201
|
Current Controversies in Diagnosis and Management of Cleft Palate and Velopharyngeal Insufficiency. BIOMED RESEARCH INTERNATIONAL 2015; 2015:196240. [PMID: 26273595 PMCID: PMC4529889 DOI: 10.1155/2015/196240] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/16/2015] [Accepted: 03/02/2015] [Indexed: 12/20/2022]
Abstract
Background. One of the most controversial topics concerning cleft palate is the diagnosis and treatment of velopharyngeal insufficiency (VPI). Objective. This paper reviews current genetic aspects of cleft palate, imaging diagnosis of VPI, the planning of operations for restoring velopharyngeal function during speech, and strategies for speech pathology treatment of articulation disorders in patients with cleft palate. Materials and Methods. An updated review of the scientific literature concerning genetic aspects of cleft palate was carried out. Current strategies for assessing and treating articulation disorders associated with cleft palate were analyzed. Imaging procedures for assessing velopharyngeal closure during speech were reviewed, including a recent method for performing intraoperative videonasopharyngoscopy. Results. Conclusions from the analysis of genetic aspects of syndromic and nonsyndromic cleft palate and their use in its diagnosis and management are presented. Strategies for classifying and treating articulation disorders in patients with cleft palate are presented. Preliminary results of the use of multiplanar videofluoroscopy as an outpatient procedure and intraoperative endoscopy for the planning of operations which aimed to correct VPI are presented. Conclusion. This paper presents current aspects of the diagnosis and management of patients with cleft palate and VPI including 3 main aspects: genetics and genomics, speech pathology and imaging diagnosis, and surgical management.
Collapse
|
202
|
Abstract
Bone morphogenetic proteins (BMPs), together with the eponymous transforming growth factor (TGF) β and the Activins form the TGFβ superfamily of ligands. This protein family comprises more than 30 structurally highly related proteins, which determine formation, maintenance, and regeneration of tissues and organs. Their importance for the development of multicellular organisms is evident from their existence in all vertebrates as well as nonvertebrate animals. From their highly specific functions in vivo either a strict relation between a particular ligand and its cognate cellular receptor and/or a stringent regulation to define a distinct temperospatial expression pattern for the various ligands and receptor is expected. However, only a limited number of receptors are found to serve a large number of ligands thus implicating highly promiscuous ligand-receptor interactions instead. Since in tissues a multitude of ligands are often found, which signal via a highly overlapping set of receptors, this raises the question how such promiscuous interactions between different ligands and their receptors can generate concerted and highly specific cellular signals required during embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Thomas D Mueller
- Department Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
203
|
Kuechler A, Altmüller J, Nürnberg P, Kotthoff S, Kubisch C, Borck G. Exome sequencing identifies a novel heterozygous TGFB3 mutation in a disorder overlapping with Marfan and Loeys-Dietz syndrome. Mol Cell Probes 2015; 29:330-4. [PMID: 26184463 DOI: 10.1016/j.mcp.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 07/10/2015] [Accepted: 07/10/2015] [Indexed: 02/04/2023]
Abstract
Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS) are clinically related autosomal dominant systemic connective tissue disorders. Although mutations in several genes of the TGF-beta signalling and related pathways have been identified in the past (e.g. FBN1, TGFBR1, TGFBR2, SMAD3, TGFB2), there are still many individuals with "marfanoid" phenotypes in whom no causative mutations are identified. We performed whole exome sequencing in two of three affected individuals from a family with phenotypic features overlapping MFS and LDS. The two affected children and their affected father had tall stature, arachnodactyly, hyperextensible joints, hypertelorism, bifid uvula, but no cardiac involvement, aortic dilation or eye involvement. We detected a novel heterozygous mutation in TGFB3, c.898C>G, predicting the missense substitution p.Arg300Gly. Sanger sequencing confirmed the mutation and its segregation with the phenotype. The first two TGFB3 mutations were reported previously in two unrelated individuals with marfanoid features: one individual with growth retardation carried a heterozygous loss-of-function mutation (c.1226G>A; p.Cys409Tyr; Rienhoff et al., 2013), whereas a child with overgrowth carried a mutation in the same codon as the mutation identified in the three affected individuals reported here (c.899G>A; p.Arg300Gln; Matyas et al., 2014). The mutations at codon Arg300 presumably lead to increased TGF-beta signalling, suggesting that the short or tall stature seen in patients with TGFB3 mutations may result from opposing effects of mutations on TGF-beta signalling. Thus, we add a novel human TGFB3 mutation, contribute to the clinical delineation of the emerging connective tissue disorder tentatively called Rienhoff syndrome and compare the data with a very recent report (Bertoli-Avella et al., 2015) on TGFB3 mutations associated with aortic aneurysms or dissections.
Collapse
Affiliation(s)
- Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany.
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany; Institute of Human Genetics, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan Kotthoff
- Department of Pediatric Cardiology, University Children's Hospital Muenster, Muenster, Germany
| | - Christian Kubisch
- Institute of Human Genetics, University of Ulm, Ulm, Germany; Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| |
Collapse
|
204
|
Wu MY, Liang RR, Chen K, Shen M, Tian YL, Li DM, Duan WM, Gui Q, Gong FR, Lian L, Li W, Tao M. FH535 inhibited metastasis and growth of pancreatic cancer cells. Onco Targets Ther 2015; 8:1651-70. [PMID: 26185454 PMCID: PMC4500609 DOI: 10.2147/ott.s82718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
FH535 is a small-molecule inhibitor of the Wnt/β-catenin signaling pathway, which a substantial body of evidence has proven is activated in various cancers, including pancreatic cancer. Activation of the Wnt/β-catenin pathway plays an important role in tumor progression and metastasis. We investigated the inhibitory effect of FH535 on the metastasis and growth of pancreatic cancer cells. Western blotting and luciferase reporter gene assay indicated that FH535 markedly inhibited Wnt/β-catenin pathway viability in pancreatic cancer cells. In vitro wound healing, invasion, and adhesion assays revealed that FH535 significantly inhibited pancreatic cancer cell metastasis. We also observed the inhibitory effect of FH535 on pancreatic cancer cell growth via the tetrazolium and plate clone formation assays. Microarray analyses suggested that changes in the expression of multiple genes could be involved in the anti-cancer effect of FH535 on pancreatic cancer cells. Our results indicate for the first time that FH535 inhibits pancreatic cancer cell metastasis and growth, providing new insight into therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Rong-Rui Liang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Meng Shen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Ya-Li Tian
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China ; Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Dao-Ming Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Wei-Ming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Qi Gui
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Lian Lian
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China ; Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China ; PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, People's Republic of China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou Xiangcheng People's Hospital, Suzhou, People's Republic of China ; Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, People's Republic of China ; Institute of Medical Biotechnology, Soochow University, Suzhou, People's Republic of China ; PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
205
|
Ghazali N, Rahman NA, Kannan TP, Jaafar S. Screening of Transforming Growth Factor Beta 3 and Jagged2 Genes in the Malay Population with Nonsyndromic Cleft Lip with or without Cleft Palate. Cleft Palate Craniofac J 2015; 52:e88-94. [DOI: 10.1597/14-024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective To determine the prevalence of mutations in transforming growth factor beta 3 (TGFβ3) and Jagged2 genes and their association with nonsyndromic cleft lip with or without cleft palate (CL±P) patients. Design Cross-sectional study on nonsyndromic CL±P and noncleft patients. Setting Reconstructive clinic and outpatient dental clinic, Hospital Universiti Sains Malaysia. Patients Blood samples of 96 nonsyndromic CL±P and 96 noncleft subjects. Main Outcome Measure Prevalence and association of mutations in TGFβ3 and Jagged2 genes with nonsyndromic CL±P. Results Most of the nonsyndromic CL±P patients (53.1%) had left unilateral CLP. There were slightly more females (56.6%) compared with males. The prevalence of the mutations in the TGFβ3 gene was 17.7% (95% confidence interval [CI]: 9.5, 24.5) and in the Jagged2 gene was 12.5% (95% CI: 5.5, 18.5), which was higher compared with the noncleft group. For the TGFβ3 gene, there was no mutation in the coding region in either of the groups. All variants were single nucleotide polymorphisms located within the intronic flanking region. Two variants were identified (g.15812T>G and g.15966A>G) in both nonsyndromic CL±P and noncleft patients. However, the association was not significant ( P > .05). Three variants (g.19779C>T, g.19547G>A, and g.19712C>T) were identified in the Jagged2 gene among nonsyndromic CL±P and noncleft patients. Only g.19712C>T showed a significant association with nonsyndromic CL±P patients ( P = .039). Conclusion g.19712C>T might play a crucial role in the development of cleft lip and palate. To the best of our knowledge, this is the first report of the mutation found within intron 13 of the Jagged2 gene among nonsyndromic CL±P Malay patients.
Collapse
Affiliation(s)
- Norliana Ghazali
- Dental Public Health Unit, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | | | - Saidi Jaafar
- Molecular Biology Unit, School of Dental Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
206
|
Bertoli-Avella AM, Gillis E, Morisaki H, Verhagen JMA, de Graaf BM, van de Beek G, Gallo E, Kruithof BPT, Venselaar H, Myers LA, Laga S, Doyle AJ, Oswald G, van Cappellen GWA, Yamanaka I, van der Helm RM, Beverloo B, de Klein A, Pardo L, Lammens M, Evers C, Devriendt K, Dumoulein M, Timmermans J, Bruggenwirth HT, Verheijen F, Rodrigus I, Baynam G, Kempers M, Saenen J, Van Craenenbroeck EM, Minatoya K, Matsukawa R, Tsukube T, Kubo N, Hofstra R, Goumans MJ, Bekkers JA, Roos-Hesselink JW, van de Laar IMBH, Dietz HC, Van Laer L, Morisaki T, Wessels MW, Loeys BL. Mutations in a TGF-β ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol 2015; 65:1324-1336. [PMID: 25835445 PMCID: PMC4380321 DOI: 10.1016/j.jacc.2015.01.040] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/17/2014] [Accepted: 01/19/2015] [Indexed: 12/21/2022]
Abstract
Background Aneurysms affecting the aorta are a common condition associated with high mortality as a result of aortic dissection or rupture. Investigations of the pathogenic mechanisms involved in syndromic types of thoracic aortic aneurysms, such as Marfan and Loeys-Dietz syndromes, have revealed an important contribution of disturbed transforming growth factor (TGF)-β signaling. Objectives This study sought to discover a novel gene causing syndromic aortic aneurysms in order to unravel the underlying pathogenesis. Methods We combined genome-wide linkage analysis, exome sequencing, and candidate gene Sanger sequencing in a total of 470 index cases with thoracic aortic aneurysms. Extensive cardiological examination, including physical examination, electrocardiography, and transthoracic echocardiography was performed. In adults, imaging of the entire aorta using computed tomography or magnetic resonance imaging was done. Results Here, we report on 43 patients from 11 families with syndromic presentations of aortic aneurysms caused by TGFB3 mutations. We demonstrate that TGFB3 mutations are associated with significant cardiovascular involvement, including thoracic/abdominal aortic aneurysm and dissection, and mitral valve disease. Other systemic features overlap clinically with Loeys-Dietz, Shprintzen-Goldberg, and Marfan syndromes, including cleft palate, bifid uvula, skeletal overgrowth, cervical spine instability and clubfoot deformity. In line with previous observations in aortic wall tissues of patients with mutations in effectors of TGF-β signaling (TGFBR1/2, SMAD3, and TGFB2), we confirm a paradoxical up-regulation of both canonical and noncanonical TGF-β signaling in association with up-regulation of the expression of TGF-β ligands. Conclusions Our findings emphasize the broad clinical variability associated with TGFB3 mutations and highlight the importance of early recognition of the disease because of high cardiovascular risk.
