowledge concerning amyloidogenic inhibitors, particularly in functional food components and Kampo medicine, and discuss their application in the treatment and prevention of AD.
Collapse
|
212
|
Abstract
Yeast prions have become important models for the study of the basic mechanisms underlying human amyloid diseases. Yeast prions are pathogenic (unlike the [Het-s] prion of Podospora anserina), and most are amyloid-based with the same in-register parallel β-sheet architecture as most of the disease-causing human amyloids studied. Normal yeast cells eliminate the large majority of prion variants arising, and several anti-prion/anti-amyloid systems that eliminate them have been identified. It is likely that mammalian cells also have anti-amyloid systems, which may be useful in the same way humoral, cellular, and innate immune systems are used to treat or prevent bacterial and viral infections.
Collapse
Affiliation(s)
- Reed B Wickner
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830.
| |
Collapse
|
213
|
Bu XL, Li WW, Wang YJ. Is Alzheimer's Disease Transmissible in Humans? Neurosci Bull 2019; 35:1113-1115. [PMID: 31037579 DOI: 10.1007/s12264-019-00382-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/28/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Xian-Le Bu
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Wei-Wei Li
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| |
Collapse
|
214
|
Abstract
Growing evidence suggests that ethanolamine plasmalogens (PlsEtns), a subtype of phospholipids, have a close association with Alzheimer’s disease (AD). Decreased levels of PlsEtns have been commonly found in AD patients, and were correlated with cognition deficit and severity of disease. Limited studies showed positive therapeutic outcomes with plasmalogens interventions in AD subjects and in rodents. The potential mechanisms underlying the beneficial effects of PlsEtns on AD may be related to the reduction of γ–secretase activity, an enzyme that catalyzes the synthesis of β-amyloid (Aβ), a hallmark of AD. Emerging in vitro evidence also showed that PlsEtns prevented neuronal cell death by enhancing phosphorylation of AKT and ERK signaling through the activation of orphan G-protein coupled receptor (GPCR) proteins. In addition, PlsEtns have been found to suppress the death of primary mouse hippocampal neuronal cells through the inhibition of caspase-9 and caspase-3 cleavages. Further in-depth investigations are required to determine the signature molecular species of PlsEtns associated with AD, hence their potential role as biomarkers. Clinical intervention with plasmalogens is still in its infancy but may have the potential to be explored for a novel therapeutic approach to correct AD pathology and neural function.
Collapse
|
215
|
Rossi M, Kai H, Baiardi S, Bartoletti-Stella A, Carlà B, Zenesini C, Capellari S, Kitamoto T, Parchi P. The characterization of AD/PART co-pathology in CJD suggests independent pathogenic mechanisms and no cross-seeding between misfolded Aβ and prion proteins. Acta Neuropathol Commun 2019; 7:53. [PMID: 30961668 PMCID: PMC6454607 DOI: 10.1186/s40478-019-0706-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
Current evidence indicating a role of the human prion protein (PrP) in amyloid-beta (Aβ) formation or a synergistic effect between Aβ and prion pathology remains controversial. Conflicting results also concern the frequency of the association between the two protein misfolding disorders and the issue of whether the apolipoprotein E gene (APOE) and the prion protein gene (PRNP), the major modifiers of Aβ- and PrP-related pathologies, also have a pathogenic role in other proteinopathies, including tau neurofibrillary degeneration. Here, we thoroughly characterized the Alzheimer's disease/primary age-related tauopathy (AD/PART) spectrum in a series of 450 cases with definite sporadic or genetic Creutzfeldt-Jakob disease (CJD). Moreover, we analyzed: (i) the effect of variables known to affect CJD pathogenesis and the co-occurring Aβ- and tau-related pathologies; (II) the influence of APOE genotype on CJD pathology, and (III) the effect of AD/PART co-pathology on the clinical CJD phenotype. AD/PART characterized 74% of CJD brains, with 53.3% and 8.2% showing low or intermediate-high levels of AD pathology, and 12.4 and 11.8% definite or possible PART. There was no significant correlation between variables affecting CJD (i.e., disease subtype, prion strain, PRNP genotype) and those defining the AD/PART spectrum (i.e., ABC score, Thal phase, prevalence of CAA and Braak stage), and no difference in the distribution of APOE ε4 and ε2 genotypes among CJD subtypes. Moreover, AD/PART co-pathology did not significantly affect the clinical presentation of typical CJD, except for a tendency to increase the frequency of cognitive symptoms. Altogether, the present results seem to exclude an increased prevalence AD/PART co-pathology in sporadic and genetic CJD, and indicate that largely independent pathogenic mechanisms drive AD/PART and CJD pathology even when they coexist in the same brain.
Collapse
Affiliation(s)
- Marcello Rossi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Hideaki Kai
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
- Department of Neurological Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Bartoletti-Stella
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Benedetta Carlà
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Tetsuyuki Kitamoto
- Department of Neurological Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Via Altura 1/8, 40139 Bologna, Italy
| |
Collapse
|
216
|
Abstract
Most common neurodegenerative diseases feature deposition of protein amyloids and degeneration of brain networks. Amyloids are ordered protein assemblies that can act as templates for their own replication through monomer addition. Evidence suggests that this characteristic may underlie the progression of pathology in neurodegenerative diseases. Many different amyloid proteins, including Aβ, tau, and α-synuclein, exhibit properties similar to those of infectious prion protein in experimental systems: discrete and self-replicating amyloid structures, transcellular propagation of aggregation, and transmissible neuropathology. This review discusses the contribution of prion phenomena and transcellular propagation to the progression of pathology in common neurodegenerative diseases such as Alzheimer's and Parkinson's. It reviews fundamental events such as cell entry, amplification, and transcellular movement. It also discusses amyloid strains, which produce distinct patterns of neuropathology and spread through the nervous system. These concepts may impact the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jaime Vaquer-Alicea
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
217
|
Li D, Huang S, Zhu J, Hu T, Han Z, Zhang S, Zhao J, Chen F, Lei P. Exosomes from MiR-21-5p-Increased Neurons Play a Role in Neuroprotection by Suppressing Rab11a-Mediated Neuronal Autophagy In Vitro After Traumatic Brain Injury. Med Sci Monit 2019; 25:1871-1885. [PMID: 30860987 PMCID: PMC6423733 DOI: 10.12659/msm.915727] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Traumatic brain injury (TBI) produces a series of pathological processes. Recent studies have indicated that autophagy pathway is persistently activated after TBI, which may lead to deterioration of nerve injury. Our preliminary work found miR-21-5p was upregulated in both in vivo and in vitro TBI models. MicroRNAs (miRNAs) could be loaded into exosomes to perform cell-to-cell interactions. This research aimed to evaluate the therapeutic effect of neuron-derived exosomes enriched with miR-21-5p on the TBI in vitro and to further explore the possible mechanisms. Material/Methods Brain extracts harvested from an rTBI mouse model were added to cultured HT-22 neurons to imitate the microenvironment of injured brain on in vitro cultured cells. Ultracentrifugation was performed to isolate exosomes. Transmission electron microscopy and Nano sight technology were used to examine exosomes. An in vitro model of TBI was established to study the effect of exosomal miR-21-5p on nerve injury and on neuronal autophagy regulation. Results The expression of miR-21-5p was increased in exosomes derived from HT-22 neurons after treatment with rTBI mouse brain extracts. Autophagy was activated in HT-22 neurons after scratch injury. Exosomal miR-21-5p produced a protective effect by suppressing autophagy in a TBI model in vitro. MiR-21-5p could directly target the Rab11a 3′UTR region to reduce its translation and further suppressed Rab11a-mediated neuronal autophagy. Conclusions The levels of miR-21-5p in neuronal exosomes increased from the acute to the chronic phase of TBI. Neuronal exosomes enriched with miR-21-5p can inhibit the activity of neuronal autophagy by targeting Rab11a, thus attenuating trauma-induced, autophagy-mediated nerve injury in vitro.
