201
|
Huang S, Sheng X, Susztak K. The kidney transcriptome, from single cells to whole organs and back. Curr Opin Nephrol Hypertens 2019; 28:219-226. [PMID: 30844884 PMCID: PMC6761926 DOI: 10.1097/mnh.0000000000000495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Transcriptome analysis of human kidney samples provides an integrated output of genetic, physiological, or environmental inputs. This review summarizes recent findings including gene expression and genetic variation integration, bulk and single cell gene expression analysis, and describes how such studies have improved our understanding of kidney disease development. RECENT FINDINGS Bulk or whole tissue analysis of patient kidney samples identified a large number of genes, whose levels correlate with kidney function and/or structural damage. These genes were enriched for metabolic and immune functions. Using expression quantitative trait analysis, genetic variations-driven gene expression can be identified. Recent developments in single cell sequencing defined cell-type-specific gene expression changes and highlighted specific cell types for disease development. SUMMARY Recent advancement in whole tissue transcriptomics, specifically incorporating genotype information and single cell data have been powerful to identify kidney disease-associated genes, pathways, and cell types.
Collapse
Affiliation(s)
- Shizheng Huang
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Xin Sheng
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
202
|
Zhang H, Koruyucu M, Seymen F, Kasimoglu Y, Kim JW, Tinawi S, Zhang C, Jacquemont M, Vieira A, Simmer J, Hu J. WDR72 Mutations Associated with Amelogenesis Imperfecta and Acidosis. J Dent Res 2019; 98:541-548. [PMID: 30779877 PMCID: PMC6481005 DOI: 10.1177/0022034518824571] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dental enamel malformations, or amelogenesis imperfecta (AI), can be isolated or syndromic. To improve the prospects of making a successful diagnosis by genetic testing, it is important that the full range of genes and mutations that cause AI be determined. Defects in WDR72 (WD repeat-containing protein 72; OMIM *613214) cause AI, type IIA3 (OMIM #613211), which follows an autosomal recessive pattern of inheritance. The defective enamel is normal in thickness, severely hypomineralized, orange-brown stained, and susceptible to attrition. We identified 6 families with biallelic WDR72 mutations by whole exome sequence analyses that perfectly segregated with the enamel phenotype. The novel mutations included 3 stop-gains [NM_182758.2: c.377G>A/p.(Trp126*), c.1801C>T/p.(Arg601*), c.2350A>T/p.(Arg784*)], a missense mutation [c.1265G>T/p.(Gly422Val)], and a 62,138-base pair deletion (NG_017034.2: g.35441_97578del62138) that removed WDR72 coding exons 3 through 13. A previously reported WDR72 frameshift was also observed [c.1467_1468delAT/p.(Val491Aspfs*8)]. Three of the affected patients showed decreased serum pH, consistent with a diagnosis of renal tubular acidosis. Percentiles of stature and body weight varied among 8 affected individuals but did not show a consistent trend. These studies support that WDR72 mutations cause a syndromic form of AI and improve our ability to diagnose AI caused by WDR72 defects.
Collapse
Affiliation(s)
- H. Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - M. Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - F. Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Y. Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - J.-W. Kim
- Department of Molecular Genetics and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- Department of Pediatric Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - S. Tinawi
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - C. Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - M.L. Jacquemont
- Génétique Médicale, Pôle femme-mère-enfant, CHU la Réunion site GHSR, BP 350-97448 Saint Pierre Cedex
| | - A.R. Vieira
- Departments of Oral Biology and Pediatric Dentistry, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, Graduate School of Public Health; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - J.P. Simmer
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - J.C.C. Hu
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
203
|
Francoz C, Sola E. Assessment of renal function in cirrhosis: Sarcopenia, gender and ethnicity matter. J Hepatol 2019; 70:828-830. [PMID: 30833013 DOI: 10.1016/j.jhep.2019.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Claire Francoz
- Hepatology and Liver Intensive Care, Hospital Beaujon, Clichy, France; INSERM U1149, Centre de Recherche sur l'Inflammation, Paris, France.
| | - Elsa Sola
- Liver Unit, Hospital Clínic Barcelona, Barcelona, Spain; University of Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; CIBER de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| |
Collapse
|
204
|
Graham SE, Nielsen JB, Zawistowski M, Zhou W, Fritsche LG, Gabrielsen ME, Skogholt AH, Surakka I, Hornsby WE, Fermin D, Larach DB, Kheterpal S, Brummett CM, Lee S, Kang HM, Abecasis GR, Romundstad S, Hallan S, Sampson MG, Hveem K, Willer CJ. Sex-specific and pleiotropic effects underlying kidney function identified from GWAS meta-analysis. Nat Commun 2019; 10:1847. [PMID: 31015462 PMCID: PMC6478837 DOI: 10.1038/s41467-019-09861-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic kidney disease (CKD) is a growing health burden currently affecting 10–15% of adults worldwide. Estimated glomerular filtration rate (eGFR) as a marker of kidney function is commonly used to diagnose CKD. We analyze eGFR data from the Nord-Trøndelag Health Study and Michigan Genomics Initiative and perform a GWAS meta-analysis with public summary statistics, more than doubling the sample size of previous meta-analyses. We identify 147 loci (53 novel) associated with eGFR, including genes involved in transcriptional regulation, kidney development, cellular signaling, metabolism, and solute transport. Additionally, sex-stratified analysis identifies one locus with more significant effects in women than men. Using genetic risk scores constructed from these eGFR meta-analysis results, we show that associated variants are generally predictive of CKD with only modest improvements in detection compared with other known clinical risk factors. Collectively, these results yield additional insight into the genetic factors underlying kidney function and progression to CKD. Estimated glomerular filtration rate (eGFR) is a measure of kidney function and used to characterize chronic kidney disease. Here, Graham et al. identify 53 novel loci for eGFR in a GWAS meta-analysis, a subset of which are associated with other common diseases, such as diabetes and hypertension, based on PheWAS.
Collapse
Affiliation(s)
- Sarah E Graham
- Department of Internal Medicine: Cardiology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Jonas B Nielsen
- Department of Internal Medicine: Cardiology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Matthew Zawistowski
- Department of Biostatistics: Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Lars G Fritsche
- Department of Biostatistics: Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway.,Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway.,Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Ida Surakka
- Department of Internal Medicine: Cardiology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Whitney E Hornsby
- Department of Internal Medicine: Cardiology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Damian Fermin
- Department of Pediatrics: Pediatric Nephrology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Daniel B Larach
- Department of Anesthesiology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Sachin Kheterpal
- Department of Anesthesiology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Chad M Brummett
- Department of Anesthesiology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Seunggeun Lee
- Department of Biostatistics: Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Hyun Min Kang
- Department of Biostatistics: Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Goncalo R Abecasis
- Department of Biostatistics: Center for Statistical Genetics, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Solfrid Romundstad
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway.,Department of Internal Medicine, Levanger Hospital, Health Trust Nord-Trøndelag, Levanger, 7600, Norway
| | - Stein Hallan
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway.,Department of Nephrology, St Olav Hospital, Trondheim, 7491, Norway
| | - Matthew G Sampson
- Department of Pediatrics: Pediatric Nephrology, University of Michigan, Ann Arbor, 48109, MI, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway. .,Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, 7491, Norway. .,HUNT Research Centre, Department of Public Health and General Practice, Norwegian University of Science and Technology, Levanger, 7600, Norway.
| | - Cristen J Willer
- Department of Internal Medicine: Cardiology, University of Michigan, Ann Arbor, 48109, MI, USA. .,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 48109, MI, USA. .,Department of Human Genetics, University of Michigan, Ann Arbor, 48109, MI, USA.
| |
Collapse
|
205
|
Giudici MC, Ahmad F, Holanda DG. Patient with a PRKAG2 mutation who developed Immunoglobulin A nephropathy: a case report. EUROPEAN HEART JOURNAL-CASE REPORTS 2019; 3:5474965. [PMID: 31449595 PMCID: PMC6601182 DOI: 10.1093/ehjcr/ytz038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/12/2019] [Indexed: 11/28/2022]
Abstract
Background PRKAG2 syndrome (PS) is a rare, early-onset autosomal dominant inherited disease caused by mutations in PRKAG2, the gene encoding the regulatory γ2 subunit of adenosine monophosphate-activated protein kinase. PRKAG2 syndrome is associated with many cardiac manifestations, including pre-excitation, arrhythmias, left ventricular hypertrophy, and chronotropic incompetence frequently leading to early pacemaker placement. A meta-analysis of genome-wide association data in subjects with chronic kidney disease (CKD) identified a susceptibility locus in an intron of PRKAG2, which has been replicated in other studies. However, CKD has not been reported in patients with PS or mutations in PRKAG2. Case summary We report a case of a woman diagnosed at age 27 with PS when she presented with atrial fibrillation and pre-excitation on electrocardiogram. By age 35, she had developed mild renal insufficiency and a biopsy demonstrated IgA nephropathy (IGAN). Discussion This is the first reported case of IGAN in a patient with PS. We discuss both PS and IGAN and the potential mechanisms by which they could be related.
Collapse
Affiliation(s)
- Michael C Giudici
- Department of Medicine, University of Iowa Hospitals, 200 Hawkins Drive, 4426JCP, Iowa City, IA, USA
| | - Ferhaan Ahmad
- Department of Medicine, University of Iowa Hospitals, 200 Hawkins Drive, 4426JCP, Iowa City, IA, USA
| | - Danniele G Holanda
- Department of Pathology, University of Iowa Hospitals, 200 Hawkins Drive, 4426JCP, Iowa City, IA, USA
| |
Collapse
|
206
|
Wagner CA, Rubio-Aliaga I, Hernando N. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update. Pediatr Nephrol 2019; 34:549-559. [PMID: 29275531 DOI: 10.1007/s00467-017-3873-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/08/2017] [Accepted: 12/12/2017] [Indexed: 01/12/2023]
Abstract
Renal phosphate handling critically determines plasma phosphate and whole body phosphate levels. Filtered phosphate is mostly reabsorbed by Na+-dependent phosphate transporters located in the brush border membrane of the proximal tubule: NaPi-IIa (SLC34A1), NaPi-IIc (SLC34A3), and Pit-2 (SLC20A2). Here we review new evidence for the role and relevance of these transporters in inherited disorders of renal phosphate handling. The importance of NaPi-IIa and NaPi-IIc for renal phosphate reabsorption and mineral homeostasis has been highlighted by the identification of mutations in these transporters in a subset of patients with infantile idiopathic hypercalcemia and patients with hereditary hypophosphatemic rickets with hypercalciuria. Both diseases are characterized by disturbed calcium homeostasis secondary to elevated 1,25-(OH)2 vitamin D3 as a consequence of hypophosphatemia. In vitro analysis of mutated NaPi-IIa or NaPi-IIc transporters suggests defective trafficking underlying disease in most cases. Monoallelic pathogenic mutations in both SLC34A1 and SLC34A3 appear to be very frequent in the general population and have been associated with kidney stones. Consistent with these findings, results from genome-wide association studies indicate that variants in SLC34A1 are associated with a higher risk to develop kidney stones and chronic kidney disease, but underlying mechanisms have not been addressed to date.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,National Center for Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland.
| | - Isabel Rubio-Aliaga
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,National Center for Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,National Center for Competence in Research (NCCR) Kidney.CH, Zurich, Switzerland
| |
Collapse
|
207
|
Benonisdottir S, Kristjansson RP, Oddsson A, Steinthorsdottir V, Mikaelsdottir E, Kehr B, Jensson BO, Arnadottir GA, Sulem G, Sveinbjornsson G, Kristmundsdottir S, Ivarsdottir EV, Tragante V, Gunnarsson B, Runolfsdottir HL, Arthur JG, Deaton AM, Eyjolfsson GI, Davidsson OB, Asselbergs FW, Hreidarsson AB, Rafnar T, Thorleifsson G, Edvardsson V, Sigurdsson G, Helgadottir A, Halldorsson BV, Masson G, Holm H, Onundarson PT, Indridason OS, Benediktsson R, Palsson R, Gudbjartsson DF, Olafsson I, Thorsteinsdottir U, Sulem P, Stefansson K. Sequence variants associating with urinary biomarkers. Hum Mol Genet 2019; 28:1199-1211. [PMID: 30476138 PMCID: PMC6423415 DOI: 10.1093/hmg/ddy409] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
Urine dipstick tests are widely used in routine medical care to diagnose kidney and urinary tract and metabolic diseases. Several environmental factors are known to affect the test results, whereas the effects of genetic diversity are largely unknown. We tested 32.5 million sequence variants for association with urinary biomarkers in a set of 150 274 Icelanders with urine dipstick measurements. We detected 20 association signals, of which 14 are novel, associating with at least one of five clinical entities defined by the urine dipstick: glucosuria, ketonuria, proteinuria, hematuria and urine pH. These include three independent glucosuria variants at SLC5A2, the gene encoding the sodium-dependent glucose transporter (SGLT2), a protein targeted pharmacologically to increase urinary glucose excretion in the treatment of diabetes. Two variants associating with proteinuria are in LRP2 and CUBN, encoding the co-transporters megalin and cubilin, respectively, that mediate proximal tubule protein uptake. One of the hematuria-associated variants is a rare, previously unreported 2.5 kb exonic deletion in COL4A3. Of the four signals associated with urine pH, we note that the pH-increasing alleles of two variants (POU2AF1, WDR72) associate significantly with increased risk of kidney stones. Our results reveal that genetic factors affect variability in urinary biomarkers, in both a disease dependent and independent context.
