201
|
Cocquet J, Ellis PJI, Yamauchi Y, Riel JM, Karacs TPS, Rattigan A, Ojarikre OA, Affara NA, Ward MA, Burgoyne PS. Deficiency in the multicopy Sycp3-like X-linked genes Slx and Slxl1 causes major defects in spermatid differentiation. Mol Biol Cell 2010; 21:3497-505. [PMID: 20739462 PMCID: PMC2954115 DOI: 10.1091/mbc.e10-07-0601] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 12/11/2022] Open
Abstract
The human and mouse sex chromosomes are enriched in multicopy genes required for postmeiotic differentiation of round spermatids into sperm. The gene Sly is present in multiple copies on the mouse Y chromosome and encodes a protein that is required for the epigenetic regulation of postmeiotic sex chromosome expression. The X chromosome carries two multicopy genes related to Sly: Slx and Slxl1. Here we investigate the role of Slx/Slxl1 using transgenically-delivered small interfering RNAs to disrupt their function. We show that Slx and Slxl1 are important for normal sperm differentiation and male fertility. Slx/Slxl1 deficiency leads to delay in spermatid elongation and sperm release. A high proportion of delayed spermatids are eliminated via apoptosis, with a consequent reduced sperm count. The remaining spermatozoa are abnormal with impaired motility and fertilizing abilities. Microarray analyses reveal that Slx/Slxl1 deficiency affects the metabolic processes occurring in the spermatid cytoplasm but does not lead to a global perturbation of sex chromosome expression; this is in contrast with the effect of Sly deficiency which leads to an up-regulation of X and Y chromosome genes. This difference may be due to the fact that SLX/SLXL1 are cytoplasmic while SLY is found in the nucleus and cytoplasm of spermatids.
Collapse
Affiliation(s)
- Julie Cocquet
- Division of Stem Cell Biology and Developmental Genetics, Medical Research Council National Institute for Medical Research, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
The SSX family of cancer-testis antigens as target proteins for tumor therapy. Clin Dev Immunol 2010; 2010:150591. [PMID: 20981248 PMCID: PMC2963798 DOI: 10.1155/2010/150591] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/01/2010] [Indexed: 01/01/2023]
Abstract
Cancer-testis antigens (CTAs) represent an expanding class of tumor-associated proteins defined on the basis of their tissue-restricted expression to testis or ovary germline cells and frequent ectopic expression in tumor tissue. The expression of CTA in MHC class I-deficient germline cells makes these proteins particularly attractive as immunotherapeutic targets because they serve as essentially tumor-specific antigens for MHC class I-restricted CD8+ T cells. Moreover, because CTAs are expressed in many types of cancer, any therapeutic developed to target these antigens might have efficacy for multiple cancer types. Of particular interest among CTAs is the synovial sarcoma X chromosome breakpoint (SSX) family of proteins, which includes ten highly homologous family members. Expression of SSX proteins in tumor tissues has been associated with advanced stages of disease and worse patient prognosis. Additionally, both humoral and cell-mediated immune responses to SSX proteins have been demonstrated in patients with tumors of varying histological origin, which indicates that natural immune responses can be spontaneously generated to these antigens in cancer patients. The current review will describe the history and identification of this family of proteins, as well as what is known of their function, expression in normal and malignant tissues, and immunogenicity.
Collapse
|
203
|
Page DC, Hughes JF, Bellott DW, Mueller JL, Gill ME, Larracuente A, Graves T, Muzny D, Warren WC, Gibbs RA, Wilson RK, Skaletsky H. Reconstructing sex chromosome evolution. Genome Biol 2010. [PMCID: PMC3026214 DOI: 10.1186/gb-2010-11-s1-i21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
204
|
Zhang YE, Vibranovski MD, Landback P, Marais GAB, Long M. Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome. PLoS Biol 2010; 8. [PMID: 20957185 PMCID: PMC2950125 DOI: 10.1371/journal.pbio.1000494] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 08/16/2010] [Indexed: 01/20/2023] Open
Abstract
Mammalian X chromosomes evolved under various mechanisms including sexual antagonism, the faster-X process, and meiotic sex chromosome inactivation (MSCI). These forces may contribute to nonrandom chromosomal distribution of sex-biased genes. In order to understand the evolution of gene content on the X chromosome and autosome under these forces, we dated human and mouse protein-coding genes and miRNA genes on the vertebrate phylogenetic tree. We found that the X chromosome recently acquired a burst of young male-biased genes, which is consistent with fixation of recessive male-beneficial alleles by sexual antagonism. For genes originating earlier, however, this pattern diminishes and finally reverses with an overrepresentation of the oldest male-biased genes on autosomes. MSCI contributes to this dynamic since it silences X-linked old genes but not X-linked young genes. This demasculinization process seems to be associated with feminization of the X chromosome with more X-linked old genes expressed in ovaries. Moreover, we detected another burst of gene originations after the split of eutherian mammals and opossum, and these genes were quickly incorporated into transcriptional networks of multiple tissues. Preexisting X-linked genes also show significantly higher protein-level evolution during this period compared to autosomal genes, suggesting positive selection accompanied the early evolution of mammalian X chromosomes. These two findings cast new light on the evolutionary history of the mammalian X chromosome in terms of gene gain, sequence, and expressional evolution.
Collapse
Affiliation(s)
- Yong E. Zhang
- Department of Ecology and Evolution, the University of Chicago, Chicago, Illinois, United States of America
| | - Maria D. Vibranovski
- Department of Ecology and Evolution, the University of Chicago, Chicago, Illinois, United States of America
| | - Patrick Landback
- Department of Ecology and Evolution, the University of Chicago, Chicago, Illinois, United States of America
| | - Gabriel A. B. Marais
- Université de Lyon, Centre National de la Recherche Scientifique, Laboratoire de Biométrie et Biologie évolutive, Villeurbanne, France
| | - Manyuan Long
- Department of Ecology and Evolution, the University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
205
|
Mank JE. Sex chromosomes and the evolution of sexual dimorphism: lessons from the genome. Am Nat 2010; 173:141-50. [PMID: 20374139 DOI: 10.1086/595754] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Females and males of many animals exhibit a striking array of sexual dimorphisms, ranging from the primary differences of the gametes and gonads to the somatic differences often seen in behavior, morphology, and physiology. These differences raise many questions regarding how such divergent phenotypes can arise from a genome that is largely shared between the sexes. Recent progress in genomics has revealed some of the actual genetic mechanisms that create separate sex-specific phenotypes, and the evidence indicates that thousands of genes across all portions of the genome contribute to male and female forms through sex-biased gene expression. Related work has begun to define the strength and influence of sex-specific evolutionary forces that shape these phenotypic dimorphisms and how they in turn affect the genome. Additionally, theory has long suggested that the evolution of sexual dimorphism is facilitated by sex chromosomes, as these are the only portions of the genome that differ between males and females. Genomic analysis indicates that there is indeed a relationship between sexual dimorphism and the sex chromosomes. However, the connection is far more complicated than current theory allows, and this may ultimately require a reexamination of the assumptions so that predictions match the accumulating empirical data.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, United Kingdom.