Collapse
Affiliation(s)
- Dai Li
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Shan Huang
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jialin Zhu
- Department of Ultrasound Diagnosis and Treatment, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China (mainland)
| | - Tianpeng Hu
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Zhaoli Han
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Shishuang Zhang
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Jing Zhao
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Fanglian Chen
- Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin, China (mainland)
| | - Ping Lei
- Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China (mainland).,Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
218
|
De Sousa PA, Ritchie D, Green A, Chandran S, Knight R, Head MW. Renewed assessment of the risk of emergent advanced cell therapies to transmit neuroproteinopathies. Acta Neuropathol 2019; 137:363-377. [PMID: 30483944 PMCID: PMC6514076 DOI: 10.1007/s00401-018-1941-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/18/2022]
Abstract
The inadvertent transmission of long incubating, untreatable and fatal neurodegenerative prionopathies, notably iatrogenic Creutzfeldt–Jakob disease, following transplantation of cadaver-derived corneas, pituitary growth, hormones and dura mater, constitutes a historical precedent which has underpinned the application of precautionary principles to modern day advanced cell therapies. To date these have been reflected by geographic or medical history risk-based deferral of tissue donors. Emergent understanding of other prion-like proteinopathies, their potential independence from prions as a transmissible agent and the variable capability of scalably manufacturable stem cells and derivatives to take up and clear or to propagate prions, substantiate further commitment to qualifying neurodegenerative proteinopathy transmission risks. This is especially so for those involving direct or facilitated access to a recipient’s brain or connected visual or nervous system such as for the treatment of stroke, retinal and adult onset neurodegenerative diseases, treatments for which have already commenced. In this review, we assess the prospective global dissemination of advanced cell therapies founded on transplantation or exposure to allogeneic human cells, recap lessons learned from the historical precedents of CJD transmission and review recent advances and current limits in understanding of prion and other neurodegenerative disease prion-like susceptibility and transmission. From these we propose grounds for a reassessment of the risks of emergent advanced cell therapies to transmit neuroproteinopathies and suggestions to ACT developers and regulators for risk mitigation and extension of criteria for deferrals.
Collapse
|
219
|
Sil TB, Sahoo B, Bera SC, Garai K. Quantitative Characterization of Metastability and Heterogeneity of Amyloid Aggregates. Biophys J 2019; 114:800-811. [PMID: 29490242 DOI: 10.1016/j.bpj.2017.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 01/13/2023] Open
Abstract
Amyloids are heterogeneous assemblies of extremely stable fibrillar aggregates of proteins. Although biological activities of the amyloids are dependent on its conformation, quantitative evaluation of heterogeneity of amyloids has been difficult. Here we use disaggregation of the amyloids of tetramethylrhodamine-labeled Aβ (TMR-Aβ) to characterize its stability and heterogeneity. Disaggregation of TMR-Aβ amyloids, monitored by fluorescence recovery of TMR, was negligible in native buffer even at low nanomolar concentrations but the kinetics increased exponentially with addition of denaturants such as urea or GdnCl. However, dissolution of TMR-Aβ amyloids is different from what is expected in the case of thermodynamic solubility. For example, the fraction of soluble amyloids is found to be independent of total concentration of the peptide at all concentrations of the denaturants. Additionally, soluble fraction is dependent on growth conditions such as temperature, pH, and aging of the amyloids. Furthermore, amyloids undissolved in a certain concentration of the denaturant do not show any further dissolution after dilution in the same solvent; instead, these require higher concentrations of the denaturant. Taken together, our results indicate that amyloids are a heterogeneous ensemble of metastable states. Furthermore, dissolution of each structurally homogeneous member requires a unique threshold concentration of denaturant. Fraction of soluble amyloids as a function of concentration of denaturants is found to be sigmoidal. The sigmoidal curve becomes progressively steeper with progressive seeding of the amyloids, although the midpoint remains unchanged. Therefore, heterogeneity of the amyloids is a major determinant of the steepness of the sigmoidal curve. The sigmoidal curve can be fit assuming a normal distribution for the population of the amyloids of various kinetic stabilities. We propose that the mean and the standard deviation of the normal distribution provide quantitative estimates of mean kinetic stability and heterogeneity, respectively, of the amyloids in a certain preparation.
Collapse
Affiliation(s)
- Timir Baran Sil
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | - Bankanidhi Sahoo
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India
| | | | - Kanchan Garai
- Tata Institute of Fundamental Research, Serilingampally, Hyderabad, India.
| |
Collapse
|
220
|
Yamada M, Hamaguchi T. The sulfation code for propagation of neurodegeneration. J Biol Chem 2019; 293:10841-10842. [PMID: 29980653 DOI: 10.1074/jbc.h118.003970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prion-like propagation of protein aggregates is thought to be an essential feature in many neurodegenerative diseases, but the mechanisms underlying transcellular transfer of protein aggregates remain unclear. Stopschinski et al. now demonstrate that the cellular uptake of tau, Aβ, and α-synuclein aggregates mediated by heparan sulfate proteoglycans (HSPGs) varies with distinct glycosaminoglycan chain length and sulfation patterns. The results help us to understand how different protein aggregates propagate, leading to distinct neurodegenerative pathologies.