Collapse
Affiliation(s)
| | | | | | | | | | - Birte Kehr
- Berlin Institute of Health (BIH), Berlin, Germany
| | | | | | | | | | - Snaedis Kristmundsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Erna V Ivarsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Vinicius Tragante
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | | | - Joseph G Arthur
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Department of Statistics, Stanford University, Stanford, CA, USA
| | | | | | | | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| | - Astradur B Hreidarsson
- Division of Endocrinology and Metabolic Medicine, Internal Medicine Services, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | | | | | - Vidar Edvardsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- The Rare Kidney Stone Consortium, Mayo Clinic, Rochester, MN, USA
- Children's Medical Center, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - Gunnar Sigurdsson
- Division of Endocrinology and Metabolic Medicine, Internal Medicine Services, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
- Icelandic Heart Association, Kópavogur, Iceland
| | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - Hilma Holm
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Pall T Onundarson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Hematology, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - Olafur S Indridason
- Division of Nephrology, Internal Medicine Services, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - Rafn Benediktsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Division of Endocrinology and Metabolic Medicine, Internal Medicine Services, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - Runolfur Palsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- The Rare Kidney Stone Consortium, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology, Internal Medicine Services, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali, National University Hospital of Iceland, Reykjavik, Iceland
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
208
|
Nusinovici S, Sabanayagam C, Teo BW, Tan GSW, Wong TY. Vision Impairment in CKD Patients: Epidemiology, Mechanisms, Differential Diagnoses, and Prevention. Am J Kidney Dis 2019; 73:846-857. [PMID: 30929852 DOI: 10.1053/j.ajkd.2018.12.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/31/2018] [Indexed: 11/11/2022]
Abstract
Eyes and kidneys have numerous structural, developmental, physiologic, and pathogenic pathways in common, suggesting that many kidney and eye diseases may be interlinked. Studies suggest that the prevalence of eye diseases and vision impairment are higher among persons with end-stage kidney disease and earlier stages of chronic kidney disease (CKD) than in those without. Ocular morbidity in persons with CKD and end-stage kidney disease may be due to the following risk factors: (1) underlying conditions and risk factors for CKD such as diabetes or hypertension, (2) metabolic disorders associated with CKD, (3) uremia and anemia, and (4) CKD treatment. Among the chief eye diseases, diabetic retinopathy and age-related macular degeneration are most consistently associated with CKD. Further research for eye diseases such as glaucoma and cataract is needed to determine their relationships with CKD. Despite the high prevalence and burden of vision impairment among persons with CKD, eye screening in patients with CKD is not currently recommended as standard practice. This review suggests that patients with CKD should be encouraged to undergo a complete eye examination. Furthermore, physicians should be aware that patients undergoing dialysis may develop acute eye problems such as acute glaucoma, and appropriate referral to ophthalmologists should be considered in those with a history of glaucoma or recent ocular surgery. Interdisciplinary collaboration between nephrologists and ophthalmologists will ensure enhanced and appropriate management of patients with CKD.
Collapse
Affiliation(s)
- Simon Nusinovici
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Boon Wee Teo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Siew Wei Tan
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore.
| |
Collapse
|
209
|
Fox CS. Using Human Genetics to Drive Drug Discovery: A Perspective. Am J Kidney Dis 2019; 74:111-119. [PMID: 30898364 DOI: 10.1053/j.ajkd.2018.12.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
The probability of success of developing medicines to treat human disease can be improved by leveraging human genetics. Different types of genetic data and techniques, including genome-wide association, whole-exome sequencing, and whole-genome sequencing, can be used to gain insight into human disease. Layering different types of genetic evidence from Mendelian disease, coding variants, and common variation can bolster support for a genetic target. Human knockouts offer the potential to perform reverse genetic screens in humans to identify physiologically relevant targets. Other components of a good genetic target include protective loss-of-function mutations, some degree of known biology, tractability, and a clean on-target safety profile. In addition to using human genetics to inspire new drug programs, phenome-wide association studies can be used to identify alternative indications or repurposing opportunities. This information can be combined into a 5-step approach for selecting a genetic target for validation, which is presented in detail in this review. Finally, current challenges in leveraging human genetics are highlighted, including the difficulties translating certain types of genetic data, relatively small number of bona fide disease-associated coding rare variants, and current sample sizes of large well-curated biobanks linked to comprehensive genetic information.
Collapse
|
210
|
Glatard A, Guidi M, Dobrinas M, Cornuz J, Csajka C, Eap CB. Influence of body weight and UGT2B7 polymorphism on varenicline exposure in a cohort of smokers from the general population. Eur J Clin Pharmacol 2019; 75:939-949. [PMID: 30868192 DOI: 10.1007/s00228-019-02662-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 03/06/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE The abstinence rate to tobacco after varenicline treatment is moderate and might be partially affected by variability in varenicline concentrations. This study aimed at characterizing the sources of variability in varenicline pharmacokinetics and to relate varenicline exposure to abstinence. METHODS The population pharmacokinetic analysis (NONMEM®) included 121 varenicline concentrations from 82 individuals and tested the influence of genetic and non-genetic characteristics on apparent clearance (CL/F) and volume of distribution (V/F). Model-based average concentrations over 24 h (Cav) were used to test the impact of varenicline exposure on the input rate (Kin) expressed as a function of the number of cigarettes per day in a turnover model of 373 expired carbon monoxide levels. RESULTS A one-compartment model with first-order absorption and elimination appropriately described varenicline concentrations. CL/F was 8.5 L/h (coefficient of variation, 26%), V/F was 228 L, and the absorption rate (ka) was fixed to 0.98 h-1. CL/F increased by 46% in 100-kg individuals compared to 60-kg individuals and was found to be 21% higher in UGT2B7 rs7439366 TT individuals. These covariates explained 14% and 9% of the interindividual variability in CL/F, respectively. No influence of varenicline Cav was found on Kin in addition to the number of cigarettes. CONCLUSIONS Body weight mostly and to a smaller extent genetic polymorphisms of UGT2B7 can influence varenicline exposure. Dose adjustment based on body weight and, if available, on UGT2B7 genotype might be useful to improve clinical efficacy and tolerability of varenicline.
Collapse
Affiliation(s)
- Anaïs Glatard
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Hospital of Cery, University of Lausanne, Prilly, Switzerland
- Service of Clinical Pharmacology, Department of Laboratories, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Monia Guidi
- Service of Clinical Pharmacology, Department of Laboratories, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Maria Dobrinas
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Hospital of Cery, University of Lausanne, Prilly, Switzerland
| | - Jacques Cornuz
- Department of Ambulatory Care and Community Medicine, University of Lausanne, Lausanne, Switzerland
| | - Chantal Csajka
- Service of Clinical Pharmacology, Department of Laboratories, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
| | - Chin B Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Hospital of Cery, University of Lausanne, Prilly, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
211
|
Identification of 22 novel loci associated with urinary biomarkers of albumin, sodium, and potassium excretion. Kidney Int 2019; 95:1197-1208. [PMID: 30910378 DOI: 10.1016/j.kint.2018.12.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 02/01/2023]
Abstract
Urine biomarkers reflecting kidney function and handling of dietary sodium and potassium are strongly associated with several common diseases including chronic kidney disease, cardiovascular disease, and diabetes mellitus. Knowledge about the genetic determinants of these biomarkers may shed light on pathophysiological mechanisms underlying the development of these diseases. We performed genome-wide association studies of urinary albumin: creatinine ratio (UACR), urinary potassium: creatinine ratio (UK/UCr), urinary sodium: creatinine ratio (UNa/UCr) and urinary sodium: potassium ratio (UNa/UK) in up to 218,450 (discovery) and 109,166 (replication) unrelated individuals of European ancestry from the UK Biobank. Further, we explored genetic correlations, tissue-specific gene expression, and possible genes implicated in the regulation of these biomarkers. After replication, we identified 19 genome-wide significant independent loci associated with UACR, 6 each with UK/UCr and UNa/UCr, and 4 with UNa/UK. In addition to 22 novel associations, we confirmed several established associations, including between the CUBN locus and microalbuminuria. We detected high pairwise genetic correlation across the urinary biomarkers, and between their levels and several physiological measurements. We highlight GIPR, a potential diabetes drug target, as possibly implicated in the genetic control of urinary potassium excretion, and NRBP1, a locus associated with gout, as plausibly involved in sodium and albumin excretion. Overall, we identified 22 novel genome-wide significant associations with urinary biomarkers and confirmed several previously established associations, providing new insights into the genetic basis of these traits and their connection to chronic diseases.
Collapse
|
212
|
Valls J, Cambray S, Pérez-Guallar C, Bozic M, Bermúdez-López M, Fernández E, Betriu À, Rodríguez I, Valdivielso JM. Association of Candidate Gene Polymorphisms With Chronic Kidney Disease: Results of a Case-Control Analysis in the Nefrona Cohort. Front Genet 2019; 10:118. [PMID: 30863424 PMCID: PMC6399120 DOI: 10.3389/fgene.2019.00118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a major risk factor for end-stage renal disease, cardiovascular disease and premature death. Despite classical clinical risk factors for CKD and some genetic risk factors have been identified, the residual risk observed in prediction models is still high. Therefore, new risk factors need to be identified in order to better predict the risk of CKD in the population. Here, we analyzed the genetic association of 79 SNPs of proteins associated with mineral metabolism disturbances with CKD in a cohort that includes 2,445 CKD cases and 559 controls. Genotyping was performed with matrix assisted laser desorption ionization–time of flight mass spectrometry. We used logistic regression models considering different genetic inheritance models to assess the association of the SNPs with the prevalence of CKD, adjusting for known risk factors. Eight SNPs (rs1126616, rs35068180, rs2238135, rs1800247, rs385564, rs4236, rs2248359, and rs1564858) were associated with CKD even after adjusting by sex, age and race. A model containing five of these SNPs (rs1126616, rs35068180, rs1800247, rs4236, and rs2248359), diabetes and hypertension showed better performance than models considering only clinical risk factors, significantly increasing the area under the curve of the model without polymorphisms. Furthermore, one of the SNPs (the rs2248359) showed an interaction with hypertension, being the risk genotype affecting only hypertensive patients. We conclude that 5 SNPs related to proteins implicated in mineral metabolism disturbances (Osteopontin, osteocalcin, matrix gla protein, matrix metalloprotease 3 and 24 hydroxylase) are associated to an increased risk of suffering CKD.
Collapse
Affiliation(s)
- Joan Valls
- Biostatistics Unit, Institut de Recerca Biomèdica de Lleida and Redes - Instituto de Salud Carlos III, Lleida, Spain
| | - Serafí Cambray
- Vascular and Renal Translational Research Group, Biomedical Research Institute, Institut de Recerca Biomèdica de Lleida and RedinRen-ISCIII, Lleida, Spain
| | - Carles Pérez-Guallar
- Biostatistics Unit, Institut de Recerca Biomèdica de Lleida and Redes - Instituto de Salud Carlos III, Lleida, Spain
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute, Institut de Recerca Biomèdica de Lleida and RedinRen-ISCIII, Lleida, Spain
| | - Marcelino Bermúdez-López
- Vascular and Renal Translational Research Group, Biomedical Research Institute, Institut de Recerca Biomèdica de Lleida and RedinRen-ISCIII, Lleida, Spain
| | - Elvira Fernández
- Vascular and Renal Translational Research Group, Biomedical Research Institute, Institut de Recerca Biomèdica de Lleida and RedinRen-ISCIII, Lleida, Spain
| | - Àngels Betriu
- Vascular and Renal Translational Research Group, Biomedical Research Institute, Institut de Recerca Biomèdica de Lleida and RedinRen-ISCIII, Lleida, Spain
| | - Isabel Rodríguez
- Bone and Mineral Research Unit, RedinRen-ISCIII, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - José M Valdivielso
- Vascular and Renal Translational Research Group, Biomedical Research Institute, Institut de Recerca Biomèdica de Lleida and RedinRen-ISCIII, Lleida, Spain
| |
Collapse
|
213
|
Taglieri N, Nanni C, Ghetti G, Bonfiglioli R, Saia F, Buia F, Lima GM, Marco V, Bruno AG, Prati F, Fanti S, Rapezzi C. Multi-Imaging Investigation to Evaluate the Relationship between Serum Cystatin C and Features of Atherosclerosis in Non-ST-Segment Elevation Acute Coronary Syndrome. APPLIED SCIENCES 2019; 9:657. [DOI: 10.3390/app9040657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Objectives: High cystatin C(CysC) levels are associated with impaired cardiovascular outcome. Whether CysC levels are independently related to the atherosclerosis burden is still controversial. Methods: We enrolled 31 non-ST-segment elevation acute coronary syndrome patients undergoing percutaneous coronary intervention. Patients were divided into 2 groups on the basis of median value of serum CysC. Using the high CysC group as a dependent variable, univariable and multivariable analyses were used to evaluate the association between CysC and three different features of atherosclerosis: 1) coronary plaque vulnerability as assessed by optical coherence tomography (OCT), 2) coronary artery calcium (CAC) by means of computed tomography scan, and 3) aortic wall metabolic activity, as assessed using 18F-Fluorodeoxyglucose-positron emission tomography (18F-FDG-PET). Results: After univariable and multivariable analyses, 18F-FDG uptake in the descending aorta (DA) was independently associated with a low level of CysC [(Odds Ratio = 0.02; 95%CI 0.0004–0.89; p = 0.044; 18F-FDG uptake measured as averaged maximum target to blood ratio); (Odds Ratio = 0.89; 95%CI 0.82–0.98, p = 0.025; 18F-FDG uptake measured as number of active slices)]. No trend was found for the association between CysC and characteristics of OCT-assessed coronary plaque vulnerability or CAC score. Conclusions: In patients with non-ST-segment elevation acute coronary syndrome (NSTE-ACS), 18F-FDG uptake in the DA was associated with a low level of serum CysC. There was no relation between CysC levels and OCT-assessed coronary plaque vulnerability or CAC score. These findings suggest that high levels of CysC may not be considered as independent markers of atherosclerosis.
