201
|
Intact Regulatory T-Cell Function but Defective Generation of IL-17A-Producing CD4+ T Cells in XIAP Deficiency. J Pediatr Gastroenterol Nutr 2016; 63:218-25. [PMID: 26825770 DOI: 10.1097/mpg.0000000000001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE X-linked inhibitor of apoptosis (xIAP) deficiency is a primary immune deficiency disorder associated with hemophagocytic lymphohistiocytosis. About 17% of xIAP-deficient patients present with very early onset severe colitis with high mortality. We hypothesized that xIAP deficiency leads to defective generation and/or survival of T regulatory cells (Treg) through its involvement in transforming growth factor-β signaling. METHODS AND RESULTS We used a T-cell transfer model of chronic colitis and observed a mild increase in colitis severity induced by naïve CD4 T cells from xIAP mice compared with colitis induced by naïve CD4 T cells from WT mice. We did not observe any significant difference in the induction of Treg cells in these studies. We next tested whether xIAP is required for Treg cell function by co-transferring xIAP or WT Treg cells with naïve WT CD4 cells in this model. We demonstrate that XIAP-deficient Treg cells were able to prevent disease similarly to WT Treg cells. In these experiments we, however, found a significantly decreased percentage of IL-17A-producing CD4 T cells in mice receiving Tregs from xIAP mice. CONCLUSIONS xIAP appears dispensable for the generation of induced Treg cells as well as function of natural Treg cells. There appeared to be a role of xIAP in generation of IL-17-producing cells from either naïve CD4 T cells or Treg cells. Further research is needed to explore the role of xIAP in generation of IL-17-producing cells.
Collapse
|
202
|
Revisiting the regulatory roles of the TGF-β family of cytokines. Autoimmun Rev 2016; 15:917-22. [PMID: 27392504 DOI: 10.1016/j.autrev.2016.07.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/13/2016] [Indexed: 02/04/2023]
Abstract
TGF-β family members are multipotent cytokines that are involved in many cellular processes, including cell differentiation, organ development, wound healing and immune regulation. TGF-β has pleiotropic effects on adaptive immunity, especially in the regulation of CD4(+) T cell and B cell responses. Furthermore, identification of CD4(+) T cell subsets that produce TGF-β3 revealed unexpected roles of TGF-β3 in the control of adaptive immunity. In contrast to TGF-β1, which induces extensive fibrosis, TGF-β3 induces non-scarring wound healing and counteracts tissue fibrosis. Recent progress in the understanding of the activation mechanism of TGF-β may enable us to develop novel biologic therapies based on advanced protein engineering.
Collapse
|
203
|
Sun L, Jin H, Li H. GARP: a surface molecule of regulatory T cells that is involved in the regulatory function and TGF-β releasing. Oncotarget 2016; 7:42826-42836. [PMID: 27095576 PMCID: PMC5173174 DOI: 10.18632/oncotarget.8753] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022] Open
Abstract
There are many molecules that define regulatory T cells (Tregs) phenotypically and functionally. Glycoprotein A repetitions predominant (GARP) is a transmembrane protein containing leucine rich repeats. Recently, GARP is found to express highly on the surface of activated Tregs. The combination of GARP and other surface molecules isolates Tregs with higher purity. Besides, GARP is a cell surface molecule of Tregs that maintains their regulatory function and homeosatsis. GARP has also been proved to promote the activation and secretion of transforming growth factor β (TGF-β). Moreover, its potential value in cancer immunotherapy is also discussed in this work.
Collapse
Affiliation(s)
- Liping Sun
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
| | - Hao Jin
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
| | - Hui Li
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
204
|
Kang BH, Park HJ, Park HJ, Lee JII, Park SH, Jung KC. PLZF(+) Innate T Cells Support the TGF-β-Dependent Generation of Activated/Memory-Like Regulatory T Cells. Mol Cells 2016; 39:468-76. [PMID: 27101876 PMCID: PMC4916398 DOI: 10.14348/molcells.2016.0004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 11/27/2022] Open
Abstract
PLZF-expressing invariant natural killer T cells and CD4 T cells are unique subsets of innate T cells. Both are selected via thymocyte-thymocyte interaction, and they contribute to the generation of activated/memory-like CD4 and CD8 T cells in the thymus via the production of IL-4. Here, we investigated whether PLZF(+) innate T cells also affect the development and function of Foxp3(+) regulatory CD4 T cells. Flow cytometry analysis of the thymus and spleen from both CIITA transgenic C57BL/6 and wild-type BALB/c mice, which have abundant PLZF(+) CD4 T cells and invariant natural killer T cells, respectively, revealed that Foxp3(+) T cells in these mice exhibited a CD103(+) activated/memory-like phenotype. The frequency of CD103(+) regulatory T cells was considerably decreased in PLZF(+) cell-deficient CIITA(Tg)Plzf(lu/lu) and BALB/c.CD1d(-/-) mice as well as in an IL-4-deficient background, such as in CIITA(Tg)IL-4(-/-) and BALB/c.lL-4(-/-) mice, indicating that the acquisition of an activated/memory-like phenotype was dependent on PLZF(+) innate T cells and IL-4. Using fetal thymic organ culture, we further demonstrated that IL-4 in concert with TGF-β enhanced the acquisition of the activated/memory-like phenotype of regulatory T cells. In functional aspects, the activated/memory-like phenotype of Treg cells was directly related to their suppressive function; regulatory T cells of CIITA(Tg)PIV(-/-) mice more efficiently suppressed ovalbumin-induced allergic airway inflammation compared with their counterparts from wild-type mice. All of these findings suggest that PLZF(+) innate T cells also augmented the generation of activated/memory-like regulation via IL-4 production.
Collapse
Affiliation(s)
- Byung Hyun Kang
- Postgraduate Course of Translational Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Hyo Jin Park
- Department of Pathology, Medical Research Center, Seoul National University College of Medicine, Seoul 03080,
Korea
- Department of Pathology, Seoul National University Bundang Hospital, Sungnam 13620,
Korea
| | - Hi Jung Park
- Postgraduate Course of Translational Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Jae-II Lee
- Postgraduate Course of Translational Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul 03080,
Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Seong Hoe Park
- Postgraduate Course of Translational Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul 03080,
Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080,
Korea
| | - Kyeong Cheon Jung
- Postgraduate Course of Translational Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul 03080,
Korea
- Department of Pathology, Medical Research Center, Seoul National University College of Medicine, Seoul 03080,
Korea
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080,
Korea
- Department of Pathology, Seoul National University Hospital, Seoul 03080,
Korea
| |
Collapse
|
205
|
Warsinske HC, Wheaton AK, Kim KK, Linderman JJ, Moore BB, Kirschner DE. Computational Modeling Predicts Simultaneous Targeting of Fibroblasts and Epithelial Cells Is Necessary for Treatment of Pulmonary Fibrosis. Front Pharmacol 2016; 7:183. [PMID: 27445819 PMCID: PMC4917547 DOI: 10.3389/fphar.2016.00183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/10/2016] [Indexed: 11/13/2022] Open
Abstract
Pulmonary fibrosis is pathologic remodeling of lung tissue that can result in difficulty breathing, reduced quality of life, and a poor prognosis for patients. Fibrosis occurs as a result of insult to lung tissue, though mechanisms of this response are not well-characterized. The disease is driven in part by dysregulation of fibroblast proliferation and differentiation into myofibroblast cells, as well as pro-fibrotic mediator-driven epithelial cell apoptosis. The most well-characterized pro-fibrotic mediator associated with pulmonary fibrosis is TGF-β1. Excessive synthesis of, and sensitivity to, pro-fibrotic mediators as well as insufficient production of and sensitivity to anti-fibrotic mediators has been credited with enabling fibroblast accumulation. Available treatments neither halt nor reverse lung damage. In this study we have two aims: to identify molecular and cellular scale mechanisms driving fibroblast proliferation and differentiation as well as epithelial cell survival in the context of fibrosis, and to predict therapeutic targets and strategies. We combine in vitro studies with a multi-scale hybrid agent-based computational model that describes fibroblasts and epithelial cells in co-culture. Within this model TGF-β1 represents a pro-fibrotic mediator and we include detailed dynamics of TGF-β1 receptor ligand signaling in fibroblasts. PGE2 represents an anti-fibrotic mediator. Using uncertainty and sensitivity analysis we identify TGF-β1 synthesis, TGF-β1 activation, and PGE2 synthesis among the key mechanisms contributing to fibrotic outcomes. We further demonstrate that intervention strategies combining potential therapeutics targeting both fibroblast regulation and epithelial cell survival can promote healthy tissue repair better than individual strategies. Combinations of existing drugs and compounds may provide significant improvements to the current standard of care for pulmonary fibrosis. Thus, a two-hit therapeutic intervention strategy may prove necessary to halt and reverse disease dynamics.
Collapse
Affiliation(s)
- Hayley C. Warsinske
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Amanda K. Wheaton
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Kevin K. Kim
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | | | - Bethany B. Moore
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Denise E. Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| |
Collapse
|
206
|
Abstract
Regulatory T (Treg) cells are crucial enforcers of immune homeostasis. Their characteristic suppressive function largely arises from an equally unique pattern of gene expression. A complex network of factors and processes contribute to this 'signature' Treg gene expression landscape. Many of these alter the level and activity of the Treg-defining transcription factor Foxp3. As stable expression of Foxp3 is important for the ability of Treg cells to successfully prevent excessive or inappropriate immune activation, uncovering the mechanisms regulating Foxp3 level is required for the understanding and therapeutic exploitation of Tregs. While transcriptional regulation of the Foxp3 gene has been studied in depth, additional regulatory layers exist controlling the expression and activity of this key transcription factor. These include less-defined mechanisms active at the post-translational level. These pathways are just beginning to be elucidated. Here, we summarize emerging evidence for distinct, post-translationally active, ubiquitin-dependent pathways capable of controlling the activation and expression of Foxp3 and the function of Tregs. These pathways offer untapped opportunities for therapeutic fine-tuning of Tregs and their all-important restraint of the immune system.