Collapse
Affiliation(s)
- Masahito Yamada
- From the Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Tsuyoshi Hamaguchi
- From the Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| |
Collapse
|
221
|
Sikorska B, Gajos A, Bogucki A, Zielonka E, Sigurdson C, Liberski PP. Electron microscopic and confocal laser microscopy analysis of amyloid plaques in chronic wasting disease transmitted to transgenic mice. Prion 2019; 11:431-439. [PMID: 29105545 DOI: 10.1080/19336896.2017.1384109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We report here on the ultrastructure of amyloid plaques in chronic wasting disease (CWD) transmitted to Tg20 transgenic mice overexpressing prion protein (PrPc). We identified three main types of amyloid deposits in mCWD: large amyloid deposits, unicentric plaques similar to kuru plaques in human prion diseases and multicentric plaques reminiscent of plaques typical of GSS. The most unique type of plaques were large subpial amyloid deposits. They were composed of large areas of amyloid fibrils but did not form "star-like" appearances of unicentric plaques. All types of plaques were totally devoid of dystrophic neuritic elements. However, numerous microglial cells invaded them. The plaques observed by confocal laser microscope were of the same types as those analyzed by electron microscopy. Neuronal processes surrounding the plaques did not show typical features of neuroaxonal dystrophy.
Collapse
Affiliation(s)
- Beata Sikorska
- a Department of Molecular Pathology and Neuropathology , Medical University of Lodz , Kosciuszki 4 st, Lodz , Poland
| | - Agata Gajos
- b Department of Extrapyramidal Diseases , Medical University of Lodz , Kosciuszki 4 st, Lodz , Poland
| | - Andrzej Bogucki
- b Department of Extrapyramidal Diseases , Medical University of Lodz , Kosciuszki 4 st, Lodz , Poland
| | - Emil Zielonka
- a Department of Molecular Pathology and Neuropathology , Medical University of Lodz , Kosciuszki 4 st, Lodz , Poland
| | - Christina Sigurdson
- c Center for Veterinary Sciences and Comparative Medicine , University of California , San Diego , United States of America
| | - Pawel P Liberski
- a Department of Molecular Pathology and Neuropathology , Medical University of Lodz , Kosciuszki 4 st, Lodz , Poland
| |
Collapse
|
222
|
Hamaguchi T, Komatsu J, Sakai K, Noguchi-Shinohara M, Aoki S, Ikeuchi T, Yamada M. Cerebral hemorrhagic stroke associated with cerebral amyloid angiopathy in young adults about 3 decades after neurosurgeries in their infancy. J Neurol Sci 2019; 399:3-5. [PMID: 30735884 DOI: 10.1016/j.jns.2019.01.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/14/2019] [Accepted: 01/31/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Junji Komatsu
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Moeko Noguchi-Shinohara
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Satoshi Aoki
- Department of Neurosurgery, Toyama Prefectural Central Hospital, Toyama, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| |
Collapse
|
223
|
Banerjee G, Adams ME, Jaunmuktane Z, Alistair Lammie G, Turner B, Wani M, Sawhney IMS, Houlden H, Mead S, Brandner S, Werring DJ. Early onset cerebral amyloid angiopathy following childhood exposure to cadaveric dura. Ann Neurol 2019; 85:284-290. [PMID: 30597599 PMCID: PMC6492172 DOI: 10.1002/ana.25407] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/21/2018] [Accepted: 12/22/2018] [Indexed: 01/04/2023]
Abstract
Amyloid-β transmission has been described in patients both with and without iatrogenic Creutzfeldt-Jakob disease; however, there is little information regarding the clinical impact of this acquired amyloid-β pathology during life. Here, for the first time, we describe in detail the clinical and neuroimaging findings in 3 patients with early onset symptomatic amyloid-β cerebral amyloid angiopathy following childhood exposure to cadaveric dura (by neurosurgical grafting in 2 patients and tumor embolization in a third). Our observations provide further in vivo evidence that cerebral amyloid angiopathy might be caused by transmission of amyloid-β seeds (prions) present in cadaveric dura and have diagnostic relevance for younger patients presenting with suspected cerebral amyloid angiopathy. Ann Neurol 2019; 1-7 ANN NEUROL 2019;85:284-290.