Collapse
Affiliation(s)
- Aida M Bertoli-Avella
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands; Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Elisabeth Gillis
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Hiroko Morisaki
- Departments of Bioscience and Genetics, and Medical Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bianca M de Graaf
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Gerarda van de Beek
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Elena Gallo
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Boudewijn P T Kruithof
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Hanka Venselaar
- Nijmegen Center for Molecular Life Sciences (NCMLS), Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands; Center for Molecular and Biomolecular Informatics (CMBI), Nijmegen, the Netherlands
| | - Loretha A Myers
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Steven Laga
- Department of Cardiac Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Alexander J Doyle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Howard Hughes Medical Institute, Baltimore, Maryland; William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Gretchen Oswald
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Howard Hughes Medical Institute, Baltimore, Maryland
| | - Gert W A van Cappellen
- Erasmus Optical Imaging Centre, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Itaru Yamanaka
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Robert M van der Helm
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Berna Beverloo
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Luba Pardo
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin Lammens
- Department of Pathology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Christina Evers
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | | | - Janneke Timmermans
- Department of Cardiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Hennie T Bruggenwirth
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Frans Verheijen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Inez Rodrigus
- Department of Cardiac Surgery, Antwerp University Hospital, Antwerp, Belgium
| | - Gareth Baynam
- Genetic Services of Western Australia, Subiaco, Western Australia, Australia; School of Paediatrics and Child Health, The University of Western Australia, Crawley, Western Australia, Australia
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Johan Saenen
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | | | - Kenji Minatoya
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Ritsu Matsukawa
- Department of Cardiovascular Surgery, Japanese Red Cross Kobe Hospital, Kobe, Japan
| | - Takuro Tsukube
- Department of Cardiovascular Surgery, Japanese Red Cross Kobe Hospital, Kobe, Japan
| | - Noriaki Kubo
- Department of Pediatrics, Urakawa Red Cross Hospital, Urakawa, Hokkaido, Japan
| | - Robert Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marie Jose Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos A Bekkers
- Department of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Howard Hughes Medical Institute, Baltimore, Maryland; Department of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lut Van Laer
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Takayuki Morisaki
- Departments of Bioscience and Genetics, and Medical Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan; Department of Molecular Pathophysiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Osaka, Japan
| | - Marja W Wessels
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bart L Loeys
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium; Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands.
| |
Collapse
|
207
|
Hu L, Liu J, Li Z, Ozturk F, Gurumurthy C, Romano RA, Sinha S, Nawshad A. TGFβ3 regulates periderm removal through ΔNp63 in the developing palate. J Cell Physiol 2015; 230:1212-25. [PMID: 25358290 DOI: 10.1002/jcp.24856] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/24/2014] [Indexed: 02/04/2023]
Abstract
The periderm is a flat layer of epithelium created during embryonic development. During palatogenesis, the periderm forms a protective layer against premature adhesion of the oral epithelia, including the palate. However, the periderm must be removed in order for the medial edge epithelia (MEE) to properly adhere and form a palatal seam. Improper periderm removal results in a cleft palate. Although the timing of transforming growth factor β3 (TGFβ3) expression in the MEE coincides with periderm degeneration, its role in periderm desquamation is not known. Interestingly, murine models of knockout (-/-) TGFβ3, interferon regulatory factor 6 (IRF6) (-/-), and truncated p63 (ΔNp63) (-/-) are born with palatal clefts because of failure of the palatal shelves to adhere, suggesting that these genes regulate palatal epithelial differentiation. However, despite having similar phenotypes in null mouse models, no studies have analyzed the possible association between the TGFβ3 signaling cascade and the IRF6/ΔNp63 genes during palate development. Recent studies indicate that regulation of ΔNp63, which depends on IRF6, facilitates epithelial differentiation. We performed biochemical analysis, gene activity and protein expression assays with palatal sections of TGFβ3 (-/-), ΔNp63 (-/-), and wild-type (WT) embryos, and primary MEE cells from WT palates to analyze the association between TGFβ3 and IRF6/ΔNp63. Our results suggest that periderm degeneration depends on functional TGFβ3 signaling to repress ΔNp63, thereby coordinating periderm desquamation. Cleft palate occurs in TGFβ3 (-/-) because of inadequate periderm removal that impedes palatal seam formation, while cleft palate occurs in ΔNp63 (-/-) palates because of premature fusion.
Collapse
Affiliation(s)
- Lihua Hu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska; Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Wang W, Rigueur D, Lyons KM. TGFβ signaling in cartilage development and maintenance. ACTA ACUST UNITED AC 2015; 102:37-51. [PMID: 24677722 DOI: 10.1002/bdrc.21058] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022]
Abstract
Members of the transforming growth factor beta (TGFβ) superfamily of secreted factors play essential roles in nearly every aspect of cartilage formation and maintenance. However, the mechanisms by which TGFβs transduce their effects in cartilage in vivo remain poorly understood. Mutations in several TGFβ family members, their receptors, extracellular modulators, and intracellular transducers have been described, and these usually impact the development of the cartilaginous skeleton. Furthermore, genome-wide association studies have linked components of the (TGFβ) superfamily to susceptibility to osteoarthritis. This review focuses on recent discoveries from genetic studies in the mouse regarding the regulation of TGFβ signaling in developing growth plate and articular cartilage, as well as the different modes of crosstalk between canonical and noncanonical TGFβ signaling. These new insights into TGFβ signaling in cartilage may open new prospects for therapies that maintain healthy articular cartilage.
Collapse
Affiliation(s)
- Weiguang Wang
- Department of Orthopaedic Surgery and Orthopaedic Institute for Children, David Geffen School of Medicine, University of California, Los Angeles, California, 90095
| | | | | |
Collapse
|
209
|
Abstract
The LTBPs (or latent transforming growth factor β binding proteins) are important components of the extracellular matrix (ECM) that interact with fibrillin microfibrils and have a number of different roles in microfibril biology. There are four LTBPs isoforms in the human genome (LTBP-1, -2, -3, and -4), all of which appear to associate with fibrillin and the biology of each isoform is reviewed here. The LTBPs were first identified as forming latent complexes with TGFβ by covalently binding the TGFβ propeptide (LAP) via disulfide bonds in the endoplasmic reticulum. LAP in turn is cleaved from the mature TGFβ precursor in the trans-golgi network but LAP and TGFβ remain strongly bound through non-covalent interactions. LAP, TGFβ, and LTBP together form the large latent complex (LLC). LTBPs were originally thought to primarily play a role in maintaining TGFβ latency and targeting the latent growth factor to the extracellular matrix (ECM), but it has also been shown that LTBP-1 participates in TGFβ activation by integrins and may also regulate activation by proteases and other factors. LTBP-3 appears to have a role in skeletal formation including tooth development. As well as having important functions in TGFβ regulation, TGFβ-independent activities have recently been identified for LTBP-2 and LTBP-4 in stabilizing microfibril bundles and regulating elastic fiber assembly.
Collapse
|
210
|
Yu Q, He S, Zeng N, Ma J, Zhang B, Shi B, Jia Z. BMP7 Gene involved in nonsyndromic orofacial clefts in Western Han Chinese. Med Oral Patol Oral Cir Bucal 2015; 20:e298-304. [PMID: 25662552 PMCID: PMC4464917 DOI: 10.4317/medoral.20335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/25/2014] [Indexed: 02/05/2023] Open
Abstract
Background Nonsyndromic orofacial clefts (NSOCs) are the most common craniofacial birth defects with complex etiology in which multiple genes and environmental exposures are involved. Bone morphogenetic protein 7 (BMP7), as a member of the transforming growth factor-beta (TGF-beta) superfamily, has been shown to play crucial roles in palate and other orofacial ectodermal appendages development in animal models. Material and Methods This study was designed to investigate the possible associations between BMP7 gene and the NSOCs (221 case-parent trios) in Western Han Chinese. Five tagSNPs at BMP7, rs12438, rs6099486, rs6127973, rs230188 and rs6025469 were picked and tried to cover the entire gene. In order to identify the contribution of BMP7 gene to the etiology of NSOCs, we performed several statistical analysis from different aspects including transmission disequilibrium test (TDT), pairwise linkage disequilibrium (LD), parent-of-origin effect and Chi-squared/Fisher’s exact tests. Results Rs6127973 G allele and G/G homozygotes were over-transmitted for both NSOCs (P=0.005 and P=0.011, respectively) and NSCL/P (P=0.0061 and P=0.011, respectively), rs6127973 G allele was also paternally over-transmitted for both NSOCs (P=0.0061) and NSCL/P (P=0.011). Conclusions This study suggested that rs6127973 may be a risk factor of being NSOCs and confirmed the role of BMP7 gene in orofacial deformity from Western Han Chinese, which will also supply scientific evidence for future research and genetic counseling. Key words:
Single nucleotide polymorphisms, nonsyndromic orofacial clefts, BMP7.