Collapse
Affiliation(s)
- Joseph Barbi
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fan Pan
- Immunology and Hematopoiesis Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
207
|
Su P, Chen S, Zheng YH, Zhou HY, Yan CH, Yu F, Zhang YG, He L, Zhang Y, Wang Y, Wu L, Wu X, Yu B, Ma LY, Yang Z, Wang J, Zhao G, Zhu J, Wu ZY, Sun B. Novel Function of Extracellular Matrix Protein 1 in Suppressing Th17 Cell Development in Experimental Autoimmune Encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2016; 197:1054-64. [PMID: 27316685 DOI: 10.4049/jimmunol.1502457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/21/2016] [Indexed: 12/24/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS characterized by demyelination and axonal damage. Experimental autoimmune encephalomyelitis (EAE) is a well-established animal model for human MS. Although Th17 cells are important for disease induction, Th2 cells are inhibitory in this process. In this article, we report the effect of a Th2 cell product, extracellular matrix protein 1 (ECM1), on the differentiation of Th17 cells and the development of EAE. Our results demonstrated that ECM1 administration from day 1 to day 7 following the EAE induction could ameliorate the Th17 cell responses and EAE development in vivo. Further study of the mechanism revealed that ECM1 could interact with αv integrin on dendritic cells and block the αv integrin-mediated activation of latent TGF-β, resulting in an inhibition of Th17 cell differentiation at an early stage of EAE induction. Furthermore, overexpression of ECM1 in vivo significantly inhibited the Th17 cell response and EAE induction in ECM1 transgenic mice. Overall, our work has identified a novel function of ECM1 in inhibiting Th17 cell differentiation in the EAE model, suggesting that ECM1 may have the potential to be used in clinical applications for understanding the pathogenesis of MS and its diagnosis.
Collapse
Affiliation(s)
- Pan Su
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sheng Chen
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, Fuzhou 350004, China
| | - Yu Han Zheng
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hai Yan Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Hua Yan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Yu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Ya Guang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lan He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuan Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanming Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaoai Wu
- Novo Nordisk Research Center, Beijing 100000, China
| | - Bingke Yu
- Novo Nordisk Research Center, Beijing 100000, China
| | - Li Yan Ma
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiru Yang
- Novo Nordisk Research Center, Beijing 100000, China
| | - Jianhua Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; and
| | - Guixian Zhao
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892;
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Bing Sun
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China; and
| |
Collapse
|
208
|
Thymic and Postthymic Regulation of Naïve CD4(+) T-Cell Lineage Fates in Humans and Mice Models. Mediators Inflamm 2016; 2016:9523628. [PMID: 27313405 PMCID: PMC4904118 DOI: 10.1155/2016/9523628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022] Open
Abstract
Our understanding of how thymocytes differentiate into many subtypes has been increased progressively in its complexity. At early life, the thymus provides a suitable microenvironment with specific combination of stromal cells, growth factors, cytokines, and chemokines to induce the bone marrow lymphoid progenitor T-cell precursors into single-positive CD4+ and CD8+ T effectors and CD4+CD25+ T-regulatory cells (Tregs). At postthymic compartments, the CD4+ T-cells acquire distinct phenotypes which include the classical T-helper 1 (Th1), T-helper 2 (Th2), T-helper 9 (Th9), T-helper 17 (Th17), follicular helper T-cell (Tfh), and induced T-regulatory cells (iTregs), such as the regulatory type 1 cells (Tr1) and transforming growth factor-β- (TGF-β-) producing CD4+ T-cells (Th3). Tregs represent only a small fraction, 5–10% in mice and 1-2% in humans, of the overall CD4+ T-cells in lymphoid tissues but are essential for immunoregulatory circuits mediating the inhibition and expansion of all lineages of T-cells. In this paper, we first provide an overview of the major cell-intrinsic developmental programs that regulate T-cell lineage fates in thymus and periphery. Next, we introduce the SV40 immortomouse as a relevant mice model for implementation of new approaches to investigate thymus organogenesis, CD4 and CD8 development, and thymus cells tumorogenesis.
Collapse
|
209
|
Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb Perspect Biol 2016; 8:8/5/a021873. [PMID: 27141051 DOI: 10.1101/cshperspect.a021873] [Citation(s) in RCA: 955] [Impact Index Per Article: 106.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transforming growth factor-β (TGF-β) is the prototype of the TGF-β family of growth and differentiation factors, which is encoded by 33 genes in mammals and comprises homo- and heterodimers. This review introduces the reader to the TGF-β family with its complexity of names and biological activities. It also introduces TGF-β as the best-studied factor among the TGF-β family proteins, with its diversity of roles in the control of cell proliferation and differentiation, wound healing and immune system, and its key roles in pathology, for example, skeletal diseases, fibrosis, and cancer.
Collapse
Affiliation(s)
- Masato Morikawa
- Ludwig Cancer Research, Science for Life Laboratory, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden
| | - Rik Derynck
- Department of Cell and Tissue Biology, University of California at San Francisco, San Francisco, California 94143
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
210
|
Perry JSA, Hsieh CS. Development of T-cell tolerance utilizes both cell-autonomous and cooperative presentation of self-antigen. Immunol Rev 2016; 271:141-55. [PMID: 27088912 PMCID: PMC4837647 DOI: 10.1111/imr.12403] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of T-cell self-tolerance in the thymus is important for establishing immune homeostasis and preventing autoimmunity. Here, we review the components of T-cell tolerance, which includes T-cell receptor (TCR) self-reactivity, costimulation, cytokines, and antigen presentation by a variety of antigen-presenting cells (APCs) subsets. We discuss the current evidence on the process of regulatory T (Treg) cell and negative selection and the importance of TCR signaling. We then examine recent evidence showing unique roles for bone marrow (BM)-derived APCs and medullary thymic epithelial cells (mTECs) on the conventional and Treg TCR repertoire, as well as emerging data on the role of B cells in tolerance. Finally, we review the accumulating data that suggest that cooperative antigen presentation is a prominent component of T -ell tolerance. With the development of tools to interrogate the function of individual APC subsets in the medulla, we have gained greater understanding of the complex cellular and molecular events that determine T-cell tolerance.
Collapse
Affiliation(s)
- Justin S A Perry
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chyi-Song Hsieh
- Department of Internal Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
211
|
Severin ME, Lee PW, Liu Y, Selhorst AJ, Gormley MG, Pei W, Yang Y, Guerau-de-Arellano M, Racke MK, Lovett-Racke AE. MicroRNAs targeting TGFβ signalling underlie the regulatory T cell defect in multiple sclerosis. Brain 2016; 139:1747-61. [PMID: 27190026 DOI: 10.1093/brain/aww084] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/05/2016] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor beta (TGFβ) signalling is critical for regulatory T cell development and function, and regulatory T cell dysregulation is a common observation in autoimmune diseases, including multiple sclerosis. In a comprehensive miRNA profiling study of patients with multiple sclerosis naïve CD4 T cells, 19 differentially expressed miRNAs predicted to target the TGFβ signalling pathway were identified, leading to the hypothesis that miRNAs may be responsible for the regulatory T cell defect observed in patients with multiple sclerosis. Patients with multiple sclerosis had reduced levels of TGFβ signalling components in their naïve CD4 T cells. The differentially expressed miRNAs negatively regulated the TGFβ pathway, resulting in a reduced capacity of naïve CD4 T cells to differentiate into regulatory T cells. Interestingly, the limited number of regulatory T cells, that did develop when these TGFβ-targeting miRNAs were overexpressed, were capable of suppressing effector T cells. As it has previously been demonstrated that compromising TGFβ signalling results in a reduced regulatory T cell repertoire insufficient to control autoimmunity, and patients with multiple sclerosis have a reduced regulatory T cell repertoire, these data indicate that the elevated expression of multiple TGFβ-targeting miRNAs in naïve CD4 T cells of patients with multiple sclerosis impairs TGFβ signalling, and dampens regulatory T cell development, thereby enhancing susceptibility to developing multiple sclerosis.
Collapse
Affiliation(s)
- Mary E Severin
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Priscilla W Lee
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Yue Liu
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Amanda J Selhorst
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew G Gormley
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Wei Pei
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yuhong Yang
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mireia Guerau-de-Arellano
- Health and Rehabilitation Sciences, The Ohio State University Wexner Medical Center, Columbus, OH, USA Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Michael K Racke
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Amy E Lovett-Racke
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, USA Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
212
|
Wang X, Terhorst C, Herzog RW. In vivo induction of regulatory T cells for immune tolerance in hemophilia. Cell Immunol 2016; 301:18-29. [PMID: 26454643 PMCID: PMC4761281 DOI: 10.1016/j.cellimm.2015.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 12/22/2022]
Abstract
Current therapy for the X-linked coagulation disorder hemophilia is based on intravenous infusion of the specifically deficient coagulation factor. However, 20-30% of hemophilia A patients (factor VIII, FVIII, deficiency) generate inhibitory antibodies against FVIII. While formation of inhibitors directed against factor IX, FIX, resulting from hemophilia B treatment is comparatively rare, a serious complication that is often associated with additional immunotoxicities, e.g. anaphylaxis, occurs. Current immune tolerance protocols to eradiate inhibitors are lengthy, expensive, not effective in all patients, and there are no prophylactic tolerance regimens to prevent inhibitor formation. The outcomes of recent experiments in animal models of hemophilia demonstrate that regulatory CD4(+) T cells (Treg) are of paramount importance in controlling B cell responses to FVIII and FIX. This article reviews several novel strategies designed to in vivo induce coagulation factor-specific Treg cells and discusses the subsets of Treg that may promote immune tolerance in hemophilia. Among others, drug- and gene transfer-based protocols, lymphocyte transplant, and oral tolerance are reviewed.