Collapse
Affiliation(s)
- Gargi Banerjee
- Stroke Research Centre, Department of Brain Repair and RehabilitationUniversity College London Queen Square Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondon
| | - Matthew E. Adams
- Lysholm Department of NeuroradiologyNational Hospital for Neurology and NeurosurgeryLondon
| | - Zane Jaunmuktane
- Department of Molecular NeuroscienceUniversity College London Queen Square Institute of NeurologyLondon
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryLondon
| | | | - Ben Turner
- Barts and London School of Medicine and DentistryQueen Mary University of London and Royal London HospitalLondon
| | - Mushtaq Wani
- Morriston HospitalAbertawe Bro Morgannwg University Health BoardSwansea
| | | | - Henry Houlden
- Department of Molecular NeuroscienceUniversity College London Queen Square Institute of NeurologyLondon
| | - Simon Mead
- Medical Research Council Prion Unit at University College LondonUniversity College London Institute of Prion DiseasesLondon
- National Prion ClinicNational Hospital for Neurology and NeurosurgeryLondon
| | - Sebastian Brandner
- Division of NeuropathologyNational Hospital for Neurology and NeurosurgeryLondon
- Department of Neurodegenerative DiseaseUniversity College London Queen Square Institute of NeurologyLondonUnited Kingdom
| | - David J. Werring
- Stroke Research Centre, Department of Brain Repair and RehabilitationUniversity College London Queen Square Institute of Neurology and National Hospital for Neurology and NeurosurgeryLondon
| |
Collapse
|
224
|
Baiardi S, Rossi M, Capellari S, Parchi P. Recent advances in the histo-molecular pathology of human prion disease. Brain Pathol 2019; 29:278-300. [PMID: 30588685 DOI: 10.1111/bpa.12695] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Prion diseases are progressive neurodegenerative disorders affecting humans and other mammalian species. The term prion, originally put forward to propose the concept that a protein could be infectious, refers to PrPSc , a misfolded isoform of the cellular prion protein (PrPC ) that represents the pathogenetic hallmark of these disorders. The discovery that other proteins characterized by misfolding and seeded aggregation can spread from cell to cell, similarly to PrPSc , has increased interest in prion diseases. Among neurodegenerative disorders, however, prion diseases distinguish themselves for the broader phenotypic spectrum, the fastest disease progression and the existence of infectious forms that can be transmitted through the exposure to diseased tissues via ingestion, injection or transplantation. The main clinicopathological phenotypes of human prion disease include Creutzfeldt-Jakob disease, by far the most common, fatal insomnia, variably protease-sensitive prionopathy, and Gerstmann-Sträussler-Scheinker disease. However, clinicopathological manifestations extend even beyond those predicted by this classification. Because of their transmissibility, the phenotypic diversity of prion diseases can also be propagated into syngenic hosts as prion strains with distinct characteristics, such as incubation period, pattern of PrPSc distribution and regional severity of histopathological changes in the brain. Increasing evidence indicates that different PrPSc conformers, forming distinct ordered aggregates, encipher the phenotypic variants related to prion strains. In this review, we summarize the most recent advances concerning the histo-molecular pathology of human prion disease focusing on the phenotypic spectrum of the disease including co-pathologies, the characterization of prion strains by experimental transmission and their correlation with the physicochemical properties of PrPSc aggregates.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
225
|
Classifying psychiatric disorders as communicable diseases. Lancet Psychiatry 2019; 6:13. [PMID: 30579488 DOI: 10.1016/s2215-0366(18)30421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/16/2018] [Indexed: 11/23/2022]
|
226
|
Wang ZT, Tan CC, Tan L, Yu JT. Systems biology and gene networks in Alzheimer’s disease. Neurosci Biobehav Rev 2019; 96:31-44. [PMID: 30465785 DOI: 10.1016/j.neubiorev.2018.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 11/18/2018] [Accepted: 11/18/2018] [Indexed: 12/25/2022]
|
227
|
|
228
|
Salmon R. Instrument cleanliness and protein misfolding disorders. J Hosp Infect 2019; 101:11-12. [DOI: 10.1016/j.jhin.2018.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 11/27/2022]
|
229
|
Amyloid-β 'seeds' found in archived vials of growth hormone. Nat Rev Neurol 2018; 15:60. [PMID: 30580377 DOI: 10.1038/s41582-018-0125-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
230
|
‘Transmissible’ Alzheimer’s theory gains traction. Nature 2018. [DOI: 10.1038/d41586-018-07735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
231
|
Galkin AP, Velizhanina ME, Sopova YV, Shenfeld AA, Zadorsky SP. Prions and Non-infectious Amyloids of Mammals - Similarities and Differences. BIOCHEMISTRY (MOSCOW) 2018; 83:1184-1195. [PMID: 30472956 DOI: 10.1134/s0006297918100048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amyloids are highly ordered aggregates of protein fibrils exhibiting cross-β structure formed by intermolecular hydrogen bonds. Pathological amyloid deposition is associated with the development of several socially significant incurable human diseases. Of particular interest are infectious amyloids, or prions, that cause several lethal neurodegenerative diseases in humans and can be transmitted from one organism to another. Because of almost complete absence of criteria for infectious and non-infectious amyloids, there is a lack of consensus, especially, in the definition of similarities and differences between prions and non-infectious amyloids. In this review, we formulated contemporary molecular-biological criteria for identification of prions and non-infectious amyloids and focused on explaining the differences between these two types of molecules.
Collapse
Affiliation(s)
- A P Galkin
- St. Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg, 199034, Russia. .,St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| | - M E Velizhanina
- St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| | - Yu V Sopova
- St. Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg, 199034, Russia.,St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| | - A A Shenfeld
- St. Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg, 199034, Russia.,St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| | - S P Zadorsky
- St. Petersburg Branch of Vavilov Institute of General Genetics, Russian Academy of Sciences, St. Petersburg, 199034, Russia. .,St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia
| |
Collapse
|
232
|
Alderson TH, Bokde ALW, Kelso JAS, Maguire L, Coyle D. Metastable neural dynamics in Alzheimer's disease are disrupted by lesions to the structural connectome. Neuroimage 2018; 183:438-455. [PMID: 30130642 PMCID: PMC6374703 DOI: 10.1016/j.neuroimage.2018.08.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/22/2018] [Accepted: 08/15/2018] [Indexed: 12/16/2022] Open
Abstract
Current theory suggests brain regions interact to reconcile the competing demands of integration and segregation by leveraging metastable dynamics. An emerging consensus recognises the importance of metastability in healthy neural dynamics where the transition between network states over time is dependent upon the structural connectivity between brain regions. In Alzheimer's disease (AD) - the most common form of dementia - these couplings are progressively weakened, metastability of neural dynamics are reduced and cognitive ability is impaired. Accordingly, we use a joint empirical and computational approach to reveal how behaviourally relevant changes in neural metastability are contingent on the structural integrity of the anatomical connectome. We estimate the metastability of fMRI BOLD signal in subjects from across the AD spectrum and in healthy controls and demonstrate the dissociable effects of structural disconnection on synchrony versus metastability. In addition, we reveal the critical role of metastability in general cognition by demonstrating the link between an individuals cognitive performance and their metastable neural dynamic. Finally, using whole-brain computer modelling, we demonstrate how a healthy neural dynamic is conditioned upon the topological integrity of the structural connectome. Overall, the results of our joint computational and empirical analysis suggest an important causal relationship between metastable neural dynamics, cognition, and the structural efficiency of the anatomical connectome.