Collapse
Affiliation(s)
- Qiongqiong Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, Renmin Nan Road, Chengdu, China, 610041
| | | | | | | | | | | | | |
Collapse
|
211
|
Horiguchi M, Todorovic V, Hadjiolova K, Weiskirchen R, Rifkin DB. Abrogation of both short and long forms of latent transforming growth factor-β binding protein-1 causes defective cardiovascular development and is perinatally lethal. Matrix Biol 2015; 43:61-70. [PMID: 25805620 DOI: 10.1016/j.matbio.2015.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 12/30/2022]
Abstract
Latent transforming growth factor-β binding protein-1 (LTBP-1) is an extracellular protein that is structurally similar to fibrillin and has an important role in controlling transforming growth factor-β (TGF-β) signaling by storing the cytokine in the extracellular matrix and by being involved in the conversion of the latent growth factor to its active form. LTBP-1 is found as both short (LTBP-1S) and long (LTBP-1L) forms, which are derived through the use of separate promoters. There is controversy regarding the importance of LTBP-1L, as Ltbp1L knockout mice showed multiple cardiovascular defects but the complete null mice did not. Here, we describe a third line of Ltbp1 knockout mice generated utilizing a conditional knockout strategy that ablated expression of both L and S forms of LTBP-1. These mice show severe developmental cardiovascular abnormalities and die perinatally; thus these animals display a phenotype similar to previously reported Ltbp1L knockout mice. We reinvestigated the other "complete" knockout line and found that these mice express a splice variant of LTBP-1L and, therefore, are not complete Ltbp1 knockouts. Our results clarify the phenotypes of Ltbp1 null mice and re-emphasize the importance of LTBP-1 in vivo.
Collapse
Affiliation(s)
- Masahito Horiguchi
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Vesna Todorovic
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Medicine, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Krassimira Hadjiolova
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Pauwelsstr. 30, D-52074 Aachen, Germany
| | - Daniel B Rifkin
- Department of Cell Biology, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA; Department of Medicine, New York University Langone School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
212
|
Lane J, Yumoto K, Azhar M, Ninomiya-Tsuji J, Inagaki M, Hu Y, Deng CX, Kim J, Mishina Y, Kaartinen V. Tak1, Smad4 and Trim33 redundantly mediate TGF-β3 signaling during palate development. Dev Biol 2014; 398:231-41. [PMID: 25523394 DOI: 10.1016/j.ydbio.2014.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 02/02/2023]
Abstract
Transforming growth factor-beta3 (TGF-β3) plays a critical role in palatal epithelial cells by inducing palatal epithelial fusion, failure of which results in cleft palate, one of the most common birth defects in humans. Recent studies have shown that Smad-dependent and Smad-independent pathways work redundantly to transduce TGF-β3 signaling in palatal epithelial cells. However, detailed mechanisms by which this signaling is mediated still remain to be elucidated. Here we show that TGF-β activated kinase-1 (Tak1) and Smad4 interact genetically in palatal epithelial fusion. While simultaneous abrogation of both Tak1 and Smad4 in palatal epithelial cells resulted in characteristic defects in the anterior and posterior secondary palate, these phenotypes were less severe than those seen in the corresponding Tgfb3 mutants. Moreover, our results demonstrate that Trim33, a novel chromatin reader and regulator of TGF-β signaling, cooperates with Smad4 during palatogenesis. Unlike the epithelium-specific Smad4 mutants, epithelium-specific Tak1:Smad4- and Trim33:Smad4-double mutants display reduced expression of Mmp13 in palatal medial edge epithelial cells, suggesting that both of these redundant mechanisms are required for appropriate TGF-β signal transduction. Moreover, we show that inactivation of Tak1 in Trim33:Smad4 double conditional knockouts leads to the palatal phenotypes which are identical to those seen in epithelium-specific Tgfb3 mutants. To conclude, our data reveal added complexity in TGF-β signaling during palatogenesis and demonstrate that functionally redundant pathways involving Smad4, Tak1 and Trim33 regulate palatal epithelial fusion.
Collapse
Affiliation(s)
- Jamie Lane
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA
| | - Kenji Yumoto
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA
| | - Mohamad Azhar
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - Jun Ninomiya-Tsuji
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC, USA
| | - Maiko Inagaki
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC, USA
| | - Yingling Hu
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jieun Kim
- The Saban Research Institute of Children׳s Hospital Los Angeles, Los Angeles, CA, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48019, USA.
| |
Collapse
|
213
|
Hill CR, Jacobs BH, Brown CB, Barnett JV, Goudy SL. Type III transforming growth factor beta receptor regulates vascular and osteoblast development during palatogenesis. Dev Dyn 2014; 244:122-33. [PMID: 25382630 DOI: 10.1002/dvdy.24225] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cleft palate occurs in up to 1:1,000 live births and is associated with mutations in multiple genes. Palatogenesis involves a complex choreography of palatal shelf elongation, elevation, and fusion. Transforming growth factor β (TGFβ) and bone morphogenetic protein 2 (BMP2) canonical signaling is required during each stage of palate development. The type III TGFβ receptor (TGFβR3) binds all three TGFβ ligands and BMP2, but its contribution to palatogenesis is unknown. RESULTS The role of TGFβR3 during palate formation was found to be during palatal shelf elongation and elevation. Tgfbr3(-) (/) (-) embryos displayed reduced palatal shelf width and height, changes in proliferation and apoptosis, and reduced vascular and osteoblast differentiation. Abnormal vascular plexus organization as well as aberrant expression of arterial (Notch1, Alk1), venous (EphB4), and lymphatic (Lyve1) markers was also observed. Decreased osteoblast differentiation factors (Runx2, alk phos, osteocalcin, col1A1, and col1A2) demonstrated poor mesenchymal cell commitment to the osteoblast lineage within the maxilla and palatal shelves in Tgfbr3(-) (/) (-) embryos. Additionally, in vitro bone mineralization induced by osteogenic medium (OM+BMP2) was insufficient in Tgfbr3(-) (/) (-) palatal mesenchyme, but mineralization was rescued by overexpression of TGFβR3. CONCLUSIONS These data reveal a critical, previously unrecognized role for TGFβR3 in vascular and osteoblast development during palatogenesis.
Collapse
Affiliation(s)
- Cynthia R Hill
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
214
|
Biggs LC, Goudy SL, Dunnwald M. Palatogenesis and cutaneous repair: A two-headed coin. Dev Dyn 2014; 244:289-310. [PMID: 25370680 DOI: 10.1002/dvdy.24224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The reparative mechanism that operates following post-natal cutaneous injury is a fundamental survival function that requires a well-orchestrated series of molecular and cellular events. At the end, the body will have closed the hole using processes like cellular proliferation, migration, differentiation and fusion. RESULTS These processes are similar to those occurring during embryogenesis and tissue morphogenesis. Palatogenesis, the formation of the palate from two independent palatal shelves growing towards each other and fusing, intuitively, shares many similarities with the closure of a cutaneous wound from the two migrating epithelial fronts. CONCLUSIONS In this review, we summarize the current information on cutaneous development, wound healing, palatogenesis and orofacial clefting and propose that orofacial clefting and wound healing are conserved processes that share common pathways and gene regulatory networks.
Collapse
Affiliation(s)
- Leah C Biggs
- Department of Pediatrics, Carver College of Medicine, The University of Iowa, Iowa City, Iowa
| | | | | |
Collapse
|
215
|
Jin JZ, Ding J. Strain-dependent effects of transforming growth factor-β1 and 2 during mouse secondary palate development. Reprod Toxicol 2014; 50:129-33. [PMID: 25450421 DOI: 10.1016/j.reprotox.2014.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 11/24/2022]
Abstract
Cleft palate is a common birth defect affecting 1 in 700 births. Transforming growth factor-βs (TGF-βs) are important signaling molecules, and their functions in murine palate development have received great attention. TGF-β3 is expressed exclusively in palatal epithelial cells and mediates epithelial fusion, whereas the importance of TGF-β1 and 2 in palate have not yet been demonstrated in vivo, since inactivation of Tgf-β1 or Tgf-β2 genes in mice did not reveal significant palate defects. We hypothesized that TGF-β1 and TGF-β2 can compensate each other during palate formation. To test this, we generated Tgf-β1 and Tgf-β2 compound mutant mice and found that approximately 40% of [Tgf-β1(+/-); Tgf-β2(-/-)] compound mutant embryos display cleft palate on C57 background. In addition, 26% of Tgf-β2(-/-) embryos on 129 background, but not in C57 or Black Swiss, displayed cleft palate. TGF-β1 and 2 functions are required for murine palate development in strain-dependent manner.
Collapse
Affiliation(s)
- Jiu-Zhen Jin
- Department of Molecular, Cellular & Craniofacial Biology and Birth Defects Center, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Jixiang Ding
- Department of Molecular, Cellular & Craniofacial Biology and Birth Defects Center, University of Louisville School of Dentistry, Louisville, KY 40202, USA.
| |
Collapse
|
216
|
Snider TN, Mishina Y. Cranial neural crest cell contribution to craniofacial formation, pathology, and future directions in tissue engineering. ACTA ACUST UNITED AC 2014; 102:324-32. [PMID: 25227212 DOI: 10.1002/bdrc.21075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/22/2014] [Indexed: 12/22/2022]
Abstract
This review provides an overview of the state and future directions of development and pathology in the craniofacial complex in the context of Cranial Neural Crest Cells (CNCC). CNCC are a multipotent cell population that is largely responsible for forming the vertebrate head. We focus on findings that have increased the knowledge of gene regulatory networks and molecular mechanisms governing CNCC migration and the participation of these cells in tissue formation. Pathology due to aberrant migration or cell death of CNCC, termed neurocristopathies, is discussed in addition to craniosynostoses. Finally, we discuss tissue engineering applications that take advantage of recent advancements in genome editing and the multipotent nature of CNCC. These applications have relevance to treating diseases due directly to the failure of CNCC, and also in restoring tissues lost due to a variety of reasons.
Collapse
Affiliation(s)
- Taylor Nicholas Snider
- Department for Biologic and Materials Sciences, School of Dentistry, University of Michigan, Michigan
| | | |
Collapse
|
217
|
Xu L, Zhao F, Ren H, Li L, Lu J, Liu J, Zhang S, Liu GE, Song J, Zhang L, Wei C, Du L. Co-expression analysis of fetal weight-related genes in ovine skeletal muscle during mid and late fetal development stages. Int J Biol Sci 2014; 10:1039-50. [PMID: 25285036 PMCID: PMC4183924 DOI: 10.7150/ijbs.9737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/16/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Muscle development and lipid metabolism play important roles during fetal development stages. The commercial Texel sheep are more muscular than the indigenous Ujumqin sheep. RESULTS We performed serial transcriptomics assays and systems biology analyses to investigate the dynamics of gene expression changes associated with fetal longissimus muscles during different fetal stages in two sheep breeds. Totally, we identified 1472 differentially expressed genes during various fetal stages using time-series expression analysis. A systems biology approach, weighted gene co-expression network analysis (WGCNA), was used to detect modules of correlated genes among these 1472 genes. Dramatically different gene modules were identified in four merged datasets, corresponding to the mid fetal stage in Texel and Ujumqin sheep, the late fetal stage in Texel and Ujumqin sheep, respectively. We further detected gene modules significantly correlated with fetal weight, and constructed networks and pathways using genes with high significances. In these gene modules, we identified genes like TADA3, LMNB1, TGF-β3, EEF1A2, FGFR1, MYOZ1, and FBP2 correlated with fetal weight. CONCLUSION Our study revealed the complex network characteristics involved in muscle development and lipid metabolism during fetal development stages. Diverse patterns of the network connections observed between breeds and fetal stages could involve some hub genes, which play central roles in fetal development, correlating with fetal weight. Our findings could provide potential valuable biomarkers for selection of body weight-related traits in sheep and other livestock.