Collapse
Affiliation(s)
- Xiaomei Wang
- Dept. Pediatrics, University of Florida, Gainesville, FL 32610, USA
| | - Cox Terhorst
- Div. Immunology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Roland W Herzog
- Dept. Pediatrics, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
213
|
Cuende J, Liénart S, Dedobbeleer O, van der Woning B, De Boeck G, Stockis J, Huygens C, Colau D, Somja J, Delvenne P, Hannon M, Baron F, Dumoutier L, Renauld JC, De Haard H, Saunders M, Coulie PG, Lucas S. Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo. Sci Transl Med 2016; 7:284ra56. [PMID: 25904740 DOI: 10.1126/scitranslmed.aaa1983] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs) are essential to prevent autoimmunity, but excessive Treg function contributes to cancer progression by inhibiting antitumor immune responses. Tregs exert contact-dependent inhibition of immune cells through the production of active transforming growth factor-β1 (TGF-β1). On the Treg cell surface, TGF-β1 is in an inactive form bound to membrane protein GARP and then activated by an unknown mechanism. We demonstrate that GARP is involved in this activation mechanism. Two anti-GARP monoclonal antibodies were generated that block the production of active TGF-β1 by human Tregs. These antibodies recognize a conformational epitope that requires amino acids GARP137-139 within GARP/TGF-β1 complexes. A variety of antibodies recognizing other GARP epitopes did not block active TGF-β1 production by Tregs. In a model of xenogeneic graft-versus-host disease in NSG mice, the blocking antibodies inhibited the immunosuppressive activity of human Tregs. These antibodies may serve as therapeutic tools to boost immune responses to infection or cancer via a mechanism of action distinct from that of currently available immunomodulatory antibodies. Used alone or in combination with tumor vaccines or antibodies targeting the CTLA4 or PD1/PD-L1 pathways, blocking anti-GARP antibodies may improve the efficiency of cancer immunotherapy.
Collapse
Affiliation(s)
- Julia Cuende
- de Duve Institute, Université catholique de Louvain, and WELBIO, B1200 Brussels, Belgium
| | - Stéphanie Liénart
- de Duve Institute, Université catholique de Louvain, and WELBIO, B1200 Brussels, Belgium
| | - Olivier Dedobbeleer
- de Duve Institute, Université catholique de Louvain, and WELBIO, B1200 Brussels, Belgium
| | | | - Gitte De Boeck
- arGEN-X BVBA, Technologiepark 30, B9052 Zwijnaarde, Gent, Belgium
| | - Julie Stockis
- de Duve Institute, Université catholique de Louvain, and WELBIO, B1200 Brussels, Belgium
| | - Caroline Huygens
- de Duve Institute, Université catholique de Louvain, and WELBIO, B1200 Brussels, Belgium
| | | | - Joan Somja
- Department of Pathology, University Hospital of Liège, and Interdisciplinary Cluster of Applied Genoproteomics (GIGA), Laboratory of Experimental Pathology, University of Liège, B4000 Liège, Belgium
| | - Philippe Delvenne
- Department of Pathology, University Hospital of Liège, and Interdisciplinary Cluster of Applied Genoproteomics (GIGA), Laboratory of Experimental Pathology, University of Liège, B4000 Liège, Belgium
| | - Muriel Hannon
- Department of Pathology, University Hospital of Liège, and Interdisciplinary Cluster of Applied Genoproteomics (GIGA), Laboratory of Experimental Pathology, University of Liège, B4000 Liège, Belgium
| | - Frédéric Baron
- Department of Pathology, University Hospital of Liège, and Interdisciplinary Cluster of Applied Genoproteomics (GIGA), Laboratory of Experimental Pathology, University of Liège, B4000 Liège, Belgium
| | | | | | - Hans De Haard
- arGEN-X BVBA, Technologiepark 30, B9052 Zwijnaarde, Gent, Belgium
| | - Michael Saunders
- arGEN-X BVBA, Technologiepark 30, B9052 Zwijnaarde, Gent, Belgium
| | - Pierre G Coulie
- de Duve Institute, Université catholique de Louvain, and WELBIO, B1200 Brussels, Belgium
| | - Sophie Lucas
- de Duve Institute, Université catholique de Louvain, and WELBIO, B1200 Brussels, Belgium.
| |
Collapse
|
214
|
Guan Z, Song B, Liu F, Sun D, Wang K, Qu H. TGF-β induces HLA-G expression through inhibiting miR-152 in gastric cancer cells. J Biomed Sci 2015; 22:107. [PMID: 26627200 PMCID: PMC4667479 DOI: 10.1186/s12929-015-0177-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 08/05/2015] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Mounting evidences have showed the important role of transforming growth factor-β (TGF-β) in immunological surveillance of tumors. Some studies have also indicated human leukocyte antigen (HLA)-G-associated immune escape involving TGF-β management in gastric cancer (GC). However, the mechanism underlying it is unclear. This study aims to verify the correlations between HLA-G and TGF-β, involving the potential targeting of miR-152 on HLA-G. RESULTS TGF-β and HLA-G levels were analyzed in blood samples from twenty GC patients with ELISA assays, while TGF-β showed directly proportional to HLA-G levels in GC patients, and TGF-β induced HLA-G up-regulation was also confirmed in GC cell lines. Furthermore, miR-152 expression could be inhibited by TGF-β, and the negative post-transcriptionally regulation of miR-152 on HLA-G was also demonstrated through gain- and loss-of-function studies. Besides, miR-152 overexpression repressed HLA-G up-regulation induced by TGF-β. And, miR-152 expression levels showed inversely proportional to both HLA-G and also TGF-β levels in GC patients. CONCLUSION TGF-β could induce HLA-G expression in GC by inhibiting miR-152, involving its negative regulation on HLA-G. Since TGF-β induced HLA-G up-regulation plays important role in immune escape, a potential application of miR-152 was suggested in GC treatment, or miR-152 might be one potential biomarker for GC.
Collapse
Affiliation(s)
- Zhongzheng Guan
- Department of General Surgery, Qilu Hospital, Shandong University, No.107, West Wenhua Road, Jinan, Shandong Province, 250012, China.,Department of General Surgery, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, 256603, China
| | - Bingtan Song
- Department of General Surgery, Qilu Hospital, Shandong University, No.107, West Wenhua Road, Jinan, Shandong Province, 250012, China.,Department of General Surgery, Liaocheng Third People's Hospital, Liaocheng, Shandong, 252000, China
| | - Fengjun Liu
- Department of General Surgery, Qilu Hospital, Shandong University, No.107, West Wenhua Road, Jinan, Shandong Province, 250012, China.
| | - Dong Sun
- Department of General Surgery, Qilu Hospital, Shandong University, No.107, West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Kexin Wang
- Department of General Surgery, Qilu Hospital, Shandong University, No.107, West Wenhua Road, Jinan, Shandong Province, 250012, China
| | - Hui Qu
- Department of General Surgery, Qilu Hospital, Shandong University, No.107, West Wenhua Road, Jinan, Shandong Province, 250012, China
| |
Collapse
|
215
|
Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells. Cell Death Dis 2015; 6:e1984. [PMID: 26583325 PMCID: PMC4670941 DOI: 10.1038/cddis.2015.337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 12/16/2022]
Abstract
The transcriptional regulation underlying the differentiation of CD8+ effector and memory T cells remains elusive. Here, we show that 18-month-old mice lacking the transcription factor Smad4 (homolog 4 of mothers against decapentaplegic, Drosophila), a key intracellular signaling effector for the TGF-β superfamily, in T cells exhibited lower percentages of CD44hiCD8+ T cells. To explore the role of Smad4 in the activation/memory of CD8+ T cells, 6- to 8-week-old mice with or without Smad4 in T cells were challenged with Listeria monocytogenes. Smad4 deficiency did not affect antigen-specific CD8+ T-cell expansion but led to partially impaired cytotoxic function. Less short-lived effector T cells but more memory-precursor effector T cells were generated in the absence of Smad4. Despite that, Smad4 deficiency led to reduced memory CD8+ T-cell responses. Further exploration revealed that the generation of central memory T cells was impaired in the absence of Smad4 and the cells showed survival issue. In mechanism, Smad4 deficiency led to aberrant transcriptional programs in antigen-specific CD8+ T cells. These findings demonstrated an essential role of Smad4 in the control of effector and memory CD8+ T-cell responses to infection.
Collapse
|
216
|
van Nieuwenhuijze A, Liston A. The Molecular Control of Regulatory T Cell Induction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:69-97. [PMID: 26615093 DOI: 10.1016/bs.pmbts.2015.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are characterized by the expression of the master transcription factor forkhead box P3 (Foxp3). Although Foxp3 expression is widely used as a marker of the Treg lineage, recent data show that the Treg fate is determined by a multifactorial signaling pathway, involving cytokines, nuclear factors, and epigenetic modifications. Foxp3 expression and the Treg phenotype can be acquired by T cells in the periphery, illustrating that the Treg fate is not necessarily conferred during thymic development. The two main Treg populations in vivo, thymic Tregs and peripheral Tregs, differ in the pathways followed for their maturation. This chapter discusses the molecular control of Treg induction, in the thymus as well as the periphery.
Collapse
Affiliation(s)
- Annemarie van Nieuwenhuijze
- Translational Immunology Laboratory, VIB, Leuven, Belgium; Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium.
| | - Adrian Liston
- Translational Immunology Laboratory, VIB, Leuven, Belgium; Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
217
|
The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cell Mol Immunol 2015; 14:423-431. [PMID: 26435067 DOI: 10.1038/cmi.2015.89] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/01/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Umbilical cord (UC)-derived mesenchymal stem cells (MSCs) have shown immunoregulation of various immune cells. The aim of this study was to investigate the mechanism of UC MSCs in the regulation of peripheral regulatory T cells (Treg) and T helper 17 (Th17) cells in patients with systemic lupus erythematosus (SLE). METHODS Thirty patients with active SLE, refractory to conventional therapies, were given UC MSCs infusions. The percentages of peripheral blood CD4+CD25+Foxp3+ regulatory T cells (Treg) and CD3+CD8-IL17A+ Th17 cells and the mean fluorescence intensities (MFI) of Foxp3 and IL-17 were measured at 1 week, 1 month, 3 months, 6 months, and 12 months after MSCs transplantation (MSCT). Serum cytokines, including transforming growth factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and IL-17A were detected using ELISA. Peripheral blood mononuclear cells from patients were collected and co-cultured with UC MSCs at ratios of 1:1, 10:1, and 50:1, respectively, for 72 h to detect the proportions of Treg and Th17 cells and the MFIs of Foxp3 and IL-17 were determined by flow cytometry. The cytokines in the supernatant solution were detected using ELISA. Inhibitors targeting TGF-β, IL-6, indoleamine 2,3-dioxygenase (IDO), and prostaglandin E2 were added to the co-culture system, and the percentages of Treg and Th17 cells were observed. RESULTS The percentage of peripheral Treg and Foxp3 MFI increased 1 week, 1 month, and 3 months after UC MSCs transplantation, while the Th17 proportion and MFI of IL-17 decreased 3 months, 6 months, and 12 months after the treatment, along with an increase in serum TGF-β at 1 week, 3 months, and 12 months and a decrease in serum TNF-α beginning at 1 week. There were no alterations in serums IL-6 and IL-17A before or after MSCT. In vitro studies showed that the UC MSCs dose-dependently up-regulated peripheral Treg proportion in SLE patients, which was not depended on cell-cell contact. However, the down-regulation of Th17 cells was not dose-dependently and also not depended on cell-cell contact. Supernatant TGF-β and IL-6 levels significantly increased, TNF-α significantly decreased, but IL-17A had no change after the co-culture. The addition of anti-TGF-β antibody significantly abrogated the up-regulation of Treg, and the addition of PGE2 inhibitor significantly abrogated the down-regulation of Th17 cells. Both anti-IL-6 antibody and IDO inhibitor had no effects on Treg and Th17 cells. CONCLUSIONS UC MSCs up-regulate Treg and down-regulate Th17 cells through the regulation of TGF-β and PGE2 in lupus patients.