| |
Collapse
|
206
|
White-Cooper H, Bausek N. Evolution and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1465-80. [PMID: 20403864 DOI: 10.1098/rstb.2009.0323] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sexual reproduction depends on the production of haploid gametes, and their fusion to form diploid zygotes. Here, we discuss sperm production and function in a molecular and functional evolutionary context, drawing predominantly from studies in model organisms (mice, Drosophila, Caenorhabditis elegans). We consider the mechanisms involved in establishing and maintaining a germline stem cell population in testes, as well as the factors that regulate their contribution to the pool of differentiating cells. These processes involve considerable interaction between the germline and the soma, and we focus on regulatory signalling events in a variety of organisms. The male germline has a unique transcriptional profile, including expression of many testis-specific genes. The evolutionary pressures associated with gene duplication and acquisition of testis function are discussed in the context of genome organization and transcriptional regulation. Post-meiotic differentiation of spermatids involves very dramatic changes in cell shape and acquisition of highly specialized features. We discuss the variety of sperm motility mechanisms and how various reproductive strategies are associated with the diversity of sperm forms found in animals.
Collapse
Affiliation(s)
- Helen White-Cooper
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AT, UK.
| | | |
Collapse
|
207
|
Charlesworth D, Mank JE. The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics 2010; 186:9-31. [PMID: 20855574 PMCID: PMC2940314 DOI: 10.1534/genetics.110.117697] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The ability to identify genetic markers in nonmodel systems has allowed geneticists to construct linkage maps for a diversity of species, and the sex-determining locus is often among the first to be mapped. Sex determination is an important area of study in developmental and evolutionary biology, as well as ecology. Its importance for organisms might suggest that sex determination is highly conserved. However, genetic studies have shown that sex determination mechanisms, and the genes involved, are surprisingly labile. We review studies using genetic mapping and phylogenetic inferences, which can help reveal evolutionary pattern within this lability and potentially identify the changes that have occurred among different sex determination systems. We define some of the terminology, particularly where confusion arises in writing about such a diverse range of organisms, and highlight some major differences between plants and animals, and some important similarities. We stress the importance of studying taxa suitable for testing hypotheses, and the need for phylogenetic studies directed to taxa where the patterns of changes can be most reliably inferred, if the ultimate goal of testing hypotheses regarding the selective forces that have led to changes in such an essential trait is to become feasible.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Department of Zoology, Edward Grey Institute, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | |
Collapse
|
208
|
Akerfelt M, Vihervaara A, Laiho A, Conter A, Christians ES, Sistonen L, Henriksson E. Heat shock transcription factor 1 localizes to sex chromatin during meiotic repression. J Biol Chem 2010; 285:34469-76. [PMID: 20802198 PMCID: PMC2966061 DOI: 10.1074/jbc.m110.157552] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heat shock factor 1 (HSF1) is an important transcription factor in cellular stress responses, cancer, aging, and developmental processes including gametogenesis. Disruption of Hsf1, together with another HSF family member, Hsf2, causes male sterility and complete lack of mature sperm in mice, but the specific role of HSF1 in spermatogenesis has remained unclear. Here, we show that HSF1 is transiently expressed in meiotic spermatocytes and haploid round spermatids in mouse testis. The Hsf1(-/-) male mice displayed regions of seminiferous tubules containing only spermatogonia and increased morphological abnormalities in sperm heads. In search for HSF1 target genes, we identified 742 putative promoters in mouse testis. Among them, the sex chromosomal multicopy genes that are expressed in postmeiotic cells were occupied by HSF1. Given that the sex chromatin mostly is repressed during and after meiosis, it is remarkable that HSF1 directly regulates the transcription of sex-linked multicopy genes during postmeiotic repression. In addition, our results show that HSF1 localizes to the sex body prior to the meiotic divisions and to the sex chromocenter after completed meiosis. To the best of our knowledge, HSF1 is the first known transcription factor found at the repressed sex chromatin during meiosis.
Collapse
Affiliation(s)
- Malin Akerfelt
- Department of Biosciences, Åbo Akademi University, FI-20521 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
209
|
Bachtrog D, Toda NRT, Lockton S. Dosage compensation and demasculinization of X chromosomes in Drosophila. Curr Biol 2010; 20:1476-81. [PMID: 20705467 PMCID: PMC4511158 DOI: 10.1016/j.cub.2010.06.076] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 01/01/2023]
Abstract
The X chromosome of Drosophila shows a deficiency of genes with male-biased expression, whereas mammalian X chromosomes are enriched for spermatogenesis genes expressed premeiosis and multicopy testis genes. Meiotic X-inactivation and sexual antagonism can only partly account for these patterns. Here, we show that dosage compensation (DC) in Drosophila may contribute substantially to the depletion of male genes on the X. To equalize expression between X-linked and autosomal genes in the two sexes, male Drosophila hypertranscribe their single X, whereas female mammals silence one of their two X chromosomes. We combine fine-scale mapping data of dosage compensated regions with genome-wide expression profiles and show that most male-biased genes on the D. melanogaster X are located outside dosage compensated regions. Additionally, X-linked genes that have newly acquired male-biased expression in D. melanogaster are less likely to be dosage compensated, and parental X-linked genes that gave rise to an autosomal male-biased retrocopy are more likely located within compensated regions. This suggests that DC contributes to the observed demasculinization of X chromosomes in Drosophila, both by limiting the emergence of male-biased expression patterns of existing X genes, and by contributing to gene trafficking of male genes off the X.
Collapse
Affiliation(s)
- Doris Bachtrog
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | | |
Collapse
|
210
|
Abstract
A subset of X-linked genes escapes silencing by X inactivation and is expressed from both X chromosomes in mammalian females. Species-specific differences in the identity of these genes have recently been discovered, suggesting a role in the evolution of sex differences. Chromatin analyses have aimed to discover how genes remain expressed within a repressive environment.