Collapse
Affiliation(s)
- Lingyang Xu
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; ; 4. Animal Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Services, Beltsville, Maryland 20705, USA; ; 5. Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Fuping Zhao
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hangxing Ren
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; ; 2. Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Li Li
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; ; 3. College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Jian Lu
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiasen Liu
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shifang Zhang
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - George E Liu
- 4. Animal Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Services, Beltsville, Maryland 20705, USA
| | - Jiuzhou Song
- 5. Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Li Zhang
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Caihong Wei
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixin Du
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
218
|
Deciphering TGF-β3 function in medial edge epithelium specification and fusion during mouse secondary palate development. Dev Dyn 2014; 243:1536-43. [DOI: 10.1002/dvdy.24177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/14/2014] [Accepted: 07/31/2014] [Indexed: 01/16/2023] Open
|
219
|
Caja F, Vannucci L. TGFβ: A player on multiple fronts in the tumor microenvironment. J Immunotoxicol 2014; 12:300-7. [DOI: 10.3109/1547691x.2014.945667] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
220
|
Abstract
Transforming growth factor β (TGF-β) has long been implicated in fibrotic diseases, including the multisystem fibrotic disease systemic sclerosis (SSc). Expression of TGF-β-regulated genes in fibrotic skin and lungs of patients with SSc correlates with disease activity, which points to this cytokine as the central mediator of pathogenesis. Patients with SSc often develop pulmonary arterial hypertension (PAH), a particularly lethal complication caused by vascular dysfunction. Several genetic diseases with vascular features related to SSc, such as familial PAH and hereditary haemorrhagic telangiectasia, are caused by mutations in the TGF-β-sensing ALK-1 signalling pathway. These observations suggest that increased TGF-β signalling causes both vascular and fibrotic features of SSc. The question of how latent TGF-β becomes activated in local SSc tissues is, therefore, central to the understanding of SSc. Both TGF-β1 and TGF-β3 can be activated by integrins αvβ6 and αvβ8, whose upregulation in bronchial epithelial cells can activate TGF-β in SSc lungs. Other αv integrins, thrombospondin-1 or altered TGF-β sequestration by matrix proteins might be important in other target tissues. How the immune system triggers this process remains unclear, although links between inflammation and TGF-β activation are emerging. Together, these observations provide an increasingly secure framework for understanding TGF-β in SSc pathogenesis.
Collapse
Affiliation(s)
- Robert Lafyatis
- Boston University School of Medicine, E5 Arthritis Centre, 72 E. Concord Street, Boston, MA 02118, USA
| |
Collapse
|
221
|
Nakajima A, Ito Y, Tanaka E, Sano R, Karasawa Y, Maeno M, Iwata K, Shimizu N, Shuler CF. Functional role of TGF-β receptors during palatal fusion in vitro. Arch Oral Biol 2014; 59:1192-204. [PMID: 25105252 DOI: 10.1016/j.archoralbio.2014.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/20/2014] [Accepted: 07/15/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Reported expression patterns for TGF-β receptors (TβR-I, -II, and -III) during palatogenesis suggest that they play essential roles in the mechanisms leading to palatal fusion. The purpose of this study was to compare the functions of the three TβRs during palatal fusion. METHODS Using organ culture of mouse palatal shelves, expression levels of TβR-I, -II, and -III were suppressed by transfecting the siRNAs siTβR-I, -II, and -III, respectively. Phosphorylation of SMAD2 was examined as an indicator of downstream signalling via each TβR. Linkage between TGF-β signalling and critical events in palatal fusion led to the use of, MMP-13 expression as an outcome measure for the function of the TGF-β receptors. RESULTS The siRNA treatment decreased the expression level of each receptor by more than 85%. When treated with either siTβR-I or -II, palatal shelves at E13+72 h were not fused, with complete clefting in the anterior and posterior regions. The middle palatal region following treatment with either siTβR-I or -II had fusion from one-half or one-third of the palatal region. Treatment with siTβR-III resulted in a persistent midline seam of medial edge epithelium (MEE) in the anterior region with islands of persistent MEE in the middle and posterior regions of the midline. Treatment with all three siTβRs altered the pattern of SMAD2 phosphorylation. Palatal shelf cultures treated with siTβR-I or -II, but not -III, showed altered MMP-13 expression levels. CONCLUSION The ability to identify and recover MEE and palatal mesenchymal cells during palatal fusion will aid in the evaluation of the different mechanistic events regulated by each TβR during palatogenesis.
Collapse
Affiliation(s)
- Akira Nakajima
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 1018310, Japan; Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 1018310, Japan.
| | - Yoshihiro Ito
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, BCC-239, La Jolla, CA 92037, USA
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, Tokushima University Graduate School, 3-18-5 Kuramoto-cho, Tokushima 7708504, Japan
| | - Remi Sano
- Nihon University Graduate School of Dentistry, Nihon University, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 1018310, Japan
| | - Yoko Karasawa
- Nihon University Graduate School of Dentistry, Nihon University, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 1018310, Japan
| | - Masao Maeno
- Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 1018310, Japan
| | - Koichi Iwata
- Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 1018310, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 1018310, Japan; Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kanda Surugadai, Chiyoda-ku, Tokyo 1018310, Japan
| | - Charles F Shuler
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2194 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| |
Collapse
|
222
|
Lane J, Yumoto K, Pisano J, Azhar M, Thomas PS, Kaartinen V. Control elements targeting Tgfb3 expression to the palatal epithelium are located intergenically and in introns of the upstream Ift43 gene. Front Physiol 2014; 5:258. [PMID: 25071603 PMCID: PMC4083190 DOI: 10.3389/fphys.2014.00258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 06/18/2014] [Indexed: 11/13/2022] Open
Abstract
Tgfb3 is strongly and specifically expressed in the epithelial tips of pre-fusion palatal shelves where it plays a critical non-redundant role in palatal fusion in both medial edge epithelial (MEE) cells and in a thin layer of flattened peridermal cells that covers the MEE. It is not known how Tgfb3 expression is regulated in these specific cell types. Using comparative genomics and transgenic reporter assays, we have identified cis-regulatory elements that could control Tgfb3 expression during palatogenesis. Our results show that a 61-kb genomic fragment encompassing the Tgfb3 gene drives remarkably specific reporter expression in the MEE and adjacent periderm. Within this fragment, we identified two small, non-coding, evolutionarily conserved regions in intron 2 of the neighboring Ift43 gene, and a larger region in the intervening sequence between the Ift43 and Tgfb3 genes, each of which could target reporter activity to the tips of pre-fusion/fusing palatal shelves. Identification of the cis-regulatory sequences controlling spatio-temporal Tgfb3 expression in palatal shelves is a key step toward understanding upstream regulation of Tgfb3 expression during palatogenesis and should enable the development of improved tools to investigate palatal epithelial fusion.
Collapse
Affiliation(s)
- Jamie Lane
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| | - Kenji Yumoto
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| | - Justin Pisano
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| | - Mohamad Azhar
- Department of Pediatrics, Indiana University School of Medicine Indianapolis, IN, USA
| | - Penny S Thomas
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry Ann Arbor, MI, USA
| |
Collapse
|
223
|
Romero-Valdovinos M, Bobadilla-Sandoval N, Flisser A, Vadillo-Ortega F. The epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome. Med Hypotheses 2014; 83:306-11. [PMID: 24998668 DOI: 10.1016/j.mehy.2014.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/13/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
The etiology of the amniotic band syndrome is unknown, and has been subject of debate since the time of Hippocrates. The most accepted theories fail to cover all the abnomalities found in affected children. During organogenesis the epithelial-mesenchymal transition process (EMTP) participates in adequate formation of different organs from three embryo layers. Altered activation of EMTP occurs when the epithelial homeostasis is disturbed, the resulting myofibroblasts are able to secrete extracellular matrix proteins and deposit them on the tissues contributing to a fibrotic phenotype. If injury occurs during organogenesis, wound healing could be exaggerated and fibrotic response could be triggered. The molecule that regulates both of these processes (EMTP and fibrosis) is the transforming growth factor β (TGFβ); indeed null animals for TGFβ isoforms show similar defects than those seen in the amniotic band syndrome. Based on documented evidence this review intends to explain how the epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome.
Collapse
Affiliation(s)
- M Romero-Valdovinos
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Secretaría de Salud, Mexico
| | - N Bobadilla-Sandoval
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico
| | - A Flisser
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - F Vadillo-Ortega
- Unidad de Vinculación de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico.
| |
Collapse
|
224
|
Nayeem SM, Deep S. pH modulates the TGF-β ligands binding to the receptors: a computational analysis. J Mol Recognit 2014; 27:471-81. [DOI: 10.1002/jmr.2368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 01/30/2014] [Accepted: 01/30/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Shahid M. Nayeem
- Department of Chemistry; Indian Institute of Technology; Delhi India
- Department of Chemistry; A.M.U.; Aligarh India
| | - Shashank Deep
- Department of Chemistry; Indian Institute of Technology; Delhi India
| |
Collapse
|
225
|
Pieretti AC, Ahmed AM, Roberts JD, Kelleher CM. A novel in vitro model to study alveologenesis. Am J Respir Cell Mol Biol 2014; 50:459-69. [PMID: 24066869 DOI: 10.1165/rcmb.2013-0056oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Many pediatric pulmonary diseases are associated with significant morbidity and mortality due to impairment of alveolar development. The lack of an appropriate in vitro model system limits the identification of therapies aimed at improving alveolarization. Herein, we characterize an ex vivo lung culture model that facilitates investigation of signaling pathways that influence alveolar septation. Postnatal Day 4 (P4) mouse pup lungs were inflated with 0.4% agarose, sliced, and cultured within a collagen matrix in medium that was optimized to support cell proliferation and promote septation. Lung slices were grown with and without 1D11, an active transforming growth factor-β-neutralizing antibody. After 4 days, the lung sections (designated P4 + 4) and noncultured lung sections were examined using quantitative morphometry to assess alveolar septation and immunohistochemistry to evaluate cell proliferation and differentiation. We observed that the P4 + 4 lung sections exhibited ex vivo alveolarization, as evidenced by an increase in septal density, thinning of septal walls, and a decrease in mean linear intercept comparable to P8, age-matched, uncultured lungs. Moreover, immunostaining showed ongoing cell proliferation and differentiation in cultured lungs that were similar to P8 controls. Cultured lungs exposed to 1D11 had a distinct phenotype of decreased septal density when compared with untreated P4 + 4 lungs, indicating the utility of investigating signaling in these lung slices. These results indicate that this novel lung culture system is optimized to permit the investigation of pathways involved in septation, and potentially the identification of therapeutic targets that enhance alveolarization.