Collapse
|
218
|
Warsinske HC, Ashley SL, Linderman JJ, Moore BB, Kirschner DE. Identifying Mechanisms of Homeostatic Signaling in Fibroblast Differentiation. Bull Math Biol 2015; 77:1556-82. [PMID: 26384829 DOI: 10.1007/s11538-015-0096-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
Fibroblasts play an important role in the wound-healing process by generating extracellular matrix (ECM) and undergoing differentiation into myofibroblasts, but these cells can also be involved in pathologic remodeling of tissue. Nascent ECM provides a substrate for re-epithelialization to occur, restoring damaged tissue to a functional state. Dysregulation of this process can result in fibrosis--stiffening and scarring of the tissue. Current treatments cannot halt or reverse this process. The molecular mechanisms underlying fibrotic dysregulation are poorly understood, providing an untapped pool of potential therapeutic targets. Transforming growth factor-β (TGF-β) and adhesion signaling are involved in inducing fibroblast differentiation into α-smooth muscle actin (αSMA) expressing myofibroblasts, while prostaglandin E₂ (PGE₂) has been shown to antagonize TGF-β signaling; however, the temporal and mechanistic details of this relationship have not yet been fully characterized. We measured αSMA, a marker of fibroblast to myofibroblast differentiation, as a function of: TGF-β1 receptor-ligand complex internalization, PGE₂ binding, and adhesion signaling and developed a mathematical model capturing the molecular mechanisms of fibroblast differentiation. Using our model, we predict the following: Periodic dosing with PGE₂ temporarily renders fibroblasts incapable of differentiation and refractory to additional TGF-β1 stimulation; conversely, periodic dosing with TGF-β1 in the presence of PGE₂ induces a reduced signal response that can be further inhibited by the addition of more PGE₂. Controlled fibroblast differentiation is necessary for effective wound healing; however, excessive accumulation of αSMA-expressing myofibroblasts can result in fibrosis. Homeostasis of αSMA in our model requires a balance of positive and negative regulatory signals. Sensitivity analysis predicts that PGE₂ availability, TGF-β1 availability, and the rate of TGF-β1 receptor recycling each highly influence the rates of αSMA production. With this model, we are able to demonstrate that regulation of both TGF-β1 and PGE₂ signaling levels is essential for preventing fibroblast dysregulation.
Collapse
Affiliation(s)
- Hayley C Warsinske
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Shanna L Ashley
- Immunology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
219
|
Jurberg AD, Vasconcelos-Fontes L, Cotta-de-Almeida V. A Tale from TGF-β Superfamily for Thymus Ontogeny and Function. Front Immunol 2015; 6:442. [PMID: 26441956 PMCID: PMC4564722 DOI: 10.3389/fimmu.2015.00442] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/14/2015] [Indexed: 12/16/2022] Open
Abstract
Multiple signaling pathways control every aspect of cell behavior, organ formation, and tissue homeostasis throughout the lifespan of any individual. This review takes an ontogenetic view focused on the large superfamily of TGF-β/bone morphogenetic protein ligands to address thymus morphogenesis and function in T cell differentiation. Recent findings on a role of GDF11 for reversing aging-related phenotypes are also discussed.
Collapse
Affiliation(s)
- Arnon Dias Jurberg
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil ; Graduate Program in Cell and Developmental Biology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Larissa Vasconcelos-Fontes
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil
| | - Vinícius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz) , Rio de Janeiro , Brazil
| |
Collapse
|
220
|
Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, Deng L, Zanvit P, Tu E, Jin W, Abbatiello B, Goldberg N, Chen Q, Sun L, Zhao K, Chen W. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol 2015; 16:1077-84. [PMID: 26322481 PMCID: PMC5935106 DOI: 10.1038/ni.3252] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/16/2015] [Indexed: 02/05/2023]
Abstract
The molecular mechanisms by which signaling via transforming growth factor-β (TGF-β) and interleukin 4 (IL-4) control the differentiation of CD4(+) IL-9-producing helper T cells (TH9 cells) remain incompletely understood. We found here that the DNA-binding inhibitor Id3 regulated TH9 differentiation, as deletion of Id3 increased IL-9 production from CD4(+) T cells. Mechanistically, TGF-β1 and IL-4 downregulated Id3 expression, and this process required the kinase TAK1. A reduction in Id3 expression enhanced binding of the transcription factors E2A and GATA-3 to the Il9 promoter region, which promoted Il9 transcription. Notably, Id3-mediated control of TH9 differentiation regulated anti-tumor immunity in an experimental melanoma-bearing model in vivo and also in human CD4(+) T cells in vitro. Thus, our study reveals a previously unrecognized TAK1-Id3-E2A-GATA-3 pathway that regulates TH9 differentiation.
Collapse
Affiliation(s)
- Hiroko Nakatsukasa
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Dunfang Zhang
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Takashi Maruyama
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Hua Chen
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Masaki Ishikawa
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Deng
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter Zanvit
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Tu
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenwen Jin
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Brittany Abbatiello
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Nathan Goldberg
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - WanJun Chen
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
221
|
Romero-Palomo F, Risalde MA, Gómez-Villamandos JC. Immunopathologic Changes in the Thymus of Calves Pre-infected with BVDV and Challenged with BHV-1. Transbound Emerg Dis 2015; 64:574-584. [PMID: 26304025 DOI: 10.1111/tbed.12406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Indexed: 12/14/2022]
Abstract
The aim of this work was to investigate the effect of pre-infection with bovine viral diarrhoea virus (BVDV) on thymus immune cells from calves challenged with bovine herpesvirus 1 (BHV-1). Twelve Friesian calves, aged 8 to 9 months, were inoculated with non-cytopathic BVDV-1. Ten of them were subsequently challenged with BHV-1 and euthanized in batches of two at 1, 2, 4, 7 or 14 dpi with BHV-1. The other two calves were euthanized prior to the second inoculation and were used as BVDV-infected controls. A further 10 calves were inoculated solely with BHV-1 and euthanized at the same time points. Two calves were not inoculated with any agent and were used as negative controls. Quantitative changes in immune cells were evaluated with immunohistochemical methods to compare coinfected calves and calves challenged only with BHV-1. The results of this study pointed out BVDV as responsible for the thymic lesions observed in the experiment as well as for the majority of immunopathologic changes, including a downregulation of Foxp3 lymphocytes and TGFβ, which reverted as BVDV was cleared, and an overexpression of medullary CD8+ T cells. However, despite not inducing evident lesions in the thymus, BHV-1 seemed to prompt some immune alterations. Collectively, these data contribute to the knowledge on the immunopathologic alterations of the thymus during BVDV infections, and its importance in the development of secondary infections.
Collapse
Affiliation(s)
- F Romero-Palomo
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain
| | - M A Risalde
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain
| | - J C Gómez-Villamandos
- Department of Comparative Pathology, Veterinary Faculty, University of Córdoba-Agrifood Campus of International Excellence (ceiA3), Córdoba, Spain
| |
Collapse
|
222
|
Treg Cell Differentiation: From Thymus to Peripheral Tissue. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:175-205. [PMID: 26615097 DOI: 10.1016/bs.pmbts.2015.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regulatory T cells (Tregs) are crucial mediators of self-tolerance in the periphery. They differentiate in the thymus, where interactions with thymus-resident antigen-presenting cells, an instructive cytokine milieu, and stimulation of the T cell receptor lead to the selection into the Treg lineage and the induction of Foxp3 gene expression. Once mature, Treg cells leave the thymus and migrate into either the secondary lymphoid tissues, e.g., lymph nodes and spleen, or peripheral nonlymphoid tissues. There is growing evidence that Treg cells go beyond the classical modulation of immune responses and also play important functional roles in nonlymphoid peripheral tissues. In this review, we summarize recent findings about the thymic Treg lineage differentiation as well as the further specialization of Treg cells in the secondary lymphoid and in the peripheral nonlymphoid organs.
Collapse
|
223
|
MaruYama T. TGF-β-induced IκB-ζ controls Foxp3 gene expression. Biochem Biophys Res Commun 2015; 464:586-9. [PMID: 26163261 DOI: 10.1016/j.bbrc.2015.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/02/2015] [Indexed: 01/06/2023]
Abstract
Inhibitor of kappa B (IκB)-ζ, a member of the nuclear IκB family of proteins, is induced by the transforming growth factor (TGF)-β signaling pathway and plays a pivotal role in maintaining the balance of T helper (Th) cell subsets. IκB-ζ deficiency results in reduced percentages of Th17 cells and increased percentages of Th1 cells. In this study, the effects of IκB-ζ deficiency on T-cell subsets were examined further. The data showed that IκB-ζ-deficient T cells had a high capacity for generation of regulatory T cells (Tregs) when T cells were cultured under TGF-β stimulation in the presence of cytokine-neutralizing antibodies. Mechanistically, IκB-ζ itself negatively regulated activation of the Foxp3 promoter in a nuclear factor of kappaB-dependent manner. Thus, this study showed that IκB-ζ controlled Treg differentiation.