Collapse
Affiliation(s)
- Joel B Berletch
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
211
|
Mulugeta Achame E, Wassenaar E, Hoogerbrugge JW, Sleddens-Linkels E, Ooms M, Sun ZW, van IJcken WFJ, Grootegoed JA, Baarends WM. The ubiquitin-conjugating enzyme HR6B is required for maintenance of X chromosome silencing in mouse spermatocytes and spermatids. BMC Genomics 2010; 11:367. [PMID: 20537150 PMCID: PMC3091626 DOI: 10.1186/1471-2164-11-367] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/10/2010] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The ubiquitin-conjugating enzyme HR6B is required for spermatogenesis in mouse. Loss of HR6B results in aberrant histone modification patterns on the trancriptionally silenced X and Y chromosomes (XY body) and on centromeric chromatin in meiotic prophase. We studied the relationship between these chromatin modifications and their effects on global gene expression patterns, in spermatocytes and spermatids. RESULTS HR6B is enriched on the XY body and on centromeric regions in pachytene spermatocytes. Global gene expression analyses revealed that spermatid-specific single- and multicopy X-linked genes are prematurely expressed in Hr6b knockout spermatocytes. Very few other differences in gene expression were observed in these cells, except for upregulation of major satellite repeat transcription. In contrast, in Hr6b knockout spermatids, 7298 genes were differentially expressed; 65% of these genes was downregulated, but we observed a global upregulation of gene transcription from the X chromosome. In wild type spermatids, approximately 20% of the single-copy X-linked genes reach an average expression level that is similar to the average expression from autosomes. CONCLUSIONS Spermatids maintain an enrichment of repressive chromatin marks on the X chromosome, originating from meiotic prophase, but this does not interfere with transcription of the single-copy X-linked genes that are reactivated or specifically activated in spermatids. HR6B represses major satellite repeat transcription in spermatocytes, and functions in the maintenance of X chromosome silencing in spermatocytes and spermatids. It is discussed that these functions involve modification of chromatin structure, possibly including H2B ubiquitylation.
Collapse
|
212
|
Abstract
Homeobox genes encode transcription factors that have crucial roles in embryogenesis. A recently discovered set of homeobox genes--the Rhox genes--are expressed during both embryogenesis and in adult reproductive tissues. The 33 known mouse Rhox genes are clustered together in a single region on the X chromosome, while likely descendents of the primodial Rhox cluster, Arx and Esx1, have moved to other positions on the X chromosome. Here, we summarize what is known about the regulation and function of Rhox cluster and Rhox-related genes during embryogenesis and gametogenesis. The founding member of the Rhox gene cluster--Rhox5 (previously known as Pem)--has been studied in the most depth and thus is the focus of this review. We also discuss the unusually rapid evolution of the Rhox gene cluster.
Collapse
Affiliation(s)
- James A MacLean
- Department of Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA
| | | |
Collapse
|
213
|
Vaskova EA, Pavlova SV, Shevchenko AI, Zakian SM. Meiotic inactivation of sex chromosomes in mammals. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410040010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
214
|
Moyle LC, Muir CD, Han MV, Hahn MW. The contribution of gene movement to the "two rules of speciation". Evolution 2010; 64:1541-57. [PMID: 20298429 DOI: 10.1111/j.1558-5646.2010.00990.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The two "rules of speciation"--the Large X-effect and Haldane's rule--hold throughout the animal kingdom, but the underlying genetic mechanisms that cause them are still unclear. Two predominant explanations--the "dominance theory" and faster male evolution--both have some empirical support, suggesting that the genetic basis of these rules is likely multifarious. We revisit one historical explanation for these rules, based on dysfunctional genetic interactions involving genes recently moved between chromosomes. We suggest that gene movement specifically off or onto the X chromosome is another mechanism that could contribute to the two rules, especially as X chromosome movements can be subject to unique sex-specific and sex chromosome specific consequences in hybrids. Our hypothesis is supported by patterns emerging from comparative genomic data, including a strong bias in interchromosomal gene movements involving the X and an overrepresentation of male reproductive functions among chromosomally relocated genes. In addition, our model indicates that the contribution of gene movement to the two rules in any specific group will depend upon key developmental and reproductive parameters that are taxon specific. We provide several testable predictions that can be used to assess the importance of gene movement as a contributor to these rules in the future.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, Indiana 47405, USA.
| | | | | | | |
Collapse
|
215
|
Scavetta RJ, Tautz D. Copy number changes of CNV regions in intersubspecific crosses of the house mouse. Mol Biol Evol 2010; 27:1845-56. [PMID: 20200126 DOI: 10.1093/molbev/msq064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Copy number variation (CNV) contributes significantly to natural genetic variation within and between populations. However, the mutational mechanisms leading to CNV, as well as the processes that control the size of CNV regions, are so far not well understood. Here, we have analyzed a gene family that forms CNV regions on the X and the Y chromosomes in Mus musculus. These CNV regions show copy number differences in two subspecies, M. musculus domesticus and M. musculus musculus. Assessment of copy numbers at these loci for individuals caught in a natural hybrid zone showed copy number increases and a large variance among individuals. Crosses of natural hybrid animals among each other produced even more extreme variants with major differences in copy number in the offspring from the same parents. To assess the inheritance pattern of the loci further, we have produced F1 and backcross hybrid animals from these subspecies. We found that copy number expansions can already be traced in F1 offspring and they became stronger in the backcross individuals. Specific analysis of hybrid male offspring indicated that neither meiotic recombination nor interchromosomal exchange was required for creating these changes because the X and Y chromosomes have no homologues in males. This suggests that intrachromosomal exchanges can drive CNV and that this can occur at an elevated frequency in interspecific crosses, even within an individual. Accordingly, we find copy number mosaicism in individuals, that is, DNA from different tissues of the same individual can have different copy numbers for the loci studied. A preliminary survey of autosomal loci suggests that these can also be subject to change in hybrids. Hence, we conclude that the effects we see are not only restricted to some specific loci but may also be caused by a general induction of replication-coupled repair processes.
Collapse
Affiliation(s)
- Rick J Scavetta
- Max-Planck Institut für Evolutionsbiologie, Abteilung Evolutionsgenetik, Plön, Germany
| | | |
Collapse
|
216
|
The chicken Z chromosome is enriched for genes with preferential expression in ovarian somatic cells. J Mol Evol 2009; 70:129-36. [PMID: 20037757 DOI: 10.1007/s00239-009-9315-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
Theory predicts that sexually antagonistic mutations will be over- or under-represented on the X and Z chromosomes, depending on their average dominance coefficients. However, as little is known about the dominance coefficients for new mutations, the effect of sexually antagonistic selection is difficult to predict. To elucidate the role of sexually antagonistic selection in the evolution of Z chromosome gene content in chicken, we analyzed publicly available microarray data from several somatic tissues as well as somatic and germ cells of the ovary. We found that the Z chromosome is enriched for genes showing preferential expression in ovarian somatic cells, but not for genes with preferential expression in primary oocytes or non-sex-specific somatic tissues. Our results suggest that sexual antagonism leads to a higher abundance of female-benefit alleles on the Z chromosome. No bias toward Z-linkage for oocyte-enriched genes can be explained by lower intensity of sexually antagonistic selection in ovarian germ cells compared to ovarian somatic cells. An alternative explanation would be that meiotic Z chromosome inactivation hinders accumulation of oocyte-expressed genes on the Z chromosome. Our results are consistent with findings in mammals and indicate that recessive rather than dominant sexually antagonistic mutations shape the gene content of the X and Z chromosomes.