Collapse
Affiliation(s)
- Nevio Taglieri
- Polo Cardio-Toraco-Vascolare, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy
| | - Cristina Nanni
- Istituto di Medicina Nucleare, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy
| | - Gabriele Ghetti
- Polo Cardio-Toraco-Vascolare, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy
| | - Rachele Bonfiglioli
- Istituto di Medicina Nucleare, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy
| | - Francesco Saia
- Polo Cardio-Toraco-Vascolare, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy
| | - Francesco Buia
- Istituto di Radiologia, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy
| | - Giacomo Maria Lima
- Istituto di Medicina Nucleare, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy
| | | | - Antonio Giulio Bruno
- Polo Cardio-Toraco-Vascolare, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy
| | - Francesco Prati
- CLI Foundation, 00182 Rome, Italy
- GVM Care & Research, Ettore Sansavini Health Science Foundation, 48033 Cotignola, Italy
| | - Stefano Fanti
- Istituto di Medicina Nucleare, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy
| | - Claudio Rapezzi
- Polo Cardio-Toraco-Vascolare, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Alma Mater Studiorum Università di Bologna, 40138 Bologna, Italy
| |
Collapse
|
214
|
Brouwers MCGJ, Simons N, Stehouwer CDA, Koek GH, Schaper NC, Isaacs A. Relationship Between Nonalcoholic Fatty Liver Disease Susceptibility Genes and Coronary Artery Disease. Hepatol Commun 2019; 3:587-596. [PMID: 30976747 PMCID: PMC6442707 DOI: 10.1002/hep4.1319] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/11/2019] [Indexed: 12/24/2022] Open
Abstract
Coronary artery disease (CAD) is the principal cause of death in patients with nonalcoholic fatty liver disease (NAFLD). The aim of the present study was to investigate whether NAFLD is causally involved in the pathogenesis of CAD. For this, previously reported NAFLD susceptibility genes were clustered and tested for an association with CAD in the Coronary Artery Disease Genome‐Wide Replication and Meta‐Analysis plus the Coronary Artery Disease Genetics (CARDIoGRAMplusC4D) Consortium data set. The role of plasma lipids as a potential mediator was explored by using data from the Global Lipids Genetics Consortium. Statistical analyses revealed that the combination of 12 NAFLD genes was not associated with CAD in 60,801 CAD cases and 123,504 controls (odds ratio [OR] per NAFLD risk allele, 1.0; 95% confidence interval [CI], 0.99‐1.00). In a subsequent sensitivity analysis, a positive relationship was observed after exclusion of gene variants that are implicated in NAFLD through impaired very low‐density lipoprotein secretion (i.e., microsomal triglyceride transfer protein [MTTP], patatin‐like phospholipase domain containing 3 [PNPLA3], phosphatidylethanolamine N‐methyltransferase [PEMT], and transmembrane 6 superfamily member 2 [TM6SF2]) (OR, 1.01; 95% CI, 1.00‐1.02). Clustering of the excluded genes showed a significant negative relationship with CAD (OR, 0.97; 95% CI, 0.96‐0.99). A substantial proportion of the observed heterogeneity between the individual NAFLD genes in relation to CAD could be explained by plasma lipids, as reflected by a strong relationship between plasma lipids and CAD risk conferred by the NAFLD susceptibility genes (r = 0.76; P = 0.004 for low‐density lipoprotein cholesterol). Conclusion: NAFLD susceptibility genes do not cause CAD per se. The relationship between these genes and CAD appears to depend to a large extent on plasma lipids. These observations strongly suggest taking plasma lipids into account when designing a new drug to target NAFLD.
Collapse
Affiliation(s)
- Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology Maastricht University Medical Center Maastricht the Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Maastricht the Netherlands
| | - Nynke Simons
- Department of Internal Medicine, Division of Endocrinology Maastricht University Medical Center Maastricht the Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Maastricht the Netherlands.,Department of Internal Medicine, Division of General Internal Medicine, Laboratory for Metabolism and Vascular Medicine Maastricht University Medical Center Maastricht the Netherlands
| | - Coen D A Stehouwer
- Cardiovascular Research Institute Maastricht, Maastricht University Maastricht the Netherlands.,Department of Internal Medicine, Division of General Internal Medicine Maastricht University Medical Center Maastricht the Netherlands
| | - Ger H Koek
- Department of Internal Medicine, Division of Gastroenterology and Hepatology Maastricht University Medical Center Maastricht the Netherlands.,School of Nutrition and Translational Research in Metabolism Maastricht University Maastricht the Netherlands.,Department of Surgery, Klinikum Rheinisch-Westfälische Technische Hochschule Aachen Germany
| | - Nicolaas C Schaper
- Department of Internal Medicine, Division of Endocrinology Maastricht University Medical Center Maastricht the Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Maastricht the Netherlands
| | - Aaron Isaacs
- Cardiovascular Research Institute Maastricht, Maastricht University Maastricht the Netherlands.,Maastricht Center for Systems Biology Maastricht University Maastricht the Netherlands.,Department of Biochemistry Maastricht University Maastricht the Netherlands
| |
Collapse
|
215
|
Zhang C, Zhao X, Qu Y, Teng W, Qiu L, Zheng H, Wang Z, Han Y, Li W. Loci and candidate genes in soybean that confer resistance to Fusarium graminearum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:431-441. [PMID: 30456717 DOI: 10.1007/s00122-018-3230-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Association analysis techniques were used to identify and verify twelve single nucleotide polymorphisms (SNPs) associated with Fusarium graminearum resistance. Two novel candidate genes were obtained. Fusarium graminearum causes seed and root rot and seedling damping-off of soybean, leading to severe yield loss. Presently, the genetic basis of resistance to F. graminearum is elucidated in only four soybean accessions, which is not sufficient for resistance improvement. The objective of the present study was to identify the genome-wide genetic architecture of resistance to F. graminearum in landraces and cultivated soybeans based on a growth room evaluation. The resistance levels of 314 diverse accessions were tested, and 22,888 single nucleotide polymorphisms (SNPs) with a minor allele frequency of > 0.05 were developed using the specific-locus amplified fragment sequencing (SLAF-seq) approach. Twelve SNPs were identified as associated with F. graminearum resistance, and these SNPs were located at 12 genomic regions on eight chromosomes (Chr.) and could explain 5.53-14.71% of the observed phenotypic variation. One SNP, rs9479021, located on Chr.6, overlapped with qRfg_Gm06, the known QTL for resistance to F. graminearum. The other SNPs were novel and associated with resistance to F. graminearum. Nine novel candidate genes were predicted to contribute to resistance to F. graminearum according to the haplotype and transcript abundance analysis of the candidate genes. The identified markers and resistant cultivars are valuable for the improvement of resistance to F. graminearum.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Yingfan Qu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| | - Lijuan Qiu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongkun Zheng
- Bioinformatics Division, Biomarker Technologies Corporation, Beijing, 101300, China
| | - Zhenhua Wang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China.
| | - Wenbin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
216
|
Köttgen A, Raffler J, Sekula P, Kastenmüller G. Genome-Wide Association Studies of Metabolite Concentrations (mGWAS): Relevance for Nephrology. Semin Nephrol 2019; 38:151-174. [PMID: 29602398 DOI: 10.1016/j.semnephrol.2018.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metabolites are small molecules that are intermediates or products of metabolism, many of which are freely filtered by the kidneys. In addition, the kidneys have a central role in metabolite anabolism and catabolism, as well as in active metabolite reabsorption and/or secretion during tubular passage. This review article illustrates how the coupling of genomics and metabolomics in genome-wide association analyses of metabolites can be used to illuminate mechanisms underlying human metabolism, with a special focus on insights relevant to nephrology. First, genetic susceptibility loci for reduced kidney function and chronic kidney disease (CKD) were reviewed systematically for their associations with metabolite concentrations in metabolomics studies of blood and urine. Second, kidney function and CKD-associated metabolites reported from observational studies were interrogated for metabolite-associated genetic variants to generate and discuss complementary insights. Finally, insights originating from the simultaneous study of both blood and urine or by modeling intermetabolite relationships are summarized. We also discuss methodologic questions related to the study of metabolite concentrations in urine as well as among CKD patients. In summary, genome-wide association analyses of metabolites using metabolite concentrations quantified from blood and/or urine are a promising avenue of research to illuminate physiological and pathophysiological functions of the kidney.
Collapse
Affiliation(s)
- Anna Köttgen
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| | - Johannes Raffler
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
217
|
Zhao X, Geng X, Srinivasasainagendra V, Chaudhary N, Judd S, Wadley V, Gutiérrez OM, Wang H, Lange EM, Lange LA, Woo D, Unverzagt FW, Safford M, Cushman M, Limdi N, Quarells R, Arnett DK, Irvin MR, Zhi D. A PheWAS study of a large observational epidemiological cohort of African Americans from the REGARDS study. BMC Med Genomics 2019; 12:26. [PMID: 30704471 PMCID: PMC6357353 DOI: 10.1186/s12920-018-0462-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Cardiovascular disease, diabetes, and kidney disease are among the leading causes of death and disability worldwide. However, knowledge of genetic determinants of those diseases in African Americans remains limited. RESULTS In our study, associations between 4956 GWAS catalog reported SNPs and 67 traits were examined among 7726 African Americans from the REasons for Geographic and Racial Differences in Stroke (REGARDS) study, which is focused on identifying factors that increase stroke risk. The prevalent and incident phenotypes studied included inflammation, kidney traits, cardiovascular traits and cognition. Our results validated 29 known associations, of which eight associations were reported for the first time in African Americans. CONCLUSION Our cross-racial validation of GWAS findings provide additional evidence for the important roles of these loci in the disease process and may help identify genes especially important for future functional validation.
Collapse
Affiliation(s)
- Xueyan Zhao
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Xin Geng
- BGI-Shenzhen, Shenzhen, 518083 China
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | | | - Ninad Chaudhary
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Suzanne Judd
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Virginia Wadley
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Orlando M. Gutiérrez
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Henry Wang
- Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Ethan M. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Leslie A. Lange
- Division of Biomedical Informatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Daniel Woo
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| | - Frederick W. Unverzagt
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Monika Safford
- Division of General Internal Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065 USA
| | - Mary Cushman
- Department of Medicine and Pathology, Larner College of Medicine at the University of Vermont, Burlington, VT 05405 USA
| | - Nita Limdi
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Rakale Quarells
- Cardiovascular Research Institute, Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA 30310 USA
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY 40506 USA
| | - Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Degui Zhi
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| |
Collapse
|
218
|
Unveiling the Role of DNA Methylation in Kidney Transplantation: Novel Perspectives toward Biomarker Identification. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1602539. [PMID: 30766879 PMCID: PMC6350635 DOI: 10.1155/2019/1602539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/30/2018] [Indexed: 12/13/2022]
Abstract
The burden of chronic kidney disease is dramatically rising, making it a major public health concern worldwide. Kidney transplantation is now the best treatment for patients with end-stage renal disease. Although kidney transplantation may improve survival and quality of life, its long-term results are hampered by immune- and/or non-immune-mediated complications. Thus, the identification of transplanted patients with a higher risk of posttransplant complications has become a big challenge for public health. However, current biomarkers of posttransplant complications have a poor predictive value, rising the need to explore novel approaches for the management of transplant patient. In this review we summarize the emerging literature about DNA methylation in kidney transplant complications, in order to highlight its perspectives toward biomarker identification. In the forthcoming future the monitoring of DNA methylation in kidney transplant patients could become a plausible strategy toward the prevention and/or treatment of kidney transplant complications.
Collapse
|
219
|
Müller-Deile J, Jobst-Schwan T, Schiffer M. Moving beyond GWAS and eQTL Analysis to Validated Hits in Chronic Kidney Disease. Cell Metab 2019; 29:9-10. [PMID: 30625310 DOI: 10.1016/j.cmet.2018.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genome-wide association studies (GWAS) have identified multiple chronic kidney disease (CKD)-associated single-nucleotide polymorphisms (SNPs) mainly localized to non-coding genomic regions. To understand which genes and which cell types are affected by these genetic variants, compartment-specific transcriptome, genome, and epigenome data were analyzed in an integrative manner in a recent study by Qiu et al. (Qiu et al., 2018).