Collapse
Affiliation(s)
- Takashi MaruYama
- Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan; School of Medicine, Gifu University, Gifu 501-1194, Japan.
| |
Collapse
|
224
|
Wu T, Liu Y, Fan Z, Xu J, Jin L, Gao Z, Wu Z, Hu L, Wang J, Zhang C, Chen W, Wang S. miR-21 Modulates the Immunoregulatory Function of Bone Marrow Mesenchymal Stem Cells Through the PTEN/Akt/TGF-β1 Pathway. Stem Cells 2015; 33:3281-90. [PMID: 26086742 DOI: 10.1002/stem.2081] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/28/2015] [Accepted: 05/16/2015] [Indexed: 01/08/2023]
Abstract
microRNAs (miRNAs) act as regulatory signals for maintaining stemness, self-renewal, and differentiation of mesenchymal stem cells (MSCs), but whether miRNAs modulate the immunoregulatory function of MSCs remains largely unknown. Here, we show that miR-21 negatively regulates the activity of immunoregulatory cytokine transforming growth factor-β1 (TGF-β1) in MSCs. Consistently, bone marrow MSCs (BMMSCs) from miR-21(-/-) mice show enhanced immunosuppressive function by more TGF-β1 secretion and induce more CD4(+) Foxp3(+) regulatory T cells compared with wild-type BMMSCs in vitro, which anti-TGF-β1 antibody abrogates. Mechanistically, miR-21 inhibits TGF-β1 expression by targeting phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in BMMSCs. Downstream of PTEN, miR-21 promotes activation of Akt, and consequently increases activation of NF-κB pathway. Importantly, adoptive transfer of miR-21(-/-) BMMSCs into mice with experimental colitis more effectively ameliorates colonic inflammation in a TGF-β1-dependent manner. Thus, these findings indicate a previously uncovered mechanism of miR-21 control immunoregulatory function of BMMSCs through TGF-β1 inhibition.
Collapse
Affiliation(s)
- Tingting Wu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cell Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - Junji Xu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration
| | - Luyuan Jin
- Molecular Laboratory for Gene Therapy and Tooth Regeneration
| | - Zhenhua Gao
- Molecular Laboratory for Gene Therapy and Tooth Regeneration
| | - Zhifang Wu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration
| | - Lei Hu
- Molecular Laboratory for Gene Therapy and Tooth Regeneration
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration
| | - Chunmei Zhang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration
| | - Wanjun Chen
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration.,Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
225
|
Kwan T, Chadban SJ, Ma J, Bao S, Alexander SI, Wu H. IL-17 deficiency attenuates allograft injury and prolongs survival in a murine model of fully MHC-mismatched renal allograft transplantation. Am J Transplant 2015; 15:1555-67. [PMID: 25824574 DOI: 10.1111/ajt.13140] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 01/25/2023]
Abstract
IL-17 is a pro-inflammatory cytokine implicated in the pathogenesis of inflammatory and autoimmune diseases. However the role of IL-17 in renal allograft rejection has not been fully explored. Here, we investigate the impact of IL-17 in a fully MHC-mismatched, life-sustaining, murine model of kidney allograft rejection using IL-17 deficient donors and recipients (IL-17(-/-) allografts). IL-17(-/-) allografts exhibited prolonged survival which was associated with reduced expression of the Th1 cytokine IFN-γ and histological attenuation of acute and chronic allograft rejection, as compared to wild-type allograft recipients. Results were confirmed in WT allograft recipients treated with an IL-17 blocking antibody. Subsequent experiments using either donors or recipients deficient in IL-17 showed a trend towards prolongation of survival only when recipients were IL-17(-/-) . Administration of a depleting anti-CD25 antibody to IL-17(-/-) recipients abrogated the survival advantage conferred by IL-17 deficiency, suggesting the involvement of a CD4(+) CD25(+) T cell regulatory mechanism. Therefore, IL-17 deficiency or neutralization was protective against the development of kidney allograft rejection, which may be mediated by impairment of Th1 responses and/or enhanced protection by Tregs.
Collapse
Affiliation(s)
- T Kwan
- Collaborative Transplant Research Group and Renal Medicine, Royal Prince Alfred Hospital, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - S J Chadban
- Collaborative Transplant Research Group and Renal Medicine, Royal Prince Alfred Hospital, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - J Ma
- Collaborative Transplant Research Group and Renal Medicine, Royal Prince Alfred Hospital, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| | - S Bao
- Sydney Medical School, University of Sydney, Sydney, Australia.,Discipline of Pathology, School of Medical Sciences
| | - S I Alexander
- Sydney Medical School, University of Sydney, Sydney, Australia.,The Children Hospital at Westmead, Australia
| | - H Wu
- Collaborative Transplant Research Group and Renal Medicine, Royal Prince Alfred Hospital, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
226
|
Li X, Zheng Y. Regulatory T cell identity: formation and maintenance. Trends Immunol 2015; 36:344-53. [PMID: 25981968 PMCID: PMC4458194 DOI: 10.1016/j.it.2015.04.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/18/2015] [Accepted: 04/19/2015] [Indexed: 01/05/2023]
Abstract
T regulatory (Treg) cells are central to the maintenance of immune homeostasis. The transcription factor forkhead box P3 (Foxp3) is essential for specifying the Treg cell lineage during development, and continued expression of Foxp3 in mature Treg cells is necessary for suppressive function. Loss of Foxp3 expression in Treg cells is associated with autoimmune pathology. Here, we review recent insights into the mechanisms that maintain Treg cell stability and function, and place these findings within the broader understanding of mechanisms that establish Treg cell identity during development. We integrate emerging principles in Treg cell lineage maintenance with the mechanisms that allow Treg cells to sense and respond to varied inflammatory environments, and outline important areas of future inquiry in this context.
Collapse
Affiliation(s)
- Xudong Li
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ye Zheng
- Nomis Foundation Laboratories for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, 10010N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
227
|
Lou H, Fang J, Li P, Zhou W, Wang Y, Fan E, Li Y, Wang H, Liu Z, Xiao L, Wang C, Zhang L. Frequency, suppressive capacity, recruitment and induction mechanisms of regulatory T cells in sinonasal squamous cell carcinoma and nasal inverted papilloma. PLoS One 2015; 10:e0126463. [PMID: 26020249 PMCID: PMC4447263 DOI: 10.1371/journal.pone.0126463] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/03/2015] [Indexed: 02/04/2023] Open
Abstract
Background Sinonasal squamous cell carcinoma (SSCC) and nasal inverted papilloma (NIP) represent the predominant type of malignant and benign tumors in sinonasal tract, respectively. CD4+CD25+Foxp3+ natural regulatory T (Treg) cells might play critical role(s) in the suppression of anti-tumor immune response and thus shed light on tumor progression from benign to malignant. Objective This study aimed to evaluate the frequency and suppressive capacity of Treg cells in SSCC compared to NIP and further to explore the underlying mechanisms. Patients and Methods Frequencies of Treg, Th1 and Th2 cells were evaluated by flow cytometry in tissue homogenate and peripheral blood from 31 SSCC patients, 32 NIP patients and 35 normal controls. Treg cells were tested for regulatory function by co-culture with effector T cells. CCR4 and its ligands, CCL22 and CCL17, were analyzed by flow cytometry and Luminex, respectively. The chemoattractant properties of CCR4/CCL22 and CCR4/CCL17 for Treg cells were assessed using the Boyden chamber technique, to elucidate the potential mechanisms of Treg recruitment in tumor microenvironment. Treg cells induction via TGF-β was assessed with transwells after local CD4+Foxp3+ T cells were assessed by immunohistochemistry and TGF-β concentration was measured by Luminex. Results Tumor-infiltrating Treg cells increased significantly from normal to NIP to SSCC (P ≤ 0.001 for normal vs. NIP and P = 0.004 for NIP vs. SSCC). Significantly elevated frequency and enhanced suppression capacity of circulating Treg cells in SSCC were detected compared to NIP and healthy controls, concomitant with Th1 decrease and Th2 increase. Apparently increased CCL22 attracted CCR4-expressing Treg cells to tumor microenvironment in SSCC, compared to NIP. SSCC produced significantly more TGF-β than NIP and thus possessed greater potential for Treg cell induction. Conclusion Frequency and suppressive capacity of Treg cells enhanced with progression of malignancy from NIP to SSCC. Circulating Treg cells were recruited to tumor tissue via CCR4/CCL22 signalling, whereas tumor-synthesised TGF-β contributed to induction of peripheral Treg cells.
Collapse
Affiliation(s)
- Hongfei Lou
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Jugao Fang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China
| | - Pingdong Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China
| | - Weiguo Zhou
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China
| | - Yang Wang
- Beijing Key Laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Erzhong Fan
- Beijing Key Laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Ying Li
- Beijing Key Laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Hong Wang
- Beijing Key Laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Zhongyan Liu
- Beijing Key Laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, PR China
| | - Lei Xiao
- Sections of Pulmonary & Cardiology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chengshuo Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China
- * E-mail: (CW); (LZ)
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of nasal diseases, Beijing Institute of Otolaryngology, Beijing, PR China
- * E-mail: (CW); (LZ)
| |
Collapse
|
228
|
Khor B, Gagnon JD, Goel G, Roche MI, Conway KL, Tran K, Aldrich LN, Sundberg TB, Paterson AM, Mordecai S, Dombkowski D, Schirmer M, Tan PH, Bhan AK, Roychoudhuri R, Restifo NP, O'Shea JJ, Medoff BD, Shamji AF, Schreiber SL, Sharpe AH, Shaw SY, Xavier RJ. The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells. eLife 2015; 4:e05920. [PMID: 25998054 PMCID: PMC4441007 DOI: 10.7554/elife.05920] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/27/2015] [Indexed: 12/12/2022] Open
Abstract
The balance between Th17 and T regulatory (Treg) cells critically modulates immune homeostasis, with an inadequate Treg response contributing to inflammatory disease. Using an unbiased chemical biology approach, we identified a novel role for the dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A in regulating this balance. Inhibition of DYRK1A enhances Treg differentiation and impairs Th17 differentiation without affecting known pathways of Treg/Th17 differentiation. Thus, DYRK1A represents a novel mechanistic node at the branch point between commitment to either Treg or Th17 lineages. Importantly, both Treg cells generated using the DYRK1A inhibitor harmine and direct administration of harmine itself potently attenuate inflammation in multiple experimental models of systemic autoimmunity and mucosal inflammation. Our results identify DYRK1A as a physiologically relevant regulator of Treg cell differentiation and suggest a broader role for other DYRK family members in immune homeostasis. These results are discussed in the context of human diseases associated with dysregulated DYRK activity.