Collapse
|
217
|
Genetic conflict and sex chromosome evolution. Trends Ecol Evol 2009; 25:215-23. [PMID: 19931208 DOI: 10.1016/j.tree.2009.10.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 01/06/2023]
Abstract
Chromosomal sex determination systems create the opportunity for the evolution of selfish genetic elements that increase the transmission of one sex chromosome at the expense of its homolog. Because such selfish elements on sex chromosomes can reduce fertility and distort the sex ratio of progeny, unlinked suppressors are expected to evolve, bringing different regions of the genome into conflict over the meiotic transmission of the sex chromosomes. Here we argue that recurrent genetic conflict over sex chromosome transmission is an important evolutionary force that has shaped a wide range of seemingly disparate phenomena including the epigenetic regulation of genes expressed in the germline, the distribution of genes in the genome, and the evolution of hybrid sterility between species.
Collapse
|
218
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: Background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 2009; 73:241-78. [DOI: 10.1002/jemt.20783] [Citation(s) in RCA: 320] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
219
|
The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis. PLoS Biol 2009; 7:e1000244. [PMID: 19918361 PMCID: PMC2770110 DOI: 10.1371/journal.pbio.1000244] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 10/08/2009] [Indexed: 11/23/2022] Open
Abstract
Small-interfering RNAs have been used to disrupt the function of the more than 100 copies of the Sly gene on the mouse Y chromosome, leading to defective sex chromosome repression during spermatid differentiation and, as a consequence, sperm malformations and near-sterility. Studies of mice with Y chromosome long arm deficiencies suggest that the male-specific region (MSYq) encodes information required for sperm differentiation and postmeiotic sex chromatin repression (PSCR). Several genes have been identified on MSYq, but because they are present in more than 40 copies each, their functions cannot be investigated using traditional gene targeting. Here, we generate transgenic mice producing small interfering RNAs that specifically target the transcripts of the MSYq-encoded multicopy gene Sly (Sycp3-like Y-linked). Microarray analyses performed on these Sly-deficient males and on MSYq-deficient males show a remarkable up-regulation of sex chromosome genes in spermatids. SLY protein colocalizes with the X and Y chromatin in spermatids of normal males, and Sly deficiency leads to defective repressive marks on the sex chromatin, such as reduced levels of the heterochromatin protein CBX1 and of histone H3 methylated at lysine 9. Sly-deficient mice, just like MSYq-deficient mice, have severe impairment of sperm differentiation and are near sterile. We propose that their spermiogenesis phenotype is a consequence of the change in spermatid gene expression following Sly deficiency. To our knowledge, this is the first successful targeted disruption of the function of a multicopy gene (or of any Y gene). It shows that SLY has a predominant role in PSCR, either via direct interaction with the spermatid sex chromatin or via interaction with sex chromatin protein partners. Sly deficiency is the major underlying cause of the spectrum of anomalies identified 17 y ago in MSYq-deficient males. Our results also suggest that the expansion of sex-linked spermatid-expressed genes in mouse is a consequence of the enhancement of PSCR that accompanies Sly amplification. During meiosis in the male mouse, the X and Y chromosomes are transcriptionally silenced, and retain a significant degree of repression after meiosis. Postmeiotically, X and Y chromosome–encoded genes are consequently expressed at a low level, with the exception of genes present in many copies, which can achieve a higher level of expression. Gene amplification is a notable feature of the X and Y chromosomes, and it has been proposed that this serves to compensate for the postmeiotic repression. The long arm of the mouse Y chromosome (MSYq) has multicopy genes organized in clusters over several megabases. On the basis of analysis of mice carrying MSYq deletions, we proposed that MSYq encodes genetic information that is crucial for postmeiotic repression of the sex chromosomes and for sperm differentiation. The gene(s) responsible for these functions were, however, unknown. In this study, using transgenically delivered small interfering RNA, we disrupted the function of Sly, a gene that is present in more than 100 copies on MSYq. Sly-deficient males have major sperm differentiation problems together with a remarkable postmeiotic derepression of genes encoded on the X and Y chromosomes. Furthermore, the epigenetic modifications normally associated with sex chromosome repression are altered. Our data thus show that the SLY protein is required to mediate postmeiotic repression of the X and Y chromosomes. It is likely that the sperm differentiation problems in Sly-deficient males are largely a consequence of the derepression of the sex chromosomes in spermatids. We propose that the postmeiotic repressive effect of Sly on genes encoded on the X and Y chromosomes drove their massive amplification in the mouse.
Collapse
|
220
|
Caballero OL, Chen YT. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci 2009; 100:2014-21. [PMID: 19719775 PMCID: PMC11158245 DOI: 10.1111/j.1349-7006.2009.01303.x] [Citation(s) in RCA: 423] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 07/26/2009] [Accepted: 07/26/2009] [Indexed: 10/20/2022] Open
Abstract
Cancer/testis (CT) antigens are protein antigens with normal expression restricted to adult testicular germ cells, and yet are aberrantly activated and expressed in a proportion of various types of human cancer. At least a subset of this group of antigens has been found to elicit spontaneous humoral and cell-mediated immune responses in cancer patients, raising the possibility that these antigens could be cancer vaccine targets. More than 100 CT antigen genes have been reported in the literature, with approximately 30 being members of multigene families on the X chromosome, so-called CT-X genes. Most CT-X genes are expressed at the spermatogonia stage of spermatogenesis, and their functions are mostly unknown. In cancer, the frequency of CT antigen expression is highly variable among different tumor types, but is more often expressed in high-grade late-stage cases in general. Cancer vaccine trials based on CT antigens MAGE-A3 and NY-ESO-1 are currently ongoing, and these antigens may also play a role in antigen-specific adoptive T-cell transfer and in the immunomodulation approach of cancer therapy.