Collapse
Affiliation(s)
- Alberto C Pieretti
- 1 Department of Pediatric Surgery, MassGeneral Hospital for Children, Boston, Massachusetts
| | | | | | | |
Collapse
|
226
|
Developmental and pathological angiogenesis in the central nervous system. Cell Mol Life Sci 2014; 71:3489-506. [PMID: 24760128 DOI: 10.1007/s00018-014-1625-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/24/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vessels, in the central nervous system (CNS) is seen both as a normal physiological response as well as a pathological step in disease progression. Formation of the blood-brain barrier (BBB) is an essential step in physiological CNS angiogenesis. The BBB is regulated by a neurovascular unit (NVU) consisting of endothelial and perivascular cells as well as vascular astrocytes. The NVU plays a critical role in preventing entry of neurotoxic substances and regulation of blood flow in the CNS. In recent years, research on numerous acquired and hereditary disorders of the CNS has increasingly emphasized the role of angiogenesis in disease pathophysiology. Here, we discuss molecular mechanisms of CNS angiogenesis during embryogenesis as well as various pathological states including brain tumor formation, ischemic stroke, arteriovenous malformations, and neurodegenerative diseases.
Collapse
|
227
|
Tumors as organs: biologically augmenting radiation therapy by inhibiting transforming growth factor β activity in carcinomas. Semin Radiat Oncol 2014; 23:242-51. [PMID: 24012338 DOI: 10.1016/j.semradonc.2013.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transforming growth factor β (TGFβ) plays critical roles in regulating a plethora of physiological processes in normal organs, including morphogenesis, embryonic development, stem cell differentiation, immune regulation, and wound healing. Though considered a tumor suppressor, TGFβ is a critical mediator of tumor microenvironment, in which it likewise mediates tumor and stromal cell phenotype, recruitment, inflammation, immune function, and angiogenesis. The fact that activation of TGFβ is an early and persistent event in irradiated tissues and that TGFβ signaling controls effective DNA damage response provides a new means to manipulate tumor response to radiation. Here we discuss preclinical studies unraveling TGFβ effects in cancer treatment and review TGFβ biology in lung cancer as an example of the opportunities for TGFβ pathway inhibition as a pharmaceutical approach to augment radiation therapy.
Collapse
|
228
|
Suazo J, Santos JL, Scapoli L, Jara L, Blanco R. Association between TGFB3 and nonsyndromic cleft lip with or without cleft palate in a Chilean population. Cleft Palate Craniofac J 2014; 47:513-7. [PMID: 20170386 DOI: 10.1597/09-015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To assess the possible association between TGFB3 allele variants and nonsyndromic cleft lip with or without cleft palate in a Chilean population. DESIGN In our study we used a case-parents trios design. The sample consisted of 150 unrelated trios ascertained through probands affected with nonsyndromic cleft lip with or without cleft palate. Three TGFB3 polymorphisms were analyzed (rs2268626, rs2268625, and rs3917201). An allele/haplotype transmission disequilibrium test was used to evaluate the possible genotype-phenotype association. RESULTS An overtransmission from parents to affected progeny was observed for the A allele of rs3917201 (p = .03) and for the rs2268625-rs3917201 A-A haplotype (p = .022). A defect of transmission of rs2268625-rs3917201 G-G haplotype (p = .022) was observed also. CONCLUSIONS Allelic and haplotypic associations implicate a possible role of TGFB3 in nonsyndromic cleft lip with or without cleft palate in the Chilean population. Additional studies are needed in order to elucidate the possible mechanisms that can explain the role of TGFB3 genetic variants in the condition.
Collapse
Affiliation(s)
- José Suazo
- Biomedical Sciences Institute, School of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
229
|
Zhang J, Zhang X, Xie F, Zhang Z, van Dam H, Zhang L, Zhou F. The regulation of TGF-β/SMAD signaling by protein deubiquitination. Protein Cell 2014; 5:503-17. [PMID: 24756567 PMCID: PMC4085288 DOI: 10.1007/s13238-014-0058-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/28/2014] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor-β (TGF-β) members are key cytokines that control embryogenesis and tissue homeostasis via transmembrane TGF-β type II (TβR II) and type I (TβRI) and serine/threonine kinases receptors. Aberrant activation of TGF-β signaling leads to diseases, including cancer. In advanced cancer, the TGF-β/SMAD pathway can act as an oncogenic factor driving tumor cell invasion and metastasis, and thus is considered to be a therapeutic target. The activity of TGF-β/SMAD pathway is known to be regulated by ubiquitination at multiple levels. As ubiquitination is reversible, emerging studies have uncovered key roles for ubiquitin-removals on TGF-β signaling components by deubiquitinating enzymes (DUBs). In this paper, we summarize the latest findings on the DUBs that control the activity of the TGF-β signaling pathway. The regulatory roles of these DUBs as a driving force for cancer progression as well as their underlying working mechanisms are also discussed.
Collapse
Affiliation(s)
- Juan Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Xiaofei Zhang
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Feng Xie
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
| | - Zhengkui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
| | - Hans van Dam
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Long Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058 China
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| | - Fangfang Zhou
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
230
|
Miller SF, Weinberg SM, Nidey NL, Defay DK, Marazita ML, Wehby GL, Moreno Uribe LM. Exploratory genotype-phenotype correlations of facial form and asymmetry in unaffected relatives of children with non-syndromic cleft lip and/or palate. J Anat 2014; 224:688-709. [PMID: 24738728 DOI: 10.1111/joa.12182] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 02/01/2023] Open
Abstract
Family relatives of children with nonsyndromic cleft lip with or without cleft palate (NSCL/P) who presumably carry a genetic risk yet do not manifest overt oral clefts, often present with distinct facial morphology of unknown genetic etiology. This study investigates distinct facial morphology among unaffected relatives and examines whether candidate genes previously associated with overt NSCL/P and left-right body patterning are correlated with such facial morphology. Cases were unaffected relatives of individuals with NSCL/P (n = 188) and controls (n = 194) were individuals without family history of NSCL/P. Cases and controls were genotyped for 20 SNPs across 13 candidate genes for NSCL/P (PAX7, ABCA4-ARHGAP29, IRF6, MSX1, PITX2, 8q24, FOXE1, TGFB3 and MAFB) and left-right body patterning (LEFTY1, LEFTY2, ISL1 and SNAI1). Facial shape and asymmetry phenotypes were obtained via principal component analyses and Procrustes analysis of variance from 32 coordinate landmarks, digitized on 3D facial images. Case-control comparisons of phenotypes obtained were performed via multivariate regression adjusting for age and gender. Phenotypes that differed significantly (P < 0.05) between cases and controls were regressed on the SNPs one at a time. Cases had significantly (P < 0.05) more profile concavity with upper face retrusion, upturned noses with obtuse nasolabial angles, more protrusive chins, increased lower facial heights, thinner and more retrusive lips and more protrusive foreheads. Furthermore, cases showed significantly more directional asymmetry compared to controls. Several of these phenotypes were significantly associated with genetic variants (P < 0.05). Facial height and width were associated with SNAI1. Midface antero-posterior (AP) projection was associated with LEFTY1. The AP position of the chin was related to SNAI1, IRF6, MSX1 and MAFB. The AP position of the forehead and the width of the mouth were associated with ABCA4-ARHGAP29 and MAFB. Lastly, facial asymmetry was related to LEFTY1, LEFTY2 and SNAI1. This study demonstrates that, genes underlying lip and palate formation and left-right patterning also contribute to facial features characteristic of the NSCL/P spectrum.
Collapse
Affiliation(s)
- Steven F Miller
- Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
231
|
Lane J, Kaartinen V. Signaling networks in palate development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2014; 6:271-8. [PMID: 24644145 DOI: 10.1002/wsbm.1265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 01/04/2023]
Abstract
UNLABELLED Palatogenesis, the formation of the palate, is a dynamic process regulated by a complex series of context-dependent morphogenetic signaling events. Many genes involved in palatogenesis have been discovered through the use of genetically manipulated mouse models as well as from human genetic studies, but the roles of these genes and their products in signaling networks regulating palatogenesis are still poorly known. In this review, we give a brief overview on palatogenesis and introduce key signaling cascades leading to formation of the intact palate. Moreover, we review conceptual differences between pathway biology and network biology and discuss how some of the recent technological advances in conjunction with mouse genetic models have contributed to our understanding of signaling networks regulating palate growth and fusion. For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST The authors have declared no conflicts of interest for this article.
Collapse
Affiliation(s)
- Jamie Lane
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | | |
Collapse
|
232
|
Ota M, Horiguchi M, Fang V, Shibahara K, Kadota K, Loomis C, Cammer M, Rifkin DB. Genetic suppression of inflammation blocks the tumor-promoting effects of TGF-β in gastric tissue. Cancer Res 2014; 74:2642-51. [PMID: 24590056 DOI: 10.1158/0008-5472.can-13-3404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The contributions of TGF-β signaling to cancer are complex but involve the inflammatory microenvironment as well as cancer cells themselves. In mice encoding a TGF-β mutant that precludes its binding to the latent TGF-β binding protein (Tgfb1(-/C33S)), we observed multiorgan inflammation and an elevated incidence of various types of gastrointestinal solid tumors due to impaired conversion of latent to active TGF-β1. By genetically eliminating activators of latent TGF-β1, we further lowered the amount of TGF-β, which enhanced tumor frequency and multiorgan inflammation. This model system was used to further investigate the relative contribution of TGF-β1 to lymphocyte-mediated inflammation in gastrointestinal tumorigenesis. Toward this end, we generated Tgfb1(-/C33S);Rag2(-/-) mice that lacked adaptive immune function, which eliminated tumor production. Analysis of tissue from Tgfb1(-/C33S) mice indicated decreased levels of P-Smad3 compared with wild-type animals, whereas tissue from Tgfb1(-/C33S);Rag2(-/-) mice had normal P-Smad3 levels. Inhibiting the inflammatory response normalized levels of interleukin (IL)-1β and IL-6 and reduced tumor cell proliferation. In addition, Tgfb1(-/C33S);Rag2(-/-) mice exhibited reduced paracrine signaling in the epithelia, mediated by hepatocyte growth factor produced by gastric stroma. Together, our results indicate that many of the responses of the gastric tissue associated with decreased TGF-β1 may be directly or indirectly affected by inflammatory processes, which accompany loss of TGF-β1, rather than a direct effect of loss of the cytokine.