Collapse
Affiliation(s)
- Bernard Khor
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Broad Institute of MIT and Harvard, Cambridge, United States
- Pathology Service, Massachusetts General Hospital, Boston, United States
| | - John D Gagnon
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Gautam Goel
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Marly I Roche
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, United States
| | - Kara L Conway
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Khoa Tran
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Leslie N Aldrich
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | | | - Alison M Paterson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, United States
| | - Scott Mordecai
- Pathology Service, Massachusetts General Hospital, Boston, United States
| | - David Dombkowski
- Pathology Service, Massachusetts General Hospital, Boston, United States
| | | | - Pauline H Tan
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Atul K Bhan
- Pathology Service, Massachusetts General Hospital, Boston, United States
| | - Rahul Roychoudhuri
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, United States
| | - Benjamin D Medoff
- Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, United States
| | | | - Stuart L Schreiber
- Broad Institute of MIT and Harvard, Cambridge, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, United States
| | - Stanley Y Shaw
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, United States
- Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
229
|
Worthington JJ, Kelly A, Smedley C, Bauché D, Campbell S, Marie JC, Travis MA. Integrin αvβ8-Mediated TGF-β Activation by Effector Regulatory T Cells Is Essential for Suppression of T-Cell-Mediated Inflammation. Immunity 2015; 42:903-15. [PMID: 25979421 PMCID: PMC4448149 DOI: 10.1016/j.immuni.2015.04.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 12/22/2014] [Accepted: 04/23/2015] [Indexed: 01/19/2023]
Abstract
Regulatory T (Treg) cells play a pivotal role in suppressing self-harmful T cell responses, but how Treg cells mediate suppression to maintain immune homeostasis and limit responses during inflammation is unclear. Here we show that effector Treg cells express high amounts of the integrin αvβ8, which enables them to activate latent transforming growth factor-β (TGF-β). Treg-cell-specific deletion of integrin αvβ8 did not result in a spontaneous inflammatory phenotype, suggesting that this pathway is not important in Treg-cell-mediated maintenance of immune homeostasis. However, Treg cells lacking expression of integrin αvβ8 were unable to suppress pathogenic T cell responses during active inflammation. Thus, our results identify a mechanism by which Treg cells suppress exuberant immune responses, highlighting a key role for effector Treg-cell-mediated activation of latent TGF-β in suppression of self-harmful T cell responses during active inflammation. Human and mouse effector Treg cells express functional TGF-β-activating integrin αvβ8 Treg cell integrin αvβ8-mediated TGF-β activation is not needed for T cell homeostasis Integrin αvβ8 expression by Treg cells suppresses active inflammation Pathway could be targeted to promote Treg-cell-mediated suppression of inflammation
Collapse
Affiliation(s)
- John J Worthington
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK; Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK; Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| | - Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK; Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK; Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Catherine Smedley
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK; Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK; Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - David Bauché
- Immunology Virology and Inflammation Department, CRCL, UMR INSERM1052, CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Cedex 08 Lyon, France; Université Lyon 1, 69000 Lyon, France; Labex DEVweCAN, 69008 Lyon, France; TGFβ and Immuno-evasion Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Simon Campbell
- Gastroenterology Unit, Manchester Royal Infirmary, Central Manchester University Hospital NHS Foundation Trust, Manchester M13 9WL, UK
| | - Julien C Marie
- Immunology Virology and Inflammation Department, CRCL, UMR INSERM1052, CNRS 5286, Centre Léon Bérard, 28 rue Laennec, 69373 Cedex 08 Lyon, France; Université Lyon 1, 69000 Lyon, France; Labex DEVweCAN, 69008 Lyon, France; TGFβ and Immuno-evasion Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK; Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK; Manchester Immunology Group, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
230
|
Tang RJ, Shen SN, Zhao XY, Nie YZ, Xu YJ, Ren J, Lv MM, Hou YY, Wang TT. Mesenchymal stem cells-regulated Treg cells suppress colitis-associated colorectal cancer. Stem Cell Res Ther 2015; 6:71. [PMID: 25889203 PMCID: PMC4414289 DOI: 10.1186/s13287-015-0055-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 08/30/2014] [Accepted: 03/18/2015] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Previous studies have produced controversial results regarding whether mesenchymal stem cells (MSCs) promote or inhibit tumor development. Given the dual role of MSCs in inflammation and cancer, in this study the colitis-associated colorectal cancer (CAC) model was used to examine whether umbilical cord tissue-derived MSCs could prevent neoplasm by inhibiting chronic inflammation. METHODS MSCs were obtained and identified using flow cytometry. Colitis-associated colorectal cancer model was induced using azoxymethane (AOM) and dextran sulfate sodium (DSS) and MSCs were injected intravenously twice. Levels of immune cells in mesenteric lymph node including regulatory T (Treg) cells were detected using flow cytometry. Naïve T cells and Jurkat cells were co-cultured with MSCs and the effect of MSCs on Treg cells differentiation was evaluated. RESULTS After injection through tail vein, MSCs could migrate to colon and suppress colitis-related neoplasm. This tumor suppressive effect was characterized by longer colon length, decreased tumor numbers and decreased expression of Ki-67. Moreover, MSCs alleviated the pathology of inflammation in the colitis stage of CAC model and inhibited inflammation cytokines both in colon and serum. Furthermore, Treg cells were accumulated in mesenteric lymph node of MSCs-treated mice while the percentage of T helper cells 2 (Th2) and Th17 were not changed. Of note, MSCs secreted transforming growth factor-β (TGF-β) enhanced the induction of Treg cells from naïve T cells. The conditioned medium of MSCs also activated Smad2 signaling, which has been reported to regulate Treg cells. CONCLUSIONS These results proved that MSCs could migrate to colon tissues and induce the differentiation of Treg cells via Smad2 as so to inhibit the colitis and suppress the development of CAC.
Collapse
Affiliation(s)
- Rui-jing Tang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Su-nan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| | - Xiao-yin Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Yun-zhong Nie
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Yu-jun Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Jing Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Ming-ming Lv
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Ya-yi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| | - Ting-ting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| |
Collapse
|
231
|
Abstract
Transforming growth factor-β (TGF-β) functions as an immune suppressor by influencing immune cells' development, differentiation, tolerance induction and homeostasis. In human diseases, TGF-β has been revealed as an essential regulator of both innate and adaptive functions in autoimmune diseases. Furthermore, it plays a significant role in cancer by inhibiting immunosurveillance in the tumor-bearing host. A variety of TGF-β neutralizing anti-cancer therapies have been investigated based on the role of TGF-β in immunosuppression. New studies are focusing on combining TGF-β blockade with tumor vaccinations and immunogene therapies.
Collapse
Affiliation(s)
- Jingyi Sheng
- Department of Surgery (RMH), The University of Melbourne , Parkville, Victoria , Australia and
| | | | | |
Collapse
|
232
|
Huehn J, Beyer M. Epigenetic and transcriptional control of Foxp3+ regulatory T cells. Semin Immunol 2015; 27:10-8. [PMID: 25801206 DOI: 10.1016/j.smim.2015.02.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/08/2015] [Indexed: 12/29/2022]
Abstract
Regulatory T cells (Treg cells) present a unique T-cell lineage that plays a key role for the initiation and maintenance of immunological tolerance. Treg cells are characterized by the expression of the forkhead box transcription factor Foxp3, which acts as a lineage-specifying factor and determines the unique properties of these immunosuppressive cells. Work over the past few years has shown that well-defined and precisely controlled events on transcriptional and epigenetic level are required to ensure stable expression of Foxp3 in Treg cells. More recent work suggested that in addition to stable Foxp3 expression, epigenetic modifications of Treg-cell specific genes contribute to the unique phenotype of Treg cells by imprinting their transcriptional program and stabilizing the expression of molecules being essential for the suppressive properties of Treg cells. In this review, we will highlight how Foxp3 expression itself is epigenetically and transcriptionally controlled, how the Treg-cell specific epigenetic signature is achieved, how Foxp3 as transcription factor influences the gene expression programs in Treg cells and how unique properties of Treg-cell subsets are defined by other transcription factors.
Collapse
Affiliation(s)
- Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany.
| | - Marc Beyer
- LIMES-Institute, Laboratory for Genomics and Immunoregulation, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany.
| |
Collapse
|
233
|
Chen W, Konkel JE. Development of thymic Foxp3(+) regulatory T cells: TGF-β matters. Eur J Immunol 2015; 45:958-65. [PMID: 25684698 DOI: 10.1002/eji.201444999] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/07/2015] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
Abstract
CD4(+) regulatory T cells expressing the transcription factor Foxp3 can be generated in the thymus (tTreg cells), but the cellular and molecular pathways driving their development remain incompletely understood. TGF-β is essential for the generation of Foxp3(+) Treg cells converted from peripheral naïve CD4(+) T cells (pTreg cells), yet a role for TGF-β in tTreg-cell development was initially refuted. Nevertheless, recent studies have unmasked a requirement for TGF-β in the generation of tTreg cells. Experimental evidence reveals that TGF-β in the context of TCR stimulation induces Foxp3 gene transcription in thymic Treg precursors, CD4(+) CD8(-) CD25(-) semimature and mature single-positive thymocytes. Intriguingly, thymic apoptosis was found to be intrinsically linked to the generation of tTreg cells, as apoptosis induced expression of TGF-β intrathymically. In this short review, we will highlight key data, discuss the experimental evidence and propose a modified model of tTreg-cell development involving TGF-β. We will also outline the remaining unresolved questions concerning generation of thymic Foxp3(+) Treg cells and provide our personal perspectives on the mechanisms controlling tTreg-cell development.