Collapse
Affiliation(s)
- Otavia L Caballero
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York City, USA
| | | |
Collapse
|
221
|
Abstract
Infertility is a worldwide reproductive health problem, affecting men and women about equally. Mouse genetic studies demonstrate that more than 200 genes specifically or predominantly regulate fertility. However, few genetic causes of infertility in humans have been identified. Here, we focus on the regulation of male fertility by X-linked, germ cell-specific genes. Previous genomic studies reveal that the mammalian X chromosome is enriched for genes expressed in early spermatogenesis. Recent genetic studies in mice show that X-linked, germ cell-specific genes, such as A-kinase anchor protein 4 (Akap4), nuclear RNA export factor 2 (Nxf2), TBP-associated factor 7l (Taf7l), and testis-expressed gene 11 (Tex11), indeed play important roles in the regulation of male fertility. Moreover, we find that the Taf7l Tex11 double-mutant males exhibit much more severe defects in meiosis than either single mutant, suggesting that these 2 X-linked genes regulate male meiosis synergistically. The X-linked, germ cell-specific genes are particularly attractive in the study of male infertility in humans. Because males are hemizygous for X-linked genes, loss-of-function mutations in the single-copy X-linked genes, unlike in autosomal genes, would not be masked by a normal allele. The genetic studies of X-linked, germ cell-specific genes in mice have laid a foundation for mutational analysis of their human orthologues in infertile men.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Animal Biology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
222
|
Reynard LN, Turner JMA. Increased sex chromosome expression and epigenetic abnormalities in spermatids from male mice with Y chromosome deletions. J Cell Sci 2009; 122:4239-48. [PMID: 19861498 DOI: 10.1242/jcs.049916] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During male meiosis, the X and Y chromosomes are transcriptionally silenced, a process termed meiotic sex chromosome inactivation (MSCI). Recent studies have shown that the sex chromosomes remain substantially transcriptionally repressed after meiosis in round spermatids, but the mechanisms involved in this later repression are poorly understood. Mice with deletions of the Y chromosome long arm (MSYq-) have increased spermatid expression of multicopy X and Y genes, and so represent a model for studying post-meiotic sex chromosome repression. Here, we show that the increase in sex chromosome transcription in spermatids from MSYq- mice affects not only multicopy but also single-copy XY genes, as well as an X-linked reporter gene. This increase in transcription is accompanied by specific changes in the sex chromosome histone code, including almost complete loss of H4K8Ac and reduction of H3K9me3 and CBX1. Together, these data show that an MSYq gene regulates sex chromosome gene expression as well as chromatin remodelling in spermatids.
Collapse
|
223
|
Abstract
Sex chromosomes have evolved multiple times in many taxa. The recent explosion in the availability of whole genome sequences from a variety of organisms makes it possible to investigate sex chromosome evolution within and across genomes. Comparative genomic studies have shown that quite distant species may share fundamental properties of sex chromosome evolution, while very similar species can evolve unique sex chromosome systems. Furthermore, within-species genomic analyses can illuminate chromosome-wide sequence and expression polymorphisms. Here, we explore recent advances in the study of vertebrate sex chromosomes achieved using genomic analyses.
Collapse
Affiliation(s)
- Melissa A Wilson
- Center for Comparative Genomics and Bioinformatics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
224
|
Mahadevaiah SK, Royo H, VandeBerg JL, McCarrey JR, Mackay S, Turner JMA. Key features of the X inactivation process are conserved between marsupials and eutherians. Curr Biol 2009; 19:1478-84. [PMID: 19716301 DOI: 10.1016/j.cub.2009.07.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
In female marsupials, X chromosome inactivation (XCI) is imprinted, affecting the paternal X chromosome. One model, supported by recent studies, proposes that XCI in marsupials is achieved through inheritance of an already silent X chromosome from the father, with XCI initiated by meiotic sex chromosome inactivation (MSCI). This model is appealing because marsupials have no Xist gene and the marsupial inactive X chromosome is epigenetically dissimilar to that of mice, apparently lacking repressive histone marks such as H3K27 trimethylation. A central prediction of the meiotic inactivation model of XCI is that silencing of genes on the X chromosome, initiated during male meiosis, is stably maintained during subsequent spermiogenesis. Here we characterize XCI in the male germline and female soma of the marsupial Monodelphis domestica. Contrary to the meiotic inactivation model, we find that X genes silenced by MSCI are reactivated after meiosis and are subsequently inactivated in the female. A reexamination of the female somatic inactive marsupial X chromosome reveals that it does share common properties with that of eutherians, including H3K27 trimethylation and targeting to the perinucleolar compartment. We conclude that aspects of the XCI process are more highly conserved in therian mammals than previously thought.
Collapse
|
225
|
Reynard LN, Cocquet J, Burgoyne PS. The multi-copy mouse gene Sycp3-like Y-linked (Sly) encodes an abundant spermatid protein that interacts with a histone acetyltransferase and an acrosomal protein. Biol Reprod 2009; 81:250-7. [PMID: 19176879 PMCID: PMC2849823 DOI: 10.1095/biolreprod.108.075382] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2008] [Revised: 12/28/2008] [Accepted: 01/20/2009] [Indexed: 11/01/2022] Open
Abstract
Deletion analysis has established that genes on the Y chromosome are essential for normal sperm production in humans, mice, and Drosophila. In mice, long-arm deletions have an impact on spermiogenesis, with the most extensive deletions resulting in severe sperm head malformations and infertility. Intriguingly, smaller deletions are compatible with fertility but result in a distorted sex ratio in favor of females, and recently it was found that Y long-arm deletions are also associated with a marked upregulation of several X-encoded and Y-encoded spermatid-expressed genes. The mouse Y long arm encodes a number of distinct transcripts, each of which derives from multiple gene copies. Of these multicopy genes, the recently described Sly has been favored as the gene underlying the spermiogenic defects associated with Y long-arm deletions. To assess the candidacy of Sly, the expression of this gene was examined in the testis at the transcript and protein levels. Sly is transcribed after the first meiotic division in secondary spermatocytes and round spermatids and encodes two transcript variants, Sly_v1 and Sly_v2 (proteins referred to as SLY1 and SLY2). We raised an antibody against SLY1 which detected the protein in round and early elongating spermatids, where it is predominantly cytoplasmic. Yeast two-hybrid and coimmunoprecipitation studies demonstrated that SLY1 interacts with the acrosomal protein DKKL1, the histone acetyltransferase KAT5 (also known as TIP60), and the microtubule-associated protein APPBP2. Together, these data suggest SLY1 may be involved in multiple processes during spermiogenesis, including the control of gene expression and the development or function of the acrosome.
Collapse
Affiliation(s)
- Louise N. Reynard
- Division of Developmental Genetics and Stem Cell Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Julie Cocquet
- Division of Developmental Genetics and Stem Cell Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Paul S. Burgoyne
- Division of Developmental Genetics and Stem Cell Biology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
226
|
Kaiser VB, Bergero R, Charlesworth D. Slcyt, a newly identified sex-linked gene, has recently moved onto the X chromosome in Silene latifolia (Caryophyllaceae). Mol Biol Evol 2009; 26:2343-51. [PMID: 19587127 DOI: 10.1093/molbev/msp141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The sex chromosomes of the plant species Silene latifolia (white campion) are very young (only 5-10 My old), and all 11 X-linked genes so far described have Y-linked homologues. Theory predicts that X chromosomes should accumulate a nonrandom set of genes. However, little is known about the importance of gene movements between the X and the autosomes in plants, or in any very young sex chromosome system. Here, we isolate from cDNA a new gene, Slcyt, on the S. latifolia X, which encodes a cytochrome B protein. We genetically mapped SlCyt and found that it is located approximately 1 cM from the pseudoautosomal region. Genes in this region of the X chromosome have low divergence values from their homologous Y-linked genes, indicating that the X only recently stopped recombining with the Y. Genetic mapping in Silene vulgaris suggests that Slcyt originally belonged to a different linkage group from that of the other S. latifolia X-linked genes. Silene latifolia has no Y-linked homologue of Slcyt, and also no autosomal paralogues seem to exist. Slcyt moved from an autosome to the X very recently, as the Cyt gene is also X linked in Silene dioica, the sister species to S. latifolia, but is probably autosomal in Silene diclinis, implying that a translocation to the X probably occurred after the split between S. diclinis and S. latifolia/S. dioica. Diversity at Slcyt is extremely low (pi(syn) = 0.16%), and we find an excess of high frequency-derived variants and a negative Tajima's D, suggesting that the translocation was driven by selection.