Collapse
Affiliation(s)
| | - Arun L W Bokde
- Trinity College Institute of Neuroscience and Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Ireland
| | - J A Scott Kelso
- Intelligent Systems Research Centre, Ulster University, UK; Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, USA
| | - Liam Maguire
- Intelligent Systems Research Centre, Ulster University, UK
| | - Damien Coyle
- Intelligent Systems Research Centre, Ulster University, UK
| |
Collapse
|
233
|
Kara E, Marks JD, Aguzzi A. Toxic Protein Spread in Neurodegeneration: Reality versus Fantasy. Trends Mol Med 2018; 24:1007-1020. [DOI: 10.1016/j.molmed.2018.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022]
|
234
|
Purro SA, Farrow MA, Linehan J, Nazari T, Thomas DX, Chen Z, Mengel D, Saito T, Saido T, Rudge P, Brandner S, Walsh DM, Collinge J. Transmission of amyloid-β protein pathology from cadaveric pituitary growth hormone. Nature 2018; 564:415-419. [PMID: 30546139 PMCID: PMC6708408 DOI: 10.1038/s41586-018-0790-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023]
Abstract
We previously reported1 the presence of amyloid-β protein (Aβ) deposits in individuals with Creutzfeldt-Jakob disease (CJD) who had been treated during childhood with human cadaveric pituitary-derived growth hormone (c-hGH) contaminated with prions. The marked deposition of parenchymal and vascular Aβ in these relatively young individuals with treatment-induced (iatrogenic) CJD (iCJD), in contrast to other prion-disease patients and population controls, allied with the ability of Alzheimer's disease brain homogenates to seed Aβ deposition in laboratory animals, led us to argue that the implicated c-hGH batches might have been contaminated with Aβ seeds as well as with prions. However, this was necessarily an association, and not an experimental, study in humans and causality could not be concluded. Given the public health importance of our hypothesis, we proceeded to identify and biochemically analyse archived vials of c-hGH. Here we show that certain c-hGH batches to which patients with iCJD and Aβ pathology were exposed have substantial levels of Aβ40, Aβ42 and tau proteins, and that this material can seed the formation of Aβ plaques and cerebral Aβ-amyloid angiopathy in intracerebrally inoculated mice expressing a mutant, humanized amyloid precursor protein. These results confirm the presence of Aβ seeds in archived c-hGH vials and are consistent with the hypothesized iatrogenic human transmission of Aβ pathology. This experimental confirmation has implications for both the prevention and the treatment of Alzheimer's disease, and should prompt a review of the risk of iatrogenic transmission of Aβ seeds by medical and surgical procedures long recognized to pose a risk of accidental prion transmission2,3.
Collapse
Affiliation(s)
- Silvia A Purro
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Mark A Farrow
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | | | - Tamsin Nazari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - David X Thomas
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Zhicheng Chen
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David Mengel
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Japan
| | - Peter Rudge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Dominic M Walsh
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, UK.
| |
Collapse
|
235
|
Abstract
Prions diseases are uniformly fatal neurodegenerative diseases that occur in sporadic, genetic, and acquired forms. Acquired prion diseases, caused by infectious transmission, are least common. Most prion diseases are not infectious, but occur spontaneously through misfolding of normal prion proteins or genetic mutations in the prion protein gene. Although most prion diseases are not caused by infection, they can be transmitted accidentally. Certain infection control protocols should be applied when handling central nervous system and other high-risk tissues. New diagnostic methods are improving premortem and earlier diagnosis. Treatment trials have not shown improved survival, but therapies may be available soon.
Collapse
Affiliation(s)
- Boon Lead Tee
- Global Brain Health Institute, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94518, USA; Department of Neurology, Buddhist Tzu Chi General Hospital, No. 707, Section 3, Zhong Yang Road, Hualien City, Hualien County 97002, Taiwan
| | - Erika Mariana Longoria Ibarrola
- Global Brain Health Institute, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94518, USA; Dementia Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suarez, Av. Insurgentes Sur 3877, Col. La Fama, Del. Tlalpan, Ciudad de México. C.P. 14269, Mexico
| | - Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158, USA.
| |
Collapse
|
236
|
Alibhai JD, Diack AB, Manson JC. Unravelling the glial response in the pathogenesis of Alzheimer's disease. FASEB J 2018; 32:5766-5777. [PMID: 30376380 DOI: 10.1096/fj.201801360r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease is a progressive, incurable neurodegenerative disease targeting specific neuronal populations within the brain while neighboring neurons appear unaffected. The focus for defining mechanisms has therefore been on the pathogenesis in affected neuronal populations and developing intervention strategies to prevent their cell death. However, there is growing recognition of the importance of glial cells in the development of pathology. Determining exactly how glial cells are involved in the disease process and the susceptibility of the aging brain provides unprecedented challenges. The present review examines recent studies attempting to unravel the glial response during the course of disease and how this action may dictate the outcome of neurodegeneration. The importance of regional heterogeneity of glial cells within the CNS during healthy aging and disease is examined to understand how the glial cells may contribute to neuronal susceptibility or resilience during the neurodegenerative process.-Alibhai, J. D., Diack, A. B., Manson, J. C. Unravelling the glial response in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- James D Alibhai
- National Creutzfeldt-Jakob Disease (CJD) Research and Surveillance Unit, University of Edinburgh, Edinburgh, United Kingdom.,UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Abigail B Diack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Roslin, United Kingdom
| | - Jean C Manson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
237
|
Mitra S, Prasad P, Chakraborty S. A Unified View of Assessing the Pro-oxidant versus Antioxidant Nature of Amyloid Beta Conformers. Chembiochem 2018; 19:2360-2371. [PMID: 30151968 DOI: 10.1002/cbic.201800446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 11/06/2022]
Abstract
Transition-metal-catalyzed oxidative stress is a widespread concern in the pathogenesis of Alzheimer's disease. However, the exact role of amyloid beta oligomers towards oxidative stress is widely debated. Assessing the oxidative nature of the oligomers in vitro is complicated by the different experimental conditions under which they are prepared. We have investigated Cu2+ -catalyzed reactive oxygen species (ROS) generation by using oligomers prepared in phosphate-buffered saline (AβO-PBS ) and in cell culture medium (AβO-CCM ), and compared their activities with respect to the monomers and fibrils prepared at neutral and acidic pH. Although both are deca- to dodecamers, the AβO-PBS oligomers have a spherical morphology and are smaller than the AβO-CCM . The AβO-PBS behaved as pro-oxidants; in contrast, AβO-CCM quench OH. generation attributed to CCM itself. Although the pro-oxidant oligomers showed oxidation, they also partially protect themselves from radical damage and maintain their overall spherical arrangement. The monomers and fibrils manifested antioxidant properties: radical scavenging as opposed to redox silencing. A dual role of Aβ species depending on the stage of the disease is proposed. In the earlier stages, the monomers can act as antioxidants, whereas at the later stages, the oligomers take on a pro-oxidant role. Kaempferol, a natural flavonoid, bound Cu2+ in 2:1 ratio and abolished ROS production in all Aβ species. It also distinctly modified the folding landscape of Aβ species into new or altered morphologies.