Collapse
Affiliation(s)
- Janina Müller-Deile
- Department of Nephrology and Hypertension, University of Erlangen, Erlangen, Germany
| | - Tilman Jobst-Schwan
- Department of Nephrology and Hypertension, University of Erlangen, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, University of Erlangen, Erlangen, Germany.
| |
Collapse
|
220
|
Wu CH, Yang CC, Chang HW, Huang B, Chen CJ, Lin EIC, Wu CY, Chung YH, Hsu YH, Lee CT, Chuang FR. Urinary Uromodulin/Creatinine Ratio as a Potential Clinical Biomarker for Chronic Kidney Disease Patients with Gout: A Pilot Study. Med Princ Pract 2019; 28:273-279. [PMID: 30636243 PMCID: PMC6597938 DOI: 10.1159/000496844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/13/2019] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Recent studies have reported that reduced excretion of urinary uromodulin is associated with renal tubular function and risks of progressive kidney disease. Gouty nephropathy is usually seen in patients with gout. Patients with chronic gouty nephropathy are characterized by the deposition of monosodium urate crystals primarily involving the collecting ducts in the medulla. We postulated that this correlation may be specific to gout and may serve as a useful biomarker for chronic kidney disease (CKD). MATERIALS AND METHODS A total of 114 Taiwanese patients diagnosed with gout (n = 72), CKD (n = 26), or healthy volunteers (n = 16) were prospectively enrolled for this study from the Rheumatology and Nephrology Outpatient Clinics of our institution. We obtained urine and blood samples on patient visits to the outpatient clinics. Demographic data were obtained from medical records. RESULTS In patients with gout, the spot urinary uromodulin/creatinine ratio (uUMCR; mg/g) in patients with CKD was significantly lower than that in those without CKD (CKD group: 2.2; non-CKD group: 5.6, p = 0.005). Multivariate analysis revealed that patients with CKD and gout had a lower uUMCR than those with gout alone (p = 0.028). A significant association was not observed in our non-gout cohort. CONCLUSION The association of decreased uUMCR with CKD status was identified only in patients with gout in the present study. We believe that uUMCR might serve as an indicator of differential CKD in patients with gout.
Collapse
Affiliation(s)
- Chien-Hsing Wu
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- *Dr. Feng-Rong Chuang, Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Niaosong District, Kaohsiung 83301 (Taiwan), E-Mail
| | - Chih-Chao Yang
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsueh-Wen Chang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Bin Huang
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Stem Cell Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Jen Chen
- Division of General Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Eton I-Cheng Lin
- Department of Clinical Immunology and Allergy, The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Chien-Yi Wu
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yueh-Hua Chung
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Han Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Feng-Rong Chuang
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
221
|
Osman WM, Jelinek HF, Tay GK, Khandoker AH, Khalaf K, Almahmeed W, Hassan MH, Alsafar HS. Clinical and genetic associations of renal function and diabetic kidney disease in the United Arab Emirates: a cross-sectional study. BMJ Open 2018; 8:e020759. [PMID: 30552240 PMCID: PMC6303615 DOI: 10.1136/bmjopen-2017-020759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Within the Emirati population, risk factors and genetic predisposition to diabetic kidney disease (DKD) have not yet been investigated. The aim of this research was to determine potential clinical, laboratory and reported genetic loci as risk factors for DKD. RESEARCH DESIGN AND METHODS Four hundred and ninety unrelated Emirati nationals with type 2 diabetes mellitus (T2DM) were recruited with and without DKD, and clinical and laboratory data were obtained. Following adjustments for possible confounders, a logistic regression model was developed to test the associations of 63 single nucleotide polymorphisms (SNPs) in 43 genetic loci with DKD (145 patients with DKD and 265 without DKD). Linear regression models, adjusted for age and gender, were then used to study the genetic associations of five renal function traits, including 83 SNPs with albumin-to-creatinine ratio, 92 SNPs with vitamin D (25-OH cholecalciferol), 288 SNPs with estimated glomerular filtration rate (eGFR), 363 SNPs with serum creatinine and 73 SNPs with blood urea. RESULTS Patients with DKD, as compared with those without the disease, were mostly men (52%vs38% for controls), older (67vs59 years) and had significant rates of hypertension and dyslipidaemia. Furthermore, patients with DKD had T2DM for a longer duration of time (16vs10 years), which in an additive manner was the single factor that significantly contributed to the development of DKD (p=0.02, OR=3.12, 95% CI 1.21 to 8.02). Among the replicated associations of the genetic loci with different renal function traits, the most notable included SHROOM3 with levels of serum creatinine, eGFR and DKD (Padjusted=0.04, OR=1.46); CASR, GC and CYP2R1 with vitamin D levels; as well as WDR72 with serum creatinine and eGFR levels. CONCLUSIONS Associations were found between several genetic loci and risk markers for DKD, which may influence kidney function traits and DKD in a population of Arab ancestry.
Collapse
Affiliation(s)
- Wael M Osman
- Center of Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Herbert F Jelinek
- School of Community Health, Charles Sturt University, Albury, New South Wales, Australia
- Clinical Medicine, Macquarie University, Sydney, New South Wales, Australia
| | - Guan K Tay
- Center of Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- School of Health and Medical Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
- Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ahsan H Khandoker
- Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Kinda Khalaf
- Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Wael Almahmeed
- Institute of Cardiac Science, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
- Heart and Vascular Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | - Mohamed H Hassan
- Medical Institute, Sheikh Khalifa Medical City, Abu Dhabi, United Arab Emirates
| | - Habiba S Alsafar
- Center of Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
222
|
Lederer E, Wagner CA. Clinical aspects of the phosphate transporters NaPi-IIa and NaPi-IIb: mutations and disease associations. Pflugers Arch 2018; 471:137-148. [DOI: 10.1007/s00424-018-2246-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
|
223
|
Xu X, Eales JM, Akbarov A, Guo H, Becker L, Talavera D, Ashraf F, Nawaz J, Pramanik S, Bowes J, Jiang X, Dormer J, Denniff M, Antczak A, Szulinska M, Wise I, Prestes PR, Glyda M, Bogdanski P, Zukowska-Szczechowska E, Berzuini C, Woolf AS, Samani NJ, Charchar FJ, Tomaszewski M. Molecular insights into genome-wide association studies of chronic kidney disease-defining traits. Nat Commun 2018; 9:4800. [PMID: 30467309 PMCID: PMC6250666 DOI: 10.1038/s41467-018-07260-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified >100 loci of chronic kidney disease-defining traits (CKD-dt). Molecular mechanisms underlying these associations remain elusive. Using 280 kidney transcriptomes and 9958 gene expression profiles from 44 non-renal tissues we uncover gene expression partners (eGenes) for 88.9% of CKD-dt GWAS loci. Through epigenomic chromatin segmentation analysis and variant effect prediction we annotate functional consequences to 74% of these loci. Our colocalisation analysis and Mendelian randomisation in >130,000 subjects demonstrate causal effects of three eGenes (NAT8B, CASP9 and MUC1) on estimated glomerular filtration rate. We identify a common alternative splice variant in MUC1 (a gene responsible for rare Mendelian form of kidney disease) and observe increased renal expression of a specific MUC1 mRNA isoform as a plausible molecular mechanism of the GWAS association signal. These data highlight the variants and genes underpinning the associations uncovered in GWAS of CKD-dt.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK
| | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Artur Akbarov
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Hui Guo
- Division of Population Health, Health Services Research and Primary Care, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Lorenz Becker
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK
| | - David Talavera
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Fehzan Ashraf
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Jabran Nawaz
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Sanjeev Pramanik
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Bowes
- Division of Musculoskeletal and Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Xiao Jiang
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Dormer
- University Hospitals of Leicester NHS Trust, Leicester, LE1 5WW, UK
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK
| | - Andrzej Antczak
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, 61-285, Poland
| | - Monika Szulinska
- Department of Internal Medicine, Metabolic Disorders and Hypertension, Karol Marcinkowski University of Medical Sciences, Poznan, 60-569, Poland
| | - Ingrid Wise
- School of Health and Life Sciences, Federation University Australia, Ballarat, 3350, VIC, Australia
| | - Priscilla R Prestes
- School of Health and Life Sciences, Federation University Australia, Ballarat, 3350, VIC, Australia
| | - Maciej Glyda
- Department of Transplantology and General Surgery, District Public Hospital, University of Zielona Góra, Poznan, 65-417, Poland
| | - Pawel Bogdanski
- Department of Obesity and Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, 60-569, Poland
| | | | - Carlo Berzuini
- Division of Population Health, Health Services Research and Primary Care, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PL, UK
| | - Adrian S Woolf
- Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, M13 9WL, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK.,NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Fadi J Charchar
- Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK.,School of Health and Life Sciences, Federation University Australia, Ballarat, 3350, VIC, Australia.,Department of Physiology, University of Melbourne, Melbourne, 3010, VIC, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, M13 9PT, UK. .,Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK.
| |
Collapse
|
224
|
Hurtado Del Pozo C, Garreta E, Izpisúa Belmonte JC, Montserrat N. Modeling epigenetic modifications in renal development and disease with organoids and genome editing. Dis Model Mech 2018; 11:dmm035048. [PMID: 30459215 PMCID: PMC6262817 DOI: 10.1242/dmm.035048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Understanding epigenetic mechanisms is crucial to our comprehension of gene regulation in development and disease. In the past decades, different studies have shown the role of epigenetic modifications and modifiers in renal disease, especially during its progression towards chronic and end-stage renal disease. Thus, the identification of genetic variation associated with chronic kidney disease has resulted in better clinical management of patients. Despite the importance of these findings, the translation of genotype-phenotype data into gene-based medicine in chronic kidney disease populations still lacks faithful cellular or animal models that recapitulate the key aspects of the human kidney. The latest advances in the field of stem cells have shown that it is possible to emulate kidney development and function with organoids derived from human pluripotent stem cells. These have successfully recapitulated not only kidney differentiation, but also the specific phenotypical traits related to kidney function. The combination of this methodology with CRISPR/Cas9 genome editing has already helped researchers to model different genetic kidney disorders. Nowadays, CRISPR/Cas9-based approaches also allow epigenetic modifications, and thus represent an unprecedented tool for the screening of genetic variants, epigenetic modifications or even changes in chromatin structure that are altered in renal disease. In this Review, we discuss these technical advances in kidney modeling, and offer an overview of the role of epigenetic regulation in kidney development and disease.
Collapse
Affiliation(s)
- Carmen Hurtado Del Pozo
- Pluripotency for organ regeneration. Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Elena Garreta
- Pluripotency for organ regeneration. Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | | | - Nuria Montserrat
- Pluripotency for organ regeneration. Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| |
Collapse
|
225
|
Jaykumar AB, Caceres PS, King-Medina KN, Liao TD, Datta I, Maskey D, Naggert JK, Mendez M, Beierwaltes WH, Ortiz PA. Role of Alström syndrome 1 in the regulation of blood pressure and renal function. JCI Insight 2018; 3:95076. [PMID: 30385718 DOI: 10.1172/jci.insight.95076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/26/2018] [Indexed: 01/22/2023] Open
Abstract
Elevated blood pressure (BP) and renal dysfunction are complex traits representing major global health problems. Single nucleotide polymorphisms identified by genome-wide association studies have identified the Alström syndrome 1 (ALMS1) gene locus to render susceptibility for renal dysfunction, hypertension, and chronic kidney disease (CKD). Mutations in the ALMS1 gene in humans causes Alström syndrome, characterized by progressive metabolic alterations including hypertension and CKD. Despite compelling genetic evidence, the underlying biological mechanism by which mutations in the ALMS1 gene lead to the above-mentioned pathophysiology is not understood. We modeled this effect in a KO rat model and showed that ALMS1 genetic deletion leads to hypertension. We demonstrate that the link between ALMS1 and hypertension involves the activation of the renal Na+/K+/2Cl- cotransporter NKCC2, mediated by regulation of its endocytosis. Our findings establish a link between the genetic susceptibility to hypertension, CKD, and the expression of ALMS1 through its role in a salt-reabsorbing tubular segment of the kidney. These data point to ALMS1 as a potentially novel gene involved in BP and renal function regulation.
Collapse
Affiliation(s)
- Ankita Bachhawat Jaykumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Paulo S Caceres
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Keyona N King-Medina
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tang-Dong Liao
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | - Indrani Datta
- Department of Public Health Sciences and.,Center for Bioinformatics, Henry Ford Health System, Detroit, Michigan, USA
| | - Dipak Maskey
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | | | - Mariela Mendez
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA
| | - William H Beierwaltes
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
226
|
Graham LA, Aman A, Campbell DD, Augley J, Graham D, McBride MW, Fraser NJ, Ferreri NR, Dominiczak AF, Padmanabhan S. Salt stress in the renal tubules is linked to TAL-specific expression of uromodulin and an upregulation of heat shock genes. Physiol Genomics 2018; 50:964-972. [PMID: 30216136 PMCID: PMC6293113 DOI: 10.1152/physiolgenomics.00057.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/20/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Previously, our comprehensive cardiovascular characterization study validated Uromodulin as a blood pressure gene. Uromodulin is a glycoprotein exclusively synthesized at the thick ascending limb of the loop of Henle and is encoded by the Umod gene. Umod-/- mice have significantly lower blood pressure than Umod+/+ mice, are resistant to salt-induced changes in blood pressure, and show a leftward shift in pressure-natriuresis curves reflecting changes of sodium reabsorption. Salt stress triggers transcription factors and genes that alter renal sodium reabsorption. To date there are no studies on renal transcriptome responses to salt stress. Here we aimed use RNA-Seq to delineate salt stress pathways in tubules isolated from Umod+/+ mice (a model of sodium retention) and Umod-/- mice (a model of sodium depletion) ± 300 mosmol sodium chloride ( n = 3 per group). In response to salt stress, the tubules of Umod+/+ mice displayed an upregulation of heat shock transcripts. The greatest changes occurred in the expression of: Hspa1a (Log2 fold change 4.35, P = 2.48 e-12) and Hspa1b (Log2 fold change 4.05, P = 2.48 e-12). This response was absent in tubules of Umod-/- mice. Interestingly, seven of the genes discordantly expressed in the Umod-/- tubules were electrolyte transporters. Our results are the first to show that salt stress in renal tubules alters the transcriptome, increasing the expression of heat shock genes. This direction of effect in Umod+/+ tubules suggest the difference is due to the presence of Umod facilitating greater sodium entry into the tubule cell reflecting a specific response to salt stress.