Collapse
Affiliation(s)
- WanJun Chen
- Mucosal Immunology Section, OPCB, NIDCR, 30 Convent Dr., Bethesda, MD, USA
| | | |
Collapse
|
234
|
Hoeppli RE, Wu D, Cook L, Levings MK. The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Front Immunol 2015; 6:61. [PMID: 25741338 PMCID: PMC4332351 DOI: 10.3389/fimmu.2015.00061] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/30/2015] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Tregs) are suppressive T cells that have an essential role in maintaining the balance between immune activation and tolerance. Their development, either in the thymus, periphery, or experimentally in vitro, and stability and function all depend on the right mix of environmental stimuli. This review focuses on the effects of cytokines, metabolites, and the microbiome on both human and mouse Treg biology. The role of cytokines secreted by innate and adaptive immune cells in directing Treg development and shaping their function is well established. New and emerging data suggest that metabolites, such as retinoic acid, and microbial products, such as short-chain fatty acids, also have a critical role in guiding the functional specialization of Tregs. Overall, the complex interaction between distinct environmental stimuli results in unique, and in some cases tissue-specific, tolerogenic environments. Understanding the conditions that favor Treg induction, accumulation, and function is critical to defining the pathophysiology of many immune-mediated diseases and to developing new therapeutic interventions.
Collapse
Affiliation(s)
- Romy E. Hoeppli
- Department of Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Dan Wu
- Department of Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Laura Cook
- Department of Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Megan K. Levings
- Department of Surgery, Child and Family Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
235
|
Jin Y, Hong HS, Son Y. Substance P enhances mesenchymal stem cells-mediated immune modulation. Cytokine 2015; 71:145-53. [DOI: 10.1016/j.cyto.2014.10.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 12/23/2022]
|
236
|
Zhang Y, Wu BX, Metelli A, Thaxton JE, Hong F, Rachidi S, Ansa-Addo E, Sun S, Vasu C, Yang Y, Liu B, Li Z. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest 2015; 125:859-69. [PMID: 25607841 DOI: 10.1172/jci79014] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/11/2014] [Indexed: 01/19/2023] Open
Abstract
Molecular chaperones control a multitude of cellular functions via folding chaperone-specific client proteins. CD4+FOXP3+ Tregs play key roles in maintaining peripheral tolerance, which is subject to regulation by multiple molecular switches, including mTOR and hypoxia-inducible factor. It is not clear whether GP96 (also known as GRP94), which is a master TLR and integrin chaperone, controls Treg function. Using murine genetic models, we demonstrated that GP96 is required for Treg maintenance and function, as loss of GP96 resulted in instability of the Treg lineage and impairment of suppressive functions in vivo. In the absence of GP96, Tregs were unable to maintain FOXP3 expression levels, resulting in systemic accumulation of pathogenic IFN-γ-producing and IL-17-producing T cells. We determined that GP96 serves as an essential chaperone for the cell-surface protein glycoprotein A repetitions predominant (GARP), which is a docking receptor for latent membrane-associated TGF-β (mLTGF-β). The loss of both GARP and integrins on GP96-deficient Tregs prevented expression of mLTGF-β and resulted in inefficient production of active TGF-β. Our work demonstrates that GP96 regulates multiple facets of Treg biology, thereby placing Treg stability and immunosuppressive functions strategically under the control of a major stress chaperone.
Collapse
|
237
|
Mastorodemos V, Ioannou M, Verginis P. Cell-based modulation of autoimmune responses in multiple sclerosis and experimental autoimmmune encephalomyelitis: therapeutic implications. Neuroimmunomodulation 2015; 22:181-95. [PMID: 24852748 DOI: 10.1159/000362370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 03/20/2014] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is a prototypic autoimmune inflammatory disorder of the central nervous system (CNS). MS pathogenesis is a complex phenomenon that is influenced by genetic and environmental factors that lead to the dysregulation of immune homeostasis and tolerance. It has been shown that pathogenic T lymphocyte subsets, such as T helper 1 (Th1) and Th17 cells, play a crucial role in the autoimmune cascade influencing disease initiation, progression and subsequent tissue damage during MS. On the other hand, several mechanisms have been described in both patients and animal models of MS with the potential to modulate myelin-specific autoimmune responses and to facilitate amelioration of disease pathology. To this end, regulatory T cells (Tregs) are considered to be a powerful cell subset not only in the maintenance of homeostasis but also in the re-establishment of tolerance. Along these lines, other cell subsets such as dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), γδ T cells and natural killer (NK) cells have been shown to regulate the autoimmune response in the CNS under certain circumstances. This review will attempt to summarize the relevant knowledge of the regulatory mechanisms exerted by immune cells in MS that could hold the promise for the design of novel therapeutic strategies.
Collapse
|
238
|
Transcriptional and Epigenetic Control of Regulatory T Cell Development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:1-33. [DOI: 10.1016/bs.pmbts.2015.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
239
|
A critical role for transcription factor Smad4 in T cell function that is independent of transforming growth factor β receptor signaling. Immunity 2014; 42:68-79. [PMID: 25577439 DOI: 10.1016/j.immuni.2014.12.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/30/2014] [Accepted: 12/23/2014] [Indexed: 11/21/2022]
Abstract
Transforming growth factor-beta (TGF-β) suppresses T cell function to maintain self-tolerance and to promote tumor immune evasion. Yet how Smad4, a transcription factor component of TGF-β signaling, regulates T cell function remains unclear. Here we have demonstrated an essential role for Smad4 in promoting T cell function during autoimmunity and anti-tumor immunity. Smad4 deletion rescued the lethal autoimmunity resulting from transforming growth factor-beta receptor (TGF-βR) deletion and compromised T-cell-mediated tumor rejection. Although Smad4 was dispensable for T cell generation, homeostasis, and effector function, it was essential for T cell proliferation after activation in vitro and in vivo. The transcription factor Myc was identified to mediate Smad4-controlled T cell proliferation. This study thus reveals a requirement of Smad4 for T-cell-mediated autoimmunity and tumor rejection, which is beyond the current paradigm. It highlights a TGF-βR-independent role for Smad4 in promoting T cell function, autoimmunity, and anti-tumor immunity.
Collapse
|
240
|
Local delivery of mesenchymal stem cells with poly-lactic-co-glycolic acid nano-fiber scaffold suppress arthritis in rats. PLoS One 2014; 9:e114621. [PMID: 25474102 PMCID: PMC4256456 DOI: 10.1371/journal.pone.0114621] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/11/2014] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSC) have been used recently for the treatment of autoimmune diseases in murine animal models due to the immunoregulatory capacity. Current utilization of MSC requires cells in certain quantity with multiple courses of administration, leading to limitation in clinical usage. Here we efficiently treated collagen-induced arthritis rats with a single local implantation with reduced number of MSC (2∼20% of previous studies) with nano-fiber poly-lactic-co-glycolic acid (nano-fiber) scaffold. MSC seeded on nano-fiber scaffold suppressed arthritis and bone destruction due to inhibition of systemic inflammatory reaction and immune response by suppressing T cell proliferation and reducing anti- type II collagen antibody production. In vivo tracing of MSC demonstrated that these cells remained within the scaffold without migrating to other organs. Meanwhile, in vitro culture of MSC with nano-fiber scaffold significantly increased TGF-β1 production. These results indicate an efficient utilization of MSC with the scaffold for destructive joints in rheumatoid arthritis by a single and local inoculation. Thus, our data may serve as a new strategy for MSC-based therapy in inflammatory diseases and an alternative delivery method for bone destruction treatment.
Collapse
|
241
|
Lv M, Xu Y, Tang R, Ren J, Shen S, Chen Y, Liu B, Hou Y, Wang T. miR141–CXCL1–CXCR2 Signaling–Induced Treg Recruitment Regulates Metastases and Survival of Non–Small Cell Lung Cancer. Mol Cancer Ther 2014; 13:3152-62. [DOI: 10.1158/1535-7163.mct-14-0448] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
242
|
Ma PF, Jiang J, Gao C, Cheng PP, Li JL, Huang X, Lin YY, Li Q, Peng YZ, Cai MC, Shao W, Zhu Q, Han S, Qin Q, Xia JJ, Qi ZQ. Immunosuppressive effect of compound K on islet transplantation in an STZ-induced diabetic mouse model. Diabetes 2014; 63:3458-69. [PMID: 24834979 DOI: 10.2337/db14-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Islet transplantation is a therapeutic option for type 1 diabetes, but its long-term success is limited by islet allograft survival. Many factors imperil islet survival, especially the adverse effects and toxicity due to clinical immunosuppressants. Compound (Cpd) K is a synthesized analog of highly unsaturated fatty acids from Isatis tinctoria L. (Cruciferae). Here we investigated the therapeutic effect of Cpd K in diabetic mice and found that it significantly prolonged islet allograft survival with minimal adverse effects after 10 days. Furthermore, it reduced the proportion of CD4(+) and CD8(+) T cells in spleen and lymph nodes, inhibited inflammatory cell infiltration in allografts, suppressed serum interleukin-2 and interferon-γ secretion, and increased transforming growth factor-β and Foxp3 mRNA expression. Surprisingly, Cpd K and rapamycin had a synergistic effect. Cpd K suppressed proliferation of naïve T cells by inducing T-cell anergy and promoting the generation of regulatory T cells. In addition, nuclear factor-κB signaling was also blocked. Taken together, these findings indicate that Cpd K may have a potential immunosuppressant effect on islet transplantation.