Collapse
Affiliation(s)
- Mitsuhiko Ota
- Authors' Affiliations: Departments of Cell Biology, Pathology, Medicine, and Dermatology; Office of Collaborative Science, New York University Langone School of Medicine, New York, New York; and Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Smith BJ, Nidey N, Miller SF, Moreno LM, Baum CL, Hamilton GS, Wehby GL, Dunnwald M. Digital imaging analysis to assess scar phenotype. Wound Repair Regen 2014; 22:228-38. [PMID: 24635173 PMCID: PMC4411947 DOI: 10.1111/wrr.12141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/13/2013] [Indexed: 12/31/2022]
Abstract
In order to understand the link between the genetic background of patients and wound clinical outcomes, it is critical to have a reliable method to assess the phenotypic characteristics of healed wounds. In this study, we present a novel imaging method that provides reproducible, sensitive, and unbiased assessments of postsurgical scarring. We used this approach to investigate the possibility that genetic variants in orofacial clefting genes are associated with suboptimal healing. Red-green-blue digital images of postsurgical scars of 68 patients, following unilateral cleft lip repair, were captured using the 3dMD imaging system. Morphometric and colorimetric data of repaired regions of the philtrum and upper lip were acquired using ImageJ software, and the unaffected contralateral regions were used as patient-specific controls. Repeatability of the method was high with intraclass correlation coefficient score > 0.8. This method detected a very significant difference in all three colors, and for all patients, between the scarred and the contralateral unaffected philtrum (p ranging from 1.20(-05) to 1.95(-14) ). Physicians' clinical outcome ratings from the same images showed high interobserver variability (overall Pearson coefficient = 0.49) as well as low correlation with digital image analysis results. Finally, we identified genetic variants in TGFB3 and ARHGAP29 associated with suboptimal healing outcome.
Collapse
Affiliation(s)
- Brian J. Smith
- The University of Iowa College of Dentistry, Iowa City, IA
| | - Nichole Nidey
- Department of Pediatrics The University of Iowa, Iowa City, IA
| | - Steven F. Miller
- Dows Institute for Dental Research, The University of Iowa, Iowa City, IA
| | - Lina M. Moreno
- Dows Institute for Dental Research, The University of Iowa, Iowa City, IA
- Department of Orthodontics, The University of Iowa College of Dentistry, Iowa City, IA
| | | | | | - George L. Wehby
- Department of Health and Management Policy, The University of Iowa College of Public Health, Iowa City, IA
| | | |
Collapse
|
234
|
Wang ZP, Mu XY, Guo M, Wang YJ, Teng Z, Mao GP, Niu WB, Feng LZ, Zhao LH, Xia GL. Transforming growth factor-β signaling participates in the maintenance of the primordial follicle pool in the mouse ovary. J Biol Chem 2014; 289:8299-311. [PMID: 24515103 DOI: 10.1074/jbc.m113.532952] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Physiologically, only a few primordial follicles are activated to enter the growing follicle pool each wave. Recent studies in knock-out mice show that early follicular activation depends on signaling from the tuberous sclerosis complex, the mammalian target of rapamycin complex 1 (mTORC1), phosphatase and tensin homolog deleted on chromosome 10, and phosphatidylinositol 3-kinase (PI3K) pathways. However, the manner in which these pathways are normally regulated, and whether or not TGF-β acts on them are poorly understood. So, this study aims to identify whether or not TGF-β acts on the process. Ovary organ culture experiments showed that the culture of 18.5 days post-coitus (dpc) ovaries with TGF-β1 reduced the total population of oocytes and activated follicles, accelerated oocyte growth was observed in ovaries treated with TGF-βR1 inhibitor 2-(5-chloro-2-fluorophenyl)pteridin-4-yl]pyridin-4-yl-amine (SD208) compared with control ovaries, the down-regulation of TGF-βR1 gene expression also activated early primordial follicle oocyte growth. We further showed that there was dramatically more proliferation of granulosa cells in SD208-treated ovaries and less proliferation in TGF-β1-treated ovaries. Western blot and morphological analyses indicated that TGF-β signaling manipulated primordial follicle growth through tuberous sclerosis complex/mTORC1 signaling in oocytes, and the mTORC1-specific inhibitor rapamycin could partially reverse the stimulated effect of SD208 on the oocyte growth and decreased the numbers of growing follicles. In conclusion, our results suggest that TGF-β signaling plays an important physiological role in the maintenance of the dormant pool of primordial follicles, which functions through activation of p70 S6 kinase 1 (S6K1)/ribosomal protein S6 (rpS6) signaling in mouse ovaries.
Collapse
Affiliation(s)
- Zheng-Pin Wang
- From the State Key Laboratory of Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Roles for the TGFβ superfamily in the development and survival of midbrain dopaminergic neurons. Mol Neurobiol 2014; 50:559-73. [PMID: 24504901 DOI: 10.1007/s12035-014-8639-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/02/2014] [Indexed: 12/29/2022]
Abstract
The adult midbrain contains 75% of all dopaminergic neurons in the CNS. Within the midbrain, these neurons are divided into three anatomically and functionally distinct clusters termed A8, A9 and A10. The A9 group plays a functionally non-redundant role in the control of voluntary movement, which is highlighted by the motor syndrome that results from their progressive degeneration in the neurodegenerative disorder, Parkinson's disease. Despite 50 years of investigation, treatment for Parkinson's disease remains symptomatic, but an intensive research effort has proposed delivering neurotrophic factors to the brain to protect the remaining dopaminergic neurons, or using these neurotrophic factors to differentiate dopaminergic neurons from stem cell sources for cell transplantation. Most neurotrophic factors studied in this context have been members of the transforming growth factor β (TGFβ) superfamily. In recent years, an intensive research effort has focused on understanding the function of these proteins in midbrain dopaminergic neuron development and their role in the molecular architecture that regulates the development of this brain region, with the goal of applying this knowledge to develop novel therapies for Parkinson's disease. In this review, the current evidence showing that TGFβ superfamily members play critical roles in the regulation of midbrain dopaminergic neuron induction, differentiation, target innervation and survival during embryonic and postnatal development is analysed, and the implications of these findings are discussed.
Collapse
|
236
|
Branford OA, Klass BR, Grobbelaar AO, Rolfe KJ. The growth factors involved in flexor tendon repair and adhesion formation. J Hand Surg Eur Vol 2014; 39:60-70. [PMID: 24162452 DOI: 10.1177/1753193413509231] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Flexor tendon injuries remain a significant clinical problem, owing to the formation of adhesions or tendon rupture. A number of strategies have been tried to improve outcomes, but as yet none are routinely used in clinical practice. Understanding the role that growth factors play in tendon repair should enable a more targeted approach to be developed to improve the results of flexor tendon repair. This review describes the main growth factors in tendon wound healing, and the role they play in both repair and adhesion formation.
Collapse
Affiliation(s)
- O A Branford
- Institute for Plastic Surgery Research and Education, The Royal Free Hospital, London, UK
| | | | | | | |
Collapse
|
237
|
Gallo EM, Loch DC, Habashi JP, Calderon JF, Chen Y, Bedja D, van Erp C, Gerber EE, Parker SJ, Sauls K, Judge DP, Cooke SK, Lindsay ME, Rouf R, Myers L, ap Rhys CM, Kent KC, Norris RA, Huso DL, Dietz HC. Angiotensin II-dependent TGF-β signaling contributes to Loeys-Dietz syndrome vascular pathogenesis. J Clin Invest 2013; 124:448-60. [PMID: 24355923 DOI: 10.1172/jci69666] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 10/10/2013] [Indexed: 12/19/2022] Open
Abstract
Loeys-Dietz syndrome (LDS) is a connective tissue disorder that is characterized by a high risk for aneurysm and dissection throughout the arterial tree and phenotypically resembles Marfan syndrome. LDS is caused by heterozygous missense mutations in either TGF-β receptor gene (TGFBR1 or TGFBR2), which are predicted to result in diminished TGF-β signaling; however, aortic surgical samples from patients show evidence of paradoxically increased TGF-β signaling. We generated 2 knockin mouse strains with LDS mutations in either Tgfbr1 or Tgfbr2 and a transgenic mouse overexpressing mutant Tgfbr2. Knockin and transgenic mice, but not haploinsufficient animals, recapitulated the LDS phenotype. While heterozygous mutant cells had diminished signaling in response to exogenous TGF-β in vitro, they maintained normal levels of Smad2 phosphorylation under steady-state culture conditions, suggesting a chronic compensation. Analysis of TGF-β signaling in the aortic wall in vivo revealed progressive upregulation of Smad2 phosphorylation and TGF-β target gene output, which paralleled worsening of aneurysm pathology and coincided with upregulation of TGF-β1 ligand expression. Importantly, suppression of Smad2 phosphorylation and TGF-β1 expression correlated with the therapeutic efficacy of the angiotensin II type 1 receptor antagonist losartan. Together, these data suggest that increased TGF-β signaling contributes to postnatal aneurysm progression in LDS.
Collapse
MESH Headings
- Angiotensin II/physiology
- Angiotensin II Type 1 Receptor Blockers/therapeutic use
- Animals
- Aorta/pathology
- Aortic Aneurysm/metabolism
- Aortic Aneurysm/prevention & control
- Cells, Cultured
- Disease Progression
- Female
- Haploinsufficiency
- Humans
- Loeys-Dietz Syndrome/drug therapy
- Loeys-Dietz Syndrome/metabolism
- Loeys-Dietz Syndrome/pathology
- Losartan/therapeutic use
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation, Missense
- Myocytes, Smooth Muscle/metabolism
- Phenotype
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Signal Transduction
- Smad2 Protein/metabolism
- Transforming Growth Factor beta/metabolism
Collapse
|
238
|
Abstract
The cytokine TGF-β plays an integral role in regulating immune responses. TGF-β has pleiotropic effects on adaptive immunity, especially in the regulation of effector and regulatory CD4(+) T cell responses. Many immune and nonimmune cells can produce TGF-β, but it is always produced as an inactive complex that must be activated to exert functional effects. Thus, activation of latent TGF-β provides a crucial layer of regulation that controls TGF-β function. In this review, we highlight some of the important functional roles for TGF-β in immunity, focusing on its context-specific roles in either dampening or promoting T cell responses. We also describe how activation of TGF-β controls its function in the immune system, with a focus on the key roles for members of the integrin family in this process.