Collapse
Affiliation(s)
- Lesley A Graham
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Alisha Aman
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Desmond D Campbell
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Julian Augley
- Wolfson Wohl Cancer Research Centre, Glasgow Polyomics, University of Glasgow, Bearsden, United Kingdom
| | - Delyth Graham
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Martin W McBride
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Niall J Fraser
- University of Dundee, Ninewells Hospital , Dundee , United Kingdom
| | - Nicholas R Ferreri
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Anna F Dominiczak
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| | - Sandosh Padmanabhan
- The British Heart Foundation Centre of Excellence, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow , Glasgow , United Kingdom
| |
Collapse
|
227
|
Qiu C, Huang S, Park J, Park Y, Ko YA, Seasock MJ, Bryer JS, Xu XX, Song WC, Palmer M, Hill J, Guarnieri P, Hawkins J, Boustany-Kari CM, Pullen SS, Brown CD, Susztak K. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat Med 2018; 24:1721-1731. [PMID: 30275566 PMCID: PMC6301011 DOI: 10.1038/s41591-018-0194-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/08/2018] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD), a condition in which the kidneys are unable to clear waste products, affects 700 million people globally. Genome-wide association studies (GWASs) have identified sequence variants for CKD; however, the biological basis of these GWAS results remains poorly understood. To address this issue, we created an expression quantitative trait loci (eQTL) atlas for the glomerular and tubular compartments of the human kidney. Through integrating the CKD GWAS with eQTL, single-cell RNA sequencing and regulatory region maps, we identified novel genes for CKD. Putative causal genes were enriched for proximal tubule expression and endolysosomal function, where DAB2, an adaptor protein in the TGF-β pathway, formed a central node. Functional experiments confirmed that reducing Dab2 expression in renal tubules protected mice from CKD. In conclusion, compartment-specific eQTL analysis is an important avenue for the identification of novel genes and cellular pathways involved in CKD development and thus potential new opportunities for its treatment.
Collapse
Affiliation(s)
- Chengxiang Qiu
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Shizheng Huang
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Jihwan Park
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - YoSon Park
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yi-An Ko
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Matthew J Seasock
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua S Bryer
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at University of Pennsylvania, Pennsylvania, PA, USA
| | - Matthew Palmer
- Pathology and Laboratory Medicine at the Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jon Hill
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Paolo Guarnieri
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Julie Hawkins
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | | | - Steven S Pullen
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA
| | - Christopher D Brown
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
228
|
Okabe M, Motojima M, Miyazaki Y, Pastan I, Yokoo T, Matsusaka T. Global polysome analysis of normal and injured podocytes. Am J Physiol Renal Physiol 2018; 316:F241-F252. [PMID: 30379099 DOI: 10.1152/ajprenal.00115.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Podocyte injury is a key event for progressive renal failure. We have previously established a mouse model of inducible podocyte injury (NEP25) that progressively develops glomerulosclerosis after immunotoxin injection. We performed polysome analysis of intact and injured podocytes utilizing the NEP25 and RiboTag transgenic mice, in which a hemagglutinin tag is attached to ribosomal protein L22 selectively in podocytes. Podocyte-specific polysomes were successfully obtained by immunoprecipitation with an antihemagglutinin antibody from glomerular homogenate and analyzed using a microarray. Compared with glomerular cells, 353 genes were highly expressed and enriched in podocytes; these included important podocyte genes and also heretofore uncharacterized genes, such as Dach1 and Foxd2. Podocyte injury by immunotoxin induced many genes to be upregulated, including inflammation-related genes despite no infiltration of inflammatory cells in the glomeruli. MafF and Egr-1, which structurally have the potential to antagonize MafB and WT1, respectively, were rapidly and markedly increased in injured podocytes before MafB and WT1 were decreased. We demonstrated that Maff and Egr1 knockdown increased the MafB targets Nphs2 and Ptpro and the WT1 targets Ptpro, Nxph3, and Sulf1, respectively. This indicates that upregulated MafF and Egr-1 may promote deterioration of podocytes by antagonizing MafB and WT1. Our systematic microarray study of the heretofore undescribed behavior of podocyte genes may open new insights into the understanding of podocyte pathophysiology.
Collapse
Affiliation(s)
- Masahiro Okabe
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine , Tokyo , Japan.,Department of Basic Medicine, Tokai University School of Medicine , Isehara , Japan
| | - Masaru Motojima
- Department of Clinical Pharmacology, Tokai University School of Medicine , Isehara , Japan
| | - Yoichi Miyazaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine , Tokyo , Japan
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine , Tokyo , Japan
| | - Taiji Matsusaka
- Department of Basic Medicine, Tokai University School of Medicine , Isehara , Japan.,Institute of Medical Science, Tokai University School of Medicine , Isehara , Japan
| |
Collapse
|
229
|
Cañadas-Garre M, Anderson K, McGoldrick J, Maxwell AP, McKnight AJ. Genomic approaches in the search for molecular biomarkers in chronic kidney disease. J Transl Med 2018; 16:292. [PMID: 30359254 PMCID: PMC6203198 DOI: 10.1186/s12967-018-1664-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/14/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is recognised as a global public health problem, more prevalent in older persons and associated with multiple co-morbidities. Diabetes mellitus and hypertension are common aetiologies for CKD, but IgA glomerulonephritis, membranous glomerulonephritis, lupus nephritis and autosomal dominant polycystic kidney disease are also common causes of CKD. MAIN BODY Conventional biomarkers for CKD involving the use of estimated glomerular filtration rate (eGFR) derived from four variables (serum creatinine, age, gender and ethnicity) are recommended by clinical guidelines for the evaluation, classification, and stratification of CKD. However, these clinical biomarkers present some limitations, especially for early stages of CKD, elderly individuals, extreme body mass index values (serum creatinine), or are influenced by inflammation, steroid treatment and thyroid dysfunction (serum cystatin C). There is therefore a need to identify additional non-invasive biomarkers that are useful in clinical practice to help improve CKD diagnosis, inform prognosis and guide therapeutic management. CONCLUSION CKD is a multifactorial disease with associated genetic and environmental risk factors. Hence, many studies have employed genetic, epigenetic and transcriptomic approaches to identify biomarkers for kidney disease. In this review, we have summarised the most important studies in humans investigating genomic biomarkers for CKD in the last decade. Several genes, including UMOD, SHROOM3 and ELMO1 have been strongly associated with renal diseases, and some of their traits, such as eGFR and serum creatinine. The role of epigenetic and transcriptomic biomarkers in CKD and related diseases is still unclear. The combination of multiple biomarkers into classifiers, including genomic, and/or epigenomic, may give a more complete picture of kidney diseases.
Collapse
Affiliation(s)
- M. Cañadas-Garre
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
| | - K. Anderson
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
| | - J. McGoldrick
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
| | - A. P. Maxwell
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
- Regional Nephrology Unit, Belfast City Hospital, Belfast, UK
| | - A. J. McKnight
- Epidemiology and Public Health Research Group, Centre for Public Health, Belfast City Hospital, Queen’s University of Belfast, c/o University Floor, Level A, Tower Block, Lisburn Road, Belfast, BT9 7AB Northern Ireland UK
| |
Collapse
|
230
|
Association of common gene variants in glucokinase regulatory protein with cardiorenal disease: A systematic review and meta-analysis. PLoS One 2018; 13:e0206174. [PMID: 30352097 PMCID: PMC6198948 DOI: 10.1371/journal.pone.0206174] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Background Small-molecules that disrupt the binding between glucokinase and glucokinase regulatory protein (GKRP) in the liver represent a potential new class of glucose-lowering drugs. It will, however, take years before their effects on clinically relevant cardiovascular endpoints are known. The purpose of this study was to estimate the effects of these drugs on cardiorenal outcomes by studying variants in the GKRP gene (GCKR) that mimic glucokinase-GKRP disruptors. Methods The MEDLINE and EMBASE databases were searched for studies reporting on the association between GCKR variants (rs1260326, rs780094, and rs780093) and coronary artery disease (CAD), estimated glomerular filtration rate (eGFR), and chronic kidney disease (CKD). Results In total 5 CAD studies (n = 274,625 individuals), 7 eGFR studies (n = 195,195 individuals), and 4 CKD studies (n = 31,642 cases and n = 408,432 controls) were included. Meta-analysis revealed a significant association between GCKR variants and CAD (OR:1.02 per risk allele, 95%CI:1.00–1.04, p = 0.01). Sensitivity analyses showed that replacement of one large, influential CAD study by two other, partly overlapping studies resulted in similar point estimates, albeit less precise (OR:1.02; 95%CI:0.98–1.06 and OR: 1.02; 95%CI: 0.99–1.04). GCKR was associated with an improved eGFR (+0.49 ml/min, 95%CI:0.10–0.89, p = 0.01) and a trend towards protection from CKD (OR:0.98, 95%CI:0.95–1.01, p = 0.13). Conclusion This study suggests that increased glucokinase-GKRP disruption has beneficial effects on eGFR, but these may be offset by a disadvantageous effect on coronary artery disease risk. Further studies are warranted to elucidate the mechanistic link between hepatic glucose metabolism and eGFR.
Collapse
|
231
|
George C, Yako YY, Okpechi IG, Matsha TE, Kaze Folefack FJ, Kengne AP. An African perspective on the genetic risk of chronic kidney disease: a systematic review. BMC MEDICAL GENETICS 2018; 19:187. [PMID: 30340464 PMCID: PMC6194564 DOI: 10.1186/s12881-018-0702-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Individuals of African ethnicity are disproportionately burdened with chronic kidney disease (CKD). However, despite the genetic link, genetic association studies of CKD in African populations are lacking. METHODS We conducted a systematic review to critically evaluate the existing studies on CKD genetic risk inferred by polymorphism(s) amongst African populations in Africa. The study followed the HuGE handbook and PRISMA protocol. We included studies reporting on the association of polymorphism(s) with prevalent CKD, end-stage renaldisease (ESRD) or CKD-associated traits. Given the very few studies investigating the effects of the same single nucleotide polymorphisms (SNPs) on CKD risk, a narrative synthesis of the evidence was conducted. RESULTS A total of 30 polymorphisms in 11 genes were investigated for their association with CKD, ESRD or related traits, all using the candidate-gene approach. Of all the included genes, MYH9, AT1R and MTHFR genes failed to predict CKD or related traits, while variants in the APOL1, apoE, eNOS, XPD, XRCC1, renalase, ADIPOQ, and CCR2 genes were associated with CKD or other related traits. Two SNPs (rs73885319, rs60910145) and haplotypes (G-A-G; G1; G2) of the apolipoprotein L1 (APOL1) gene were studied in more than one population group, with similar association with prevalent CKD observed. The remaining polymorphisms were investigated in single studies. CONCLUSION According to this systematic review, there is currently insufficient evidence of the specific polymorphisms that poses African populations at an increased risk of CKD. Large-scale genetic studies are warranted to better understand susceptibility polymorphisms, specific to African populations.
Collapse
Affiliation(s)
- Cindy George
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Parow Valley, PO Box 19070, Cape Town, South Africa.
| | - Yandiswa Y Yako
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, Mthatha, South Africa
| | - Ikechi G Okpechi
- Department of Medicine, Division of Nephrology and Hypertension, University of Cape Town, Cape Town, South Africa.,Kidney and Hypertension Research Unit, University of Cape Town, Cape Town, South Africa
| | - Tandi E Matsha
- Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, Bellville, Cape Town, South Africa
| | - Francois J Kaze Folefack
- Faculty of Medicine and Biomedical Sciences, University of Yaounde I, Yaounde, Cameroon.,Medicine Unit, Yaounde University Teaching Hospital, Yaounde, Cameroon
| | - Andre P Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Parow Valley, PO Box 19070, Cape Town, South Africa
| |
Collapse
|
232
|
Zheng X, Liu Q, Yi M, Qin S, Wu K. The regulation of cytokine signaling by retinal determination gene network pathway in cancer. Onco Targets Ther 2018; 11:6479-6487. [PMID: 30323623 PMCID: PMC6177397 DOI: 10.2147/ott.s176113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tumor environment plays a pivotal role in determining cancer biology characteristics. Cytokine factors, as a critical component in tumor milieu, execute distinct functions in the process of tumorigenesis and progression via the autocrine or paracrine manner. The retinal determination gene network (RDGN), which mainly comprised DACH, SIX, and EYA family members, is required for the organ development in mammalian species. While the aberrant expression of RDGN is involved in the proliferation, apoptosis, angiogenesis, and metastasis of tumors via interacting with different cytokine-related signals, such as CXCL8, IL-6, TGF-β, FGF, and VEGF, in a cell- or tissue-dependent manner. Thus, joint detection of this pathway might be used as a potential biomarker for the stratification of target therapy and for the precision prediction of the prognosis of cancer patients.