Collapse
Affiliation(s)
- Suchitra Mitra
- Department of Chemistry and Biochemistry, University of Mississippi, 305 Coulter Hall, University, MS, 38677, USA
| | - Pallavi Prasad
- Department of Chemistry and Biochemistry, University of Mississippi, 305 Coulter Hall, University, MS, 38677, USA
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, University of Mississippi, 305 Coulter Hall, University, MS, 38677, USA
| |
Collapse
|
238
|
Sarnataro D. Attempt to Untangle the Prion-Like Misfolding Mechanism for Neurodegenerative Diseases. Int J Mol Sci 2018; 19:ijms19103081. [PMID: 30304819 PMCID: PMC6213118 DOI: 10.3390/ijms19103081] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022] Open
Abstract
The misfolding and aggregation of proteins is the neuropathological hallmark for numerous diseases including Alzheimer's disease, Parkinson's disease, and prion diseases. It is believed that misfolded and abnormal β-sheets forms of wild-type proteins are the vectors of these diseases by acting as seeds for the aggregation of endogenous proteins. Cellular prion protein (PrPC) is a glycosyl-phosphatidyl-inositol (GPI) anchored glycoprotein that is able to misfold to a pathogenic isoform PrPSc, the causative agent of prion diseases which present as sporadic, dominantly inherited and transmissible infectious disorders. Increasing evidence highlights the importance of prion-like seeding as a mechanism for pathological spread in Alzheimer's disease and Tauopathy, as well as other neurodegenerative disorders. Here, we report the latest findings on the mechanisms controlling protein folding, focusing on the ER (Endoplasmic Reticulum) quality control of GPI-anchored proteins and describe the "prion-like" properties of amyloid-β and tau assemblies. Furthermore, we highlight the importance of pathogenic assemblies interaction with protein and lipid membrane components and their implications in both prion and Alzheimer's diseases.
Collapse
Affiliation(s)
- Daniela Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, School of Medicine, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
239
|
Jucker M, Walker LC. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat Neurosci 2018; 21:1341-1349. [PMID: 30258241 PMCID: PMC6375686 DOI: 10.1038/s41593-018-0238-6] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022]
Abstract
Many neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, are characterized by the progressive appearance of abnormal proteinaceous assemblies in the nervous system. Studies in experimental systems indicate that the assemblies originate from the prion-like seeded aggregation of specific misfolded proteins that proliferate and amass to form the intracellular and/or extracellular lesions typical of each disorder. The host in which the proteopathic seeds arise provides the biochemical and physiological environment that either supports or restricts their emergence, proliferation, self-assembly, and spread. Multiple mechanisms influence the spatiotemporal spread of seeds and the nature of the resulting lesions, one of which is the cellular uptake, release, and transport of seeds along neural pathways and networks. The characteristics of cells and regions in the affected network govern their vulnerability and thereby influence the neuropathological and clinical attributes of the disease. The propagation of pathogenic protein assemblies within the nervous system is thus determined by the interaction of the proteopathic agent and the host milieu.
Collapse
Affiliation(s)
- Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.
| | - Lary C Walker
- Department of Neurology and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
240
|
Mullane K, Williams M. Alzheimer's disease (AD) therapeutics - 2: Beyond amyloid - Re-defining AD and its causality to discover effective therapeutics. Biochem Pharmacol 2018; 158:376-401. [PMID: 30273552 DOI: 10.1016/j.bcp.2018.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022]
Abstract
Compounds targeted for the treatment of Alzheimer's Disease (AD) have consistently failed in clinical trials despite evidence for target engagement and pharmacodynamic activity. This questions the relevance of compounds acting at current AD drug targets - the majority of which reflect the seminal amyloid and, to a far lesser extent, tau hypotheses - and limitations in understanding AD causality as distinct from general dementia. The preeminence of amyloid and tau led to many alternative approaches to AD therapeutics being ignored or underfunded to the extent that their causal versus contributory role in AD remains unknown. These include: neuronal network dysfunction; cerebrovascular disease; chronic, local or systemic inflammation involving the innate immune system; infectious agents including herpes virus and prion proteins; neurotoxic protein accumulation associated with sleep deprivation, circadian rhythm and glymphatic/meningeal lymphatic system and blood-brain-barrier dysfunction; metabolic related diseases including diabetes, obesity hypertension and hypocholesterolemia; mitochondrial dysfunction and environmental factors. As AD has become increasingly recognized as a multifactorial syndrome, a single treatment paradigm is unlikely to work in all patients. However, the biomarkers required to diagnose patients and parse them into mechanism/disease-based sub-groups remain rudimentary and unvalidated as do non-amyloid, non-tau translational animal models. The social and economic impact of AD is also discussed in the context of new FDA regulatory draft guidance and a proposed biomarker-based Framework (re)-defining AD and its stages as part of the larger landscape of treating dementia via the 2013 G8 initiative to identify a disease-modifying therapy for dementia/AD by 2025.
Collapse
Affiliation(s)
- Kevin Mullane
- Gladstone Institutes, San Francisco, CA, United States
| | - Michael Williams
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
241
|
Blood-derived amyloid-β protein induces Alzheimer's disease pathologies. Mol Psychiatry 2018; 23:1948-1956. [PMID: 29086767 DOI: 10.1038/mp.2017.204] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023]
Abstract
The amyloid-β protein (Aβ) protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). It is believed that Aβ deposited in the brain originates from the brain tissue itself. However, Aβ is generated in both brain and peripheral tissues. Whether circulating Aβ contributes to brain AD-type pathologies remains largely unknown. In this study, using a model of parabiosis between APPswe/PS1dE9 transgenic AD mice and their wild-type littermates, we observed that the human Aβ originated from transgenic AD model mice entered the circulation and accumulated in the brains of wild-type mice, and formed cerebral amyloid angiopathy and Aβ plaques after a 12-month period of parabiosis. AD-type pathologies related to the Aβ accumulation including tau hyperphosphorylation, neurodegeneration, neuroinflammation and microhemorrhage were found in the brains of the parabiotic wild-type mice. More importantly, hippocampal CA1 long-term potentiation was markedly impaired in parabiotic wild-type mice. To the best of our knowledge, our study is the first to reveal that blood-derived Aβ can enter the brain, form the Aβ-related pathologies and induce functional deficits of neurons. Our study provides novel insight into AD pathogenesis and provides evidence that supports the development of therapies for AD by targeting Aβ metabolism in both the brain and the periphery.