Collapse
Affiliation(s)
- Vera B Kaiser
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | | | | |
Collapse
|
227
|
Stouffs K, Tournaye H, Liebaers I, Lissens W. Male infertility and the involvement of the X chromosome. Hum Reprod Update 2009; 15:623-37. [PMID: 19515807 DOI: 10.1093/humupd/dmp023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Male infertility is a worldwide problem, keeping many researchers puzzled. Besides environmental factors, much attention is paid to single gene defects. In this view, the sex chromosomes are particularly interesting since men only have a single copy of these chromosomes. The involvement of the Y chromosome in male infertility is obvious since the detection of Yq microdeletions. The role of the X chromosome, however, remains less understood. METHODS Articles were obtained by searching PubMed until December 2008. A first search attempted to identify genes located on the X chromosome potentially important for spermatogenesis. A second part of the study was focused on those genes for which the role has already been studied in infertile patients. RESULTS Multiple genes located on the X chromosome are expressed in testicular tissues. The function of many genes, especially the cancer-testis genes, has not been studied so far. There were striking differences between mouse and human genes. In the second part of the study, the results of mutation analyses of seven genes (AR, SOX3, USP26, NXF2, TAF7L, FATE and AKAP4) are described. Except for AR, no infertility causing mutations have, thus far, been described. It cannot be excluded that some of the observed changes should be considered as risk factors for impaired spermatogenesis. CONCLUSIONS It can be concluded that, so far, the mutation analysis of X-linked genes in humans, presumed to be crucial for spermatogenesis or sperm quality, has been disappointing. Other approaches to learn more about male infertility are necessary.
Collapse
Affiliation(s)
- Katrien Stouffs
- Department of Embryology and Genetics, Vrije Universiteit Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
228
|
Abstract
Deubiquitinating enzymes (DUBs) play an important role in ubiquitin-dependent processes as negative regulators of protein ubiquitination. Ubiquitin-specific protease 26 (USP26) is a member of this family. The expression of Usp26 in mammalian testis and in other tissues has yet to be fully elucidated. To study the expression of Usp26 mRNA and protein in various murine tissues, reverse transcription (RT)-PCR and immunohistochemistry analyses were carried out. The RT-PCR analysis showed that the Usp26 transcript was expressed in all of the tested tissues. USP26 protein localization was examined by immunohistochemistry, and it was shown that USP26 was not detectable at 20 days postpartum, with the expression restricted to the cytoplasm of condensing spermatids (steps 9-16), Leydig cells and nerve fibers in the brain. In addition, the USP26 protein was detected at moderate levels in myocardial cells, the corpus of epidydimis, epithelium of the renal tubules and the seminal gland of postnatal day 35 mice. Its spatial and temporal expression pattern suggests that Usp26 may play an important role in development or function of the testis and brain. Further research into these possibilities is in progress.
Collapse
|
229
|
Schoenmakers S, Wassenaar E, Hoogerbrugge JW, Laven JSE, Grootegoed JA, Baarends WM. Female meiotic sex chromosome inactivation in chicken. PLoS Genet 2009; 5:e1000466. [PMID: 19461881 PMCID: PMC2678266 DOI: 10.1371/journal.pgen.1000466] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 04/03/2009] [Indexed: 12/25/2022] Open
Abstract
During meiotic prophase in male mammals, the heterologous X and Y chromosomes remain largely unsynapsed, and meiotic sex chromosome inactivation (MSCI) leads to formation of the transcriptionally silenced XY body. In birds, the heterogametic sex is female, carrying Z and W chromosomes (ZW), whereas males have the homogametic ZZ constitution. During chicken oogenesis, the heterologous ZW pair reaches a state of complete heterologous synapsis, and this might enable maintenance of transcription of Z- and W chromosomal genes during meiotic prophase. Herein, we show that the ZW pair is transiently silenced, from early pachytene to early diplotene using immunocytochemistry and gene expression analyses. We propose that ZW inactivation is most likely achieved via spreading of heterochromatin from the W on the Z chromosome. Also, persistent meiotic DNA double-strand breaks (DSBs) may contribute to silencing of Z. Surprisingly, gammaH2AX, a marker of DSBs, and also the earliest histone modification that is associated with XY body formation in mammalian and marsupial spermatocytes, does not cover the ZW during the synapsed stage. However, when the ZW pair starts to desynapse, a second wave of gammaH2AX accumulates on the unsynapsed regions of Z, which also show a reappearance of the DSB repair protein RAD51. This indicates that repair of meiotic DSBs on the heterologous part of Z is postponed until late pachytene/diplotene, possibly to avoid recombination with regions on the heterologously synapsed W chromosome. Two days after entering diplotene, the Z looses gammaH2AX and shows reactivation. This is the first report of meiotic sex chromosome inactivation in a species with female heterogamety, providing evidence that this mechanism is not specific to spermatogenesis. It also indicates the presence of an evolutionary force that drives meiotic sex chromosome inactivation independent of the final achievement of synapsis.
Collapse
Affiliation(s)
- Sam Schoenmakers
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Evelyne Wassenaar
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jos W. Hoogerbrugge
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joop S. E. Laven
- Department of Obstetrics and Gynaecology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - J. Anton Grootegoed
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Willy M. Baarends
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
230
|
Church DM, Goodstadt L, Hillier LW, Zody MC, Goldstein S, She X, Bult CJ, Agarwala R, Cherry JL, DiCuccio M, Hlavina W, Kapustin Y, Meric P, Maglott D, Birtle Z, Marques AC, Graves T, Zhou S, Teague B, Potamousis K, Churas C, Place M, Herschleb J, Runnheim R, Forrest D, Amos-Landgraf J, Schwartz DC, Cheng Z, Lindblad-Toh K, Eichler EE, Ponting CP, The Mouse Genome Sequencing Consortium. Lineage-specific biology revealed by a finished genome assembly of the mouse. PLoS Biol 2009; 7:e1000112. [PMID: 19468303 PMCID: PMC2680341 DOI: 10.1371/journal.pbio.1000112] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Collaborators] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 04/03/2009] [Indexed: 02/06/2023] Open
Abstract
The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non-protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.