Collapse
Affiliation(s)
- Xinhua Zheng
- Department of Clinical Medicine, Medical School of Pingdingshan University, Pingdingshan, Henan 467000, China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China,
| |
Collapse
|
233
|
Asleh R, Snipelisky D, Hathcock M, Kremers W, Liu D, Batzler A, Jenkins G, Kushwaha S, Pereira NL. Genomewide association study reveals novel genetic loci associated with change in renal function in heart transplant recipients. Clin Transplant 2018; 32:e13395. [PMID: 30160337 DOI: 10.1111/ctr.13395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Renal dysfunction occurs commonly after heart transplantation (HTx) with wide inter-individual variability but whether a genetic predisposition exists in these patients is unknown. Genomewide association studies (GWAS) have not been performed to assess the association of genetic variation with change in renal function after HTx. METHODS Clinical and demographic data of patients who underwent HTx and provided blood samples and consent for genetic analysis were included. Genotyping was performed using Illumina Infinium Human CoreExome v1.0 analysis kit. A GWAS utilizing linear regression models was performed with estimated glomerular filtration rate (eGFR) at 1 year as the phenotype after adjusting for baseline eGFR prior to HTx and conversion from calcineurin inhibitor to sirolimus as primary immunosuppression therapy. RESULTS A total of 251 HTx recipients were genotyped for 314,903 single nucleotide polymorphisms (SNPs). The mean (SD) age was 50 (12.5) years; most patients were of European origin (n = 243, 96.8%) and males (n = 179, 71.3%). After adjustment for potential confounders, two variants, rs17033285 (P = 4.3 × 10-7 ) and rs4917601 (P = 6.46 × 10-7 ), in a long non-coding RNA (lncRNA) gene LINC01121 and a pseudogene BTBD7P2, were identified to have a significant association with change in GFR at 1 year after HTx. CONCLUSIONS Our first of its kind GWAS demonstrates that genetic variation affects renal function after HTx independent of other risk factors. Agnostic genetic approaches such as these may lead to identification of novel biological pathways such as the role of lncRNAs in the development of renal dysfunction post-HTx.
Collapse
Affiliation(s)
- Rabea Asleh
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - David Snipelisky
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew Hathcock
- Department of Biomedical Statistic and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Walter Kremers
- Department of Biomedical Statistic and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Duan Liu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Anthony Batzler
- Department of Biomedical Statistic and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Gregory Jenkins
- Department of Biomedical Statistic and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Sudhir Kushwaha
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Naveen L Pereira
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
234
|
Zusi C, Trombetta M, Bonetti S, Dauriz M, Boselli ML, Trabetti E, Malerba G, Penno G, Zoppini G, Bonora E, Solini A, Bonadonna RC. A renal genetic risk score (GRS) is associated with kidney dysfunction in people with type 2 diabetes. Diabetes Res Clin Pract 2018; 144:137-143. [PMID: 30153470 DOI: 10.1016/j.diabres.2018.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/12/2018] [Accepted: 08/22/2018] [Indexed: 11/29/2022]
Abstract
This study aims to investigate whether renal and cardiovascular phenotypes in Italian patients with type 2 diabetes (T2D) could be influenced by a number of disease risk SNPs recently found in genome-wide association studies (GWAS). In 1591 Italian subjects with T2D: (1) 47 SNPs associated to kidney function and/or chronic kidney disease (CKD) and 49 SNPs associated to cardiovascular disease (CVD) risk were genotyped; (2) urinary albumin/creatinine (A/C) ratio, glomerular filtration rate (eGFR) and lipid profile were assessed; (3) a standard electrocardiogram was performed; (4) two genotype risk scores (GRS) were computed (a renal GRS calculated selecting 39 SNPs associated with intermediate traits of kidney damage and a cardiovascular GRS determined selecting 42 SNPs associated to CVD risk phenotypes). After correction for multiple comparisons, the renal GRS was not associated to A/C ratio (p = 0.33), but it was significantly related to decreased eGFR (p = 0.005). No association between the cardiovascular GRS and electrocardiogram was detected. Thus, in Italian patients with T2D a renal GRS might predict the decline in glomerular function, suggesting that the clock of diabetes associated CKD starts ticking long before hyperglycemia. Our data support the feasibility of gene-based prediction of complications in people with T2D.
Collapse
Affiliation(s)
- Chiara Zusi
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Maddalena Trombetta
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Hospital Trust of Verona, Verona, Italy.
| | - Sara Bonetti
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Marco Dauriz
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Maria L Boselli
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Elisabetta Trabetti
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Giovanni Malerba
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | - Giuseppe Penno
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giacomo Zoppini
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Enzo Bonora
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Hospital Trust of Verona, Verona, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Riccardo C Bonadonna
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Division of Endocrinology and Metabolic Diseases, Azienda Ospedaliera Universitaria di Parma, Parma, Italy
| |
Collapse
|
235
|
Wei L, Xiao Y, Li L, Xiong X, Han Y, Zhu X, Sun L. The Susceptibility Genes in Diabetic Nephropathy. KIDNEY DISEASES 2018; 4:226-237. [PMID: 30574499 DOI: 10.1159/000492633] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/03/2018] [Indexed: 12/22/2022]
Abstract
Background Diabetes mellitus (DM) poses a severe threat to global public health. Diabetic nephropathy (DN) is one of the most common complications of diabetes and the leading cause of end-stage renal disease (ESRD). Approximately 30-40% of DM patients in the world progress to ESRD, which emphasizes the effect of genetic factors on DN. Family clustering also supports the important role of hereditary factors in DN and ESRD. Therefore, a large number of genetic studies have been carried out to identify susceptibility genes in different diabetic cohorts. Extensive susceptibility genes of DN and ESRD have not been identified until recently. Summary and Key Messages Some of these associated genes function as pivotal regulators in the pathogenesis of DN, such as those related to glycometabolism and lipid metabolism. However, the functions of most of these genes remain unclear. In this article, we review several susceptibility genes according to their genetic functions to make it easier to determine their exact effect on DN and to provide a better understanding of the advancements from genetic studies. However, several challenges associated with investigating the genetic factors of DN still exist. For instance, it is difficult to determine whether these variants affect the expression of the protein they encode or other cytokines. More efforts should be made to determine how these genes influence the progression of DN. In addition, many results could not be replicated among races, suggesting that the association between genetic polymorphisms and DN is race-specific. Therefore, large, well-designed studies involving more relevant variables and ethnic groups and more relevant functional studies are urgently needed. These studies may be beneficial and retard the progression of DN by early intervention, especially for patients who carry certain risk alleles or genotypes.
Collapse
Affiliation(s)
- Ling Wei
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Xiao
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Li
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaofen Xiong
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yachun Han
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xuejing Zhu
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
236
|
Yamada Y, Kato K, Oguri M, Horibe H, Fujimaki T, Yasukochi Y, Takeuchi I, Sakuma J. Identification of 13 novel susceptibility loci for early-onset myocardial infarction, hypertension, or chronic kidney disease. Int J Mol Med 2018; 42:2415-2436. [PMID: 30226566 PMCID: PMC6192728 DOI: 10.3892/ijmm.2018.3852] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
Early-onset cardiovascular and renal diseases have a strong genetic component. In the present study, exome-wide association studies (EWASs) were performed to identify genetic variants that confer susceptibility to early-onset myocardial infarction (MI), hypertension, or chronic kidney disease (CKD) in Japanese individuals. A total of 8,093 individuals aged ≤65 years was enrolled in the study. The EWASs for MI, hypertension, and CKD were performed in 6,926 subjects (1,152 cases, 5,774 controls), 8,080 subjects (3,444 cases, 4,636 controls), and 2,556 subjects (1,051 cases, 1,505 controls), respectively. Genotyping of single nucleotide polymorphisms (SNPs) was performed with Illumina Human Exome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The associations of allele frequencies for 31,245, 31,276, or 31,514 SNPs that passed quality control to MI, hypertension, and CKD, respectively, was examined with Fisher's exact test. Bonferroni's correction for statistical significance of association was applied to compensate for multiple comparisons of genotypes with MI, hypertension, or CKD. The EWASs of allele frequencies revealed that 25, 11, and 11 SNPs were significantly associated with MI (P<1.60×10−6), hypertension (P<1.60×10−6), or CKD (P<1.59×10−6), respectively. Multivariable logistic regression analysis with adjustment for covariates showed that all 25, 11, and 11 SNPs were significantly associated with MI (P<0.0005), hypertension (P<0.0011), or CKD (P<0.0011), respectively. On examination of the results from previous genome-wide association studies and linkage disequilibrium of the identified SNPs, 11 loci (TMOD4, COL6A3, ADGRL3-CXCL8-MARCH1, OR52E4, TCHP-GIT2, CCDC63, 12q24.1, OAS3, PLCB2-VPS33B, GOSR2, ZNF77), six loci (MOB3C-TMOD4, COL6A3, COL6A5, CXCL8-MARCH1, NFKBIL1-6p21.3-NCR3, PLCB2-VPS33B), and seven loci (MOB3C-TMOD4, COL6A3, COL6A5, ADGRL3-CXCL8-MARCH1, MUC17, PLCB2-VPS33B, ZNF77) were identified as novel loci significantly associated with MI, hypertension, and CKD, respectively. Furthermore, six genes (TMOD4, COL6A3, CXCL8, MARCH1, PLCB2, VPS33B) were significantly associated with MI, hypertension and CKD; two genes (ADGRL3, ZNF77) with MI and CKD; and two genes (COL6A5, MOB3C) with hypertension and CKD. Therefore, 13 novel loci (MOB3C-TMOD4, COL6A3, ADGRL3-CXCL8-MARCH1, OR52E4, TCHP- GIT2, CCDC63, 12q24.1, OAS3, PLCB2-VPS33B, ZNF77, COL6A5, NFKBIL1-NCR3, MUC17) were identified that confer susceptibility to early-onset MI, hypertension, or CKD. The determination of genotypes for the SNPs at these loci may provide informative for assessment of the genetic risk for MI, hypertension, or CKD.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507‑8522, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Northern Mie Medical Center Inabe General Hospital, Inabe, Mie 511‑0428, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332‑0012, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332‑0012, Japan
| |
Collapse
|
237
|
Fujii R, Hishida A, Nakatochi M, Furusyo N, Murata M, Tanaka K, Shimanoe C, Suzuki S, Watanabe M, Kuriyama N, Koyama T, Takezaki T, Shimoshikiryo I, Arisawa K, Katsuura-Kamano S, Takashima N, Turin TC, Kuriki K, Endoh K, Mikami H, Nakamura Y, Oze I, Ito H, Kubo M, Momozawa Y, Kondo T, Naito M, Wakai K. Association of genetic risk score and chronic kidney disease in a Japanese population. Nephrology (Carlton) 2018; 24:670-673. [PMID: 30146708 DOI: 10.1111/nep.13479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2018] [Indexed: 01/21/2023]
Abstract
Chronic kidney disease (CKD) is a public health problem worldwide including Japan. Recent genome-wide association studies have discovered CKD susceptibility variants. We developed a genetic risk score (GRS) based on CKD-associated variants and assessed a possibility that the GRS can improve the discrimination capability for the prevalence of CKD in a Japanese population. The present study consists of 11 283 participants randomly selected from 12 Japan Multi-Institutional Collaborative Cohort Study sites. Individual GRS was constructed combining 18 single-nucleotide polymorphisms identified in a Japanese population. Participants with eGFR <60 mL/min per 1.73 m2 was defined as case (stage 3 CKD or higher) in this study. Logistic regression analysis was used to examine the association between the GRS and CKD risk with adjustment for sex, age, hypertension and type 2 diabetes mellitus. The frequency of individuals with CKD was 8.3%, which was relatively low compared with those previously reported in a Japanese population. The odds ratio of having CKD was 1.120 (95% confidence interval: 1.042-1.203) per 10 GRS increment in the fully adjusted model (P = 0.002). The C-statistic was significantly increased in the model with the GRS, comparing with the model without the GRS (0.720 vs 0.719, Pdifference = 0.008). Increment of the GRS was associated with increased risk of CKD. Additionally, the GRS significantly improved the discriminatory ability of CKD prevalence in a Japanese population; however, the improvement of discriminatory ability brought about by the GRS seemed to be small compared with that of non-genetic CKD risk factors.