Collapse
|
242
|
Törnquist M, Michaels TCT, Sanagavarapu K, Yang X, Meisl G, Cohen SIA, Knowles TPJ, Linse S. Secondary nucleation in amyloid formation. Chem Commun (Camb) 2018; 54:8667-8684. [PMID: 29978862 DOI: 10.1039/c8cc02204f] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nucleation of new peptide and protein aggregates on the surfaces of amyloid fibrils of the same peptide or protein has emerged in the past two decades as a major pathway for both the generation of molecular species responsible for cellular toxicity and for the autocatalytic proliferation of peptide and protein aggregates. A key question in current research is the molecular mechanism and driving forces governing such processes, known as secondary nucleation. In this context, the analogies with other self-assembling systems for which monomer-dependent secondary nucleation has been studied for more than a century provide a valuable source of inspiration. Here, we present a short overview of this background and then review recent results regarding secondary nucleation of amyloid-forming peptides and proteins, focusing in particular on the amyloid β peptide (Aβ) from Alzheimer's disease, with some examples regarding α-synuclein from Parkinson's disease. Monomer-dependent secondary nucleation of Aβ was discovered using a combination of kinetic experiments, global analysis, seeding experiments and selective isotope-enrichment, which pinpoint the monomer as the origin of new aggregates in a fibril-catalyzed reaction. Insights into driving forces are gained from variations of solution conditions, temperature and peptide sequence. Selective inhibition of secondary nucleation is explored as an effective means to limit oligomer production and toxicity. We also review experiments aimed at finding interaction partners of oligomers generated by secondary nucleation in an ongoing aggregation process. At the end of this feature article we bring forward outstanding questions and testable mechanistic hypotheses regarding monomer-dependent secondary nucleation in amyloid formation.
Collapse
Affiliation(s)
- Mattias Törnquist
- Lund University, Department of Biochemistry and Structural Biology, Chemical Centre, PO Box 124, SE221 00 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Albayram O, Angeli P, Bernstein E, Baxley S, Gao Z, Lu KP, Zhou XZ. Targeting Prion-like Cis Phosphorylated Tau Pathology in Neurodegenerative Diseases. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:443. [PMID: 30197831 PMCID: PMC6122852 DOI: 10.4172/2161-0460.1000443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tau is a microtubule-associated protein heavily implicated in neurodegenerative diseases collectively known as tauopathies, including Alzheimer's disease and chronic traumatic encephalopathy. Phosphorylation of tau at Thr231 allows for the isomerization of phosphorylated tau (p-tau) into distinct cis and trans conformations. Cis, but not trans, p-tau is detectable not only in Alzheimer's disease and chronic traumatic encephalopathy, but also right after traumatic brain injury depending on injury severity and frequency both in humans and animal models. Cis p-tau is not only neurotoxic but also spreads from a neuron to another in a prion-like fashion, functioning as a primary driver of neurodegeneration, which can be effectively neutralized by cis p-tau antibody. This represents an exciting new opportunity for understanding disease development and developing early biomarkers and effective therapies of tauopathies.
Collapse
Affiliation(s)
- Onder Albayram
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Peter Angeli
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Elizabeth Bernstein
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Sean Baxley
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Ziang Gao
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| | - Kun Ping Lu
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine Fujian Medical University, Fuzhou, Fujian, China
| | - Xiao Zhen Zhou
- Division of Translational Therapeutics, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 0408, Boston, MA 02215, USA
| |
Collapse
|
244
|
Sarell CJ, Quarterman E, Yip DCM, Terry C, Nicoll AJ, Wadsworth JDF, Farrow MA, Walsh DM, Collinge J. Soluble Aβ aggregates can inhibit prion propagation. Open Biol 2018; 7:rsob.170158. [PMID: 29142106 PMCID: PMC5717343 DOI: 10.1098/rsob.170158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022] Open
Abstract
Mammalian prions cause lethal neurodegenerative diseases such as Creutzfeldt–Jakob disease (CJD) and consist of multi-chain assemblies of misfolded cellular prion protein (PrPC). Ligands that bind to PrPC can inhibit prion propagation and neurotoxicity. Extensive prior work established that certain soluble assemblies of the Alzheimer's disease (AD)-associated amyloid β-protein (Aβ) can tightly bind to PrPC, and that this interaction may be relevant to their toxicity in AD. Here, we investigated whether such soluble Aβ assemblies might, conversely, have an inhibitory effect on prion propagation. Using cellular models of prion infection and propagation and distinct Aβ preparations, we found that the form of Aβ assemblies which most avidly bound to PrP in vitro also inhibited prion infection and propagation. By contrast, forms of Aβ which exhibit little or no binding to PrP were unable to attenuate prion propagation. These data suggest that soluble aggregates of Aβ can compete with prions for binding to PrPC and emphasize the bidirectional nature of the interplay between Aβ and PrPC in Alzheimer's and prion diseases. Such inhibitory effects of Aβ on prion propagation may contribute to the apparent fall-off in the incidence of sporadic CJD at advanced age where cerebral Aβ deposition is common.
Collapse
Affiliation(s)
- Claire J Sarell
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Emma Quarterman
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Daniel C-M Yip
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Cassandra Terry
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Andrew J Nicoll
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Mark A Farrow
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Dominic M Walsh
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK .,Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
245
|
Dourmashkin RR, McCall SA, Dourmashkin N, Hannah MJ. Virus-like particles and enterovirus antigen found in the brainstem neurons of Parkinson's disease. F1000Res 2018; 7:302. [PMID: 29899977 DOI: 10.12688/f1000research.13626.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2018] [Indexed: 01/14/2023] Open
Abstract
Background: In a previous study on encephalitis lethargica, we identified a virus related to enterovirus in autopsy brain material. Transmission electron microscopy (TEM), immunohistochemistry (IHC) and molecular analysis were employed. Our present objective was to investigate, using a similar approach, as to whether virus-like particles (VLP) and enterovirus antigen are present in Parkinson's disease (PD) brainstem neurons. Methods: Fixed tissue from autopsy specimens of late onset PD and control brainstem tissue were received for study. The brain tissue was processed for TEM and IHC according to previous published methods. Results: We observed VLP in the brainstem neurons of all the cases of PD that were examined. In the neurons' cytoplasm there were many virus factories consisting of VLP and endoplasmic reticulum membranes. In some neurons, the virus factories contained incomplete VLP. Complete VLP in some neurons' virus factories had an average diameter of 31 nm, larger than control brain ribosomes. In the nuclei, there were VLP with an average diameter of 40 nm. In cases of human poliomyelitis, there were cytoplasmic virus factories and intranuclear virus particles similar to those observed in PD. On preparing PD brain sections for IHC there was positive staining using anti-poliovirus antibody and anti-coxsackie antibody. This result was statistically significant. Conclusions: We present evidence for an enterovirus infection in PD. For future studies, virus isolation and molecular analysis are suggested.