Collapse
Affiliation(s)
- Mark A Travis
- Manchester Collaborative Center for Inflammation Research
| | | |
Collapse
|
239
|
Cooley JR, Yatskievych TA, Antin PB. Embryonic expression of the transforming growth factor beta ligand and receptor genes in chicken. Dev Dyn 2013; 243:497-508. [PMID: 24166734 DOI: 10.1002/dvdy.24085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/19/2013] [Accepted: 10/19/2013] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Transforming growth factor-beta (TGFβ) signaling regulates a myriad of biological processes during embryogenesis, in the adult, and during the manifestation of disease. TGFβ signaling is propagated through one of three TGFβ ligands interacting with Type I and Type II receptors, and Type III co-receptors. Although TGFβ signaling is regulated partly by the combinatorial expression patterns of TGFβ receptors and ligands, a comprehensive gene expression analysis has not been published. RESULTS Here we report the embryonic mRNA expression patterns in chicken embryos of the canonical TGFβ ligands (TGFB1, TGFB2, and TGFB3) and receptors (TGFBR1, TGFBR2, TGFBR3), plus the Activin A receptor, type 1 (ACVR1) and co receptor Endoglin (ENG) that also transduce TGFβ signaling. CONCLUSIONS TGFB ligands and receptors show dynamic and frequently overlapping expression patterns in numerous embryonic cell layers and structures. Integrating expression information identifies combinations of ligands and receptors that are involved in specific developmental processes including somitogenesis, cardiogenesis and vasculogenesis.
Collapse
Affiliation(s)
- James R Cooley
- Molecular Cardiovascular Research Program, Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | | |
Collapse
|
240
|
Stammler A, Müller D, Tabuchi Y, Konrad L, Middendorff R. TGFβs modulate permeability of the blood-epididymis barrier in an in vitro model. PLoS One 2013; 8:e80611. [PMID: 24236189 PMCID: PMC3827453 DOI: 10.1371/journal.pone.0080611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/07/2013] [Indexed: 11/23/2022] Open
Abstract
The blood-epididymis barrier (BEB) is formed by epithelial tight junctions mediating selective permeability of the epididymal epithelium. Defective barrier function can disturb the balance of the epididymal milieu, which may result in infertility. The stroma of the epididymis contains high amounts of cytokines of the TGFβ family of unknown function. We screened possible effects of all three TGFβ isoforms on paracellular tightness in a BEB in vitro model based on the strongly polarized mouse epididymal epithelial MEPC5 cells in the transwell system. In this model we found a robust transepithelial electrical resistance (TER) of about 840 Ω x cm2. Effects on the paracellular permeability were evaluated by two methods, TER and FITC-Dextran-based tracer diffusion assays. Both assays add up to corresponding results indicating a time-dependent disturbance of the BEB differentially for the three TGFβ isoforms (TGFβ3>TGFβ1>TGFβ2) in a TGFβ-recetor-1 kinase- and Smad-dependent manner. The tight junction protein claudin-1 was found to be reduced by the treatment with TGFβs, whereas occludin was not influenced. Epididymal epithelial cells are predominantly responsive to TGFβs from the basolateral side, suggesting that TGFβ may have an impact on the epididymal epithelium from the stroma in vivo. Our data show for the first time that TGFβs decrease paracellular tightness in epididymal epithelial cells, thus establishing a novel mechanism of regulation of BEB permeability, which is elementary for sperm maturation and male fertility.
Collapse
Affiliation(s)
- Angelika Stammler
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
- Department of Gynecology and Obstetrics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Dieter Müller
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, Graduate School of Medicine Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Lutz Konrad
- Department of Gynecology and Obstetrics, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail: (RM); (LK)
| | - Ralf Middendorff
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, Giessen, Germany
- * E-mail: (RM); (LK)
| |
Collapse
|
241
|
Hall BE, Wankhade UD, Konkel JE, Cherukuri K, Nagineni CN, Flanders KC, Arany PR, Chen W, Rane SG, Kulkarni AB. Transforming growth factor-β3 (TGF-β3) knock-in ameliorates inflammation due to TGF-β1 deficiency while promoting glucose tolerance. J Biol Chem 2013; 288:32074-92. [PMID: 24056369 DOI: 10.1074/jbc.m113.480764] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three homologues of TGF-β exist in mammals as follows: TGF-β1, TGF-β2, and TGF-β3. All three proteins share high homology in their amino acid sequence, yet each TGF-β isoform has unique heterologous motifs that are highly conserved during evolution. Although these TGF-β proteins share similar properties in vitro, isoform-specific properties have been suggested through in vivo studies and by the unique phenotypes for each TGF-β knock-out mouse. To test our hypothesis that each of these homologues has nonredundant functions, and to identify such isoform-specific roles, we genetically exchanged the coding sequence of the mature TGF-β1 ligand with a sequence from TGF-β3 using targeted recombination to create chimeric TGF-β1/3 knock-in mice (TGF-β1(Lβ3/Lβ3)). In the TGF-β1(Lβ3/Lβ3) mouse, localization and activation still occur through the TGF-β1 latent associated peptide, but cell signaling is triggered through the TGF-β3 ligand that binds to TGF-β receptors. Unlike TGF-β1(-/-) mice, the TGF-β1(Lβ3/Lβ3) mice show neither embryonic lethality nor signs of multifocal inflammation, demonstrating that knock-in of the TGF-β3 ligand can prevent the vasculogenesis defects and autoimmunity associated with TGF-β1 deficiency. However, the TGF-β1(Lβ3/Lβ3) mice have a shortened life span and display tooth and bone defects, indicating that the TGF-β homologues are not completely interchangeable. Remarkably, the TGF-β1(Lβ3/Lβ3) mice display an improved metabolic phenotype with reduced body weight gain and enhanced glucose tolerance by induction of beneficial changes to the white adipose tissue compartment. These findings reveal both redundant and unique nonoverlapping functional diversity in TGF-β isoform signaling that has relevance to the design of therapeutics aimed at targeting the TGF-β pathway in human disease.
Collapse
Affiliation(s)
- Bradford E Hall
- From the Functional Genomics Section, Laboratory of Cell and Developmental Biology
| | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Leslie EJ, Mancuso JL, Schutte BC, Cooper ME, Durda KM, L'Heureux J, Zucchero TM, Marazita ML, Murray JC. Search for genetic modifiers of IRF6 and genotype-phenotype correlations in Van der Woude and popliteal pterygium syndromes. Am J Med Genet A 2013; 161A:2535-2544. [PMID: 23949966 DOI: 10.1002/ajmg.a.36133] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 06/14/2013] [Indexed: 01/03/2023]
Abstract
Van der Woude syndrome is the most common form of syndromic orofacial clefting, accounting for 1-2% of all patients with cleft lip and/or cleft palate. Van der Woude and popliteal pterygium syndromes are caused by mutations in IRF6, but phenotypic variability within and among families with either syndrome suggests that other genetic factors contribute to the phenotypes. The aim of this study was to identify common variants acting as genetic modifiers of IRF6 as well as genotype-phenotype correlations based on mutation type and location. We identified an association between mutations in the DNA-binding domain of IRF6 and limb defects (including pterygia). Although we did not detect formally significant associations with the genes tested, borderline associations suggest several genes that could modify the VWS phenotype, including FOXE1, TGFB3, and TFAP2A. Some of these genes are hypothesized to be part of the IRF6 gene regulatory network and may suggest additional genes for future study when larger sample sizes are also available. We also show that families with the Van de Woude phenotype but in whom no mutations have been identified have a lower frequency of cleft lip, suggesting there may be locus and/or mutation class differences in Van de Woude syndrome.
Collapse
Affiliation(s)
| | | | - Brian C Schutte
- Departments of Microbiology and Molecular Genetics, Pediatrics and Human Development, Michigan State University, East Lansing, MI
| | - Margaret E Cooper
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Kate M Durda
- Department of Pediatrics, University of Iowa, Iowa City, IA
| | | | | | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
243
|
Garside VC, Chang AC, Karsan A, Hoodless PA. Co-ordinating Notch, BMP, and TGF-β signaling during heart valve development. Cell Mol Life Sci 2013; 70:2899-917. [PMID: 23161060 PMCID: PMC4996658 DOI: 10.1007/s00018-012-1197-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022]
Abstract
Congenital heart defects affect approximately 1-5 % of human newborns each year, and of these cardiac defects 20-30 % are due to heart valve abnormalities. Recent literature indicates that the key factors and pathways that regulate valve development are also implicated in congenital heart defects and valve disease. Currently, there are limited options for treatment of valve disease, and therefore having a better understanding of valve development can contribute critical insight into congenital valve defects and disease. There are three major signaling pathways required for early specification and initiation of endothelial-to-mesenchymal transformation (EMT) in the cardiac cushions: BMP, TGF-β, and Notch signaling. BMPs secreted from the myocardium set up the environment for the overlying endocardium to become activated; Notch signaling initiates EMT; and both BMP and TGF-β signaling synergize with Notch to promote the transition of endothelia to mesenchyme and the mesenchymal cell invasiveness. Together, these three essential signaling pathways help form the cardiac cushions and populate them with mesenchyme and, consequently, set off the cascade of events required to develop mature heart valves. Furthermore, integration and cross-talk between these pathways generate highly stratified and delicate valve leaflets and septa of the heart. Here, we discuss BMP, TGF-β, and Notch signaling pathways during mouse cardiac cushion formation and how they together produce a coordinated EMT response in the developing mouse valves.