Collapse
Affiliation(s)
- Ryosuke Fujii
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Nakatochi
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Norihiro Furusyo
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Masayuki Murata
- Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Chisato Shimanoe
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Sadao Suzuki
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Miki Watanabe
- Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nagato Kuriyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Teruhide Koyama
- Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Toshiro Takezaki
- Department of International, Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Ippei Shimoshikiryo
- Department of International, Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Naoyuki Takashima
- Department of Preventive Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Tanvir C Turin
- Department of Family Medicine, University of Calgary, Calgary, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kaori Endoh
- Laboratory of Public Health School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Haruo Mikami
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yohko Nakamura
- Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Isao Oze
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hidemi Ito
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Michiaki Kubo
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takaaki Kondo
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
238
|
Kobayashi H, Otsuka H, Yanai M, Hara M, Hishiki M, Soma M, Abe M. Adiponectin Receptor gene Polymorphisms are Associated with Kidney Function in Elderly Japanese Populations. J Atheroscler Thromb 2018; 26:328-339. [PMID: 30135333 PMCID: PMC6456456 DOI: 10.5551/jat.45609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: Adiponectin exhibits its biological effects through adiponectin receptors (AdipoR1 and AdipoR2), which are distributed in the kidneys, and activation of those receptors could prevent or ameliorate diabetic nephropathy. This study aimed to evaluate the associations between AdipoR single nucleotide polymorphisms (SNPs) and kidney function in an elderly Japanese population. Methods: A total of 271 elderly Japanese volunteers underwent anthropometric and laboratory tests (cystatin C-based eGFR and total and high molecular weight adiponectin levels at baseline and a follow-up visit). Genotype data were obtained for the selected 7 and 5 AdipoR1 and AdipoR2 SNPs, respectively. Results: In a cross-sectional analysis at baseline, we found a significant association between the AdipoR2 SNP rs12230440 and kidney function; eGFRcys tended to increase as the number of carriers of T alleles increased after adjustment for covariates and Bonferroni correction, although the association of the SNP and annual eGFR decline could not be identified in the longitudinal data. Regarding the variants rs16850797, rs11061925, and rs10773983, each of the allele G, allele C, and allele G showed nominally significant associations with higher eGFRcys. However, this failed to reach significance after Bonferroni correction. Conclusion: Here, an AdipoR2 SNP was associated with kidney function, suggesting that the effects of this polymorphism on adiponectin receptor may affect kidney function in the elderly Japanese population.
Collapse
Affiliation(s)
- Hiroki Kobayashi
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine
| | - Hiromasa Otsuka
- Division of General Medicine, Department of Internal Medicine, Nihon University School of Medicine
| | - Mitsuru Yanai
- Division of General Medicine, Department of Internal Medicine, Nihon University School of Medicine
| | - Motohiko Hara
- Department of Nursing, School of Health and Social Services, Saitama Prefectural University
| | - Mikano Hishiki
- Department of Diabetes and Endocrinology, Tokyo Metropolitan Hiroo Hospital
| | - Masayoshi Soma
- Division of General Medicine, Department of Internal Medicine, Nihon University School of Medicine
| | - Masanori Abe
- Division of Nephrology, Hypertension and Endocrinology, Department of Internal Medicine, Nihon University School of Medicine
| |
Collapse
|
239
|
Detecting Rare Mutations with Heterogeneous Effects Using a Family-Based Genetic Random Field Method. Genetics 2018; 210:463-476. [PMID: 30104420 DOI: 10.1534/genetics.118.301266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/29/2018] [Indexed: 01/19/2023] Open
Abstract
The genetic etiology of many complex diseases is highly heterogeneous. A complex disease can be caused by multiple mutations within the same gene or mutations in multiple genes at various genomic loci. Although these disease-susceptibility mutations can be collectively common in the population, they are often individually rare or even private to certain families. Family-based studies are powerful for detecting rare variants enriched in families, which is an important feature for sequencing studies due to the heterogeneous nature of rare variants. In addition, family designs can provide robust protection against population stratification. Nevertheless, statistical methods for analyzing family-based sequencing data are underdeveloped, especially those accounting for heterogeneous etiology of complex diseases. In this article, we introduce a random field framework for detecting gene-phenotype associations in family-based sequencing studies, referred to as family-based genetic random field (FGRF). Similar to existing family-based association tests, FGRF could utilize within-family and between-family information separately or jointly to test an association. We demonstrate that FGRF has comparable statistical power with existing methods when there is no genetic heterogeneity, but can improve statistical power when there is genetic heterogeneity across families. The proposed method also shares the same advantages with the conventional family-based association tests (e.g., being robust to population stratification). Finally, we applied the proposed method to a sequencing data from the Minnesota Twin Family Study, and revealed several genes, including SAMD14, potentially associated with alcohol dependence.
Collapse
|
240
|
Rungroj N, Nettuwakul C, Sawasdee N, Sangnual S, Deejai N, Misgar RA, Pasena A, Khositseth S, Kirdpon S, Sritippayawan S, Vasuvattakul S, Yenchitsomanus PT. Distal renal tubular acidosis caused by tryptophan-aspartate repeat domain 72 (WDR72) mutations. Clin Genet 2018; 94:409-418. [PMID: 30028003 DOI: 10.1111/cge.13418] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/21/2018] [Accepted: 07/17/2018] [Indexed: 12/18/2022]
Abstract
Hereditary distal renal tubular acidosis (dRTA) is a rare genetic disease that is caused by mutations in SLC4A1, ATP6V1B1, or ATP6V0A4. However, there are many families with hereditary dRTA in whom the disease-causing genes are unknown. Accordingly, we performed whole exome sequencing and genetic studies of the members of a family with autosomal recessive dRTA of an unknown genetic etiology. Here, we report compound heterozygous pathogenic variations in tryptophan-aspartate repeat domain 72 (WDR72) (c.1777A>G [p.R593G] and c.2522T>A [p.L841Q]) in three affected siblings of a family with dRTA. Both variants segregated with dRTA in the family and were not observed in normal control subjects. Homologous modeling and in silico mutagenesis indicated that R593G and L841Q alter the H-bond formations in the nearby residues, affecting the WDR72 protein structure. All these evidences indicate that the identified WDR72 variations were probably to have caused hereditary dRTA in the reported family. In addition, homozygous nonsense mutation (c.2686C>T [p.R896X]) was identified in another family, strongly supporting the causal role of WDR72 in dRTA. Based on our literature review, WDR72 mutations associated with dRTA have not been previously described. This is the first identification of pathogenic variations in WDR72 as a cause of hereditary dRTA.
Collapse
Affiliation(s)
- N Rungroj
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Division of Molecular Genetics, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - C Nettuwakul
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - N Sawasdee
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - S Sangnual
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - N Deejai
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - R A Misgar
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar, India
| | - A Pasena
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Department of Immunology and Immunology Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - S Khositseth
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - S Kirdpon
- Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - S Sritippayawan
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - S Vasuvattakul
- Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - P T Yenchitsomanus
- Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
241
|
Prokop JW, May T, Strong K, Bilinovich SM, Bupp C, Rajasekaran S, Worthey EA, Lazar J. Genome sequencing in the clinic: the past, present, and future of genomic medicine. Physiol Genomics 2018; 50:563-579. [PMID: 29727589 PMCID: PMC6139636 DOI: 10.1152/physiolgenomics.00046.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genomic sequencing has undergone massive expansion in the past 10 yr, from a rarely used research tool into an approach that has broad applications in a clinical setting. From rare disease to cancer, genomics is transforming our knowledge of biology. The transition from targeted gene sequencing, to whole exome sequencing, to whole genome sequencing has only been made possible due to rapid advancements in technologies and informatics that have plummeted the cost per base of DNA sequencing and analysis. The tools of genomics have resolved the etiology of disease for previously undiagnosable conditions, identified cancer driver gene variants, and have impacted the understanding of pathophysiology for many diseases. However, this expansion of use has also highlighted research's current voids in knowledge. The lack of precise animal models for gene-to-function association, lack of tools for analysis of genomic structural changes, skew in populations used for genetic studies, publication biases, and the "Unknown Proteome" all contribute to voids needing filled for genomics to work in a fast-paced clinical setting. The future will hold the tools to fill in these voids, with new data sets and the continual development of new technologies allowing for expansion of genomic medicine, ushering in the days to come for precision medicine. In this review we highlight these and other points in hopes of advancing and guiding precision medicine into the future for optimal success.
Collapse
Affiliation(s)
- Jeremy W Prokop
- HudsonAlpha Institute for Biotechnology , Huntsville, Alabama
- Department of Pediatrics and Human Development, Michigan State University , East Lansing, Michigan
- Department of Pharmacology and Toxicology, Michigan State University , East Lansing, Michigan
| | - Thomas May
- HudsonAlpha Institute for Biotechnology , Huntsville, Alabama
- Institute for Health and Aging, University of California San Francisco , San Francisco, California
- Elson S. Floyd College of Medicine, Washington State University , Spokane, Washington
| | - Kim Strong
- HudsonAlpha Institute for Biotechnology , Huntsville, Alabama
| | - Stephanie M Bilinovich
- Department of Pediatrics and Human Development, Michigan State University , East Lansing, Michigan
| | - Caleb Bupp
- Department of Pediatrics and Human Development, Michigan State University , East Lansing, Michigan
- Department of Genetics, Helen DeVos Children's Hospital, Spectrum Health, Grand Rapids, Michigan
| | - Surender Rajasekaran
- Department of Pediatrics and Human Development, Michigan State University , East Lansing, Michigan
- Department of Pediatric Critical Care Medicine, Helen DeVos Children's Hospital, Spectrum Health, Grand Rapids, Michigan
| | | | - Jozef Lazar
- HudsonAlpha Institute for Biotechnology , Huntsville, Alabama
| |
Collapse
|
242
|
Loomis SJ, Li M, Maruthur NM, Baldridge AS, North KE, Mei H, Morrison A, Carson AP, Pankow JS, Boerwinkle E, Scharpf R, Rasmussen-Torvik LJ, Coresh J, Duggal P, Köttgen A, Selvin E. Genome-Wide Association Study of Serum Fructosamine and Glycated Albumin in Adults Without Diagnosed Diabetes: Results From the Atherosclerosis Risk in Communities Study. Diabetes 2018; 67:1684-1696. [PMID: 29844224 PMCID: PMC6054442 DOI: 10.2337/db17-1362] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/17/2018] [Indexed: 12/16/2022]
Abstract
Fructosamine and glycated albumin are potentially useful alternatives to hemoglobin A1c (HbA1c) as diabetes biomarkers. The genetic determinants of fructosamine and glycated albumin, however, are unknown. We performed genome-wide association studies of fructosamine and glycated albumin among 2,104 black and 7,647 white participants without diabetes in the Atherosclerosis Risk in Communities (ARIC) Study and replicated findings in the Coronary Artery Risk Development in Young Adults (CARDIA) study. Among whites, rs34459162, a novel missense single nucleotide polymorphism (SNP) in RCN3, was associated with fructosamine (P = 5.3 × 10-9) and rs1260236, a known diabetes-related missense mutation in GCKR, was associated with percent glycated albumin (P = 5.9 × 10-9) and replicated in CARDIA. We also found two novel associations among blacks: an intergenic SNP, rs2438321, associated with fructosamine (P = 6.2 × 10-9), and an intronic variant in PRKCA, rs59443763, associated with percent glycated albumin (P = 4.1 × 10-9), but these results did not replicate. Few established fasting glucose or HbA1c SNPs were also associated with fructosamine or glycated albumin. Overall, we found genetic variants associated with the glycemic information captured by fructosamine and glycated albumin as well as with their nonglycemic component. This highlights the importance of examining the genetics of hyperglycemia biomarkers to understand the information they capture, including potential glucose-independent factors.
Collapse
Affiliation(s)
- Stephanie J Loomis
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Man Li
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Division of Nephrology and Department of Human Genetics, University of Utah, Salt Lake City, UT
| | - Nisa M Maruthur
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology and Clinical Research, The Johns Hopkins University, Baltimore, MD
- Division of General Internal Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Abigail S Baldridge
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL
| | - Kari E North
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC
| | - Hao Mei
- Department of Data Science, School of Population Health, University of Mississippi Medical Center, Jackson, MS
| | - Alanna Morrison
- Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health at Houston, Houston, TX
| | - April P Carson
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Eric Boerwinkle
- Department of Epidemiology, The University of Texas Health Science Center at Houston School of Public Health at Houston, Houston, TX
| | - Robert Scharpf
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Josef Coresh
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology and Clinical Research, The Johns Hopkins University, Baltimore, MD
| | - Priya Duggal
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
| | - Anna Köttgen
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Institute of Genetic Epidemiology, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elizabeth Selvin
- Department of Epidemiology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology and Clinical Research, The Johns Hopkins University, Baltimore, MD
| |
Collapse
|
243
|
Ng FL, Warren HR, Caulfield MJ. Hypertension genomics and cardiovascular prevention. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:291. [PMID: 30211179 DOI: 10.21037/atm.2018.06.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypertension continues to be a major risk factor for global mortality, and recent genome-wide association studies (GWAS) have expanded in size, leading to the identification of further genetic loci influencing blood pressure. In light of the new knowledge from the largest cardiovascular GWAS to date, we review the potential impact of genomics on discovering potential drug targets, risk stratification with genetic risk scores, drug selection with pharmacogenetics, and exploring insights provided by gene-environment interactions.