Collapse
Affiliation(s)
- Peng-Fei Ma
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, PR China
| | - Jie Jiang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen City, Fujian Province, PR China
| | - Chang Gao
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, PR China
| | - Pan-Pan Cheng
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, PR China
| | - Jia-Li Li
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, PR China
| | - Xin Huang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, PR China
| | - Ying-Ying Lin
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, PR China
| | - Qing Li
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, PR China
| | - Yuan-Zheng Peng
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, PR China
| | - Mei-Chun Cai
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen City, Fujian Province, PR China
| | - Wei Shao
- Department of Pathology, The Affiliated Chenggong Hospital of Xiamen University, Xiamen City, Fujian Province, PR China
| | - Qi Zhu
- Department of Hepatobiliary Internal Medicine Clinic, The Affiliated Fuzhou Second Hospital of Xiamen University, Fuzhou City, Fujian Province, PR China
| | - Sai Han
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, PR China
| | - Qing Qin
- School of Pharmaceutical Sciences, Guangxi Medical University, Nanning City, Guangxi Province, PR China
| | - Jun-Jie Xia
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, PR China
| | - Zhong-Quan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, PR China
| |
Collapse
|
243
|
McCarron MJ, Marie JC. TGF-β prevents T follicular helper cell accumulation and B cell autoreactivity. J Clin Invest 2014; 124:4375-86. [PMID: 25157822 DOI: 10.1172/jci76179] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/11/2014] [Indexed: 02/03/2023] Open
Abstract
T follicular helper (Tfh) cells contribute to the establishment of humoral immunity by controlling the delivery of helper signals to activated B cells; however, Tfh development must be restrained, as aberrant accumulation of these cells is associated with positive selection of self-reactive germinal center B cells and autoimmunity in both humans and mice. Here, we show that TGF-β signaling in T cells prevented Tfh cell accumulation, self-reactive B cell activation, and autoantibody production. Using mice with either T cell-specific loss or constitutive activation of TGF-β signaling, we demonstrated that TGF-β signaling is required for the thymic maturation of CD44⁺CD122⁺Ly49⁺CD8⁺ regulatory T cells (Tregs), which induce Tfh apoptosis and thus regulate this cell population. Moreover, peripheral Tfh cells escaping TGF-β control were resistant to apoptosis, exhibited high levels of the antiapoptotic protein BCL2, and remained refractory to regulation by CD8+ Tregs. The unrestrained accumulation of Tfh cells in the absence of TGF-β was dependent on T cell receptor engagement and required B cells. Together, these data indicate that TGF-β signaling restrains Tfh cell accumulation and B cell-associated autoimmunity and thereby controls self-tolerance.
Collapse
|
244
|
Wu RQ, Zhang DF, Tu E, Chen QM, Chen W. The mucosal immune system in the oral cavity-an orchestra of T cell diversity. Int J Oral Sci 2014; 6:125-32. [PMID: 25105816 PMCID: PMC4170154 DOI: 10.1038/ijos.2014.48] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2014] [Indexed: 02/05/2023] Open
Abstract
The mucosal immune system defends against a vast array of pathogens, yet it exhibits limited responses to commensal microorganisms under healthy conditions. The oral-pharyngeal cavity, the gateway for both the gastrointestinal and respiratory tracts, is composed of complex anatomical structures and is constantly challenged by antigens from air and food. The mucosal immune system of the oral-pharyngeal cavity must prevent pathogen entry while maintaining immune homeostasis, which is achieved via a range of mechanisms that are similar or different to those utilized by the gastrointestinal immune system. In this review, we summarize the features of the mucosal immune system, focusing on T cell subsets and their functions. We also discuss our current understanding of the oral-pharyngeal mucosal immune system.
Collapse
Affiliation(s)
- Rui-Qing Wu
- 1] Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA [2] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dun-Fang Zhang
- 1] Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA [2] State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Eric Tu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| |
Collapse
|
245
|
Appropriate development of the liver Treg compartment is modulated by the microbiota and requires TGF-β and MyD88. J Immunol Res 2014; 2014:279736. [PMID: 25177709 PMCID: PMC4142300 DOI: 10.1155/2014/279736] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 06/30/2014] [Indexed: 01/22/2023] Open
Abstract
Neither the early postnatal development of the liver Treg compartment nor the factors that regulate its development has been characterized. We compared the early developmental patterns of Treg cell accumulation in murine liver, thymus, and spleen. A FoxP3EGFP reporter mouse was employed to identify Treg cells. Mononuclear cells were isolated from organs postnatally, stained for CD4, and examined by flow cytometry to enumerate FoxP3+CD4hi cells. To assess roles for TGF-β1, MyD88, and TLR2, gene-specific knockout pups were generated from heterozygous breeders. To test the role of commensal bacteria, pregnant dams were administered antibiotics during gestation and after parturition. The pattern of appearance of Treg cells differed in liver, spleen, and thymus. Notably, at 1-2 weeks, the frequency of CD4hi FoxP3+ T cells in liver exceeded that in spleen by 1.5- to 2-fold. The relative increase in liver Treg frequency was transient and was dependent upon TGF-β1 and MyD88, but not TLR2, and was abrogated by antibiotic treatment. A relative increase in liver Treg frequency occurs approximately 1-2 weeks after parturition that appears to be driven by colonization of the intestine with commensal bacteria and is mediated by a pathway that requires TGF-β1 and MyD88, but not TLR2.
Collapse
|
246
|
Tu E, Chia PZC, Chen W. TGFβ in T cell biology and tumor immunity: Angel or devil? Cytokine Growth Factor Rev 2014; 25:423-35. [PMID: 25156420 DOI: 10.1016/j.cytogfr.2014.07.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The evolutionally conserved transforming growth factor β (TGFβ) affects multiple cell types in the immune system by either stimulating or inhibiting their differentiation and function. Studies using transgenic mice with ablation of TGFβ or its receptor have revealed the biological significance of TGFβ signaling in the control of T cells. However, it is now clear that TGFβ is more than an immunosuppressive cytokine. Disruption of TGFβ signaling pathway also leads to impaired generation of certain T cell populations. Therefore, in the normal physiological state, TGFβ actively maintains T cell homeostasis and regulates T cell function. However, in the tumor microenvironment, TGFβ creates an immunosuppressive milieu that inhibits antitumor immunity. Here, we review recent advances in our understanding of the roles of TGFβ in the regulation of T cells and tumor immunity.
Collapse
Affiliation(s)
- Eric Tu
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pei Zhi Cheryl Chia
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wanjun Chen
- Mucosal Immunology Section, OPCB, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
247
|
Abstract
A critical function of the thymus is to help enforce tolerance to self. The importance of central tolerance in preventing autoimmunity has been enlightened by a deeper understanding of the interactions of developing T cells with a diverse population of thymic antigen presenting cell populations. Furthermore, there has been rapid progress in our understanding of how autoreactive T cell specificities are diverted into the T regulatory lineage. Here we review and highlight the recent progress in how tolerance is imposed on the developing thymocyte repertoire.
Collapse
Affiliation(s)
- Maria L Mouchess
- Diabetes Center, University of California-San Francisco, Box 0540, San Francisco, CA, 94143, USA
| | | |
Collapse
|
248
|
Campisi L, Cummings RJ, Blander JM. Death-defining immune responses after apoptosis. Am J Transplant 2014; 14:1488-98. [PMID: 24903539 PMCID: PMC4115279 DOI: 10.1111/ajt.12736] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 01/25/2023]
Abstract
Apoptosis is a programmed form of cell death whereby characteristic internal cellular dismantling is accompanied by the preservation of plasma membrane integrity. Maintaining this order during apoptosis prevents the release of cellular contents and ensures a noninflammatory death. Here, we consider examples of apoptosis in different contexts and discuss how the same form of cell death could have different immunological consequences. Multiple parameters such as cell death as a result of microbial infection, the nature of the inflammatory microenvironment, the type of responding phagocytic cells and the genetic background of the host organism all differentially influence the immunological consequences of apoptosis.
Collapse
|
249
|
MeCP2 enforces Foxp3 expression to promote regulatory T cells' resilience to inflammation. Proc Natl Acad Sci U S A 2014; 111:E2807-16. [PMID: 24958888 DOI: 10.1073/pnas.1401505111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Forkhead box P3(+) (Foxp3(+)) regulatory T cells (Tregs) are crucial for peripheral tolerance. During inflammation, steady Foxp3 expression in Tregs is essential for maintaining their lineage identity and suppressive function. However, the molecular machinery governing Tregs' resilience to inflammation-induced Foxp3 destabilization remains elusive. Here, we demonstrate that methyl-CpG binding protein 2 (MeCP2), an eminent epigenetic regulator known primarily as the etiological factor of Rett syndrome, is critical to sustain Foxp3 expression in Tregs during inflammation. In response to inflammatory stimuli, MeCP2 is specifically recruited to the Conserved Non-Coding sequence 2 region of the foxp3 locus, where it collaborates with cAMP responsive element binding protein 1 to promote local histone H3 acetylation, thereby counteracting inflammation-induced epigenetic silencing of foxp3. Consequently, Treg-specific deletion of MeCP2 causes spontaneous immune activation in mice and failure in protection against autoimmunity. Furthermore, we demonstrate that Foxp3 expression in MeCP2-deficient Tregs diminishes with time, resulting in their failure to suppress effector T-cell-mediated colitis. Thus, MeCP2 serves as a critical safeguard that confers Tregs with resilience against inflammation.
Collapse
|
250
|
Valle-Rios R, Maravillas-Montero JL, Burkhardt AM, Martinez C, Buhren BA, Homey B, Gerber PA, Robinson O, Hevezi P, Zlotnik A. Isthmin 1 is a secreted protein expressed in skin, mucosal tissues, and NK, NKT, and th17 cells. J Interferon Cytokine Res 2014; 34:795-801. [PMID: 24956034 DOI: 10.1089/jir.2013.0137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Using a comprehensive microarray database of human gene expression, we identified that in mammals, a secreted protein known as isthmin 1 (ISM1) is expressed in skin, mucosal tissues, and selected lymphocyte populations. ISM1 was originally identified in Xenopus brain during development, and it encodes a predicted ∼50-kDa protein containing a signal peptide, a thrombospondin domain, and an adhesion-associated domain. We confirmed the pattern of expression of ISM1 in both human and mouse tissues. ISM1 is expressed by DX5(+) lung lymphocytes that include NK and NKT-like cells, and is also expressed by some CD4(+) T cells upon activation but its expression increases significantly when CD4(+) T cells were polarized to the Th17 lineage in vitro. The presence of IFN-γ during CD4(+) T cell polarization inhibits ISM1 expression. Given that ISM1 has been reported to have anti-angiogenic properties, these observations suggest that ISM1 is a mediator of lymphocyte effector functions and may participate in both innate and acquired immune responses.
Collapse
Affiliation(s)
- Ricardo Valle-Rios
- 1 Department of Physiology and Biophysics, School of Medicine, University of California , Irvine, Irvine, California
| | | | | | | | | | | | | | | | | | | |
Collapse
|