Collapse
Affiliation(s)
- Robert R Dourmashkin
- Visiting Research Fellow, Virus Reference Dept., National Infection Service, Public Health England, London, NW9 5EQ, UK
| | - Sherman A McCall
- Molecular Pathology, Armed Forces Institute of Pathology, Washington, DC, 20306, USA
| | | | - Matthew J Hannah
- Virus Reference Department, National Infection Service, Public Health England, London, NW9 5EQ, UK
| |
Collapse
|
246
|
Rasmussen J, Krasemann S, Altmeppen H, Schwarz P, Schelle J, Aguzzi A, Glatzel M, Jucker M. Infectious prions do not induce Aβ deposition in an in vivo seeding model. Acta Neuropathol 2018; 135:965-967. [PMID: 29663066 DOI: 10.1007/s00401-018-1848-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Jay Rasmussen
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Tübingen, Germany.
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany.
- Graduate Training Center of Neuroscience-Cellular and Molecular Neuroscience, University of Tübingen, 72074, Tübingen, Germany.
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf UKE, 20246, Hamburg, Germany
| | - Hermann Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf UKE, 20246, Hamburg, Germany
| | - Petra Schwarz
- Institute of Neuropathology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Juliane Schelle
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Tübingen, Germany
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
- Graduate Training Center of Neuroscience-Cellular and Molecular Neuroscience, University of Tübingen, 72074, Tübingen, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf UKE, 20246, Hamburg, Germany
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, 72076, Tübingen, Germany.
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
247
|
Watts JC, Prusiner SB. β-Amyloid Prions and the Pathobiology of Alzheimer's Disease. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a023507. [PMID: 28193770 DOI: 10.1101/cshperspect.a023507] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in humans and will pose a considerable challenge to healthcare systems in the coming years. Aggregation of the β-amyloid (Aβ) peptide within the brain is thought to be an initiating event in AD pathogenesis. Many recent studies in transgenic mice have provided evidence that Aβ aggregates become self-propagating during disease, leading to a cascade of protein aggregation in the brain, which may underlie the progressive nature of AD. The ability to self-propagate and the existence of distinct "strains" reveals that Aβ aggregates exhibit many properties indistinguishable from those of prions composed of PrPSc proteins. Here, we review the evidence that Aβ can become a prion during disease and discuss how Aβ prions may be important for understanding the pathobiology of AD.
Collapse
Affiliation(s)
- Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Biochemistry, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, Departments of Neurology and of Biochemistry and Biophysics, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
248
|
Hervé D, Porché M, Cabrejo L, Guidoux C, Tournier-Lasserve E, Nicolas G, Adle-Biassette H, Plu I, Chabriat H, Duyckaerts C. Fatal Aβ cerebral amyloid angiopathy 4 decades after a dural graft at the age of 2 years. Acta Neuropathol 2018; 135:801-803. [PMID: 29508058 DOI: 10.1007/s00401-018-1828-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 01/03/2023]
|
249
|
Abstract
Genetic prion diseases (gPrDs) caused by mutations in the prion protein gene (PRNP) have been classified as genetic Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease, or fatal familial insomnia. Mutations in PRNP can be missense, nonsense, and/or octapeptide repeat insertions or, possibly, deletions. These mutations can produce diverse clinical features. They may also show varying ancillary testing results and neuropathological findings. Although the majority of gPrDs have a rapid progression with a short survival time of a few months, many also present as ataxic or parkinsonian disorders, which have a slower decline over a few to several years. A few very rare mutations manifest as neuropsychiatric disorders, with systemic symptoms that include gastrointestinal disorders and neuropathy; these forms can progress over years to decades. In this review, we classify gPrDs as rapid, slow, or mixed types based on their typical rate of progression and duration, and we review the broad spectrum of phenotypes manifested by these diseases.
Collapse
Affiliation(s)
- Mee-Ohk Kim
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Leonel T Takada
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo, São Paulo, 05403-900, Brazil
| | - Katherine Wong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Sven A Forner
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
250
|
Jaunmuktane Z, Quaegebeur A, Taipa R, Viana-Baptista M, Barbosa R, Koriath C, Sciot R, Mead S, Brandner S. Evidence of amyloid-β cerebral amyloid angiopathy transmission through neurosurgery. Acta Neuropathol 2018; 135:671-679. [PMID: 29450646 PMCID: PMC5904220 DOI: 10.1007/s00401-018-1822-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/14/2022]
Abstract
Amyloid-β (Aβ) is a peptide deposited in the brain parenchyma in Alzheimer's disease and in cerebral blood vessels, causing cerebral amyloid angiopathy (CAA). Aβ pathology is transmissible experimentally in animals and through medical procedures in humans, such as contaminated growth hormone or dura mater transplantation in the context of iatrogenic prion disease. Here, we present four patients who underwent neurosurgical procedures during childhood or teenage years and presented with intracerebral haemorrhage approximately three decades later, caused by severe CAA. None of these patients carried pathogenic mutations associated with early Aβ pathology development. In addition, we identified in the literature four patients with a history of neurosurgical intervention and subsequent development of CAA. These findings raise the possibility that Aβ pathology may be transmissible, as prion disease is, through neurosurgical procedures.
Collapse
Affiliation(s)
- Zane Jaunmuktane
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Annelies Quaegebeur
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
| | - Ricardo Taipa
- Portuguese Brain Bank, Neuropathology Unit, Department of Neuroscience, Centro Hospitalar Universitario do Porto, 4099-001, Porto, Portugal
| | - Miguel Viana-Baptista
- Department of Neurology, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, 1449-005, Lisbon, Portugal
| | - Raquel Barbosa
- Department of Neurology, Hospital Egas Moniz, Centro Hospitalar de Lisboa Ocidental, 1449-005, Lisbon, Portugal
| | - Carolin Koriath
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Raf Sciot
- Department of Imaging and Pathology, University of Leuven, 3000, Louvain, Belgium
| | - Simon Mead
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Medical Research Council Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCL Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG, UK.
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|