Collapse
Affiliation(s)
- Fu Liang Ng
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK.,Barts BP Centre of Excellence, Barts Heart Centre, The NIHR Biomedical Research Centre at Barts, St Bartholomew's Hospital, W Smithfield, London, UK
| | - Helen R Warren
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, The NIHR Biomedical Research Centre at Barts, Queen Mary University London, London, UK.,Barts BP Centre of Excellence, Barts Heart Centre, The NIHR Biomedical Research Centre at Barts, St Bartholomew's Hospital, W Smithfield, London, UK
| |
Collapse
|
244
|
Schütte-Nütgen K, Edeling M, Mendl G, Krahn MP, Edemir B, Weide T, Kremerskothen J, Michgehl U, Pavenstädt H. Getting a Notch closer to renal dysfunction: activated Notch suppresses expression of the adaptor protein Disabled-2 in tubular epithelial cells. FASEB J 2018; 33:821-832. [PMID: 30052485 DOI: 10.1096/fj.201800392rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Reactivation of Notch signaling in kidneys of animal models and patients with chronic kidney disease (CKD) has been shown to contribute to epithelial injury and fibrosis development. Here, we investigated the mechanisms of Notch-induced injury in renal epithelial cells. We performed genome-wide transcriptome analysis to identify Notch target genes using an in vitro system of cultured tubular epithelial cells expressing the intracellular domain of Notch1. One of the top downregulated genes was Disabled-2 ( Dab2). With the use of Drosophila nephrocytes as a model system, we found that Dab (the Drosophila homolog of Dab2) knockdown resulted in a significant filtration defect, indicating that loss of Dab2 plays a functional role in kidney disease development. We showed that Dab2 expression in cultured tubular epithelial cells is involved in endocytic regulation and that it also protects cells from TGF-β-induced epithelial-to-mesenchymal transition. In vivo correlation studies indicated its additional role in renal ischemia-induced injury. Together, these data suggest that Dab2 plays a versatile role in the kidney and may impact on acute and CKDs.-Schütte-Nütgen, K., Edeling, M., Mendl, G., Krahn, M. P., Edemir, B., Weide, T., Kremerskothen, J., Michgehl, U., Pavenstädt, H. Getting a Notch closer to renal dysfunction: activated Notch suppresses expression of the adaptor protein Disabled-2 in tubular epithelial cells.
Collapse
Affiliation(s)
| | - Maria Edeling
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and
| | - Gudrun Mendl
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and
| | - Michael P Krahn
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and
| | - Bayram Edemir
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and.,Department of Hematology and Oncology, Internal Medicine IV, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Thomas Weide
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and
| | | | - Ulf Michgehl
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and
| | - Hermann Pavenstädt
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and
| |
Collapse
|
245
|
Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 2018; 65:16-36. [PMID: 29909119 DOI: 10.1016/j.mam.2018.06.002] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. It is considered as the underlying pathological process of chronic kidney disease (CKD), which affects more than 10% of world population and for which treatment options are limited. Renal fibrosis is defined by excessive deposition of extracellular matrix, which disrupts and replaces the functional parenchyma that leads to organ failure. Kidney's histological structure can be divided into three main compartments, all of which can be affected by fibrosis, specifically termed glomerulosclerosis in glomeruli, interstitial fibrosis in tubulointerstitium and arteriosclerosis and perivascular fibrosis in vasculature. In this review, we summarized the different appearance, cellular origin and major emerging processes and mediators of fibrosis in each compartment. We also depicted and discussed the challenges in translation of anti-fibrotic treatment to clinical practice and discuss possible solutions and future directions.
Collapse
|
246
|
Omote S, Matsuoka N, Arakawa H, Nakanishi T, Tamai I. Effect of tyrosine kinase inhibitors on renal handling of creatinine by MATE1. Sci Rep 2018; 8:9237. [PMID: 29915248 PMCID: PMC6006426 DOI: 10.1038/s41598-018-27672-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/05/2018] [Indexed: 01/09/2023] Open
Abstract
Creatinine is actively secreted across tubular epithelial cells via organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 (MATE1). We previously showed that the tyrosine kinase inhibitor (TKI) crizotinib inhibits OCT2-mediated transport of creatinine. In the present work, we examined the inhibitory potency of TKIs, including crizotinib, on MATE1-mediated transport of creatinine. Then, we used the kinetic parameters estimated in this and the previous work to predict the potential impact of TKIs on serum creatinine level (SCr) via reversible inhibition of creatinine transport. Crizotinib inhibited [14C]creatinine uptake by MATE1-overexpressing cells, and the inhibitory effect increased with incubation time, being greater in the case of pre-incubation or combined pre-incubation/co-incubation (pre/co-incubation) than in the case of co-incubation alone. The inhibition was non-competitive, with K i values of 2.34 μM, 0.455 μM and 0.342 μM under co-, pre- or pre/co-incubation conditions, respectively. Similar values were obtained for inhibition of [3H]MPP+ uptake by MATE1-overexpressing cells. Gefitinib, imatinib, pazopanib, sorafenib, and sunitinib also inhibited MATE1-mediated creatinine uptake. Further, all these TKIs except pazopanib inhibited [14C]creatinine uptake by OCT2-overexpressing cells. In rat kidney slices, the ratio of unbound tissue accumulation of TKIs to extracellular concentration ranged from 2.05 to 3.93. Prediction of the influence of TKIs on SCr based on the renal creatinine clearance and plasma maximum unbound concentrations of TKIs suggested that crizotinib and imatinib might increase SCr by more than 10% in the clinical context. Accordingly, it is necessary to be cautious in diagnosing TKI-induced renal failure only on the basis of an increase of SCr.
Collapse
Affiliation(s)
- Saki Omote
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Natsumi Matsuoka
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
247
|
Coto E, Díaz Corte C, Tranche S, Gómez J, Reguero JR, Alonso B, Iglesias S, Gil-Peña H, Yin X, Coto-Segura P. Genetic Variation in the H19-IGF2 Cluster Might Confer Risk of Developing Impaired Renal Function. DNA Cell Biol 2018; 37:617-625. [PMID: 29889555 DOI: 10.1089/dna.2017.4135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The H19-IGF2 imprinted gene region could be implicated in the risk of developing impaired renal function (IRF). Our aim was to determine the association of several common H19-IGF2 variants and IRF in a cohort of elderly healthy individuals. The study involved 675 individuals >65 years of age, 184 with type 2 diabetes mellitus (T2DM), and 105 with IRF (estimated glomerular filtration rate [eGFR] <60). They were genotyped for two common H19 single nucleotide polymorphisms (SNPs) (rs2839698 and rs10732516), one H19-IGF2 intergenic indel (rs201858505), and one indel in the 3'UTR of the IGF2. For the H19 SNPs, we also determined the allele present in the methylated chromosome through genotyping the DNA digested with a methylation-sensitive endonuclease. None of the four H19-IGF2 variants was associated with IRF in our cohort. We found a significantly higher frequency of the 3'UTR IGF2 deletion (D) in the eGFR <60 group (p = 0.01; odds ratio = 1.16, 95% confidence interval = 1.10-2.51). This association was independent of age and T2DM, two strong predictors of IRF. In conclusion, a common indel variant in the 3'UTR of the IGF2 gene was associated with the risk of IRF. This association could be explained by the role of IGF2 in podocyte survival, through regulation of IGF2 expression by differential binding of miRNAs to the indel sequences. Functional studies should be necessary to clarify this issue.
Collapse
Affiliation(s)
- Eliecer Coto
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain .,2 Universidad de Oviedo , Oviedo, Spain .,3 Red de Investigación Renal (REDINREN) , Madrid, Spain .,4 Instituto de Investigación Sanitaria del Principado de Asturias , ISPA, Oviedo, Spain
| | - Carmen Díaz Corte
- 2 Universidad de Oviedo , Oviedo, Spain .,3 Red de Investigación Renal (REDINREN) , Madrid, Spain .,4 Instituto de Investigación Sanitaria del Principado de Asturias , ISPA, Oviedo, Spain .,5 Nefrología , HUCA, Oviedo, Spain
| | | | - Juan Gómez
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | | | - Belén Alonso
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | - Sara Iglesias
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | - Helena Gil-Peña
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | - Xueqian Yin
- 1 Genética Molecular-Laboratorio Medicina , HUCA, Oviedo, Spain
| | - Pablo Coto-Segura
- 2 Universidad de Oviedo , Oviedo, Spain .,4 Instituto de Investigación Sanitaria del Principado de Asturias , ISPA, Oviedo, Spain .,7 Cardiología , HUCA, Oviedo, Spain .,8 Dermatología , HUCA, Oviedo, Spain
| |
Collapse
|
248
|
Hebebrand J, Peters T, Schijven D, Hebebrand M, Grasemann C, Winkler TW, Heid IM, Antel J, Föcker M, Tegeler L, Brauner L, Adan RAH, Luykx JJ, Correll CU, König IR, Hinney A, Libuda L. The role of genetic variation of human metabolism for BMI, mental traits and mental disorders. Mol Metab 2018; 12:1-11. [PMID: 29673576 PMCID: PMC6001916 DOI: 10.1016/j.molmet.2018.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The aim was to assess whether loci associated with metabolic traits also have a significant role in BMI and mental traits/disorders METHODS: We first assessed the number of single nucleotide polymorphisms (SNPs) with genome-wide significance for human metabolism (NHGRI-EBI Catalog). These 516 SNPs (216 independent loci) were looked-up in genome-wide association studies for association with body mass index (BMI) and the mental traits/disorders educational attainment, neuroticism, schizophrenia, well-being, anxiety, depressive symptoms, major depressive disorder, autism-spectrum disorder, attention-deficit/hyperactivity disorder, Alzheimer's disease, bipolar disorder, aggressive behavior, and internalizing problems. A strict significance threshold of p < 6.92 × 10-6 was based on the correction for 516 SNPs and all 14 phenotypes, a second less conservative threshold (p < 9.69 × 10-5) on the correction for the 516 SNPs only. RESULTS 19 SNPs located in nine independent loci revealed p-values < 6.92 × 10-6; the less strict criterion was met by 41 SNPs in 24 independent loci. BMI and schizophrenia showed the most pronounced genetic overlap with human metabolism with three loci each meeting the strict significance threshold. Overall, genetic variation associated with estimated glomerular filtration rate showed up frequently; single metabolite SNPs were associated with more than one phenotype. Replications in independent samples were obtained for BMI and educational attainment. CONCLUSIONS Approximately 5-10% of the regions involved in the regulation of blood/urine metabolite levels seem to also play a role in BMI and mental traits/disorders and related phenotypes. If validated in metabolomic studies of the respective phenotypes, the associated blood/urine metabolites may enable novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dick Schijven
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moritz Hebebrand
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Corinna Grasemann
- Pediatric Endocrinology and Diabetology, Klinik für Kinderheilkunde II, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas W Winkler
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Iris M Heid
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lisa Tegeler
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lena Brauner
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jurjen J Luykx
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium
| | - Christoph U Correll
- Division of Psychiatry Research, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Libuda
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
249
|
Dobriban E. Weighted mining of massive collections of [Formula: see text]-values by convex optimization. INFORMATION AND INFERENCE : A JOURNAL OF THE IMA 2018; 7:251-275. [PMID: 29930799 PMCID: PMC5998655 DOI: 10.1093/imaiai/iax013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 10/05/2017] [Indexed: 06/08/2023]
Abstract
Researchers in data-rich disciplines-think of computational genomics and observational cosmology-often wish to mine large bodies of [Formula: see text]-values looking for significant effects, while controlling the false discovery rate or family-wise error rate. Increasingly, researchers also wish to prioritize certain hypotheses, for example, those thought to have larger effect sizes, by upweighting, and to impose constraints on the underlying mining, such as monotonicity along a certain sequence. We introduce Princessp, a principled method for performing weighted multiple testing by constrained convex optimization. Our method elegantly allows one to prioritize certain hypotheses through upweighting and to discount others through downweighting, while constraining the underlying weights involved in the mining process. When the [Formula: see text]-values derive from monotone likelihood ratio families such as the Gaussian means model, the new method allows exact solution of an important optimal weighting problem previously thought to be non-convex and computationally infeasible. Our method scales to massive data set sizes. We illustrate the applications of Princessp on a series of standard genomics data sets and offer comparisons with several previous 'standard' methods. Princessp offers both ease of operation and the ability to scale to extremely large problem sizes. The method is available as open-source software from github.com/dobriban/pvalue_weighting_matlab (accessed 11 October 2017).
Collapse
Affiliation(s)
- Edgar Dobriban
- Department of Statistics, The Wharton School, University of Pennsylania, USA
| |
Collapse
|
250
|
Kameda H, Fujii T, Nakajima A, Koike R, Sagawa A, Kanbe K, Tomita T, Harigai M, Suzuki Y. Japan College of Rheumatology guideline for the use of methotrexate in patients with rheumatoid arthritis. Mod Rheumatol 2018; 29:31-40. [DOI: 10.1080/14397595.2018.1472358] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hideto Kameda
- Department of Internal Medicine, Division of Rheumatology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Takao Fujii
- Department of Rheumatology and Clinical Immunology, Wakayama Medical University, Wakayama, Japan
| | - Ayako Nakajima
- Department of Rheumatology, Center for Rheumatic Diseases, Mie University Graduate School of Medicine, Mie, Japan
| | - Ryuji Koike
- Medical Innovation Promotion Center, Clinical Research Center of Medical Hospital, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Sagawa
- Sagawa Akira Rheumatology Clinic, Hokkaido, Japan
| | - Katsuaki Kanbe
- Department of Kuranomachi Community Medicine, Regional Clinical Education Center, Jichi Medical University, Tochigi, Japan
| | - Tetsuya Tomita
- Department of Orthopaedic Biomaterial Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masayoshi Harigai
- Division of Epidemiology and Pharmacoepidemiology of Rheumatic Diseases, Institute of Rheumatology, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yasuo Suzuki
- Department of Internal Medicine, Division of Rheumatology, Tokai University School of Medicine, Kanagawa, Japan
| | | |
Collapse
|