Collapse
Affiliation(s)
- Deanna M. Church
- National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Leo Goodstadt
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - LaDeana W. Hillier
- The Genome Center at Washington University, St. Louis, Missouri, United States of America
| | - Michael C. Zody
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Steve Goldstein
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xinwe She
- Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Carol J. Bult
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Richa Agarwala
- National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Joshua L. Cherry
- National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Michael DiCuccio
- National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Wratko Hlavina
- National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Yuri Kapustin
- National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Peter Meric
- National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Donna Maglott
- National Center for Biotechnology Information, Bethesda, Maryland, United States of America
| | - Zoë Birtle
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ana C. Marques
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Tina Graves
- The Genome Center at Washington University, St. Louis, Missouri, United States of America
| | - Shiguo Zhou
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brian Teague
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Konstantinos Potamousis
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christopher Churas
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael Place
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jill Herschleb
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ron Runnheim
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Daniel Forrest
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - James Amos-Landgraf
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - David C. Schwartz
- Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ze Cheng
- Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Kerstin Lindblad-Toh
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Evan E. Eichler
- Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America
| | - Chris P. Ponting
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
Collaborators
Donna M Muzny, Shannon Dugan-Rocha, Yan Ding, Steven E Scherer, Christian J Buhay, Andrew Cree, Judith Hernandez, Michael Holder, Jennifer Hume, Laronda R Jackson, Christie Kovar, Sandra L Lee, Lora R Lewis, Michael L Metzker, Lynne V Narareth, Aniko Sabo, Erica Sodergren, Richard A Gibbs, Michael C Zody, Michael FitzGerald, April Cook, David B Jaffe, Manuel Garber, Andrew R Zimmer, Mono Pirun, Lyndsey Russell, Ted Sharpe, Michael Kamal-Kabir Chaturvedi, Jane Wilkinson, Kurt LaButti, Xiaoping Yang, Daniel Bessette, Nicole R Allen, Cindy Nguyen, Thu Nguyen, Chelsea Dunbar, Rakela Lubonja, Charles Matthews, Xiaohong Liu, Mostafa Benamara, Tamrat Negash, Tashi Lokyitsang, Karin Decktor, Bruno Piqani, Glen Munson, Pema Tenzin, Sabrina Stone, Pendexter Macdonald, Harindra Arachchi, Amr Abouelleil, Annie Lui, Margaret Priest, Gary Gearin, Adam Brown, Lynne Aftuck, Terrance Shea, Sean Sykes, Aaron Berlin, Jeff Chu, Kathleen Dooley, Daniel Hagopian, Jennifer Hall, Nabil Hafez, Cherylyn L Smith, Peter Olandt, Karen Miller, Vijay Ventkataraman, Anthony Rachupka, Lester Dorris, Laura Ayotte, Richard Mabbitt, Jeffrey Erickson, Andrea Horn, Peter An, Jerome W Naylor, Sampath Settipalli, Eric S Lander, Kerstin Lindblad-Toh, Richard K Wilson, Tina A Graves, Robert S Fulton, Susan M Rock, LaDeana W Hillier, Asif T Chinwalla, Kelly Bernard, Laura P Courtney, Catrina Fronick, Lucinda L Fulton, Michelle O'Laughlin, Colin L Kremitzki, Patrick J Minx, Joanne O Nelson, Kyriena L Schatzkamer, Cynthia Strong, Aye M Wollam, George M Weinstock, Shiaw-Pyng Yang, Jane Rogers, Darren Grafham, Sean Humphray, Christine Nicholson, Christine Bird, Andrew J Brown, John Burton, Chris Clee, Adrienne Hunt, Matt C Jones, Christine Lloyd, Lucy Matthews, Karen Mclaren, Stuart Mclaren, Kirsten McLay, Sophie A Palmer, Robert Plumb, Ratna Shownkeen, Sarah Sims, Mike A Quail, Siobhan L Whitehead, David L Willey,
Collapse
|
231
|
Burgoyne PS, Mahadevaiah SK, Turner JMA. The consequences of asynapsis for mammalian meiosis. Nat Rev Genet 2009; 10:207-16. [PMID: 19188923 DOI: 10.1038/nrg2505] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During mammalian meiosis, synapsis of paternal and maternal chromosomes and the generation of DNA breaks are needed to allow reshuffling of parental genes. In mammals errors in synapsis are associated with a male-biased meiotic impairment, which has been attributed to a response to persisting DNA double-stranded breaks in the asynapsed chromosome segments. Recently it was discovered that the chromatin of asynapsed chromosome segments is transcriptionally silenced, providing new insights into the connection between asynapsis and meiotic impairment.
Collapse
Affiliation(s)
- Paul S Burgoyne
- Division of Stem Cell Biology and Developmental Genetics, Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA.
| | | | | |
Collapse
|
232
|
Lee TL, Pang ALY, Rennert OM, Chan WY. Genomic landscape of developing male germ cells. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2009; 87:43-63. [PMID: 19306351 PMCID: PMC2939912 DOI: 10.1002/bdrc.20147] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Spermatogenesis is a highly orchestrated developmental process by which spermatogonia develop into mature spermatozoa. This process involves many testis- or male germ cell-specific gene products whose expressions are strictly regulated. In the past decade the advent of high-throughput gene expression analytical techniques has made functional genomic studies of this process, particularly in model animals such as mice and rats, feasible and practical. These studies have just begun to reveal the complexity of the genomic landscape of the developing male germ cells. Over 50% of the mouse and rat genome are expressed during testicular development. Among transcripts present in germ cells, 40% - 60% are uncharacterized. A number of genes, and consequently their associated biological pathways, are differentially expressed at different stages of spermatogenesis. Developing male germ cells present a rich repertoire of genetic processes. Tissue-specific as well as spermatogenesis stage-specific alternative splicing of genes exemplifies the complexity of genome expression. In addition to this layer of control, discoveries of abundant presence of antisense transcripts, expressed psuedogenes, non-coding RNAs (ncRNA) including long ncRNAs, microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), and retrogenes all point to the presence of multiple layers of expression and functional regulation in male germ cells. It is anticipated that application of systems biology approaches will further our understanding of the regulatory mechanism of spermatogenesis.
Collapse
Affiliation(s)
- Tin-Lap Lee
- Section on Developmental Genomics, Laboratory of Clinical Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Alan Lap-Yin Pang
- Section on Developmental Genomics, Laboratory of Clinical Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Owen M. Rennert
- Section on Developmental Genomics, Laboratory of Clinical Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Wai-Yee Chan
- Section on Developmental Genomics, Laboratory of Clinical Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, Department of Pediatrics, Georgetown University College of Medicine, Washington, DC
| |
Collapse
|
233
|
Abstract
The development of genetic sex determination and cytologically distinct sex chromosomes leads to the potential problem of gene dosage imbalances between autosomes and sex chromosomes and also between males and females. To circumvent these imbalances, mammals have developed an elaborate system of dosage compensation that includes both upregulation and repression of the X chromosome. Recent advances have provided insights into the evolutionary history of how both the imprinted and random forms of X chromosome inactivation have come about. Furthermore, our understanding of the epigenetic switch at the X-inactivation center and the molecular aspects of chromosome-wide silencing has greatly improved recently. Here, we review various facets of the ever-expanding field of mammalian dosage compensation and discuss its evolutionary, developmental, and mechanistic components.