Collapse
Affiliation(s)
- Victoria C. Garside
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Alex C. Chang
- Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
| | - Aly Karsan
- Michael Smith Genome Sciences Centre, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| | - Pamela A. Hoodless
- Terry Fox Laboratory, BC Cancer Agency, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4 Canada
| |
Collapse
|
244
|
Robertson IB, Rifkin DB. Unchaining the beast; insights from structural and evolutionary studies on TGFβ secretion, sequestration, and activation. Cytokine Growth Factor Rev 2013; 24:355-72. [PMID: 23849989 DOI: 10.1016/j.cytogfr.2013.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023]
Abstract
TGFβ is secreted in a latent state and must be "activated" by molecules that facilitate its release from a latent complex and allow binding to high affinity cell surface receptors. Numerous molecules have been implicated as potential mediators of this activation process, but only a limited number of these activators have been demonstrated to play a role in TGFβ mobilisation in vivo. Here we review the process of TGFβ secretion and activation using evolutionary data, sequence conservation and structural information to examine the molecular mechanisms by which TGFβ is secreted, sequestered and released. This allows the separation of more ancient TGFβ activators from those factors that emerged more recently, and helps to define a potential hierarchy of activation mechanisms.
Collapse
Affiliation(s)
- Ian B Robertson
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, Cell Biology Floor 6 Room 650, Medical Science Building, New York, NY 10016, United States.
| | | |
Collapse
|
245
|
Jin S, Chen S, Li H, Lu Y, Zhang D, Ji C, Xu G, Yang N. Polymorphisms in the transforming growth factor β3 gene and their associations with feed efficiency in chickens. Poult Sci 2013; 92:1745-9. [DOI: 10.3382/ps.2013-03018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
246
|
CTGF mediates Smad-dependent transforming growth factor β signaling to regulate mesenchymal cell proliferation during palate development. Mol Cell Biol 2013; 33:3482-93. [PMID: 23816882 DOI: 10.1128/mcb.00615-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Transforming growth factor β (TGF-β) signaling plays crucial functions in the regulation of craniofacial development, including palatogenesis. Here, we have identified connective tissue growth factor (Ctgf) as a downstream target of the TGF-β signaling pathway in palatogenesis. The pattern of Ctgf expression in wild-type embryos suggests that it may be involved in key processes during palate development. We found that Ctgf expression is downregulated in both Wnt1-Cre; Tgfbr2(fl/fl) and Osr2-Cre; Smad4(fl/fl) palates. In Tgfbr2 mutant embryos, downregulation of Ctgf expression is associated with p38 mitogen-activated protein kinase (MAPK) overactivation, whereas loss of function of Smad4 itself leads to downregulation of Ctgf expression. We also found that CTGF regulates its own expression via TGF-β signaling. Osr2-Cre; Smad4(fl/fl) mice exhibit a defect in cell proliferation similar to that of Tgfbr2 mutant mice, as well as cleft palate. We detected no alteration in bone morphogenetic protein (BMP) downstream targets in Smad4 mutant palates, suggesting that the reduction in cell proliferation is due to defective transduction of TGF-β signaling via decreased Ctgf expression. Significantly, an exogenous source of CTGF was able to rescue the cell proliferation defect in both Tgfbr2 and Smad4 mutant palates. Collectively, our data suggest that CTGF regulates proliferation as a mediator of the canonical pathway of TGF-β signaling during palatogenesis.
Collapse
|
247
|
Allison P, Huang T, Broka D, Parker P, Barnett JV, Camenisch TD. Disruption of canonical TGFβ-signaling in murine coronary progenitor cells by low level arsenic. Toxicol Appl Pharmacol 2013; 272:147-53. [PMID: 23732083 DOI: 10.1016/j.taap.2013.04.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/11/2013] [Accepted: 04/30/2013] [Indexed: 11/30/2022]
Abstract
Exposure to arsenic results in several types of cancers as well as heart disease. A major contributor to ischemic heart pathologies is coronary artery disease, however the influences by environmental arsenic in this disease process are not known. Similarly, the impact of toxicants on blood vessel formation and function during development has not been studied. During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types including smooth muscle cells which contribute to the coronary vessels. The TGFβ family of ligands and receptors is essential for developmental cardiac epithelial to mesenchymal transition (EMT) and differentiation into coronary smooth muscle cells. In this in vitro study, 18hour exposure to 1.34μM arsenite disrupted developmental EMT programming in murine epicardial cells causing a deficit in cardiac mesenchyme. The expression of EMT genes including TGFβ2, TGFβ receptor-3, Snail, and Has-2 are decreased in a dose-dependent manner following exposure to arsenite. TGFβ2 cell signaling is abrogated as detected by decreases in phosphorylated Smad2/3 when cells are exposed to 1.34μM arsenite. There is also loss of nuclear accumulation pSmad due to arsenite exposure. These observations coincide with a decrease in vimentin positive mesenchymal cells invading three-dimensional collagen gels. However, arsenite does not block TGFβ2 mediated smooth muscle cell differentiation by epicardial cells. Overall these results show that arsenic exposure blocks developmental EMT gene programming in murine coronary progenitor cells by disrupting TGFβ2 signals and Smad activation, and that smooth muscle cell differentiation is refractory to this arsenic toxicity.
Collapse
Affiliation(s)
- Patrick Allison
- Department of Pharmacology and Toxicology College of Pharmacy, Southwest Environmental Health Sciences Center, Steele Children's Research Center and Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | |
Collapse
|
248
|
Mima J, Koshino A, Oka K, Uchida H, Hieda Y, Nohara K, Kogo M, Chai Y, Sakai T. Regulation of the epithelial adhesion molecule CEACAM1 is important for palate formation. PLoS One 2013; 8:e61653. [PMID: 23613893 PMCID: PMC3629100 DOI: 10.1371/journal.pone.0061653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/12/2013] [Indexed: 12/15/2022] Open
Abstract
Cleft palate results from a mixture of genetic and environmental factors and occurs when the bilateral palatal shelves fail to fuse. The objective of this study was to search for new genes involved in mouse palate formation. Gene expression of murine embryonic palatal tissue was analyzed at various developmental stages before, during, and after palate fusion using GeneChip® microarrays. Ceacam1 was one of the highly up-regulated genes during palate formation, and this was confirmed by quantitative real-time PCR. Immunohistochemical staining showed that CEACAM1 was present in prefusion palatal epithelium and was degraded during fusion. To investigate the developmental role of CEACAM1, function-blocking antibody was added to embryonic mouse palate in organ culture. Palatal fusion was inhibited by this function-blocking antibody. To investigate the subsequent developmental role of CEACAM1, we characterized Ceacam1-deficient (Ceacam1−/−) mice. Epithelial cells persisted abnormally at the midline of the embryonic palate even on day E16.0, and palatal fusion was delayed in Ceacam1−/− mice. TGFβ3 expression, apoptosis, and cell proliferation in palatal epithelium were not affected in the palate of Ceacam1−/−mice. However, CEACAM1 expression was retained in the remaining MEE of TGFβ-deficient mice. These results suggest that CEACAM1 has roles in the initiation of palatal fusion via epithelial cell adhesion.
Collapse
Affiliation(s)
- Junko Mima
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Aya Koshino
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kyoko Oka
- Section of Pediatric Dentistry, Department of Oral Growth and Development, Fukuoka Dental College, Fukuoka, Japan
| | - Hitoshi Uchida
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yohki Hieda
- Department of Biology, Osaka Dental University, Kuzuha, Osaka, Japan
| | - Kanji Nohara
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Mikihiko Kogo
- First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostow School of Dentistry, University of Southern California, Los Angeles, California, United State of America
| | - Takayoshi Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
249
|
El-Gohary Y, Tulachan S, Guo P, Welsh C, Wiersch J, Prasadan K, Paredes J, Shiota C, Xiao X, Wada Y, Diaz M, Gittes G. Smad signaling pathways regulate pancreatic endocrine development. Dev Biol 2013; 378:83-93. [PMID: 23603491 DOI: 10.1016/j.ydbio.2013.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/04/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
Abstract
Expansion of the pancreatic endocrine cell population occurs during both embryonic development and during post-natal pancreatic growth and regeneration. Mechanisms of the expansion of endocrine cells during embryonic development are not completely understood, and no clear mechanistic link has been established between growth of the embryonic endocrine pancreas and the islet cell replication that occurs in an adult animal. We found that transforming growth factor-beta (TGF-β) superfamily signaling, which has been implicated in many developmental processes, plays a key role in regulating pancreatic endocrine maturation and development. Specifically, the intracellular mediators of TGF-β signaling, smad2 and smad3, along with their inhibitor smad7, appear to mediate this process. Smad2, smad3 and smad7 were all broadly expressed throughout the early embryonic pancreatic epithelium. However, during later stages of development, smad2 and smad3 became strongly localized to the nuclei of the endocrine positive cells, whereas the inhibitory smad7 became absent in the endocrine component. Genetic inactivation of smad2 and smad3 led to a significant expansion of the embryonic endocrine compartment, whereas genetic inactivation of smad7 led to a significant decrease in the endocrine compartment. In vitro antisense studies further corroborated these results and supported the possibility that interplay between the inhibitory smad7 and the intracellular mediators smad2/3 is a control point for pancreatic endocrine development. These results should provide a better understanding of the key control mechanisms for β-cell development.
Collapse
Affiliation(s)
- Yousef El-Gohary
- Department of Surgery, Division of Pediatric Surgery, Children's Hospital of Pittsburgh, One Children's Hospital Drive, 4401 Penn Ave., Pittsburgh, PA 15224, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Meng T, Shi JY, Wu M, Wang Y, Li L, Liu Y, Zheng Q, Huang L, Shi B. Overexpression of mouse TTF-2 gene causes cleft palate. J Cell Mol Med 2013; 16:2362-8. [PMID: 22304410 PMCID: PMC3823429 DOI: 10.1111/j.1582-4934.2012.01546.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In humans, mutations of the gene encoding for thyroid transcription factor-2 (TTF-2 or FOXE1) result in Bamforth syndrome. Bamforth syndrome is characterized by agenesis, cleft palate, spiky hair and choanal atresia. TTF-2 null mice (TTF-2−/−) also exhibit cleft palate, suggesting its involvement in the palatogenesis. However, the molecular pathology and genetic regulation by TTF2 remain largely unknown. In the present study, the recombinant expression vector pBROAD3-TTF-2 containing the promoter of the mouse ROSA26 gene was created to form the structural gene of mouse TTF-2 and was microinjected into the male pronuclei of fertilized ova. Sequence analysis confirmed that the TTF-2 transgenic mouse model was established successfully. The transgenic mice displayed a phenotype of cleft palate. In addition, we found that TTF-2 was highly expressed in the medial edge epithelium (MEE) from the embryonic day 12.5 (E12.5) to E14.5 in TTF-2 transgenic mice. These observations suggest that overexpression of TTF-2 during palatogenesis may contribute to formation of cleft palate.
Collapse
Affiliation(s)
- Tian Meng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|