Collapse
Affiliation(s)
- Bernhard Payer
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
234
|
Mank JE, Ellegren H. Sex-linkage of sexually antagonistic genes is predicted by female, but not male, effects in birds. Evolution 2009; 63:1464-72. [PMID: 19154378 DOI: 10.1111/j.1558-5646.2009.00618.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Evolutionary theory predicts that sexually antagonistic loci will be preferentially sex-linked, and this association can be empirically testes with data on sex-biased gene expression with the assumption that sex-biased gene expression represents the resolution of past sexual antagonism. However, incomplete dosage compensating mechanisms and meiotic sex chromosome inactivation have hampered efforts to connect expression data to theoretical predictions regarding the genomic distribution of sexually antagonistic loci in a variety of animals. Here we use data on the underlying regulatory mechanism that produce expression sex-bias to test the genomic distribution of sexually antagonistic genes in chicken. Using this approach, which is free from problems associated with the lack of dosage compensation in birds, we show that female-detriment genes are significantly overrepresented on the Z chromosome, and female-benefit genes underrepresented. By contrast, male-effect genes show no over- or underrepresentation on the Z chromosome. These data are consistent with a dominant mode of inheritance for sexually antagonistic genes, in which male-benefit coding mutations are more likely to be fixed on the Z due to stronger male-specific selective pressures. After fixation of male-benefit alleles, regulatory changes in females evolve to minimize antagonism by reducing female expression.
Collapse
Affiliation(s)
- Judith E Mank
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | | |
Collapse
|
235
|
Prothero KE, Stahl JM, Carrel L. Dosage compensation and gene expression on the mammalian X chromosome: one plus one does not always equal two. Chromosome Res 2009; 17:637-48. [PMID: 19802704 PMCID: PMC4941101 DOI: 10.1007/s10577-009-9063-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Counting chromosomes is not just simple math. Although normal males and females differ in sex chromosome content (XY vs. XX), X chromosome imbalance is tolerated because dosage compensation mechanisms have evolved to ensure functional equivalence. In mammals this is accomplished by two processes--X chromosome inactivation that silences most genes on one X chromosome in females, leading to functional X monosomy for most genes in both sexes, and X chromosome upregulation that results in increased gene expression on the single active X in males and females, equalizing dosage relative to autosomes. This review focuses on genes on the X chromosome, and how gene content, organization and expression levels can be influenced by these two processes. Special attention is given to genes that are not X inactivated, and are not necessarily fully dosage compensated. These genes that "escape" X inactivation are of medical importance as they explain phenotypes in individuals with sex chromosome aneuploidies and may impact normal traits and disorders that differ between men and women. Moreover, escape genes give insight into how X chromosome inactivation is spread and maintained on the X.
Collapse
Affiliation(s)
- Katie E. Prothero
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Jill M. Stahl
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Laura Carrel
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
236
|
Lo L, Zhang Z, Hong N, Peng J, Hong Y. 3640 unique EST clusters from the medaka testis and their potential use for identifying conserved testicular gene expression in fish and mammals. PLoS One 2008; 3:e3915. [PMID: 19104663 PMCID: PMC2603314 DOI: 10.1371/journal.pone.0003915] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 11/14/2008] [Indexed: 02/04/2023] Open
Abstract
Background The fish medaka is the first vertebrate capable of full spermatogenesis in vitro from self-renewing spermatogonial stem cells to motile test-tube sperm. Precise staging and molecular dissection of this process has been hampered by the lack of suitable molecular markers. Methodology and Principal Findings We have generated a normalized medaka testis cDNA library and obtained 7040 high quality sequences representing 3641 unique gene clusters. Among these, 1197 unique clusters are homologous to known genes, and 2444 appear to be novel genes. Ontology analysis shows that the 1197 gene products are implicated in diverse molecular and cellular processes. These genes include markers for all major types of testicular somatic and germ cells. Furthermore, markers were identified for major spermatogenic stages ranging from spermatogonial stem cell self-renewal to meiosis entry, progression and completion. Intriguingly, the medaka testis expresses at least 13 homologs of the 33 mouse X-chromosomal genes that are enriched in the testis. More importantly, we show that key components of several signaling pathways known to be important for testicular function in mammals are well represented in the medaka testicular EST collection. Conclusions/Significance Medaka exhibits a considerable similarity in testicular gene expression to mammals. The medaka testicular EST collection we obtained has wide range coverage and will not only consolidate our knowledge on the comparative analysis of known genes' functions in the testis but also provide a rich resource to dissect molecular events and mechanism of spermatogenesis in vivo and in vitro in medaka as an excellent vertebrate model.
Collapse
Affiliation(s)
- Lijan Lo
- Department of Biology Sciences, National University of Singapore, National University of Singapore, Singapore, Singapore
| | - Zhenhai Zhang
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Ni Hong
- Department of Biology Sciences, National University of Singapore, National University of Singapore, Singapore, Singapore
| | - Jinrong Peng
- Department of Biology Sciences, National University of Singapore, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Proteos, Singapore
- * E-mail: (JP); (YH)
| | - Yunhan Hong
- Department of Biology Sciences, National University of Singapore, National University of Singapore, Singapore, Singapore
- * E-mail: (JP); (YH)
| |
Collapse
|
237
|
Turner JM. Meiotic Silencing, Infertility and X Chromosome Evolution. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
238
|
Gurbich TA, Bachtrog D. Gene content evolution on the X chromosome. Curr Opin Genet Dev 2008; 18:493-8. [PMID: 18929654 PMCID: PMC4590997 DOI: 10.1016/j.gde.2008.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/18/2008] [Accepted: 09/20/2008] [Indexed: 12/23/2022]
Abstract
Compared with autosomes, the X chromosome shows different patterns of evolution as a result of its hemizygosity in males. Additionally, inactivation of the X during spermatogenesis can make the X chromosome an unfavorable location for male-specific genes. These factors can help to explain why in many species gene content of the X chromosome differs from that of autosomes. Indeed, the X chromosome in mouse is enriched for male-specific genes while they are depleted on the X in Drosophila but show neither of these trends in mosquito. Here, we will discuss recent findings on the ancestral and neo-X chromosomes in Drosophila that support sexual antagonism as a force shaping gene content evolution of sex chromosomes and suggest that selection could be driving male-biased genes off the X.
Collapse
Affiliation(s)
- Tatiana A Gurbich
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|
239
|
|